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Abstract

Gullberg, J. 2005. Metabolomics: A Tool for Studying Plant Biology. 
Doctor’s dissertation.
ISSN 1652-6880, ISBN 91-576-6987-2

In recent years new technologies have allowed gene expression, protein and metabolite profiles 
in different tissues and developmental stages to be monitored. This is an emerging field in 
plant science and is applied to diverse plant systems in order to elucidate the regulation of 
growth and development. The goal in plant metabolomics is to analyze, identify and quantify 
all low molecular weight molecules of plant organisms. The plant metabolites are extracted 
and analyzed using various sensitive analytical techniques, usually mass spectrometry (MS) 
in combination with chromatography. In order to compare the metabolome of different plants 
in a high through-put manner, a number of biological, analytical and data processing steps 
have to be performed. In the work underlying this thesis we developed a fast and robust 
method for routine analysis of plant metabolite patterns using Gas Chromatography-Mass 
Spectrometry (GC/MS). The method was performed according to Design of Experiment 
(DOE) to investigate factors affecting the extraction and derivatization of the metabolites 
from leaves of the plant Arabidopsis thaliana. The outcome of metabolic analysis by GC/MS 
is a complex mixture of approximately 400 overlapping peaks. Resolving (deconvoluting) 
overlapping peaks is time-consuming, difficult to automate and additional processing is 
needed in order to compare samples. To avoid deconvolution being a major bottleneck in 
high through-put analyses we developed a new semi-automated strategy using hierarchical 
methods for processing GC/MS data that can be applied to all samples simultaneously. The 
two methods include base-line correction of the non-processed MS-data files, alignment, 
time-window determinations, Alternating Regression and multivariate analysis in order to 
detect metabolites that differ in relative concentrations between samples. The developed 
methodology was applied to study the effects of the plant hormone GA on the metabolome, 
with specific emphasis on auxin levels in Arabidopsis thaliana mutants defective in GA 
biosynthesis and signalling. A large series of plant samples was analysed and the resulting 
data were processed in less than one week with minimal labour; similar to the time required 
for the GC/MS analyses of the samples.
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Introduction

Plants must be able to adapt to survive changes in the external conditions, such 
as fluctuations in temperature, light, drought, nutrient supplies and attacks by 
pests during their growth and development. Diverse environmental signals are 
integrated in plant developmental programs in adaptive responses that maximize 
their competitiveness and survival. A wide range of plant systems have been used 
to study plant functions. Arabidopsis thaliana is the most intensively studied plant 
model system in functional biology today and its use has dramatically increased our 
knowledge of developmental processes in plants (Meinke et al., 1998). Arabidopsis 
is a small annual plant with a rapid life cycle (germination to mature seed in six 
weeks), it has a small and sequenced genome, and a large collection of mutants is 
available (The Arabidopsis Genome Initiative, 2000).

In order to understand the regulation of growth and development of plants such as 
Arabidopsis, the expression of genes, proteins and metabolites are studied in different 
tissues and development stages. Global analysis of genes, proteins and metabolites 
[transcriptomics (Andersson et al., 2004), proteomics (Newton et al., 2004) and 
metabolomics, respectively (Fiehn, 2002; Sumner, Mendes & Dixon, 2003)] are 
emerging fields in plant science. The genes, transcripts and proteins are regulated 
and organized in a complex network that controls plant development. To be able to 
apply these approaches to plant biology on a routine basis, appropriate methodology 
has to be developed. Transcriptomic analysis is today quite straightforward, but both 
proteomics and metabolomics are developing fields. For example, metabolomic 
analysis must be performed using highly sensitive analytical instruments  
(e.g. mass spectrometry, MS, in combination with chromatography) to give 
interpretable results. 

A further key to understanding the growth and development of plants is knowledge 
of plant hormones, e.g. auxins, cytokinins, gibberellins (GAs), abscisic acid and 
ethylene, and their metabolism (Davies, 2004). The standard definition of a hormone 
is an organic compound produced by one tissue in an organism and transported 
to another tissue, where it induces a specific physiological response (Lawrence, 
1995). However, in the context of plant hormones they can also work as plant 
growth regulators at the site of their action. Cross-talk between different growth-
regulating substances increases the complexity and levels of control of growth and 
development. 

Primary metabolites and hormones are affected by, and affect, the physiological 
processes in the developmental processes in the plant and can be seen as effect of 
end products of gene expression.

In this thesis I consider the development of extraction protocols, data comparison 
and analytical methods for high-throughput global metabolite screens. The developed 
methodology has been applied to study the effects of the plant hormone GA on 
the metabolome, with specific emphasis on auxin levels in Arabidopsis thaliana 
mutants defective in GA biosynthesis and signalling.
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Background

Metabolomics
The goal in plant metabolomics is to comprehensively analyze, identify and 
quantify the metabolome of plants (Fiehn, 2002). The metabolome is defined as 
all low molecular weight molecules (metabolites) present in a cell (Fiehn, 2002; 
Harrigan & Goodacre, 2003; Sumner, Mendes & Dixon, 2003). The metabolites 
can be viewed as the end products of gene expression and enzymatic activity. Thus, 
metabolomics has been proposed as a useful tool for studying gene function. In 
recent years metabolomics has become a complementary method to large-scale 
analysis of gene transcript levels (microarray analysis, transcriptomics) and 
proteins (proteomics). The general aim of these large-scale analyses is to obtain 
information that can explain and identify the differences between certain sets of 
organisms (e.g. differences in genotypes), or to elucidate factors that influence 
biochemical events. The assumption in functional biology is that a change in the 
transcriptome (the complete collection of transcribed elements of the genome) 
affects the catalytic activities of enzymes, causing a change in the metabolome. 
The size of the metabolome differs between different organisms, and the plant 
kingdom has been estimated to produce up to 200,000 metabolites in total (Fiehn, 
2002). However, specific plant and tissues contain fewer metabolites. Arabidopsis 
leaves have been estimated to contain approximately 5000 different primary and 
secondary metabolites (Bino et al., 2004). The plant metabolome contains organic 
species – such as amino acids, fatty acids, carbohydrates, organic acids and lipids 
(see also KEGG, for a partial classification of the compounds http://www.genome.
ad.jp/kegg/catalog/compounds.html, 19-August-2005), both elemental (Lahner et 
al., 2003) and inorganic species. The diversity of the metabolome is much more 
complex in comparison to the 20 different amino acids present in a protein and 
the four nucleotide bases in the DNA sequence. Furthermore, the differences in 
the concentration of components in the metabolome is estimated to vary from  
pmol–mmol (Dunn & Ellis, 2005). Therefore, it is impossible to analyze all 
metabolites in a single analysis with current analytical equipment. To address this 
problem different analytical approaches have been developed to answer specific 
types of biological questions (Fiehn, 2002). As described above, metabolomics is 
an unbiased method that has to be selective and sensitive. This is in contrast to 
the more traditional way to analyze metabolites, e.g. analysis of targets for plant 
hormones (Ljung et al., 2005). The qualitative and quantitative analysis in target 
analysis is focused on only a few metabolites. For each metabolite a corresponding 
internal standard is often used and the purified extract is separated and analyzed 
by a sensitive detection method. Metabolite profiling or metabolic profiling is 
focused on selected metabolites, for example a fraction containing a specific class 
of compounds (Broeckling et al., 2005). Metabolic fingerprinting is a rapid and 
global analysis, which often does not involve chromatographic separation and 
metabolites are generally not identified (Choi et al., 2004). Metabonomics is a 
similar strategy to metabolomics, but is often used in toxicology studies with 
NMR for global metabolite screenings (Nicholson et al., 2002). The results of the 
different approaches give different levels of precision, depending on the number of 
metabolites analyzed. The earliest metabolite profiling focused on drug metabolites 
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(Horning & Horning, 1971). The first large-scale plant metabolite profiling was first 
performed by Roessner et al. (2000, 2001) on potato tubers (Solanum tuberosum) and 
Arabidopsis thaliana leaf extracts (Fiehn et al., 2000a) using Gas Chromatography-
Mass Spectrometry (GC/MS). Both metabolic profiling and metabolomics have been 
applied to many different plant species and to address different biological questions. 
To give some examples, the techniques have been used to study the metabolome of 
rice leaves (Sato et al., 2004), changes in the metabolome during cold acclimation 
of Arabidopsis (Cook et al., 2004), in comparisons of metabolic profiles of alfalfa 
and M. truncatula to identify new saponins (Huhman & Sumner, 2002), studies 
of growth processes in hybrid aspen (Populus tremula L. x tremuloides Michx.; 
Wiklund et al., 2005) and characterization of flavonoid glycosides in genetically 
modified tomato (Le Gall et al., 2003b). In addition, metabolomic approaches have 
been applied in flux analyses to elucidate plant metabolism (reviewed by Fernie, 
Geigenberger & Stitt, 2005), to determine stresses in genetically modified (GM) 
plants; Le Gall et al., 2003a) and nutrition research (German, Roberts & Watkins, 
2003). Further applications are reviewed by Sumner, Mendes & Dixon (2003) 
and Bino et al. (2004). In the field of human and animal metabolomics one of the 
main goals is to find metabolic biomarkers in tissues and biofluids that can act as 
disease indicators (Harrigan & Goodacre, 2003; Robertson, 2005). For a historical 
perspective of plant and animal metabolomics, see Harrigan & Goodacre (2003) and 
Sumner, Mendes & Dixon (2003). To understand biological behaviour in a holistic 
way the analysis should be as universal as possible. This requires the integration 
of biology, chemistry, mathematics, biostatistics and bioinformatics to convert 
information of diverse types into useful and interpretable results.

Metabolic Pathways
Metabolomics can be used to explain the biochemical function of annotated genes. It 
can also be used to define phenotypes and to bridge the genotype-to-phenotype gap 
(Fiehn, 2002). Furthermore, metabolites can also be related by their molecular 
structure and the fact that that they are built up by other metabolites. This can 
be visualized in maps or biochemical pathways describing the linkage between 
metabolite reactions. Known metabolite relationships have been used to compile 
publicly available reference biochemical reference databases (Mueller, Zhang & 
Rhee, 2003; Lange & Ghassemian, 2005). These reference biochemical databases 
contain not only information about biochemical pathways, cellular and molecular 
processes, but also information about the proteins that catalyse the reactions and 
the genes that code for them. An important point to remember is that the database 
information is limited since it does not cover species-specific pathways and the 
resulting diagrams do not cover all of the side reactions. However, databases can 
still provide a powerful visualization tool for the biological context of functional 
information. Examples of such databases include the Kyoto Encyclopedia of 
Genes and Genomes maps (KEGG; http://www.genome.ad.jp/kegg/; 19-August-
2005; Kanehisa et al., 2002) and the Arabidopsis Information Resource (TAIR,  
http://www.arabidopsis.org:1555/ARA/server.html, 19-August-2005). 
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Instruments used for Metabolomics
Numerous analytical techniques have been used in the field of plant metabolomics to 
monitor and explore metabolic differences between biological samples. I will here 
describe the most widely used methods for plant metabolite analysis: GC /MS and 
Liquid chromatography-mass spectrometry (LC/MS). Other important analytical 
techniques include liquid chromatography-photodiode array detection-mass 
spectrometry (LC/PDA/MS; Huhman & Sumner, 2002), capillary electrophoresis-
mass spectrometry (CE/MS; Soga et al., 2003; Sato et al., 2004), Fourier-transform 
ion-cyclotron mass spectrometry (FT/MS; Tohge et al., 2005) and Nuclear magnetic 
resonance (NMR; Ward et al., 2003; Wiklund et al., 2005), but these approaches 
will not be discussed in this thesis and are described in a number of reviews, for 
example Sumner, Mendes & Dixon (2003) and Dunn & Ellis (2005). The specificity, 
sensitivity and structural range of the different methods vary substantially. 

Gas Chromatography-Mass Spectrometry (GC/MS)
Hyphenated chromatography-mass spectrometry approaches, such as high 
performance liquid chromatography (HPLC) and gas chromatography (GC) in 
combination with MS enables good metabolite identification and quantification 
compared to many other methods for screening metabolites. GC/MS (Watson, 1997; 
de Hoffmann & Stroobant, 2002) provides a robust system with excellent separation 
capacities and high thought-put possibilities, and is therefore the most commonly 
used analytical technique for routine analyses in the field of plant metabolomics. 
The separation of the analytes in gas chromatography is dependent on analyte 
interactions with the stationary face and the boiling point. Only compounds that 
are volatile can be separated on a GC column, so non-volatile metabolites must 
be derivatized prior to analysis by GC. A common way to solve this problem is to 
derivatize polar compounds containing functional groups such as –OH, –SH or –NH. 
For more details see the chapter Derivatization for GC/MS. After derivatization a 
portion of the sample is introduced into the inlet of the GC instrument. For volatile 
plant metabolites, methods such as headspace techniques (Verdonk et al., 2003; 
Vikram, Prithiviraj & Kushalappa, 2004; Lui et al., 2005) can be used to introduce 
metabolites to the GC column.

The inlet temperature is often higher than 250°C, at which many metabolites are 
evaporated. Two different injection methods are most widely used; splitless and split 
(Watson, 1997). In splitless injections the whole sample is introduced onto the high 
resolution capillary column, which is preferable to split injections (where only a 
portion is used) for trace analyses (Watson, 1997). The length of the capillary column 
varies between 10 to 60 metres. The polarity of the column can also be varied by 
changing the phenyl stationary phases, such as DB-5, DB-50 and CPSil-8. Aspects 
of different instrumental parameters effecting the GC analysis of metabolomes of 
human serum and yeast fermentation broths have been investigated by O’Hagan et al.  
(2005), who showed that optimization of GC conditions is required to improve 
analytical performance in metabolomic analysis. 

Metabolites eluting from GC are ionized by Electron-impact (EI) or Chemical 
Ionization (CI;Watson, 1997; de Hoffmann & Stroobant, 2002). For metabolic 
analysis EI (Fiehn et al., 2000b) is the most commonly used technique. In EI 
vaporized metabolites are impacted by a beam of electrons with sufficient energy to 
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fragment and ionize the molecule. The number of fragment ions that is produced of 
each metabolite is a function of the electron impact energy. The source is designed so 
that when the ions are formed they are pushed out from the source and into the mass 
analyzer. EI results in molecular ion fragmentation, which is of great importance 
for structural interpretation of the metabolites. In comparison with EI, CI is a much 
softer ionization technique, in which the ions are allowed to collide with reagent gas 
(often proton-rich) to form abundant adduct ions that contain the intact molecular 
species (Watson, 1997). This is advantageous for determining the molecular weight of 
metabolites. To identify compounds, commercially available databases of molecular 
ion fragmentation patterns of molecules, such as NIST (http://www.nist.gov/srd/
nist1.htm; 19-August-2005), can be used. Unfortunately, the number of derivatized 
plant metabolites is limited and additional retention index information is incomplete. 
In addition to commercial libraries, in-house standard libraries (Bino et al., 
2004) have also been compiled containing spectra and corresponding retention 
indices. In the metabolomics science community databases have been compiled of 
collections of mass spectra and retention indices of frequently observed metabolites 
in plants (Wagner, Sefkow & Kopka, 2003; Schauer et al., 2005).

