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Abstract

Nataša Sladoje. On Analysis of Discrete Spatial Fuzzy Sets
in 2 and 3 Dimensions. Doctoral Thesis

ISSN 1652-6880, ISBN 91-576-6911-2

The use of fuzzy set theoretical approaches for representing spatial relationships
provides an intuitive way of expressing the diffuse localization and limits of image
components. Fuzziness can be present in images as a consequence of noise intro-
duced during the imaging process, in which case it should preferably be removed,
and as imprecision inherent to the observed objects, in which case it provides im-
portant information that should be utilized during the image analysis process.

A general goal for the research presented in this thesis has been to develop shape
analysis methods that can be applied to fuzzy segmented images in 2D and 3D. A
demand for the developed methods has been to respect the specific nature of a fuzzy
representation of the studied shapes and, especially, the consequences of discretiza-
tion. We have studied representation and reconstruction of a shape by using mo-
ments of both its crisp and fuzzy discretization. We show, both theoretically and
statistically, that the precision of estimation of moments of a shape is increased if
a fuzzy representation of a shape is used, instead of a crisp one. The signature
of a shape based on the distance from the shape centroid is studied and two ap-
proaches for its calculation for fuzzy shapes are proposed. A comparison of the
performance of fuzzy and crisp approaches is carried out through a statistical study,
where a higher precision of shape signature estimation is observed for the fuzzy
approaches. The measurements of area, perimeter, and compactness, as well as of
volume, surface area, and sphericity, are considered, too. New methods are devel-
oped for the estimation of perimeter and surface area of a discrete fuzzy shape. It
is shown through statistical studies that the precision of all the observed estimates
increases if a fuzzy representation is used and that the improvement is more sig-
nificant at low spatial resolutions. In addition, a defuzzification method based on
feature invariance is designed, utilizing the improved estimates of shape character-
istics from fuzzy sets to generate crisp discrete shapes with the most similar shape
characteristics. This defuzzification method, performed on a fuzzy segmentation,
can be seen as an alternative to a crisp segmentation of an image.

The presented results can be applied wherever precise estimates of shape prop-
erties are required, especially in conditions of limited spatial resolution. We have
showed, either theoretically, or empirically, that membership resolution available
can be successfully utilized to overcome a lack of spatial resolution.

Key words: digital image analysis, shape description, fuzzy sets, moments, signa-
ture, area, perimeter, volume, surface area, defuzzification, multiple criteria evalua-
tion

Author’s address: Centre for Image Analysis, Lägerhyddsvägen 3, SE-752 37 Upp-
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Preface

Two years after receiving the master degree at the University of Novi Sad (Serbia
and Montenegro) in the field of Discrete Mathematics and Programming, with the
master thesis entitled Discrete Objects: Characterization by Discrete Moments, the
author had the great pleasure to get in contact with the researchers at the Centre
for Image Analysis (CBA) in Uppsala and to begin her doctoral studies under the
supervision of Prof. Gunilla Borgefors and Doc. Ingela Nyström. The suggested
project was very appealing. The idea was to start the research on the analysis of
digital shapes represented by fuzzy sets. The author’s background in shape analy-
sis, strongly supported by the experience and knowledge of the researchers at CBA,
were intended to be utilized in order to develop new shape analysis techniques,
applicable to fuzzy segmented shapes. That work would be a continuation of the re-
search on combining both geometry and intensity information from digital images in
order to obtain more powerful shape descriptors, carried out at CBA for a number of
years. In that way, this thesis is not only a continuation of the author’s master thesis,
but also a continuation of the work performed in the field of binary and grey-level
shape analysis, by Nyström, Borgefors, Svensson, Wählby, and Sintorn. This thesis
contains the theoretical results on the development of fuzzy shape analysis methods
based on moments, signature, and a number of 2D and 3D geometric shape descrip-
tors (area, perimeter, and compactness measure in 2D, and volume, surface area
and sphericity in 3D). Research on defuzzification methods, by utilizing developed
fuzzy shape characteristics, is also presented.

The author’s wish is to continue with research on the descriptors of fuzzy shapes.
One direction is to work on further extensions of the existing shape analysis methods
to fuzzy shapes or designing new ones, while another challenge is to investigate
various possibilities for application of the obtained results.
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1 Introduction

Fuzzy sets are introduced by Zadeh (1965). The interest for developing methods for
the analysis of shapes represented as fuzzy sets appeared in Rosenfeld (1979) more
than twenty-five years ago, and has been more or less active since then. That has
resulted in the fuzzy shape analysis tool-box which contains the extensions of almost
all classical shape analysis methods to the fuzzy case, but with varying quality.
While some of these tools, like mathematical morphology and distance transforms,
are rather intensively studied and well developed, some other, like moment-based
methods, are hardly even mentioned in the literature. It is also notable that 2D fuzzy
shapes are far more studied than fuzzy shapes in 3D. There are still many challenges
in fuzzy shape analysis. Our results, among others, show an evident improvement of
the quantitative analysis, primarily in terms of precision and accuracy, if fuzzy shape
representations are used instead of crisp ones. This motivates addressing the further
tasks. In addition, the increasing interest for fuzzy images in different application
fields, first of all in medical imaging, has encouraged the research presented in this
thesis.