Liquid Chromatography-Mass Spectrometry (LC/MS)
Instead of GC/MS, metabolites can be separated and detected by Liquid 
Chromatography (LC) coupled to atmospheric pressure ion sources (Herbert & 
Johnstone, 2002). ElectroSpray Interfacing/Ionization (ESI; Tolstikov & Fiehn, 
2002) is the most widely used, more so than Atmospheric Pressure Chemical 
Ionization (APCI; Garratt et al., 2005), for metabolic profiling. Unlike GC/MS, in 
LC/MS analyses the metabolites do not have to be volatile or possible to derivatize. 
After extraction and, if necessary, sample purification, the metabolites are separated 
by LC according to the differences in chemical properties of the metabolites 
present. Reverse phase chromatography is widely used in the field of metabolomics 
(Broeckling et al., 2005). The separation of the extract depends on how the metabolites 
interact with the alkyl bonded spherical silica stationary phases. Many biologically 
important compounds do not separate easily on reversed-phase packing material, 
C18, due to their high polarity. Hydrophilic interaction liquid chromatography 
(HILIC) methodology has also been used (Schlichtherle-Cerny, Affolter & Cerny, 
2003; Tolstikov et al., 2003). Recently, ultra high-pressure chromatography systems, 
such as UPLC™, have been developed to improve the separation efficiency (e.g. the 
number of components that can be separated/isolated from a mixture) of metabolites 
(Shen et al., 2005; Wilson et al., 2005a; Wilson et al., 2005b). C18 monolithic silica 
capillary columns have been used in plant metabolomics to improve chromographic 
resolution (Tolstikov et al., 2003). Both UPLC™ and monolithic columns improve 
peak separation, resulting in the ability to detect more peaks. In LC-ESI-MS (Fenn 
et al., 1989) the LC effluent is transported through a capillary with a high voltage 
(2-5 kV). This leads to an electric field gradient forming on the water surface. The 
polarity of the voltage (positive or negative) chosen depends on the analyte. From the 
capillary tip a “Taylor cone” is generated, and at a certain point (when the Columbic 
repulsion of the surface charge is equal to the surface tension of the droplet) the 
droplet bursts and small charged droplets are formed that separate from it (Kebarle 
& Peschke, 2000). The droplets fly in atmosphere pressure towards the entrance of 



12

the mass analyzer. In positive atmospheric electrospray ionisation an oxidation takes 
place at the spray tip and reduction on the counter metal plate. The ionization can 
be limited due to suppression effects by factors such as the presence of salts in the 
matrix of non-volatiles, e.g. various inorganic buffers (King et al., 2000; Cech & 
Enke, 2001). Another limiting problem is that many analytes cannot be ionized or 
give a low ionization efficiency in ESI. As a rule of thumb, the analyte has to have 
a functional group that can be ionized, e.g. carboxyl or amine groups, and the ESI 
response increases with hydrophobicity (Cech & Enke, 2001). ESI responses can 
be improved by derivatization of the analytes (Okamoto, Takahashi & Doi, 1995; 
Leavens et al., 2002; Nordström et al., 2004). In comparison with electron impact 
in GC/MS both ESI and APCI fragmentations of molecular ions during ionization 
are much softer, and thus yield less information for mass interpretation. However, 
by running tandem MS (MS/MS) to provide fragmentation information (Huhman & 
Sumner, 2002; Tolstikov & Fiehn, 2002) and/or measuring accurate masses (Wilson 
et al., 2005a) structural information can be generated for identification. Databases, 
such as those for GC/MS fragmentation patterns, are available, but only a few for 
LC/MS/MS. A problem with tandem mass spectra is that different instruments 
generate different spectra.

Mass Spectrometry
A mass spectrometer (MS) can be seen as an advanced balance that measures 
the weight of eluting metabolite fragments from the ion source (Watson, 1997;  
de Hoffmann & Stroobant, 2002). MS is a widely used approach for the identification 
and quantification of metabolites. In simplified terms, an MS consists of several 
parts: an ion source (in which ions are formed), a mass analyzer (which separates the 
formed ions according to their mass to charge ratio; m/z), a detector (which detects 
the separated ions) and a computer system (which controls the mass spectrometer 
and records the mass spectra). The different types of ion sources have been described 
above. The choice of mass analyzer in metabolomics depends on requirements with 
respect to scan speed, sensitivity, and selectivity for specific metabolites (reviewed 
by Dunn & Ellis, 2005). MS systems are mostly coupled after separation systems 
such as GC, LC or CE, but compounds can also be introduced using mass direct 
injection (Tohge et al., 2005), Matrix Assisted Laser Desorption Ionization Time-
of-flight Mass Spectrometry (MALDI; Edwards & Kennedy, 2005) and Desorption/
Ionization on Silicon (DIOS). The most widely used mass analyzers in plant 
metabolomics are time-of-flight, quadrupole mass analyzers, and quadrupole ion 
trap mass systems. After the charged molecules have been produced they enter the 
mass analyzer. This is a low pressure region, evacuated by rotary pumps and turbo 
pumps. The quadrupole mass analyzer (de Hoffmann & Stroobant, 2002) is used for 
both GC/MS (Fiehn et al., 2000b) and LC/MS (Idborg-Björkman et al., 2003), and 
consists of two pairs of rods arranged orthogonally to each other. Each pair of rods 
employs a combination of direct-current (DC) and radiofrequency (RF) fields as a 
mass “filter”. The “filter” is scanned by ramping the magnitude of the RF amplitude 
and DC voltages at a fixed ratio. For LC/MS quadrupole mass analyzers the 
quadrupoles are often aligned in series of three in order to run tandem MS (MS/MS) 
and thus provide fragmentation information. In a similar way, tandem MS can be 
used for metabolite identification with quadrupole ion trap mass spectrometers. TOF 
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(Mamyrin, 2001) is a simple method in comparison to other mass analyzers for mass 
measurements. In recent years TOF systems e.g. GC/TOFMS (Cook et al., 2004) and 
MALDI/TOF (reviewed by Newton et al., 2004) have been essential instruments for 
plant biological analyses. Ions from the ion sources are pushed into a low pressure 
flight tube where they drift and are separated by their masses; lighter ions travelling 
faster than heavier ions. The ions will have a kinetic energy distribution when they 
are pushed out in the tube, and to compensate for this a reflectron is placed at the 
end of the drift zone. This means that all ions will be focused and reflected back 
along the flight tube. Each ion will penetrate the field differently, depending on its 
kinetic energy. The time it takes for one ion to be detected from being pushed out 
corresponds to the mass of the ion. In contrast to quadrupole systems, which are 
scanning instruments, all ions will be detected in TOF.

Generating Analytical Protocols
To be able to compare the metabolome between plants a number of criteria have to 
be fulfilled: the biological variation should be kept low, the metabolites have to be 
chemically intact during analysis (i.e. the extraction should be non-destructive), the 
analysis should be global, quantitative and accurate, and the information should be 
interpretable. Bearing in mind that plants contain a wide spectrum of both low and 
high abundance metabolites a number of analytical aspects must be considered to 
fulfil the above criteria. This raises problems when choosing analytical protocols, as 
the optimum extraction conditions differ widely for different types of compounds. 
Ordinary analytical analysis is often focused on one analyte or a group of similar 
analytes. Unique target protocols are often used together with labelled internal 
standards for each analyte. In comparison with traditional quantification methods, a 
number of compromises have to be considered in metabolomics, where the aim is to 
analyze and identify as many metabolites as possible in as short a time as possible. 
Studies have been presented in which the analytical precision and biological variation 
in metabolomic investigations have been examined (Shurubor et al., 2005).

Extraction 
To stop metabolic processes and freeze the metabolome the plant samples can be 
freeze-dried (Le Gall et al., 2003b) or rapidly frozen in liquid nitrogen (Cook et al., 
2004). After sampling, the samples can be stored for a couple of days or weeks at  
-80°C to maintain stability until extraction. However, there are limitations in the time 
that samples can be stored in a freezer. To extract plant metabolites efficiently from 
plant tissues, the tissue has to be homogenized properly first. The efficiency with 
which the solvent can penetrate the tissue influences the length of time required for 
solvent extraction and the degree of homogenization. Various techniques have been 
applied to accelerate this process, e.g. grinding with a mortar and pestle together 
with liquid nitrogen, milling in vibration mills with chilled holders, homogenization 
with a metal pestle connected to an electric drill (Edlund et al., 1995) and ultra turrax 
devices (Orth, Rentel & Schmidt, 1999). A common way to extract metabolites is to 
shake the homogenized plant tissue at low or high temperatures in organic solvents, or 
mixtures of solvents (Johansen, Glitso & Knudsen, 1996; Streeter & Strimbu, 1998; 
Cook et al., 2004; Broeckling et al., 2005). For polar metabolites, methanol, ethanol 
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and water are often used, while for more lipophilic compounds chloroform is the 
most commonly applied solvent. Other extraction techniques include supercritical 
fluid extraction (SFE; Huie, 2002) microwave-assisted extraction (MAE; Barclay, 
Bonner & Hamilton, 1997; Kaufmann & Christen, 2002), subcritical water extraction 
(SWE; Gamiz-Gracia & de Castro, 2000; Ozel et al., 2005) and pressurized liquid 
extraction (PLE; Benthin, Danz & Hamburger, 1999; Ong, 2002), but these methods 
have not been widely adopted, as yet, to extract metabolites from plant tissues. In 
metabolomic analyses, the goal is to analyze as many metabolites as possible in a 
single analysis (e.g. single GC/MS run), so the extract is not usually purified, in 
contrast to routine procedures for analyzing specific metabolites in complex matrices 
where, for instance solid phase extraction (SPE) is commonly used. However, it is 
common to divide metabolomic extracts into polar and lipophilic fractions by solvent 
partitioning (Broeckling et al., 2005; Desbrosses, Kopka & Udvardi, 2005).

Derivatization for GC/MS
The most common way to derivatize polar compounds containing functional 
groups, such as –OH, –SH or –NH groups, is to add a trimethylsilyl (TMS) group, 
and form TMS-ethers, TMS-sulfides or TMS-amines, respectively (Pierce, 1968;  
Blau & Halket, 1993). TMS-ethers of mono- and di-saccharides are easily prepared 
and separated chromatographically, but TMS-derivatization of monosaccharides 
often results in the formation of multiple peaks since reducing sugars occur in 
solution as mixtures of different anomers. TMS-derivatization usually results in five 
tautomeric forms of the reducing sugars (Curtius, Muller & Völlmin, 1968; Asres & 
Perreault, 1997). Due to the equilibrium shifts and separation problems entailed, this 
causes major problems for the identification and quantification of complex mixtures 
of carbohydrates in plant tissues. However, by converting the aldehyde and keto-
groups into oximes using hydroxyamines or alkoxyamines before forming TMS-
ethers, the number of tautomeric forms can be reduced, due to the limited rotation 
along the C=N bond, resulting only in the formation of syn and anti forms (Fiehn et al.,  
2000b; Figure 1). Several different reagents can be used both for oximation and 
silylation. The choice of reagents depends on the reaction efficiency, to ensure that 
as few metabolites as possible remain underivatized. One drawback associated with 
using silylation derivates is the formation of unexpected side products, artefacts 
(Little, 1999). MSTFA (N-methyl-N-trimethylsilyltrifluoroacetamide) derivatization 
in combination with oximation is one of the most widely used procedures for sugars 
and plant metabolites (Fiehn et al., 2000a; Duran et al., 2003). Other alternatives 
are derivatization by BSTFA (N,O-bistrimethylsilyltrifluoroacetamide) and BSA  
(N,O-bistrimethylsilylacetamide), but MSTFA is more volatile and thus more 
suitable for direct GC analysis (Walhout & Pierce, 1968). It has also been shown that 
different catalyzing compounds and reagents, such as potassium acetate, pyridine, 
TMCS and TMBS, can enhance the silylation power of the silylation reagents 
(Evershed, 1993). Silylation efficiency can also affect the choice of solvent (Walhout 
& Pierce, 1968; Evershed, 1993; Adams et al., 1999). To improve the identification 
and structural information obtained, N-methyl-N-tert-butyldimethylsilyltrifluoro 
acetamide (MTBSTFA) has been used for fragment assignment (Fiehn et al., 
2000b).
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Design of Experiment
In biology and analytical chemistry there is a need to perform experiments in a 
systematic way. To generate a protocol for global analysis of metabolites or to design 
a plant experiment for metabolic profiling, a number of factors (e.g. biological 
treatments, genotypes, temperature, amount of reagents and instrumental setups) 
can be identified which can affect the responses (e.g. increased growth, changes 
in internode length, hormone status, metabolite response, reproducibility or yield). 
The goal for the analytical systems is often to find the settings that maximize the 
response and reproducibility. The traditional way to investigate and find optima in 
an experimental domain (the experimental ‘area’ that is defined by the variation 
of the experimental variables) is to Change One Separate factor at a Time, i.e. the 
COST approach. Finding true optima is not straightforward with this approach, as it 
is inefficient (requiring unnecessarily large numbers of runs), it ignores interactions, 
it generates knowledge relatively slowly and does not map the experimental space. 
Design of experiment (DOE, Lundstedt et al., 1998; Carlson & Carlson, 2005; 
Riter et al., 2005) is a procedure where variation is introduced systematically to the 
experimental domain and the effects of these factors are analysed using regression 
models. In contrast to the COST approach DOE allows the causal effect of each 
factor in the experimental domain to be elucidated in relatively few experiments in 
a systematic way. A factor is here defined as an experimental variable that can be 
changed independently of the others. By measuring the effect of one experimental 
variable at different levels of another variable it is also possible to estimate their 
interactive effects. If the combinations of k factors are investigated at two levels, a 
factorial design will consist of 2k experiments (Lundstedt et al., 1998). In a factorial 
design the influence of all experimental variables, factors, and interaction effects on the 
response or responses are investigated. For example if the effects of two factors, time 
and temperature, on derivatization are to be investigated at two levels (e.g. 24h /48h  
and 20/60°C) four experiments (22 design = 4 experiments) must be performed to 
fulfil the criteria of independent experiments and to estimate interactions between 
the factors The experiments are: A (24h/20°C), B (48h/20°C), C (24h/60°C) and 
D (48h/60°C). To estimate the experimental error a number of experiments are 
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repeated, preferably in the centre of the experimental domain. 
The DOE strategy can be divided into the following main parts: problem 

formulation, planning of experiments and measurements of the responses according 
to the design, evaluation and interpretation of the model (Figure 2). In problem 
formulation the questions “What are the purposes?” and “What are the objectives?” 
are addressed, and the answers decide the design setup and number of experiments. 
The outcome from the experiments are responses that are commonly modelled using 
Ordinary Least Squares (OLS; Martens & Naes, 1992) or Partial Least Squares 
Regression (PLS; Höskuldsson, 1995; Wold, Sjöström & Eriksson, 2001) OLS 
can be used when the number of experimental factors is equal to or fewer than the 
number of experiments and the design factors (columns) are uncorrelated. If the 
different design factors are highly correlated with each other, for example in mixture 
designs, PLS can be used as one of many alternative regression methods (Antti et al.,  
2004). The model setup is y = b0+b1x1+b2x2……..+b12x1x2+f, where b represents the 
unknown estimate. 

Depending on the design setup, different equations can be applied to give 
an approximation of the response surface. These equations may contain linear, 
interaction and square terms in attempts to fit the true surface of the domain. From 
the model important factors that influence the results can be used for interpretation. 
The model can also be used to make predictions to validate the model. The statistical 
validity of the model is evaluated by using cross-validation (Wold, 1978) and to 
compare variation in the model and the experimental error (Lundstedt et al., 1998). 
After the experiments and interpretation a new round of DOE can be performed, 
in which either the complexity of the system is reduced or the values for specific 
variables are selected. The settings and the number of levels for the different factors 
are selected according to the question addressed, the complexity of the system and 
the number of suitable experiments. Designs can also be divided into screening 
and response surface modelling (RSM) types. For screening investigations only the 
effects of the experimental variables and interactions are estimated. After screening, 
the goal of an investigation is usually to approximate the response by a quadratic 
polynomial. Alternative designs, such as determinant-optimal designs (D-optimal 
designs) can be used for unsymmetrical designs (de Aguiar et al., 1995) and for 
mixture designs (Lundstedt et al., 1998) where the design variables cannot be varied 
independently of each other. D-optimal designs maximize the experimental space 
for a selected number of experiments for defined model equations. 

Figure 2. An overview of Design of Experiment steps. 

Multivariate Analysis
Experiments are performed according to the biological or analytical question to be 
addressed, and the DOE strategy can be used to introduce variation between samples 
systematically, Figure 2. For biological samples analyzed by modern analytical 

1. Planning / Design 2. Experiment 3. Analysis / Modeling

5. Evaluation / Interpretation4. Conclusion / What to do next?
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techniques, such as LC/MS, GC/MS and NMR, the number of responses is often 
large (Figure 3). Due to the complexity of the samples the different variables are 
often correlated. For example, environmental changes can affect many metabolites 
belonging to the same metabolic pathway in a plant. Often, the goal of data mining 
is to find structures in experimental information and to describe it in an interpretable 
and simple way. The traditional approach is to consider one variable at a time, but 
chance correlations may give false outcomes. To help understand the measurement 
information it can be divided into an interpretable model and noise. This can be 
done in numerous ways, one of which is to explore the underlying data structure for 
a set of samples by reducing the number of variables to a few independent principal 
components (PCs) or latent variables (Kvalheim, 1992). The different latent variables 
are built up by linear combination of different variables describing similar variation. 
According to the experimental setup the latent variables can be used to generate 
models to describe this variation. Depending on the type of information to be 
explored from the data table different latent variables can be calculated. To obtain an 
overview of a data table, to detect clusters, patterns and trends between the samples, 
and to identify abnormal samples Principal Component Analysis (PCA; Jackson, 
1991; Höskuldsson, 1995) can be used. Partial Least Squares Regression (PLS) is 
the regression analogy of PCA, where the relationship between data tables is sought. 
The use of multivariate calibration in analytical chemistry is reviewed in more detail 
by Bro (2003). Other methods used to model variation in metabolomics include 
HCA (hierarchical cluster analysis; Sumner, Mendes & Dixon, 2003), discriminate 
analysis (DA; Allen et al., 2003), correlative network analysis (Steuer et al., 2003), 
neural networks (Taylor et al., 2002) and Genetic algorithms (Goodacre, 2005). 

Figure 3. Total ion current chromatogram (TIC) from a typical analysis of a methoxymated 
and trimethylsilyl derivatized extract from Arabidopsis.

Annotation
PCA and PLS are best described using linear algebra and vector-matrix notation. 
Bold capital letters (X) are used for matrices. Small bold characters (p) are used for 
column vectors. Transposition is also used to make row vectors from column vectors 
and vice versa. T superscripts denote transposition, and –1 the inverse of a matrix. 
Small italic letters (k) are used for scalars. ||w|| represents the length of vector w.
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Principal Component Analysis (PCA)
The metabolic information can be represented as an X matrix where each row 
represents a sample (N) and each column (K) represents an instrumental or metabolite 
response. Instead of describing the information as a data table the information can 
be visualized in a multidimensional space where each sample is represented as a 
point in a K-dimensional space. By doing so a swarm of samples can be projected 
from the K-dimensional space down to fewer dimensional hyper-planes, which 
can be regarded as different two-dimensional windows (score-plots). The score 
vectors will give a good approximation of the location of the different samples in 
the K-dimensional space. Each hyper-plane’s direction in the K-dimensional space 
corresponds to loading. For example, if three responses have been measured for six 
samples (Table 1), each sample can be represented as a point in a three-dimensional 
coordinate system. The samples are then mean centred (Table 2), and introduced 
into a three dimensional space (Figure 4). Centering is performed by subtracting the 
mean value for each variable from each corresponding variable response.

Table 1. Three metabolite responses for six plant samples.
Sample Metabolite 1 Metabolite 2 Metabolite 3
Sample 1 14 15 17
Sample 2 10 17 16
Sample 3 13 13 15
Sample 4 13 4 6
Sample 5 12 3 4
Sample 6 10 2 5
Mean 12 9 10.5

Table 2. The metabolite information from Table 1 after subtraction of the mean value for each 
column from each row. Score, t1 and t2, and loading values, p1 and p2, are calculated for the 
matrix. The values are rounded. 

Sample Metabolite 1 Metabolite 2 Metabolite 3 t1 t2
Sample 1 2.0 6.0 6.5 8.9 1.8
Sample 2 -2.0 8.0 5.5 9.5 -2.7
Sample 3 1.0 4.0 4.5 6.0 0.9
Sample 4 1.0 -5.0 -4.5 -6.7 1.2
Sample 5 0.0 -6.0 -6.5 -8.8 0.1
Sample 6 -2.0 -7.0 -5.5 -9.0 -1.4

p1 0.04 0.74 0.67
p2 0.95 -0.24 0.21

PCA will reduce the dimensionality of the multidimensional space and the data 
matrix by introducing a number of new orthogonal linear independent vectors 
(latent variables). This is done by first introducing one PC (Principal Component) t1 
describing the most variance in the K-dimensional space and projecting each sample 
down onto the new vector, Figure 4. 
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Figure 4. A: A projection of the samples in Table 2. Score vectors t1 and t2 describe the largest 
and second largest variation in the data. The score value for each sample is the distance 
between the projection and the mean centre of the data swarm. The score values describe the 
relation between samples. Loading P describes the importance of the different variables for 
describing the variation in the PCs. The cosine of the angle between the principal component 
directions and each of the original coordinate axes corresponds to loading P. B: A projection 
plot of the three-dimensional space down to a two-dimensional hyper plane (t1/t2) C: In the 
first latent variable metabolites 2 and 3 are the most important (describing the most variation), 
as can be seen in the first loading p1 (Table 2). 

Decomposition of a mean centred X matrix to the scores, loadings and residuals can 
be written:

(1) X = TPT + E = t1p1
T + t2p2

T +… tapa
T+ E       

The data reduction is accomplished by neglecting unimportant directions where the 
sample variation is insignificant. This is repeated until no significant direction in the 
K-dimensional is left, i.e. the residual. The maximum number of components (a) is 
the same as the number of variables. The number of significant PCs can be estimated 
by a number of methods, such as calculating the size of eigenvalues (Jackson, 1991) 
or cross-validation. After all significant variation in X has been described by the 
PCA model the remaining variation, the residual, is non-systematic and represents 
the distance between each point in K-space and its point on the plane.

Partial Least Squares Regression (PLS) 
PCA is an unsupervised method for which no additional information about the data 
is needed. The data describing the most variation in the X matrix are projected down 
to hyper planes. In contrast to PCA, PLS is a supervised method where additional 
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information is used to find information (y) in the X-matrix. PLS will find the linear 
relation between the X matrix and an external data vector (y). Like PCA, PLS is 
designed to find the latent structure in the X-matrix. PLS maximizes the covariance 
between X and y. The X matrix and y vector are decomposed in a similar way as 
for PCA: 

(2) X = TPT+ E = XW(PTW)-1 + E
(3) y = TcT + f = XW(PTW) -1cT + f = Xb + f

where: T is the score matrix of X; P and c are the loading matrices of X and y, 
respectively; W is the weight matrix of X; E and f are the residual matrices for X 
and y, respectively. The number of latent variables used in the PLS model depends 
on the predictability and is estimated using, for example, cross-validation. The 
regression coefficient for the PLS model can be expressed as:

(4) b = W(PTW)-1cT        

If the criteria for OLS are fulfilled for the X matrix, the outcome of the PLS model 
will be the same as for OLS. The main advantage of PLS is that the information 
from the data can be correlated with response data rather than simply describing the 
variation in the X-matrix, as PCA does. The score values and loading values can be 
explored in a similar way as in PCA to interpret the biological implications. 

I have here only described PLS for the case of a single y vector, but the algorithm 
can also be used for regression between two or more y (Y) vectors and the X-matrix. 
The use of PLS for two blocks is discussed in further detail by Wold, Sjöström & 
Eriksson (2001) and Trygg & Wold (2003). A similar prediction method to PLS 
is Orthogonal projection on latent structure (O-PLS) developed by Trygg & Wold 
(2002, 2003). For O-PLS the variation in X is divided into three parts instead of two, 
as in PLS. For a single y the X matrix is decomposed according to:

(5) X = tppp
T + ToPo

T + E
 

(6) y = tpcp
T + f

The first part of the variation in X is used to predict the variation in y (tppp
T), the 

second part contains so-called structured noise, variation that is orthogonal to y 
(ToPo

T), and the third part is residual variance. For PLS the variation is only separated 
into two parts: the variation used to model the variation in y and residual variance. 
The fraction of the sum of squares, R2X, of all the X’s explained by the current 
component can be divided for O-PLS into R2Xcorr (the variation used to predict y) 
and R2Xyo (y orthogonal variation). O-PLS gives similar predictions of y to PLS, 
but the interpretation of the models is improved because the structured noise in the 
model is separated from the variation describing the variation in y. 

Deconvolution
Hyphenated chromatography and mass spectrometry systems, including GC/MS 
and LC/MS, are commonly used to quantify, identify and screen for new metabolites 
in modern biology. To fulfil the requirements for high throughput, analyses are often 
short and the chromatograms often complex, containing hundreds of completely 
or partly overlapping peaks. To obtain the chromatographic and spectral profiles, 
especially to distinguish between overlapping peaks, curve resolution (commonly 
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named deconvolution) methods have been developed. Peak alignment and other pre-
treatments of other types of data, for instance GC/MS data, are not discussed further 
in this thesis. For coverage of these topics, see reviews by, for example, Fraga, 
Prazen & Synovec (2001) and Duran et al. (2003).

Curve resolution 
Samples from hyphenated techniques generate a matrix, X, where each row, N, 
represents spectra measured at one time point and each column, K, represents 
chromatographic profiles for a signal (e.g. a mass channel or wavelength). 
Deconvolution methods decompose the two-way signals into a number of unique 
peaks and spectra. According to the Lambert-Beer Law the matrix can be decomposed 
into, and expressed as:

(7) X=CST+E=c1s1
T + c2s2

T +… casa
T +E

This is done for the number of profiles (a) in the system. C represents the unique 
chromatographic profiles, S the corresponding spectral profiles and E the residual. 
This decomposition can be performed using, for example, PCA. Consider a 
sample, X, containing three components (GC/MS analysis of TMS-derivatized  
[2H4]-succinic acid, succinic acid and norleucine) with unique chromatographic 
(Figure 5) and mass spectral profiles (Figure 6). All masses that are measured by 
hyphenated techniques can be used to explore the three eluting peaks. 

Figure 5. Three eluting peaks, where the black lines correspond to TIC, the circles to  
m/z 251 ([2H4]-succinic acid-TMS), the squares to m/z 247 (succinic acid-TMS), the triangles 
to m/z 158 (norleucine-TMS) and the diamonds to m/z 147. Both TIC and m/z 147 are scaled 
down to fit the plot.

By using PCA and projecting down the swarm of samples, in this case retention 
times, an overview of the analytical information can be obtained by exploring the 
score values (Figure 7A). The most important variables, m/z channels, describing 
the variation in the different latent variables can be seen in the corresponding loading 
plot (Figure 7B). By looking in the direction of the time of the peak maximum 
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of each eluting peak a good approximation of the component mass spectra can be 
estimated. The goal in deconvolution is to find directions, e.g. using PCA, in this 
multidimensional space that give a solution to equation 7. 

Figure 6. Pure mass spectra of TMS-derivatized [2H4]-succinic acid (A), succinic acid (B) 
and norleucine (C). The triangles represent the mass of the molecule ion.

No a priori knowledge is needed about the bilinear decomposition of data except that 
the pure chromatographic and spectral profiles should only contain positive values 
and the chromatographic profiles should only contain one peak (unimodality). The 
constraint for PCA is that each PC has to be orthogonal to each other, so each PC 
needs to be rotated to give a good solution for C and S. 

Figure 7. A: Score plot for t1, t2 and t3 for the three eluting peaks in Figure 5. Projection 
of retention times (samples) down from a 750-dimensional m/z space to three principal 
component dimensions. B: Loading plot for p1, p2 and p3. The plot describes the most 
important m/z describing the variation in A.

Methods for the solution of the composition can be divided into unique and rational 
resolution methods (Jiang, Liang & Ozaki, 2004). The unique methods, such as 
heuristic evolving latent projections (HELP; Kvalheim & Liang, 1992) and orthogonal 
projections (OP; Liang & Kvalheim, 1994) try to pick regions in the chromatogram 
that are unique for some single compound and use them to decompose the X matrix. 
The rational resolution methods, such as alternating regression (AR; Karjalainen, 
1989), iterative target transformation factor analysis (ITTFA; Gemperline, 1984) and 
Simple to use interactive self-modelling mixture analysis (SIMPLISMA; Windig 
& Guilment, 1991), may produce sets of possible solutions and depend on the 
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similarity between spectral and chromatographic profiles. Provided the correlation 
and collinearity between the profiles are not too strong, the solution will be a good 
approximation of the true profiles. The curve resolution methods can also be divided 
into non-iterative, iterative, and hybrid approaches (Liang & Kvalheim, 2001). The 
non-iterative methods, such as OP and HELP, involve rank analysis of evolving 
matrices. The main disadvantage with these methods is that they are very difficult to 
automate, due to the need to define analyte elution windows by local rank analysis. 
The iterative methods all define start profiles, but the procedures for selecting 
initial estimates and resolution differ amongst them. Examples of iterative methods 
include ITTFA and AR. For the iterative methods, it is essential to estimate the 
chemical ranks of profiles correctly to generate the right solution. These approaches 
are described in detail in a number of review papers (Toft, 1995; Sanchez et al., 
1996; Grande & Manne, 2000). Originally the AR algorithm used random numbers 
as a starting estimate for S. C is calculated using least squares: 

(8) C=XS(ST S)-1 

C is corrected according to constraints (unimodality and non-negativity):

(9) S=XTC(CTC)-1

S is corrected to non-negativity constraints. The new spectral estimates are corrected 
according to constraints. New chromatographic and spectral profiles are calculated 
until convergence by iteration between equations 8 and 9. The disadvantage is, 
generally, that high-quality results require a good choice of starting vectors. Hybrid 
methods, such as automatic window factor analysis (AWFA; Malinowski, 1996) 
and Gentle (Manne & Grande, 2000), start from a set of key spectra from which 
concentration and spectral profiles are estimated. 

Generally in deconvolution, samples must be resolved separately and the estimated 
spectral profiles of all samples must be carefully checked in order to obtain reliable 
mass spectra and peak areas. Multivariate Curve Resolution-Alternating Least 
Squares (MCR-ALS, Tauler, 1995) is a method where the X matrix is instead built 
up by all samples to be compared. The data can be regarded as a data cube of size 
N*K*L, where N = the number of samples, K = the number of time points (scans) 
and L = the number of m/z channels. The cubes are then unfolded to form a data 
matrix X of size (N*K) * L. The matrix is decomposed in a similar way (Tauler, 
1995) as for AR and the outcome will be C of size (N*K) * the number of resolved 
components (R; i.e. the number of components with a common mass spectrum) and 
S of size L*R. Each sample will yield a chromatographic profile for each resolved 
component. This procedure has been used, for example, to deconvolute data obtained 
in liquid chromatography with diode array detection (LC-DAD; Tauler, Lacorte & 
Barcelo, 1996; Pere-Trepat et al., 2004) and LC-NMR analyses (Bezemer & Rutan, 
2001).

Applications and Software for Deconvolution
In the field of metabolomics automatic peak detection and mass spectrum 
deconvolution for GC/MS can be performed using instrument-specific software 
such as ChromaTOFTM software (Leco Corp., St Joseph, MI, USA). Automatic curve 
resolution of chromatograms can also be applied with a high degree of success,  
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e.g. by using the freely available AMDIS software (http://chemdata.nist.gov/mass-spc/ 
amdis/, 19-August-2005; Halket et al., 1999). Gentle has been successfully used for 
automatic data processing of GC/MS (Eide et al., 2001) and LC/MS data (Idborg-
Björkman et al., 2003). In addition, Micromass MarkerLynx applications manager 
(Lenz et al., 2004; Wilson et al., 2005a) and metabAlign software (Tolstikov  
et al., 2003; Vorst et al., 2005) have been used to filter out differences from raw data 
files between metabolic samples. Chromatographic alignment of raw GC/MS data 
can be carried out before deconvolution as metabolomic data, spectral formatting, 
alignment and conversion tools (MSFACTs; Duran et al., 2003).

Gibberellin Interactions with Auxin
Gibberellins (GAs) are endogenous plant growth regulators that control numerous 
aspects of plant growth and development, such as stem elongation, leaf shape, root 
and fruit growth, flowering and flower development (Davies, 2004; Sun & Gubler, 
2004; Tyler et al., 2004). The importance of GAs has been shown by studying 
mutants with reduced biosynthesis of bioactive GAs. Such mutants are generally 
dwarfed, with short internodes, small leaves, delayed flowering and varying degrees 
of male sterility. The phenotype of these mutants, e.g. ga1-3 (Silverstone et al., 
1997), can be restored to wild-type-like by treatment with active GAs (King, Moritz 
& Harberd, 2001)

Figure 8. GA biosynthesis, auxin crosstalk and DELLA proteins. The active GA4 causes 
degradation of the DELLA protein via the SCFSLY1 E3 ubiquitin ligase complex. Auxin works 
as a putative regulator of GA biosynthesis. Adapted from (Swain & Singh, 2005)

In recent years our understanding of GA biosynthesis and signalling has increased 
substantially through the identification of many genes involved in these processes. The 
biosynthesis of GAs can be divided into three stages, (i) the formation of ent-kaurene, 
(ii) the conversion of ent-kaurene to GA12 and (iii) the formation and deactivation 
of the bioactive GAs, GA1 and GA4 (Hedden & Phillips, 2000; Alvey & Harberd, 
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2005; Swain & Singh, 2005; Figure 8). Studies in Arabidopsis, rice and barley have 
also identified several positive and negative regulators of GA signalling pathways, 
all involved in regulating GA responsiveness during development (reviewed in 
Olszewski, Sun & Gubler, 2002 and Gomi & Matsuoka, 2003). The most intensively 
studied GA signalling components are the DELLA proteins (Sun & Gubler, 2004; 
Alvey & Harberd, 2005; Fleet & Sun, 2005). DELLA proteins are highly conserved 
among different plant species and belong to the GRAS protein family (Bolle, 2004). 
Five DELLA proteins have been identified in Arabidopsis; GA-Insensitive (GAI), 
Repressor of ga1-3 (RGA), RGA-like1 (RGL1), RGL-2 and RGL-3. The different 
proteins are putative transcription factors, and are all thought to encode negative 
regulators of GA responses, with different roles during the life cycle of the plant; for 
instance RGA and GAI are the major repressors during vegetative growth (Dill & 
Sun, 2001; King, Moritz & Harberd, 2001; Bolle, 2004; Tyler et al., 2004) and RGL2 
has a role during seed germination (Lee et al., 2002). DELLA proteins are rapidly 
degraded by the ubiquitin-proteasome pathway in response to active GA (Sun & 
Gubler, 2004). The SCF protein that is involved in the degradation is suggested to 
have a subunit called SLY1 (McGinnis et al., 2003) and has been indicated to have 
a key role in GA responses.

In recent years several investigations have found evidence of cross-talk between 
GA biosynthesis and auxin levels. For example, reductions in IAA levels, caused 
by removing the apical bud in pea resulted in the down-regulation of GA3ox 
expression and lower levels of the bioactive GA4 in studies by Ross et al. (2000). 
However the GA and IAA levels were restored by IAA applications. Similar 
results have also been found in tobacco, although the main step in GA biosynthesis 
affected after decapitation was the GA19 to GA20 transformation (Wolbang & Ross, 
2001). Interestingly, recent results of investigations of GA signalling mutants have 
shown further interactions between GA and auxin-stimulated growth. There is now 
evidence that auxin stimulated growth can act via DELLA protein degradation  
(Fu & Harberd, 2003). These results suggest that DELLA proteins are general 
inhibitors of growth, and that GAs act entirely through the DELLA proteins, whereas 
auxin can also regulate growth and development independently of the DELLA 
proteins.
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Objectives 

The overall goal of the work described in this thesis was to develop high through-put 
MS and data comparison techniques for plant metabolomics. This methodology was 
then applied in a study of Arabidopsis mutants in order to extend our understanding 
of growth regulation by the plant hormone gibberellin (GA) and crosstalk between 
GAs and auxin. 

The main objectives were to:

-Develop a fast and robust method for routine analysis of plant metabolite patterns 
using GC/MS.

-Use multivariate techniques to improve and accelerate the comparison of samples 
from high through-put MS metabolomic analyses.

-Generate methods to improve the identification and quantification of plant 
metabolomic data to help generate biologically interpretable results in a high 
through-put manner. 

-Investigate the crosstalk between GAs and IAA by studying auxin levels and 
metabolite patterns in Arabidopsis mutants lacking GAs and/or parts of the GA-
signalling pathways after GA application.

Experimental

Derivatization Design 
To identify factors affecting the derivatization of plant metabolites twelve standard 
compounds were selected (D-ribose, alpha-ketoglutaric acid, glucosamine, D-
fructose 6-phosphate, sucrose, N-acetyl-D-(+)-glucosamine, oxalic acid, L-proline, 
thymine, stearic acid, cholesterol and glycerol monostearate) that commonly occur 
as endogenous compounds in plants, and methyl octadecanoate as an internal 
standard (Paper I). The different metabolites and the internal standard, methyl 
octadecanoate, were dissolved and three µg of each standard compound were added 
to GC-vials. The solvents were evaporated in a Speed-Vac concentrator centrifuge 
(Savant Instruments, Farmingdale, NY, USA). Factors investigated were different 
temperatures, times and concentrations of different solvents during methyloximation 
and trimethylsilylation. The derivatization procedure used is shown in Figure 9. 
A D-optimal design was generated (Johnson & Nachtsheim, 1983; Dumouchel & 
Jones, 1994) to maximize the experimental space for 34 experiments for a model 
with linear terms for all of the factors, and interaction terms for all factors except the 
mixture factors. To each vial 20 µL of methoxyamine hydrochloride (20 mg/ml) was 
added, dissolved in different mixtures of pyridine/chloroform (Table 3) and vortex-
mixed for 5 min. The vials were heated at 20, 40, 60 °C for 1, 9 or 17 h then 10 µL of 
MSTFA plus an additional 30 µL of MSTFA, heptane and acetonitrile mixture was 
added (Table 3). After vortex-mixing the mixtures were heated at 20, 40 or 60 °C 
for 30 min. All samples were analyzed in randomized order and the first sample 
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was analyzed by GC/MS 30 minutes after the silylation regents were added.  
To avoid errors due to chromatographic variations when different solvents were used, 
or variations in injection precision, all of the integrated peak areas were normalized 
by dividing them by the (underivatized) peak area for methyl octadecanoate.  
To correct for changes in retention time caused by the different solvents, the number 
of peaks estimated by the ChromaTOF software was restricted to peaks appearing 
after the first eluted metabolite, oxalic acid.

Table 3. Factor settings for a D-optimal design generated for 34 experiments to investigate 
derivatization using 12 standard compounds. The values are the minimum and maximum 
values of the design factors defining the experimental domain. *Marks dependent factors, the 
sum was always 40 µL.
Nr Factor Settings
1 Oximation, solvent 50/50% or 0/100% (chloroform/pyridine)
2 Oximation, temp 20 or 60°C
3 Oximation, duration 1 or 17 hour
4 Silylation, temp 20 or 60°C
5 Silylation, TMCS 1 or 10%
6 Silylation, solvent 1* 0 to 30 µLHeptane
7 Silylation, solvent 2* 0 to 30 µL ACN
8 Silylation, reagent * 10 to 40 µL MSFTA

Replicate points 25% chloroform, 75% pyridine, 40°C, 9 hour,
40°C, 5.5% TMSC and a mixture of 10µL
heptane, 10µL ACN and 20 µL MSFTA.

Extraction Design
In the study described in Paper I rosette leaves from ten three-week-old Arabidopsis 
thaliana (Co) plants grown under short day conditions in soil, were harvested and 
pooled, immediately thereafter frozen in liquid nitrogen and homogenized using a 
mortar and pestle. Approximately 22 mg of each sample was transferred to a 1.5 mL 
Eppendorf tube and frozen at -80°C overnight. Using a MM 301 Vibration Mill 
(Retsch GmbH & Co. KG, Haan, Germany) the samples were extracted at a 
frequency of 30 Hz, with 3 mm tungsten carbide beads. Seven factors affecting 
the extraction and derivatization (Figure 9) of metabolites from plant tissue were 
investigated according to a 27-1 fractional factorial design (Carlson & Carlson, 2005). 
The factors were varied according to Table 4. In order to extract as many different 
metabolites as possible, a soluble mixture of chloroform, water and methanol was 
chosen. According to the design, 200 µL of chloroform, 200 µL of water and 600 
µL of methanol were added either together or separately in the given order. Before 
extraction, isotope-labelled reference compounds, [2H7]-cholesterol, [13C3]-myristic 
acid and [13C4]-hexadecanoic acid, together with methyl octadecanoate, were added 
to the chloroform buffer. The rest of the labelled reference compounds ([2H4]-succinic 
acid, [13C5, 

15N]-glutamic acid, [13C5]-proline, [13C4]-disodium alfa-ketoglutarate,  
[13C12]-sucrose, [2H4]-putrescine, [2H6]-salicylic acid and [13C6]-glucose), were 
dissolved in water. The final concentration of each reference compound in the 
solvent mixture was 15 ng/ µL. The extraction time was investigated (0.5, 1 and 1.5 
minutes) and during each extraction the mill was also stopped twice and, according to 
the design, solvents were either added or not added to the tubes. For a fraction of the 
samples the tubes were heated at 60°C for 15 min in pre-heated metal containers. 
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Figure 9. Flow chart of plant metabolomic analysis including plant extraction, oximation, and 
silylation before GC/MS analysis. 

Nearly half of the extracts were then stored at -80°C for 24 hours. After extraction 
the samples were centrifuged in an Eppendorf centrifuge (model 5417C) for 10 min 
at 14000 rpm and 180 µL of each supernatant was transferred to a GC vial and 
evaporated to dryness in a Speed-Vac concentrator. Thirty µL of 15, 20 or 25 mg/ml
methoxyamine in pyridine were added, and the mixtures were then vigorously stirred 
for 15 minutes. The aldehyde and keto-groups were converted into oximes either at 
room temperature for 16 hours or heated at 60°C for 1 hour. Using 15, 22.5 or 30 µL 
MSTFA followed by vortex-mixing for fi ve minutes the –OH, –SH or –NH groups 
were thereafter converted to trimethylsilyl (TMS) derivatives. To each vial heptane 
was added to compensate for differences in the fi nal volumes. All samples were 
prepared at the same time, analyzed in randomized order and after at least one hour 
at room temperature the samples were injected into the GC/MS.

GC/MS Metabolomic Analysis 
Each derivatized sample (1 µL) was injected splitless by an Agilent 7683 autosampler 
(Agilent, Atlanta; GA, USA) into a 10 m x 0.18 mm i.d. fused silica capillary column 
(0.18 µm DB 5-MS stationary phase, J&W Scientifi c, Folsom, CA, USA) in an 
Agilent 6890 gas chromatograph. The injector temperature was 270°C, the purge 

Eppendorf tube
# 1 mL of extraction medium
(chloroform:methanol:water; 2:6:2)

# Stable isotope reference compound
# Tungsten carbide beads

# Centrifugation
Vibration Mill, 3 min 20°C
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GC/TOFMS analysis

# Methyloximation (different time and temp.)
# Silylation (different time and temp.)
# Heptane containing
methyl octadecanoate

m/z
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flow rate was 20 mL/min and the purge valve was turned on after 60 s. The column 
temperature was kept at 70°C for 2 minutes followed by ramping at 40°C/min to 
320°C, which was held for 1 min. The helium gas flow rate through the column 
was 1 mL/min. The column outlet was connected to the ion source of a Pegasus III 
time-of-flight mass spectrometer (TOFMS, Leco Corp., St Joseph, MI, USA). The 
transfer line and ion source temperatures were 250°C and 200°C, respectively. Ions 
were produced by a 70 eV electron beam at an ionization current of 2.0 mA. Mass 
spectra were recorded in the mass range 50 to 800 m/z at a spectra accumulation 
speed of 30 spectra/s. For the extraction design and reproducibility test reported in 
Paper I only 80 to 800 amu spectra were recorded. The acceleration voltage was 
turned off and no mass spectra were detected during the first 170 s. The detector 
voltage was 1500 V.

Table 4. Factor settings for the 2(7-1) fractional factorial design used for optimising the 
extraction and derivatization. E=extraction; D=derivatization. *Chloroform alone = use 
of chloroform alone during the first extraction period; **Two phases = use of water and 
chloroform together, with no other solvent, during the extraction. ***Balance, heptane. 
Nr Factor Abbreviation Settings
1 E_Chloroform_Alone* E_CA Alone or Not alone
2 E_Phase E_Ph One phase or Two phases**
3 E_Heat E_He 20 or 60°C
4 E_Freeze E_Fr 0 h or 24 h
5 D_Oxime_Amount D_OA 14 or 25 mg/ml
6 D_Time_Temp D_TT 60°C for 1h or 20°C for 16h
7 D_MSTFA D_MS 50 or 100 % ***

Replicate points Chloroform alone, one phase, 37°C,
0 h in freezer, 19 mg ml-1, 60°C for
1h and 75 % MSTFA***

Standard Mix Example 
Three standard compounds ([2H4]-succinic acid, succinic acid and norleucine) 
that co-elute in the GC/MS analysis after derivatization (Figure 5) were chosen to 
investigate the processing strategies developed and described in Papers II and III. 
The standards were dissolved in water and added in varying amounts and proportions 
to twenty GC-vials. The solvent was evaporated in a Speed-Vac concentrator. The 
amounts of labelled and unlabelled succinic acid injected on the column were 
selected according to a 42 design (samples 1-16), plus four centre points (samples 
17-20), with total levels of 5, 10, 15 and 20 ng. The amount of norleucine added 
was 15 ng in each case. No succinic acid was added to sample 20. The samples were 
analyzed by GC/TOFMS after methyloximation and trimethylsilylation. The data 
were aligned and one window was set around the three co-eluting peaks according 
to Paper II.

GA Biosynthesis and Signalling Mutants
Sterile PCR tubes (0.2 mL Thermo-Strips, Cat # AB-0266, Abgene, Epsom, UK), 
filled with 1 x MS (Murashige & Skoog, 1962) and 0.8% agar with a pH of 5.6, were 
cut at the bottom and placed in sterile boxes. The boxes were black so only the top 
of the tubes could be exposed to light. The bottoms of the tubes were in contact with 
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sterile 0.5 x MS media. Sterilized seeds were treated with 10-5M GA4 in darkness for 
72 h at 4°C. After washing with sterile H2O the seeds were transferred to the tubes 
in 0.1% Agarose (one seed per tube) Approximately 450 seeds per genotype were 
sown for five different treatments. For each of eight genotypes, leaves and stem 
material from three plants grown under long day conditions for 18 days (3-4 leaf 
stage) were pooled in eppendorf tubes and immediately frozen in liquid nitrogen. 
The eight genotypes were: ga1-3, gai, gai-t6 ga1-3, gai-t6 rga24, gai-t6 rga24 ga1-3,  
gai-t6 rga24 sly1-10, rga24 ga1-3, sly1-10 and WT. For the remaining plants the 
medium was changed to fresh 0.5 x MS medium. Half of the remaining plants 
were treated with 10-5M GA4. After 24 and 48 hours both the GA-induced and non-
induced plants were harvested. The number of replicates analyzed varied from three 
to seven pooled samples. Plants were extracted, derivatized and analyzed using GC/
MS according to the protocols described below. The amount of plant material varied 
between 10.7 and 260.3 mg.

Extraction and Derivatization of Plant Samples
The extraction procedure used in both the metabolomics and IAA analyses, and the 
following derivatization (Paper IV) was similar to that previously described in the 
chapter on derivatization and extraction design. All samples were randomized and 
divided into three batches. Samples from each batch were extracted and analysed 
in a three-day period according to the same procedure. [13C6] IAA was added as 
an internal standard to the mixture of the three solvents for the IAA analyses. The 
material was extracted for 3 min then centrifuged. To compensate for differences 
in the weight of the samples, the volumes of the plant extracts used for the 
metabolomic analyses were adjusted accordingly. The volume of the supernatant 
transferred to each GC vial corresponded to 4 mg of plant material. To each vial 
stable isotope reference compounds for metabolomic analysis were added and 
evaporated to dryness. The metabolomic samples were derivatized using 30 µL of 
methoxyamine hydrochloride (15 mg/mL) in pyridine then incubated at 70°C for 
one hour, followed by 16 h of derivatization at room temperature. The samples were 
trimethylsilylated for 1 h at room temperature by adding 30 µL of MSTFA with 1% 
TMCS. After silylation, 30 µL of heptane containing 45 ng/µL methyl octadecanoate 
was added. The samples (in total 254) were analyzed in a three-day period by  
GC/TOFMS together with blank samples and alkanes (C12-C40 series) series. For the 
IAA measurements (Paper IV) 500 µL of plant extract was dried and then dissolved 
in 20 µL methanol followed by 0.5 mL of 0.05 M phosphate buffer, pH 7.0.  
The pH was adjusted to 2.7 using 1 M HCl. The solution was applied to a 500 mg 
C8 Bond Elut SPE column (Varian, Harbor City, CA, USA, conditioned with 2 mL 
of methanol and 2 mL of 1% acetic acid) at a flow rate of less than 1 mL/min. The 
columns were washed with 2 mL of 10% MeOH in 1% HAc and the samples were 
eluted with 2 mL MeOH. After evaporation to dryness the samples were methylated 
using 200 µL 2-propanol, 1000 µL dichloromethane and 5 µL (trimethylsilyl)diazo
methane (2M in hexane). The samples were left at room temperature for 30 minutes, 
5 µL of acetic acid was added to each of them, and they were dried in a speedvac 
concentrator. The samples were transferred in methanol to GC vials and the solvents 
were evaporated. Each sample was trimethylsilylated by adding 10 µL pyridine 
followed by 10µL BSTFA with 1% TMCS and heated to 70°C for 30 minutes. 50 or 
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150 µL of heptane was added after evaporation to dryness, depending on the amount 
of [13C6]IAA added to each sample. The samples were analyzed by the GC/MS-
selected reaction monitoring (SRM) technique previously described by Edlund et al. 
(1995) using a JEOL MStation mass spectrometer (JEOL, Tokyo, Japan).

Experimental Design and Multivariate Data Analysis
All manual integrations were performed using ChromaTOF 1.00 software (Leco 
Corp., St Joseph, MI, USA). In the studies described in Papers I, II and IV automatic 
peak detection and mass spectrum deconvolution were performed with a peak width 
set to 2.0 s and peaks with lower signal-to-noise (S/N) values than 10 were rejected. 
The software calculates the S/N based on the masses it chooses for quantification. 
Selected unique quantification masses for each metabolite were used for peak area 
determinations. Mass spectra of all detected compounds were compared with spectra 
in NIST library 2.0 (as of January 31, 2001), and in-house and publicly available 
databases (Schauer et al., 2005). All experimental designs were generated and 
evaluated using MODDE (Umetrics, Umeå, Sweden). All multivariate investigations 
for both PCA projections and PLS calibrations were performed using SIMCA-P 
software (Umetrics, Umeå, Sweden). For all PLS models, the variables were both 
mean centred and scaled to unit variance except in Paper IV where only scaling to unit 
variance was performed. For Paper I factors that did not improve the experimental 
model according to cross-validation were removed before interpretation. 

All OLS and PLS calculations were performed using 95% confidence intervals for 
the metabolomic analyses and 99% confidence intervals for the IAA investigations. 
In the studies described in Papers II, III and IV non-processed MS-files were 
exported from the ChromaTOF software in CSV format to MATLAB software 
6.5 (Mathworks, Natick, MA, USA), in which all data pre-treatment procedures, 
such as base-line correction, chromatogram alignment, data compression and 
curve resolution were performed using “in house” custom scripts. In Paper IV non-
normalized time weight vectors were calculated using MATLAB. The variation 
in the metabolite matrix presented in Paper IV to predict each genotype and each 
design factor was analysed according O-PLS. The numbers of significant O-PLS 
components for the calibration models were estimated according to full cross-
validation.
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Results and Discussion

Optimization of the GC/MS Plant Metabolite Protocols 
GC/TOFMS systems enable mass spectra to be accumulated rapidly (Veriotti & 
Sacks, 2001), making them highly suitable for the analysis of complex mixtures 
(Weckwerth et al., 2004), such as metabolomic samples from Arabidopsis (Figure 
3). The advantage of rapid analytical cycles, around 15 minutes per sample, is that 
they allow high through-puts, in our case 90 samples per 24 h. The overall result 
of the analysis will be dependent on both the instrumental settings (O’Hagan et 
al., 2005) and the procedures applied during extraction and derivatization. DOE 
was used together with multivariate analysis to investigate how different parameters 
(choice of extraction solvents, derivatization reagents and physical conditions) affect 
the extraction and derivatization conditions of plant metabolites. This was done in 
three stages: (1) screening for factors affecting oximation and silylation using 12 
metabolites that commonly occur in plant tissues; (2) investigation of how different 
extraction and derivatization conditions affect the detection of metabolites from 
Arabidopsis; and (3) investigation of the reproducibility of suggested extraction and 
derivatization methods.

Screening of Factors Affecting Derivatization
In the study described in Paper I a number of chemicals were selected to cover 
different classes of compounds and a wide chromatographic retention span in the 
GC. Factors that have a strong effect on methyloximation and silylation were chosen 
for investigation. A D-optimal design was generated for this series of experiments 
since we wanted to investigate both mixture factors (i.e., heptane and MSTFA) and 
process (“regular”) factors (i.e., temperature and time) in the same design (Table 3). 
The advantage of performing a separate derivatization screening was that compounds 
that may decompose during derivatization and artefacts caused by derivatization 
could be monitored. Fourteen PLS models with two components were calculated 
and validated using cross-validation for the twelve standard compounds, the number 
of peaks detected by the ChromaTOF software for each sample and the peak area 
ratios for fructose and sucrose. The number of peaks estimated by the ChromaTOF 
software was valid according to the cross-validation. About 20 measurable peaks 
expected from the 12 derivatized standards, and on average 238 peaks in total, were 
detected, indicating that this kind of analysis generates a high number of artifacts 
(Little, 1999). This was highly dependent on the amount of MSTFA, the temperature 
and the amount of pyridine present during oximation. On the other hand, the 
amounts of MSTFA and pyridine also had a positive effect on the response for many 
of the compounds. During the oximation, temperature and/or time played important 
roles in the derivatization of glucosamine and alpha-ketoglutaric acid, for complete 
derivatization of which a long time and/or high temperature was needed. Other 
compounds, such as sucrose, were also clearly affected by the time and temperature, 
but it seems that both high temperature and long durations of oximation are required 
for the decomposition of sucrose to fructose and glucose. In contrast, the temperature 
during the silylation did not have any dramatic effect on the tested compounds.
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Screening of Factors Affecting Extraction 
Traditional analytical protocols focus on analysing limited numbers of specific 
compounds. When the goal instead is to analyze as many metabolites as possible 
from a biological tissue, it is a considerably more complex task. It is practically 
impossible to ensure high accuracy and precision for all metabolites since it is not 
possible to add stable isotope-labelled internal standards for all of the detected 
compounds. Furthermore, it is also impossible in practice to extract all metabolites 
efficiently since plant tissues (and other biological materials) contain metabolites 
that differ widely in their chemical nature and amount. Therefore, the goal must be to 
develop an extraction method with as high extraction efficiency and reproducibility 
as possible for as many classes of compounds as possible. The extraction buffer 
selected will dramatically affect the type and number of metabolites extracted from 
plant tissues. Therefore, the efficacy of various solvents, including MeOH, EtOH, 
acetonitrile, chloroform and hexane, was evaluated in a pilot study. Seven to sixteen 
percent fewer peaks were extracted for a GC/MS analysis using water or methanol 
alone as extraction solvents compared with a chloroform:MeOH:water mixture. 
Chloroform had a positive effect on the extraction of lipophilic compounds, such 
as fatty acids. In the study described in Paper I chloroform:MeOH:water in the ratio 
2:6:2 was chosen because it allowed the solvents to be used in a single mixture 
and avoided solvent partitioning. Sixty-six metabolites were selected to measure the 
effects of different extraction and derivatization protocols in an extraction design 
(Table 4). All labelled internal standards could be analyzed, and more or less all of 
the compounds could be detected in the 68 samples. Variations in chromatography 
or amounts of plant material were minimized by dividing the response by the 
response for methyl octadecanoate and the respective tissue weight. Sixty-eight 
OLS models were calculated, one for each peak area response, one for the number 
of peaks and one for the degradation of 13C12-sucrose to 13C6-fructose. The numbers 
of the 66 metabolites that were significantly influenced by each of the 28 design 
factors, which can be seen in Table 5. Extraction with chloroform alone and use 
of a two-phase system has a positive effect on the metabolite extraction efficiency. 
High temperature during the extraction has a positive effect. The number of peaks 
detected by the software is highly dependent on the amount of MSTFA added, as 
shown in the derivatization design. The amount of MSTFA added was also important 
for the peak response and for 66 of the chosen metabolites these two variables were 
positively correlated (Table 5). The oximation method also had a strong effect on 
the results of the derivatization. The concentration of methoxime influenced the 
response, and the response for many peaks was favoured by high temperature during 
oximation. When developing methods for extracting metabolites it is important to 
minimize their chemical or biological degradation. As an indicator of biological 
(or other) degradation, the hydroxylation of 13C12-sucrose to labelled glucose and 
fructose was measured. The main factor causing degradation was the order in which 
the different extraction solvents were added. Adding chloroform alone, and using 
a two-phase system (i.e. chloroform and H2O together, prior to the addition of 
MeOH) had a dramatic effect on degradation. Although the oximation method also 
affects the degradation of sucrose, the main factor influencing the degradation is the 
extraction method. 
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Table 5. Factors that significantly (p=5%) affected the 66 endogenous metabolites in the 
extraction and derivatization design. *Amount of MSTFA (%)

Positive Negative
E_Ch loroform (E_CA) 3.0%

(Not alone)
30.3%
(Alone)

E_Phase (E_Ph) 24.2%
(Two phases)

6.1%
(One phase)

E_Heat (E_He) 53.0%
(60 °C)

7.6%
(20 °C)

E_Freeze (E_Fr) 0.0%
(24 h)

22.7%
(0 h)

D_Oxime_Amount (D_OA) 12.1%
(25 mg/mL)

27.3%
(14 mg/mL)

D_Time_Temp (D_TT) 7.6%
(20 °C for 16 h)

45.5%
(60 °C for 1h)

D_MSTFA (D_MS) 45.5%
(100%a)

12.1%
(50%a)

E_CA (Not alone)*E_Ph (Two phases) 0.0% 9.1%
E_CA (Not alone)*E_He (60°C) 1.5% 21.2%
E_CA (Not alone)*E_Fr (24h) 28.8% 3.0%
E_CA (Not alone)*D_OA(25 mg/mL) 0.0% 3.0%
E_CA (Not alone)*D_TT (20°C for 16h) 21.2% 0.0%
E_CA (Not alone)*D_MS (100%) 0.0% 0.0%
E_Ph (Two phases)*E_He (60°C) 1.5% 7.6%
E_Ph (Two phases)*E_Fr (24h) 7.6% 1.5%
E_Ph (Two phases)*D_OA (25 mg/mL) 9.1% 0.0%
E_Ph (Two phases)*D_TT (20°C for 16h) 3.0% 7.6%
E_Ph (Two phases)*D_MS (100%) 6.1% 6.1%
E_He (60°C)*E_Fr (24h) 4.5% 1.5%
E_He (60°C)*D_OA (25 mg/mL) 1.5% 9.1%
E_He (60°C)*D_TT (20°C for 16h) 16.7% 3.0%
E_He (60°C)*D_MS (100%) 7.6% 4.5%
E_Fr (24h)*D_OA (25 mg/mL) 3.0% 21.2%
E_Fr (24h)*D_TT (20°C for 16h) 1.5% 0.0%
E_Fr (24h)*D_MS (100%) 3.0% 3.0%
D_OA (25 mg/mL)*D_TT (20°C for 16h) 3.0% 4.5%
D_OA (25 mg/mL)*D_MS (100%) 10.6% 15.2%
D_TT (20 °C for 16 h)*D_MS (100%) 9.1% 4.5%

To develop a satisfactory procedure for both extraction and derivatization of a large 
number of metabolites compromises have to be made, in which all of the factors 
mentioned above must be taken into account. In the selected protocol chloroform was 
used at the start of the extraction, since it has a positive effect on extraction efficiency, 
and causes relatively little degradation of sucrose. The vials were heated to 60°C 
after extraction. In order to dissolve certain metabolites that are difficult to dissolve 
and to oximate completely some that are resistant to this process, the oximation 
was performed at 60°C for one hour followed by 17 hours at room temperature. 
The amounts of methoxime and MSTFA added were 20 mg/ mL and 30 µL, 
respectively. The extraction protocol inevitably involves a compromise between 
efficiency and speed. The solvent mixture chosen in the present protocol extracts 
both hydrophilic and lipophilic compounds. According to our study, 80-100% MeOH 
will not efficiently extract polar compounds. There is a risk of transmethylation of 
sugar esters using MeOH, but we still included MeOH since we found it to be a 
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more efficient extraction solvent than EtOH or ACN. In metabolomic analyses the 
extracts are often divided into polar and lipophilic fractions by solvent partitioning 
(Broeckling et al., 2005; Desbrosses, Kopka & Udvardi, 2005). In our extraction 
procedure no solvent partitioning step after extraction was used, in order to minimize 
the time required and to facilitate automation. Increasing the sample preparation time 
and the number of injections of each sample clearly decreases the scope for high-
throughput analysis, which is detrimental for metabolomic studies since they generally 
involve the analysis of large numbers of samples. To be able to generate accurate 
and precise GC/MS data, labelled stable isotope internal standards (Fiehn et al.,  
2000a; Broeckling et al., 2005) are added during analysis. We chose to add 11 
internal standards representing different classes of compounds, e.g. amines, amino 
acids, fatty acids, sterols, mono- and di-saccharides. In this way, accurate levels for 
quite large numbers of compounds can be determined (Fiehn et al., 2000a) rather 
than only relative levels (Roessner et al., 2000). The selected protocol was used 
to investigate the reproducibility of the extraction. With this extraction procedure 
it was possible to detect and quantify the corresponding endogenous metabolites 
for seven of the labelled reference compounds and the remaining 59 metabolites 
were quantified using [13C3]-myristic acid as an internal standard. After correction 
for the difference in responses of the internal standards, the mean errors were  
8.2% (6.9-9.7%) and 13.8% (5.5-33.4%) for metabolites with and without a specific 
internal standard, respectively; similar to errors reported using other metabolomic 
approaches (Roessner et al., 2000). There will always be quantification problems in 
global analyses of metabolites since it is impossible to include a labelled standard 
corresponding to every one of them. Due to the normalization problem, correlations 
between the normalized metabolites and the time between silylation and injection into 
the GC/MS were investigated. A PLS-model was calculated between the metabolite 
matrix (X) and the time vector (y). According to the cross-validation, the first four 
PLS-components were significant (R2X=0.58, R2Y=0.98 and Q2Y=0.75). The first 
weight vector (w) from the PLS-model was used to find significant correlations to 
the injection order by Jack-knifing (Efron, 1986; Martens & Martens, 2000), and 
eighteen of the 66 metabolites were found to be significantly correlated to the injection 
order. Of the seven metabolites normalized using corresponding labelled reference 
compounds none showed significant variation correlated to the injection order. This 
addresses the problem of not using unique internal standards for normalization of 
the integrated peaks, which can be controlled by randomizing the run-order. The 
problems associated with the correlation between run-order and response can then 
be minimized, thereby reducing the overall method error. An advantage of using 
more than one internal standard is that errors during analysis and derivatization 
can be more easily detected for different classes of compounds. Thus, the quality 
of the analysis can be checked simply by comparing peak areas for the different 
internal standards in the various samples. By increasing the number of internal 
standards it would be possible to further improve the reproducibility. Although the 
errors could also be decreased by improving the chromatographic system and peak 
area integration, most errors originate from weighing, pipetting and, to some extent, 
irreproducible homogenization/extraction. However, it is difficult to improve these 
parameters, as ease and rapidity are key concerns in metabolomics. For example, a 
more efficient extraction would probably demand longer, repeated extractions. 

In the present investigation, we have shown that it was possible to generate a 
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reliable protocol for metabolomic analysis of Arabidopsis using this strategy with 
a relatively limited number of experiments. Without using DOE it would have been 
very difficult, without using many more experiments, to obtain an overview of the 
problems associated with optimizing the extraction and/or derivatization protocol 
for metabolomic analysis.

The method presented here is rapid, and involves steps that can be quite easily 
automated. The oximation step is quite long (overnight at room temperature), but it 
could be shortened, while maintaining high oximated product yields for most of the 
compound classes. As every method essentially represents a compromise between 
many variables, a fully automated extraction and derivatization method based on 
the principles of the present method could be developed. Furthermore, we have 
shown that the strategy can be very efficient for optimizing extraction conditions for 
metabolomic analysis. 

Hierarchical Methods for Processing GC/MS Data
The rapid mass spectra accumulation of the GC/TOFMS systems (30 spectra/s, 
corresponding to 20-40 data points per peak) makes it possible to analyze plant 
samples in a high thought-put manner. The mass spectra are homogenous over the 
peak profile which simplifies the deconvolution and data interpretation. However, it 
is not straightforward to resolve unique peak information in complex chromatograms 
containing hundreds of overlapping peaks rapidly (Figure 3). The traditional way of 
comparing GC/MS data sets is to resolve chromatographic overlaps in the MS-files, 
then calculate the relative amounts of each compound and finally subject the data to 
statistical modelling. Resolving chromatographic peaks has been a time-consuming 
process to date, and evaluation of the enormous amounts of data generated is 
therefore a bottleneck in the “metabolomics” era, especially for high through-put 
analyses. In Papers II and III we present two semi-automated strategies that enable 
rapid comparison of non-processed MS-data files from metabolomic analyses. The 
primary goal for us is to identify the differences between samples, not generate lists 
of peaks. The first method, presented in Paper II, Method 1, is a hierarchical bilinear 
compression method, compressing the information from small retention windows and 
generating approximations of the compounds’ intensity and their corresponding mass 
profiles. The second method, presented in Paper III, Method 2, applies Hierarchical 
Multivariate Curve Resolution (H-MCR) to the same retention windows to generate 
intensity values for peaks and their corresponding mass spectra. Both methods share 
the same starting pre-treatments of the sample; smoothing, background reduction, 
alignment and time-window setting. MS-files from a metabolomics project were 
exported in NetCDF or CSV-format from ChromaTOF software to MATLAB 
software for further processing. For each sample each m/z-channel is smoothed with 
moving averages (each of seven time-points) followed by background reduction 
by subtracting the minimum value of each m/z channel from all other values in the 
same m/z channel. This is important when dividing the chromatograms into time-
windows since it makes the start and end points of peaks or peak clusters easier to 
detect. All chromatograms were aligned so that all samples had maximum covariance 
between the Total Ion Currents (TIC) according to Malmquist & Danielsson (1994). 
The alignment compensates for small differences in retention between different 
injections, which will always occur. Even after alignment the drifts may not remain 
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constant throughout the course of each chromatographic analysis, so each file is 
divided into small time-windows. A time window is defined as a short retention 
span that starts and ends in a region of the chromatogram that does not contain any 
compound (low intensity points). The step is done manually and simultaneously for 
all samples. This is the only manual step in both Methods 1 and 2; all other steps 
are fully computer automated. The following steps used to compare the GC/MS 
samples in the two methods are summarized in Figure 10.

Method 1
The data in each time-window can be seen as a data cube of size N*K*L, where 
N = the number of samples, K = the number of time points (scans) and L = the 
number of m/z channels. In each time-window there can be several compounds 
(components). The two strategies use different methods to estimate the components’ 
intensity (C) and their corresponding mass profiles (S). The first method summarizes 
each window into a mass spectrum to generate a sample matrix (N*L). It is not 
problematic to compare the summarized mass spectrum between each sample since 
the multivariate modelling will still recognize the differences between samples. To 
extract information from each time-window AR is used. To do this the chemical 
rank (number of components) has to be known for the window matrices (i.e. the 
summarized mass spectra of all samples in the respective windows; Figure 10). This 
estimated rank is the number of eigenvalues above the noise level calculated using 
PCA (Liang & Kvalheim, 2001). As a starting estimate of S, a random number is 
used. During the iteration according to equations 8 and 9, both S and C are corrected 
to have non-negative constraints. This means that the concentration and the mass 
spectra can never include negative values. Negative values in the spectrum profile 
are set to zero, and negative concentration values are set to the lowest of all positive 
concentrations. AR alters the alignment until convergence according to Karjalainen 
(1989). The chemical rank is reduced by one if the correlation between spectral 
profiles is greater than 95% or if the AR-algorithm does not find a solution. 

Method 2
For the second method the cubes are unfolded to a matrix built up by placing each 
sample on top of each other to generate a X matrix of size (N*K) * L (Fig. 10). 
This data matrix is then resolved using AR. As starting estimates of S we have used 
the purest mass channels calculated according to the SIMPLISMA algorithm which 
gives a more rapid convergence than using only random numbers as start estimates. 
The estimate of C will be of size (N*K) * the number of resolved components 
(R; i.e. the number of components with a common mass spectrum). In contrast to 
decomposition of one sample using AR, where only one peak is estimated for each 
profile in C, in this case the profiles in C will consist of a number of peaks (Figure 
10). The same, unimodal and positive, constraints were used during AR alternating 
according to equations 8 and 9 as in Method 1. In addition to those constraints, 
each resolved component must be unimodal for the chromatographic profile for each 
sample. The resolved component must also elute around the same retention time in 
every sample. The H-MCR procedure starts with the assumption of a rank of 1 and 
estimates S and C. The number of components is continuously increased by one 
until three subsequent solutions are rejected as not valid (the last valid solution is 
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used). To accept peaks we have a time criterion between peaks of ± 0.5 s from the 
median retention time for that component. There is no limitation on the number 
of resolved components that can be found in each time-window. To be able to 
resolve components using Method 2 a number of criteria have to be fulfi lled: the 
chromatographic profi les must differ or the component ratio between the samples 
has to differ in the mass spectral dimension. This is advantageous when resolving 
pure profi les in comparison with method 1, where only the second criterion can be 
applied due the summarization of the chromatographic direction. 

Figure 10. Summary of the metabolomic analysis concept using hierarchical methods for 
automatically resolving GC/TOFMS data (Paper II, Method 1 and Paper III, Method 2). 
The data can be used for further multivariate analysis and the mass spectra that explain 
the differences between samples can be used for identifi cation of metabolites and further 
biological interpretation. C corresponds to Chromographic profi les, P to peaks, and S to 
spectral profi les. 

Mixture of Standards
The two different strategies are exemplifi ed and validated with two sets of samples: a 
mixture of standard compounds and Arabidopsis samples. The fi rst example is based 
on results from 20 samples consisting of methoxymated and trimethylsilylated [2H4]-
succinic acid, succinic acid and norleucine analysed by GC/TOFMS. The resolved 
mass spectra were compared with standard mass spectra, and by calculating the 
correlation between estimated amounts of the metabolites and the injected amounts. 
One time-window was selected near the three peaks. For Method 1 the chemical rank 
was automatically estimated as two and the number of estimated compound using 
Method 2 was fi ve. One mass profi le calculated with the fi rst method had a match 
calculated by NIST MS Search 2.0 of 891 with norleucine-TMS and the second 
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corresponded to a linear combination of mass spectra of both [2H4]-succinic acid 
and succinic acid. By summarizing the added concentration of both the endogenous 
and labelled succinic acid a correlation of 97.7% (r2) was obtained with manually 
integrated areas for succinic acid. The five deconvoluted chromographic profiles, 
c1-c5, for the 20 samples obtained with the second method can be viewed in Figure 
11. 

Figure 11. Five resolved chromatographic profiles obtained using the H-MCR method for 20 
samples. The results correspond to the analysis of mixtures of three samples containing the 
standard mixture. Circles correspond to c1 (225.21 sec, some similarity with [2H4]-succinic 
acid-TMS), squares to c2 (225.87 sec, [2H4]-succinic acid-TMS), triangles to c3 (226.57 sec, 
succinic acid-TMS), diamonds to c4 (227.34 sec, norleucine,N,O-TMS) and six-pointed stars 
to c5 (227.84 sec, some similarity with norleucine,N,O-TMS).

Three of the profiles (c2, c3 and c4) have on average about 50 to 100 times higher 
peak areas than the remaining c1 and c5. The mass profile for component 2 has a 
match of 943 to [2H4]-succinic acid-TMS, the third a 923 match with succinic acid-
TMS and the forth component a 935 match with the mass spectrum of norleucine 
N,O-TMS. Component 1 shows some similarity to [2H4]-succinic acid-TMS and the 
last component shows some likeness to norleucine (match < 650). [2H4]-succinic 
acid and succinic acid, levels of which were changed according to the design, both 
had r2 values > 99% for components 2 and 3. For the first method a problem is to 
estimate the right chemical rank. In this case when the rank was estimated to be two 
one of the components represented a mix of the different analytes. For the second 
method a much better estimation of the contributory components to the C and S 
profiles was achieved. One problem with the second method is that it can introduce 
too many components; a common problem in deconvolution.

The Arabidopsis Mutant Test Case
To further test the two GC/MS processing methods metabolites were extracted from 
leaves of seven Arabidopsis thaliana GA biosynthesis and signalling mutants, and 
analyzed by GC/TOFMS after derivatization according to the method described 
in Paper I (Paper IV). The rga24 ga1-3 plants were difficult to grow and were 
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excluded from both the IAA and metabolomic analyses. The plants were subjected 
to an experimental design for two factors, GA4 treatment and time after treatment. 
The plants can be dived into two groups, those that were subjected to 10-5 M GA4 
treatment and those that were not. The GA4-treated plants were sampled after 24 and 
48 hours, and the control plants at 0, 24 and 48 hours. Due to limitations in computer 
memory it was not possible to assign large enough retention time-windows for large 
series of samples, so the peak area around sucrose was manually integrated. The 
GC/MS information for the eight different plants (207 samples in total) was thereby 
divided into two retention time blocks, the first from 184.1 to 425.3 seconds and 
the second from 435.8 to 526.2 seconds. The two blocks were manually divided 
from base peak chromatograms into 90 and 30 retention time windows, respectively. 
Using the H-MCR method (Method 2) 386 components in the 120 time windows 
were resolved, and 624 components were obtained by Method 1. Results from the 
two methods for control samples and the samples treated with GA4 were compared 
by calibrating the two X matrixes for the remaining 167 samples (excluding time 
zero control samples) with a number of y variables using O-PLS (Trygg & Wold, 
2002; Table 6). The y responses consisted of the three design factors from the plant 
experiment, run order for GC vials and eight “dummy” vectors representing the 
different genotypes. Each dummy vector consisted of zero values in each row except 
for samples belonging to the genotype. Models obtained using the two methods 
show similar ability to predict the different responses (Q2Y). The calibration model 
based on the metabolite information generated from Method 1 uses on average a 
smaller fraction of the variation in the X matrix to predict the y response (R2Xcorr). 

Table 6. The metabolic information for the control samples and samples treated with GA4 at 
24 and 48 hours extracted by the two methods, M1 and M2, were compared using O-PLS.  
y responses consisted of the three design factors from the plant experiment, run order for GC 
tubes and eight “dummy” vectors representing the different genotypes. R2Xcorr, representing 
the variation in X, is used to predict variation in y, and R2Xyo, the variation in X due to 
structured noise, those variations that are independent of y. Q2Y is the explained variation 
in y and indicates the predictive ability of the model. Components consist of one O-PLS 
component and an additional orthogonal component. The synergistic effect GA treatment and 
time was not valid according to cross validation.

R2Xcorr (%) R2Xyo (%) Q2Y (%) Comp
M1 M2 M1 M2 M1 M2 M1 M2

GA treatment 1.8 2.9 25 44 57 60 1+5 1+6
Time 2.2 4.0 21 30 50 48 1+4 1+3
Int. GA treatment and time - - - - - - - -
Run order for GC vials 8.0 11 15 19 96 96 1+3 1+2
ga1-3 1.1 2.0 28 31 31 30 1+6 1+3
gai 1.7 3.0 28 30 63 56 1+7 1+3
gai-t6 ga1-3 1.7 2.1 19 45 50 61 1+3 1+6
gai-t6 rga24 2.6 3.8 27 46 73 81 1+6 1+7
gai-t6 rga24 ga1-3 1.1 1.4 25 42 52 63 1+5 1+5
gai-t6 rga 24 sly1-10 1.7 2.5 25 45 61 71 1+5 1+6
sly1-10 1.6 2.7 27 44 57 71 1+6 1+6
WT 1.3 1.7 24 41 55 67 1+5 1+5

The variation introduced by run order of the GC vials, derivatization effects and 
instrumental drifts amount to roughly ten percent of the total variation for both 
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methods. For all O-PLS models the two methods give similar interpretation of the 
first score vector. The projections showed similar separation between design factors 
and genotypes.

Four local O-PLS models were obtained for each mutant genotype and WT for 
data produced by the second method. The y response corresponded to the run order 
for GC tubes, GA treatment, time and the interaction term between GA treatment 
and time. On average 10% of the variation was used in the matrixes to predict 
GA treatment, 10% to predict the time and 8% to predict the synergistic effect. 
The remaining variation in the sub matrix is uncontrolled variation, introduced by 
other sources of variation, associated with biological variation and other analytical 
variations. 

To investigate differences in the chromatographic and spectral profiles obtained in 
GC/MS analyses from real biological samples generated using the two processing 
methods, results for 12 internal standards were compared with those generated 
by manual integration using the ChromaTOF software. Almost all time-windows 
covering each internal standard have overlapping peaks. For all 13C- and 2H-labelled 
internal standards the retention time on the GC column was almost the same as that 
of the corresponding endogenous compound, with slightly earlier retention times for 
the deuterated internal standards. Figure 12 shows the six resolved chromatographic 
profiles obtained using Method 2 for the retention window for silylated [13C5, 

15N]-
glutamic acid. 

Figure 12. Deconvolution of six chromatographic profiles obtained using the H-MCR method 
for results from six wt plants harvested after treatment with GA at 48 h. Squares (unknown 
metabolite eluting at 282.34 s) correspond to the first eluting peak in time window 36. Circles 
correspond to ornithine (282.68 s), left-pointing triangles to an unknown peak (282.88 s), 
diamonds to [13C5, 

15N]-glutamic acid (283.68 s), six-pointed stars to glutamic acid (283.74 s) 
and right-pointing triangles (283.84 s) to another unknown peak. 

For Method 1 three components were resolved in the time window. Both methods 
give good estimates of the spectral profiles for both labelled and endogenous 
derivatized glutamic acid (match >800). The correlations between the manually 
integrated areas and the estimated responses obtained using the two methods are, 

284 s282 s 284 s282 s



42

however, different (Table 7). If all response values for three components used to 
decompose the window using Method 1 are summarized, the correlation with the 
manually integrated area becomes 44%. The endogenous and labelled compounds 
have almost identical retention times in the GC/MS system used in the present 
investigation (Figure 12). Using common deconvolution techniques, e.g. AMDIS 
or LECO Chromatof™ software, it is not possible to obtain resolved mass spectra 
for the two compounds. However, with the H-MCR processing strategy described 
here it is possible to obtain well-resolved mass spectra for both of these compounds, 
since the ratio between [13C5, 

15N]-glutamic acid and glutamic acid differs between 
samples. The remaining internal standards show similar results as for [13C5, 

15N]-
glutamic acid in terms of both the correlation between estimated amounts and the 
injected amounts, and the match of the mass spectra with standard mass spectra. The 
first method shows on average lower matches to standard mass spectra and mostly 
lower correlations with manually integrated peaks in comparison with Method 2 
(Table 7). 

Table 7. Comparison between the two different processing methods, Method 1 (M1) and 
Method 2 (M2), and their ability to quantify and generate mass spectra for the analysis of a 
set of Arabidopsis mutants defective in GA biosynthesis and signalling, after GA application. 
The responses for the added internal standard were integrated using a traditional method with 
Leco Chromatof™ software and compared with the responses obtained by the two methods. 
The match between the pure spectra of the internal standards and the spectral profiles was 
performed using NIST MS Search 2.0.

Rank r2 (%) NIST Match
Internal standard M1 M2 M1 M2 M1 M2
[2H7]-cholesterol 1 2 83 87 916 923
[13C6]-glucose 1 5 69 75 640 817
[13C4
13C4

]- alpha ketoglutarate 3 3 87 86 532 942
[ ]-hexadecanoic acid 4 3 42 91 929 935
[13C5, 15N]-glutamic acid 3 6 0 93 912 946
[13C5]-L-proline 2 4 77 71 915 934
[13C3]-myristic acid 4 1 90 80 940 944
[2H4]-putrescine 3 5 31 70 820 806
[2H6]-salicylic acid 3 4 56 98 738 935
[2H4]-succinic acid 3 3 91 77 939 941
methyl octadecanoate 2 4 85 83 927 950

There are two types of cases where the two methods do not show high correlations 
with manually integrated peak areas. One of these cases is when extremely 
overlapping peaks occur and poor correlation arises from the difficulties in finding 
unique target masses for quantification with the ChromaTOF™ software. Problems 
can also occur when very low abundance metabolites are to be quantified. In such 
cases the poor correlation is usually due to difficulties in finding quantification 
masses for the ChromaTOF™ software with high enough signal-to-noise (S/N) 
ratios. This problem was not observed for the internal standards.

An advantage with both methods is that no reference target sample is needed, which 
makes them less biased than traditional deconvolution methods. The traditional 
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approach in metabolomics is to use a master sample to find a set of peaks, and 
thereafter peak-match the other samples. For both Methods 1 and 2 the matching 
is done for all samples simultaneously, which is preferable for global analyses of 
metabolites in large series of samples. Both methods generate useful and similar 
information that can be used for biological interpretation. The first method is focused 
on compressing information in each time-window and describes the variation. Thus, 
the time direction is eliminated, so only profiles that differ between samples will 
be detected. It will always extract profiles that describe the maximum variation in 
each window. For Method 2 a good estimated solution of the components describing 
the variation in both the time and mass directions for each time-window will be 
generated. Applying the criterion that different components should have to have 
similar retention times gives better estimations of the chemical rank than using 
PCA. Method 2 also allows mass spectra from two completely overlapping peaks 
to be resolved, as long as the intensity of the two peaks varies between samples. 
This gives an improved estimation of spectral and chromatographic profiles. The 
retention information in combination with mass spectra is of great importance for 
the identification of compounds (Schauer et al., 2005). However, the retention 
information obtained with Method 1 (in contrast to method 2, which is restricted 
to the different time-windows) can also be compared, to some extent, with library 
information. In the ‘omics’ era it is usually important to identify the differences 
between samples, e.g. samples from diseased versus non-diseased, or mutant versus 
wild-type tissues. It is therefore essential to develop fast data processing methods 
that do not slow down the whole process from sampling, through extraction, to 
MS-analysis. Both methods provide fast comparisons and in combination with 
multivariate techniques/tools make it possible to classify and calibrate samples. 
One advantage with Method 1 is that the multivariate modelling will be based on 
smaller data sets, and thus increase the speed of the process. The 207 samples took 
approximately three days to process using Method 2; almost 10 times slower than 
Method 1. Method 1 gives a good overview and similar interpretation to Method 
2. On the other hand, Method 2 is better for estimating mass spectra profiles and is 
advantageous when using mass library databases. For quality control of the results, 
both qualitative and quantitative, they should be referred back to the raw data for 
both methods. Output data can be analyzed using multivariate statistical tools such 
as PCA, PLS or O-PLS, and based on the model loadings the peaks (compounds) 
that differ between sample groups can be identified by comparison with standard 
library databases. 

Effects of GA Biosynthesis and Signaling on IAA Biosynthesis 
and Metabolite Profiles
In the study described in Paper IV the goal was to study metabolite patterns and 
IAA levels in Arabidopsis mutants lacking GAs and/or parts of the GA-signalling 
pathways to elucidate interactions between GAs and IAA. This was done by 
applying bioactive GA4 (10-5M) to nine genotypes: ga1-3, gai, gai-t6 ga1-3,  
gai-t6 rga24, gai-t6 rga24 ga1-3, gai-t6 rga24 sly1-10, rga24 ga1-3, sly1-10 and WT. 
The experiment was carried out according an experimental design with two design 
factors: GA treatment (negative and positive) and growth time (24 and 48 hours). 
Thus, each design factor (time and GA treatment) together with the synergistic effect 
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of GA treatment and time could be investigated independently of each other. For 
each genotype four experiments in the design were GA4-treated samples harvested 
after 24 and 48 hours, together with corresponding control samples. In addition, 
control samples collected at time zero were included. All genotypes were extracted, 
derivatized and analyzed except rga24 ga1-3 plants, which were difficult to grow 
and thus were excluded from both the IAA and metabolomic analyses. In total 207 
samples were analyzed, 167 of which belonged to the design while the others were 
time zero control samples.

The goal in the metabolic study was to explore the metabolic effect of GA4 
treatment over time in the different genotypes. The metabolic data were analyzed by 
GC/TOFMS, the GC/TOFMS data were processed according to H-MCR in Paper 
III, and in total 386 peaks were resolved. The procedure for data treatment is further 
described in the Arabidopsis mutant test case chapter. Since the H-MCR did not 
cover the time space of sucrose the corresponding peak area was manually integrated. 
As described, the variation in the data matrix generated for the plant design and the 
system, such as the biological differences between the different genotypes, can be 
calibrated to external information using O-PLS (Table 6). Not all of the variation 
originates from the experimental design and the genotype differences (Table 6). 
Other variation is introduced during derivatization and by instrumental drifts, other 
laboratory analytical variations and biological variation. In order to avoid errors due 
to chromatographic and analytical variations, all deconvoluted peak areas, and the 
area for sucrose, were normalized by dividing them by with the score values for the 
first principle component (PC1) for the internal standards and methyl octadecanoate. 
Prior to PCA, the areas for the twelve manually integrated peaks were normalized 
to unit variance and the PC was calculated. The first PC will represent a global 
average of all internal standards and can be used to compensate for variation during 
derivatization and GC analysis. Unique OLS models were derived for each peak 
separately for each mutant and the WT plants. Peaks that were not significantly 
affected by the GA4 treatment or by the synergistic effect of treatment and time (in 
total 103 peaks) for any of the eight different genotypes were excluded from further 
investigation. By comparing the results for the different genotypes, peaks that were 
only affected in one genotype were excluded from further multivariate comparisons. 
In total 202 remained. This was done in order to exclude the peaks corresponding to 
analytical error, biological variations and normal growth variations. 

The only variation in the X matrix (integrated peak areas) of interest in this study 
is the variation related to the time effect after treatment of GA4. To exclude unrelated 
structural and non-structural variation the samples corresponding to each genotype 
were divided into two groups: one that had been treated with GA4 and one that had 
not. To each of the two sample groups the corresponding time zero samples were 
added. For each sub group a PLS model was calculated against the time response 
and validated according to cross-validation. The X matrix was scaled to unit 
variance and to the y response a value of 1 was added. From each of the PLS models  
non-normalized weight vectors are calculated. This is performed by transposing 
each peak matrix and multiplying it by the unique time vector according to:

(10) w# = XTy / N         

Where X is a sub matrix comprised of 202 integrated peak areas (metabolites), N 
is the number of samples, and y is the unique time vector. The first w# will be a 
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vector corresponding to the time effect for each integrated peak and each separate 
sub-matrix. Normalization of the weight vector would in this case complicate 
the comparison of w# between the different genotypes. For each subgroup w# 
(equation 10) was calculated seven times by Jack-knifing. The calculations of w# 
were performed seven times for each sub-group. For each w# calculation, every 7th 
sample was excluded from the X matrix and also for the response vector y, in order 
to obtain a better overview of the stability and the variability of the calculated w#. 
Consequently, if the value for one metabolite for one of the genotypes increases over 
time after GA4 treatment but has a constant value for the untreated plants, w# for the 
treated plant will have a higher value than for the untreated plant. By comparing 
w# for the different metabolites between the 16 new groups, different effects of 
the treatment can be seen. The weight vectors for the 202 metabolites, for all sub-
groups, were analyzed using unit variance scaled PCA. Clear differences between 
the induced (n) and not induced (p) genotype could be seen and the effects of GA4 
can be seen in the score plot t2/t3 (Figure 13). In the plot, the data points for the 
seven samples for each of the 16 subgroups subjected to the Jack-knifing procedure 
provide a representation of the biological variation. 

Figure 13. A PCA plot for score vectors t2/t3 showing differences between the effects of GA 
treatment on eight different GA mutants in the following 48 hours. The data correspond to the 
first non-normalized weight vector calculated for 16 PLS models using time as y response. 
Each of the sub matrixes used for the PLS models are represented as seven samples in the plot 
according to the Jack-knifing routine. Not induced and induced genotypes are represented by 
n and p, respectively. Squares correspond to the ga1-3 samples, circles to gai, diamonds to 
gai-t6 ga1-3, up-pointing triangles to gai-t6 rga24, down-pointing triangles to gai-t6 rga24 
ga1-3, open diamonds to gai-t6 rga24 sly1-10, open up-pointing triangles to sly1-10 and open 
down-pointing triangles to WT. 

Both the non-GA-treated and GA-treated plants of the two mutants, gai-t6 rga24 
and gai-t6 rga24 ga1-3 are located close to the non-GA-treated wt plants in the 
score plot. 
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24 (A)
24 (D)

38

15 (C)

53 34
18 (B)ga1-3 gai-t6 ga1-3

WT
Mass spectrum Identified compound ga1-3 gai-t6 ga1-3 wt
UPSC10028_GCTOF_Ath_Leaves_RI_1280 Phosphoric acida nn/n n/n pp/p
UPSC10064_GCTOF_Ath_Leaves_RI_1435 UNKNOWN CLASS pp/pp* pp/pp* nn/pp*
UPSC10074_GCTOF_Ath_Leaves_RI_1476 EITTMS_148006-101-1_MST_1480.5_[NA]b/

CARBOHYDRATE
pp/pp pp/nn nn/nn

UPSC10092_GCTOF_Ath_Leaves_RI_1590 CARBOHYDRATE/PENTOSE nn/n * n/nn* p/nn*
UPSC10103_GCTOF_Ath_Leaves_RI_1624 UNKNOWN CLASS nn/n * n/n * p/n *
UPSC10105_GCTOF_Ath_Leaves_RI_1635 UNKNOWN CLASS nn/n nn/nn pp/ p
UPSC10110_GCTOF_Ath_Leaves_RI_1653 CARBOHYDRATE n/nn* n/nn* p/nn*
UPSC10137_GCTOF_Ath_Leaves_RI_1752 Glyceraldehydea pp/p p/n nn/nn
UPSC10142_GCTOF_Ath_Leaves_RI_1781 EIQTMS_180013-101-1_MST_1804_[NA]b/

UNKNOWN CLASS
pp/p p/nn nn/nn

UPSC10149_GCTOF_Ath_Leaves_RI_1826 POLYHYDROXY pp/nn p/nn nn/nn
UPSC10150_GCTOF_Ath_Leaves_RI_1833 POLYHYDROXY pp/n p/nn nn/nn
UPSC10158_GCTOF_Ath_Leaves_RI_1886 Glucosea pp/pp* p/pp* nn/pp*
UPSC10159_GCTOF_Ath_Leaves_RI_1898 CARBOHYDRATE pp/pp* p/p * nn/pp*
UPSC10199_GCTOF_Ath_Leaves_RI_2144 CARBOHYDRATE nn/nn nn/nn nn/pp
UPSC10204_GCTOF_Ath_Leaves_RI_2180 2-O-Glycerol-beta-D-galactopyranosidea pp/pp nn/nn nn/nn
UPSC10207_GCTOF_Ath_Leaves_RI_2200 EITTMS_221004-101-2_MST_2214.3_[NA]b/

CARBOHYDRATE PHOSPHATE
n/n n/n n/p

UPSC10219_GCTOF_Ath_Leaves_RI_2292 Fructose-6-phosphatea n/n nn/n n/n
UPSC10221_GCTOF_Ath_Leaves_RI_2301 Galactopyranoside, 1-O-methyl-, 2,3,4,6-tetrakis-

O-(trimethylsilyl)-, alpha-d
pp/pp nn/p nn/n

UPSC10231_GCTOF_Ath_Leaves_RI_2355 UNKNOWN CLASS n /nn nn/n n/nn
UPSC10254_GCTOF_Ath_Leaves_RI_2517 DISACCHARIDE nn/n pp/nn pp/pp
UPSC10262_GCTOF_Ath_Leaves_RI_2604 GA4

a pp/pp pp/pp pp/pp
UPSC10268_GCTOF_Ath_Leaves_RI_2778 MYO-INOSITOL-PHOSPHATE LIKE nn/nn n/nn p/pp
UPSC10285_GCTOF_Ath_Leaves_RI_2966 Galactinola p/p n/n n/p
UPSC10295_GCTOF_Ath_Leaves_RI_3112 Beta-d-glucopyranose, 2,3,4,6-tetrakis-o-(trimethylsilyl)-,

1-(trimethylsilyl)-1h-indole-3-acetate
nn/nn pp/nn pp/pp

A

B
Mass spectrum Identified compound ga1-3 gai-t6 ga1-3 wt
UPSC10014_GCTOF_Ath_Leaves_RI_1224 UNKNOWN CLASS nn/n nn/n
UPSC10043_GCTOF_Ath_Leaves_RI_1362 Serinea n/n n/n
UPSC10059_GCTOF_Ath_Leaves_RI_1419 EITTMS_144004-101-2_MST_1436.4_[NA]b/

UNKNOWN CLASS
n/nn n/n

UPSC10083_GCTOF_Ath_Leaves_RI_1549 UNKNOWN CLASS nn/nn n/n
UPSC10096_GCTOF_Ath_Leaves_RI_1602 UNKNOWN CLASS nn/n nn/n
UPSC10112_GCTOF_Ath_Leaves_RI_1658 UNKNOWN CLASS pp/pp nn/nn
UPSC10118_GCTOF_Ath_Leaves_RI_1685 UNKNOWN CLASS nn/nn nn/n
UPSC10126_GCTOF_Ath_Leaves_RI_1702 UNKNOWN CLASS pp/nn n/pp
UPSC10153_GCTOF_Ath_Leaves_RI_1836 UNKNOWN CLASS nn/nn nn/nn
UPSC10156_GCTOF_Ath_Leaves_RI_1870 UNKNOWN CLASS pp/nn n/nn
UPSC10162_GCTOF_Ath_Leaves_RI_1926 GLUCONIC ACID LACTONE-LIKE nn/p nn/n
UPSC10205_GCTOF_Ath_Leaves_RI_2185 CARBO-PHOSPHATE nn/nn nn/nn
UPSC10214_GCTOF_Ath_Leaves_RI_2248 CARBOHYDRATE nn/n n/n
UPSC10216_GCTOF_Ath_Leaves_RI_2264 EITTMS_228001-101-1_MST_2277_[NA]b/

UNKNOWN CLASS
p/pp n/n

UPSC10224_GCTOF_Ath_Leaves_RI_2323 HEXOSE PHOSPHATE (ALDOSE) nn/nn nn/n
UPSC10240_GCTOF_Ath_Leaves_RI_2398 Myo-inositol-1-phosphatea n/n n/n
UPSC10260_GCTOF_Ath_Leaves_RI_2578 1-monohexadecanoylglycerola p/n nn/n
UPSC10274_GCTOF_Ath_Leaves_RI_2837 CARBOHYDRATE n/nn nn/n
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Figure 14. Venn diagram and identity of metabolites whose levels changed significantly 
(p=5%) following GA4 treatment in ga1-3, gai-t6 rga-24 ga1-3 and WT. Peaks are 
labelled according to the names of their equivalents in the UPSC mass spectra database  
(UPSC##_GCTOF_Species_RI#). “p” and “n” denote increases and decreases, respectively, 
in the metabolic response following GA treatment. The first and second letters before the 
backslash indicate the difference between the control samples and the GA-treated samples 
at 24 hours and 48 hours, respectively. Effects larger and smaller than 37% are indicated by 
“pp and nn” respectively. aThe metabolites were identified as methoxyamine-trimethylsilyl 
derivatives using an in-house mass spectra library or the mass spectra library hosted by the 
Max Planck Institute in Golm (http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html,  
19-August-2005). bIdentity to a mass spectrum in the mass spectra library of the Max Planck 
Institute in Golm. Asterisks (*) indicate examples of different pulse effects (time responses) 
between the three genotypes.

The addition of GA4 to the ga1-3 plants resulted in a change in the metabolite 
composition, causing the samples to shift close to not only the gai-t6 rga24 and 
gai-t6 rga24 ga1-3 mutants, but also to the non-treated wt plants in the score plot. 
Similarly, the gai-t6 ga1-3 plants moved towards the double mutants, triple mutants 
and the non-treated wt plants after GA4 treatment. The ga1-3 mutant moved further 

C

D

Mass spectrum Identified compound ga1-3 gai-t6 ga1-3 wt

UPSC10009_GCTOF_Ath_Leaves_RI_1209 UNKNOWN CLASS n/n p/n

UPSC10060_GCTOF_Ath_Leaves_RI_1422 CARBOHYDRATE n/pp n/n

UPSC10108_GCTOF_Ath_Leaves_RI_1648 Xylosea pp/pp n/n

UPSC10128_GCTOF_Ath_Leaves_RI_1710 CARBOHYDRATE/INOSE-LIKE pp/pp n/n

UPSC10155_GCTOF_Ath_Leaves_RI_1863 Fructosea pp/pp* n/p *

UPSC10160_GCTOF_Ath_Leaves_RI_1904 UNKNOWN CLASS nn/nn* pp/nn*

UPSC10165_GCTOF_Ath_Leaves_RI_1951 CARBOHYDRATE pp/pp p/p

UPSC10167_GCTOF_Ath_Leaves_RI_1968 EITTMS_199004-101-1_MST_1987.3_[NA]b pp/pp* nn/p *

UPSC10182_GCTOF_Ath_Leaves_RI_2018 Beta-d-methylglucopyranosidea pp/pp* n/pp*

UPSC10191_GCTOF_Ath_Leaves_RI_2078 Inositola pp/pp* n/p *

UPSC10259_GCTOF_Ath_Leaves_RI_2574 Nicotianaminea nn/nn n/nn

UPSC10263_GCTOF_Ath_Leaves_RI_2709 PHENYLIC COMPOUND + SUGAR nn/nn pp/pp

UPSC10264_GCTOF_Ath_Leaves_RI_2720 Maltosea nn/nn pp/pp

UPSC10273_GCTOF_Ath_Leaves_RI_2833 CARBOHYDRATE n/nn pp/p

UPSC10300_GCTOF_Ath_Leaves_RI_3220 Turanosea nn/nn p/pp

Mass spectrum Identified compound ga1-3 gai-t6 ga1-3 wt
UPSC10035_GCTOF_Ath_Leaves_RI_1319 Succinic acida p/n n/n
UPSC10037_GCTOF_Ath_Leaves_RI_1332 Glyceric acida n/p n/p
UPSC10050_GCTOF_Ath_Leaves_RI_1384 Threoninea nn/nn n/p
UPSC10056_GCTOF_Ath_Leaves_RI_1410 UNKNOWN CLASS n/nn n/n
UPSC10057_GCTOF_Ath_Leaves_RI_1411 UNKNOWN CLASS n/n p/n
UPSC10065_GCTOF_Ath_Leaves_RI_1436 UNKNOWN CLASS n/n n/nn
UPSC10075_GCTOF_Ath_Leaves_RI_1486 Malic acida nn/nn n/n
UPSC10084_GCTOF_Ath_Leaves_RI_1555 Threonic acida pp/nn n/n
UPSC10093_GCTOF_Ath_Leaves_RI_1593 UNKNOWN CLASS pp/p nn/nn
UPSC10100_GCTOF_Ath_Leaves_RI_1616 Glutamic acida nn/nn nn/n
UPSC10125_GCTOF_Ath_Leaves_RI_1700 UNKNOWN CLASS n/n n/nn
UPSC10129_GCTOF_Ath_Leaves_RI_1711 PENTOL (LIKE XYLITOL/ARABITOL) nn/n nn/nn
UPSC10131_GCTOF_Ath_Leaves_RI_1716 Ribitola p/pp n/n
UPSC10145_GCTOF_Ath_Leaves_RI_1803 Shikimic acida n/nn n/n
UPSC10147_GCTOF_Ath_Leaves_RI_1810 Citric acida nn/nn nn/nn
UPSC10163_GCTOF_Ath_Leaves_RI_1937 Ascorbic acida nn/n pp/p
UPSC10176_GCTOF_Ath_Leaves_RI_1995 UNKNOWN CLASS nn/nn pp/nn
UPSC10192_GCTOF_Ath_Leaves_RI_2095 EITTMS_211001-101-2_MST_2105.7_[B12]b/

HEXOSE
n/n n/n

UPSC10252_GCTOF_Ath_Leaves_RI_2488 EITTMS_251001-101-1_MST_2505_[NA]b/
UNKNOWN CLASS CARBOHYDRATE

n/n n/n

UPSC10312_GCTOF_Ath_Leaves_RI_2623 Sucrosea n/n nn/n
UPSC10267_GCTOF_Ath_Leaves_RI_2763 EIQTMS_278005-101-1_MST_2783.3_[NA]b/

UNKNOWN CLASS
nn/n p/p

UPSC10269_GCTOF_Ath_Leaves_RI_2790 UNKNOWN CLASS nn/n nn/pp
UPSC10296_GCTOF_Ath_Leaves_RI_3113 CARBOHYDRATE nn/nn nn/p
UPSC10308_GCTOF_Ath_Leaves_RI_3369 Raffinosea p/nn nn/pp
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in the score plot that any other genotype following GA treatment. In the score plot the 
gai-t6 rga24 and gai-t6 rga24 ga1-3 mutants show weak responses to GA4 treatment 
in comparison with the other genotypes. After treatment the wt plants moved in a 
different direction to ga1-3 and gai-t6 ga1-3. The gai t6, rga24, sly1-10 and sly1-10 
mutants moved towards each other in opposite directions after treatment. The gai 
mutant moved toward the GA-treated wt plants.

In earlier work, application of 10-5 M GA4 has restored the severe dwarf ga1-3 
to wt phenotype within seven days (King, Moritz & Harberd, 2001). We can see 
from the score plot that the metabolome of the ga1-3 plant becomes similar to wt 
after GA4-treatment within 48 hours. This is not surprising as ga1-3 is more or less 
lacking in GAs, so treatment with GA4 should rapidly restore its phenotype. The two 
DELLA mutants gai-t6 rga24 and gai-t6 rga24 ga1-3 have similar phenotypes to wt 
since both RGA and GAI are the major repressors during vegetative growth (Dill 
& Sun, 2001; King, Moritz & Harberd, 2001; Tyler et al., 2004). It has also been 
shown that application of GA4 increases the hypocotyl length not only for wt but 
also, albeit to a smaller degree, for the DELLA mutants gai-t6 ga1-3, rga24 ga1-3 
and gai-t6 rga24 ga1-3 (King, Moritz & Harberd, 2001). On a metabolic level this 
effect does not seem to be so dramatic, but a similarity between them and the wt 
control plants can be seen. On the other hand, the shift induced by GA4 in the WT is 
the second largest in the score plot. The change of position for the gai mutant may 
be due to the putative effect of GA4 on degradation of the RGA protein. The changed 
positions of the gai t6, rga24, sly1-10 and sly1-10 mutants are more difficult to 
explain according to the literature. Of the metabolites significantly affected by the 
GA4 treatment or the synergistic effects of GA4 treatment and time, around half 
could be identified using libraries and retention index information (Schauer et al., 
2005). To further investigate the effect of adding GA on gai-t6 ga1-3, rga24 ga1-3 
and wt genotypes, the metabolites that significantly changed were investigated. 
The compounds, their unique UPSC names and retention indices (based on the C12-
C40 series of n-alkanes) are listed in Figure 14. The annotations p and n stand for 
increases and decreases in metabolic responses after GA treatment. The first letter 
before the backslash corresponds to the effect between the control samples and the 
GA-treated samples at 24 hours, and the second at 48 hours. Effects larger and 
smaller than 37% are represented by pp and nn, respectively. 37% is the average 
effect for the GA treatment for the 284 peaks. The identified metabolites are mainly 
sugars and sugar phosphates, indicating that GA4 treatment had a general effect on 
primary metabolism. 

The GA treatment also affected the IAA levels in the mutants (Figure 15). For the 
control samples the levels were similar, apart from being high in gai-t6 ga1-3, which 
is surprising. After applying active GA the levels of IAA declined in the gai-t6 ga1-3 
and ga1-3 mutants. This effect was significant (p<1%) according to OLS calibration 
using MODDE. Similarly to the results of the metabolite profiling studies (Figure 
13), the gai-t6 ga1-3 and ga1-3 mutants became more similar to WT, and the levels of 
IAA declined to levels similar to those of the non-GA-treated WT plants (Figure 15). 
The effects of GA application were rapid in both of these mutants, as the levels 
for IAA were almost constant after 24 h of treatment. Comparing with changes 
in the metabolite levels that significantly changed after The levels of a number of 
metabolites significantly changed following GA treatment in the ga1-3, gai-t6 ga1-3 
and WT plants, and showed similar trends to the changes in IAA levels, especially 
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carbohydrates (Figure 15).This trend relates to different pulse effects after adding 
the GA4 to the three mutants. ga1-3 showed a faster response to the GA treatment 
than gai-t6 ga1-3 and wt. For example, the levels of glucose increased markedly 
within 24 of treatment in ga1-3 (>37%) and continued to be high after 48 hours. A 
slower effect can be seen for gai-t6 ga1-3, where the levels had increased (<37%) 
after 24 h and continued to increase thereafter (>37% at 48 h). For wt the glucose 
levels were lower than average for the GA-treated plant at 24 h (<-37%) but were 
greater at 48 h (>37%). Similar trends in the opposite direction can also be seen for 
some metabolites, i.e. their levels decreased rather than increased more rapidly in 
ga1-3 than in gai-t6 ga1-3 and wt. In recent years it has been shown that levels of 
GA and IAA can be restored by IAA application (Ross et al., 2000; Wolbang et al., 
2004). Our results indicate that there is a balance between the hormone groups and 
after addition of GA to GA-defi cient mutants the levels of IAA are restored to WT 
levels. Auxin has been proposed to be a positive regulator of AtGA3ox1 (Figure 8), 
which catalyses the conversion of GA9 to active GA4 (Wolbang et al., 2004). The fast 
reduction of IAA and the delay in the effect on the metabolome of GA4 treatment 
suggest that IAA and GA levels are tightly controlled by each other’s levels.

Figure 15. IAA levels in GA mutants following treatment by GA4 after 24 and 48 hours. 
Additional control measurements were performed at 0, 24 and 48 hours. The error bars 
represent standard deviations. 

We have shown that a metabolic analysis can be performed in a comprehensive way. 
The analysis of a large series of plant samples and data processing was completed 
within a week with minimal labour intensive work. The processing method 
presented in Paper III provides an effi cient data processing tool, generating results 
that are biologically interpretable. The variation of interest, the time effect after GA 
treatment, could be separated from the other introduced variation by comparing the 
non-normalized weight vectors between different PLS models. 
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Conclusions and Future Plans

In the work underlying this thesis I have developed methods that can be used to 
compare metabolic profiles of plant samples. I have shown that reliable protocols 
for metabolomic analysis can be developed using few experiments according to 
DOE. The method presented here is rapid, and involves steps that can be quite easily 
automated. The use of GC/TOFMS systems allows fast, high through-put analysis 
(90 samples per 24 h). The use of hierarchical processing methods for GC/MS to 
resolve complex mixtures also allows fast comparisons of complex samples. The data 
processing methods developed here provide useful tools for generating biologically 
interpretable results. The methods were used to analyse metabolites in a number 
Arabidopsis mutants lacking GAs and/or parts of the GA-signalling pathways after 
GA application. The analysis of a large series of plant samples and subsequent data 
processing were completed within a week, with minimal labour intensive work.

To exploit the potential of metabolomics in plant sciences as fully as possible there 
is a need not only to increase the number of metabolites detected and identified, 
but also to improve our ability to interpret the results. This implies that there is 
need for new instrumental and multivariate techniques. In the “omics” fields there 
is a need to assess many different types of biological treatments and replicates, so 
samples have to be analyzed in a high through-put manner. UPLCTM and CE (Soga 
et al., 2003; Sato et al., 2004) have shown great separation efficiency (Shen et al., 
2005; Wilson et al., 2005a) and proved, in combination with mass spectrometry, to 
provide good alternatives for detecting new metabolites. In addition, ion mobility 
spectrometry (IMS; Tang et al., 2005) in combination with mass spectrometry would 
be a suitably fast method for separating mixtures. For improving the handling of MS-
data, further developments of AR compression and Multivariate Curve Resolution 
for GC are required, as are improved comparisons for LC/MS, in similar ways to 
those described by Jonsson et al. (2005). The robustness of the methods must be 
investigated, but the scope for processing external samples should also be examined. 
Better GC/MS data pre-treatment methodologies must also be developed, such as 
background subtraction and alignment, that have not been addressed in this thesis. 

Current analytical protocols, even those including a number of extractions, 
purification and separation steps, can be more easily automated than previous 
methodologies. Nevertheless, in order to analyze as many metabolites as possible, 
a number of analytical issues have to be addressed. In order to develop analytical 
protocols for profiling techniques new strategies for Design of experiment (DOE) 
have to be considered. The responses are complex, so compromises have to be 
made in the final protocol. However, if the process is automated the number of 
experiments is not limited, or at least it is less limited than it generally was in 
previous applications of DOE. 

Comparison of mass spectra and retention times against a mass spectra database 
containing library compounds is important for identification, but will not provide 
coverage of all metabolites since it is impossible to generate relevant information 
on all of the metabolites synthesized by plants. Alternative approaches are needed. 
For instance, the molecular information can be transformed into discrete data by 
describing compounds with chemical descriptors. This information, together with 
mass spectra information, can be related to experimental data. Delimited calibration 
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models, using for example PLS, can then be compiled for known metabolites and 
used to predict or classify unknown compounds. We propose that Quantitative 
Structure-Retention Relationships (QSRR; Nord, Fransson & Jacobsson, 1998) 
could be used as identification tools for metabolomics. The identity of metabolites 
could then be confirmed, by comparing the empirical information with retention 
prediction models. This can be useful when the candidate metabolites are either 
difficult to obtain in large enough quantities for NMR identification, or are too time 
consuming to synthesize. 

Given the differences in delay and metabolomic effects of GA4 treatment on the 
GA mutants, and the fast reduction in IAA levels in the ga1-3 and gai-t6 ga1-3 
mutants, it would be interesting to study the levels of IAA after shorter time periods 
than 24 hours, as would studying the reductions in IAA levels in the ga1-3 and gai-
t6 ga1-3 mutants to WT levels over longer periods of rime. This would determine 
whether or not the IAA levels continue to match WT levels after application of GA4. 
Another task that must be undertaken to further elucidate the crosstalk between the 
hormones is to identify unknown metabolites. 
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alla dessa år. Ni har varit en stor inspirationskälla och fått mig att förstå mycket 
om kemometrins underbara värld. Jag vill även tacka Susanne W, Ing-Marie O, 
Henrik A, Hasse S och alla andra som är eller har varit på kemometrin. 

Alla ni på kontoret: Jonathan L, Annika J, Sara VP, Donald T, den ständiga 
gästen Hendrik B och forna rumskompisar Anders N, Kazou S och Avano T. 
Vi har nog snackat lite för mycket skit under alla år, men jag kommer alltid att 
minnas alla roliga upptåg som poesi måndag, mustasch fredag och återkommande 
pumpatävlingar. Det har varit superkul att dela rum med er. Annika J för att du 
alltid har brytt dig om mig och du kommer med bravur att ta över staffetpinnen 
inom metabolomics forskningen. Jonatan L för din entusiasm, dina dikter och alla 
galna företags idéer vi har haft. Sara VP fortsätt på samma bana så kommer du bli 
en framgångsrik forskare. Lycka till med kolonilotten!

Hendrik B, instutionens egna solstråle och optimisternas optimist, för att du var 
min privata biologiska läromästare. Du har fått mig som stadsbo intresserad av 
biologi, blommor och fåglar. Man kan lita på att du och Urs F alltid snackar skit 
mellan himmel och jord och lite till. Janne E du har varit god samtalspartner vad 
det gäller det mesta som är viktigt här i livet som musik, film och illustrationer. 
Maria I och Sara A för att har varit instutionens egna labordningskvinnor, helpline, 
partyfixare, spexfixare och partypinglor. Ni har förgyllt allas tid på UPSC. Gertrud L 
och Maria L för all hjälp och ert idoga arbete att hålla ordning på instutionen. 
Stefan L för all hjälp och kul att ha haft någon att munhuggas med på instutionen. 
Nu får du klara dig utan Göteborgaren! 

The east European mafia: Mariusz K, Karel D, Petr T, Dana T and Vera T for 
many laughs and all the crazy Czech dinners. Mariusz K for all help and for a great 
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visit in St Paul. Camilla V för att du har lärt mig allt om kromatografins underbara 
värld. Erik J för din entusiasm och samma otröttliga intresse för att optimera med 
DOE som jag. Alla i mass rummet och inte minst Sara VP och Karin L för all hjälp 
med IAA analyserna. Gun L, Janne E och Karin L för foton och illustrationer. 
Jag vill tacka Kjell O, UPSC egen paparazzifotograf, för att ha förgyllt instutionen 
med roliga festfoton. Tack även för omslags fotot. Vill även tacka alla på jobbet, 
speciellt Mattias H, Sven E, Karin N, Lena D, Sandra J, Daniel E, Erling Ö, 
Jenny H, Henrik S och Jörgen P för bl a. sällskap i labbet, för diskussioner på 
luncherna, fikan, fester, Kreta resan och allt annat. Inte att förglömma Mattias H 
för din omtanke.

Anna-Lena S för du inspirerade mig till att börja doktorera, och att du alltid har 
tid att lyssna och visat intresse för mitt arbete. Tacka till Peter v för musiktipsen 
och att du fixade lägenhet till mig. Även alla andra på Arbetslivsinstitutet.  
Anders Ö och Krister Å för att ni har varit inspirationskällor och bra bollplank. 
Hans W för ditt engagemang för mig och din generositet under tiden på Eka 
Chemicals.

Calle V, min trogna vän, ”bror” och vapendragare. Du har entusiasmerat mig till 
mycket och utan våra otaliga telefonsamtal hade jag haft en tråkig tid i Umeå. Janne G 
för att i unga år var den bästa sparringpartnern. Kompisarna Micke J, Malin L, 
 Olof B, Agneta E och Jenny R. 

Kristina L för att du fick mig att inse att jag hade en talang och att dyslexin inte 
skall begränsa mig. Marja L för all hjälp och insikt. Och min älskade familj som 
har stöttat mig och varit intresserat av mitt arbete. Min pappa Benny G som alltid 
har varit och kommer vara min ständiga sparringpartner i allt. Du har lärt mig att 
inget är omöjligt och att man skall hålla drömmen vid liv. Mamma Barbro G som 
har brytt sig, oroat sig och glatt sig med mig. Min underbara syster Jenny G och 
hennes Göran P som alltid har varit intresserad vad jag har gjort fastän ni inte har 
riktigt förstått vad jag forskat om. Och inte minst min syster dotter Julia P för att 
du är så fantastisk. 

Och min kära Elisabeth B för att du alltid bryr dig om mig och tar hand om mig 
Du får mig att skratta och uppskatta livets små glädjeämnen. Utan dig hade jag inte 
klarat mitt sista halvår på UPSC. Resan har börjat. Familjen Burström för alla 
utflykter och er gästfrihet och Bettans kompisar för allt bus. 

Och till sist alla er som har hjälp mig med min dyslexi och korrekturläst mina texter: 
Johan T, John B, Annika J, Sara VP, Krister L, Jenny H, Janne E, Anders N, 
Jonatan L, Mariusz K, Susanne W och inte minst min handledare Thomas M. Ni 
har varit ovärderliga för mig. 

Arbetet genomfördes med hjälp av finansiering från EU:s strukturfonder Mål 1 
Norra Norrland under ledning av ”Fibernätverket”. Jag vill även tacka för 
finansiering från Wallenberg Consortium North (WCN) och Kempe stiftelsen.