A general goal has been to develop shape analysis methods that can be applied
to fuzzy segmented images. To some extent, it has been possible to rely on the
approaches well known in crisp shape analysis, but the demand for all of the devel-
oped methods has been to respect the specific nature of a fuzzy representation of the
studied shapes. Even though the developed methods are intended to be independent
of any specific fuzzy segmentation method, we found it interesting (and important)
to have in mind certain ways of creating fuzzy images. Fuzzification methods based
on partial area and volume coverage have been of main interest, due to their sim-
plicity and common use. We compare precision of estimates of certain properties
of continuous shape derived from its discrete representation, in cases when crisp
discrete and fuzzy discrete sets, respectively, are used as the representation.

We show that the precision of estimation of moments of a shape (Papers I–
III), of a signature based on distance from the shape centroid (Paper IV), and of
measurements of area, perimeter and compactness (Paper V), as well as of volume,
surface area, and sphericity (Paper VI), increases, if the fuzzy representation of a
shape is used. In all observed cases, the improvement is more significant at low
spatial resolutions.

In addition, a defuzzification method based on feature invariance is designed
(Paper VII), with a motivation to utilize improved estimations of shape characteris-
tics to generate crisp discrete shapes most similar to continuous shapes which are
imaged. This defuzzification method, performed on a fuzzy segmentation, can be
seen as an alternative to a crisp segmentation of an image.

About this thesis

The first part of this thesis puts a frame around the work presented in the included
papers, appearing as the second part of the thesis. The purpose of the frame is, first,
to give an introduction to the fuzzy set theory (Section 2) and to put it in the context
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of digital images (Sections 3 and 4), and, second, to briefly describe the main work
on the analysis of fuzzy spatial sets (Sections 5 and 6), presented in more details in
Papers I–VII. The frame is closed with a discussion on the presented results and a
selection of some of the future challenges to take (Sections 7 and 8).

Important questions, related to this task, are:

• What is a fuzzy set?

• What is a fuzzy segmented image? Is it just a fancy name for a grey-value
image?

• How do we get fuzzy segmented images?

• What are the advantages of using them?

• What are the disadvantages?

• How do we relate them to conventional binary images?

• What can we do with fuzzy images?

• What (more) would we like to do with fuzzy images?

12



2 Background

The mosaic of our story is created of pieces coming from several fields of knowl-
edge: digital images and their creation, the theory of fuzzy sets, and the analysis
of shapes are the main ones. Before we started to combine them in the story on
analysis of discrete spatial fuzzy sets, we had learnt the essentials from each of the
fields. Let us briefly present these essentials.

2.1 Images

Humans rely a lot on visual perception. An impressive amount of our knowledge
about the surrounding world is based on images and vision. Data, existing in the
space around us, create just some geometric patterns, more or less familiar to our vi-
sual system, but when additionally equipped with different colours, textures, move-
ments in certain directions, such data provide much more. We “see” that it is warm
outside, since we see the sunlight, we “see” that the wind is blowing, since we see
the tree-crowns moving, we “see” that the watermelon is sweet, because we see that
it is deep red inside, we “see” that the woman sitting at the table next to ours is sad,
since we see tears on her face... Well, sometimes we are wrong, but all those visual
impressions are so strong and suggestive that they make us believe that we have felt,
heard, tasted, understood, even though we have only seen.

In order to save our visual memories over time, or to share our impressions with
others, we make images of the scenes we have seen. That requires capturing re-
flected light in each point of the scene, as our visual system does, and plotting the
result. To make it practically achievable, only a sample of points is observed, in-
stead of a continuum of the observed piece of space. In such a way, the image is
discretized; one way to do that is presented in Figure 1. The domain of an image,
initially being a subset of two- (2D) or three-dimensional (3D) real space (R2 or
R3), is mapped onto a discrete subset of points having (most often) integer coordi-
nates (Z2) forming an integer grid. The continuous mapping (image function) that
assigns the value to each image point in accordance with the light reflected in it, is
restricted to the grid points, and each grid point is assigned a value corresponding
to the amount of reflected light in the piece of continuous space, most often called
pixel, which it represents. By, in addition, limiting the range of the image function
to the interval of integers (the process is called quantization), we obtain a digital
image, which we call a grey-level image.

Grey-level is a term generally used to describe the intensity of achromatic
(monochromatic) light – light that is without colour. However, the human visual
system can distinguish millions of different colour shades and intensities, but only
around a couple of hundreds shades of grey. A great deal of extra information may
be contained in the colour, and it is sometimes of interest to capture it in images.
Colour depends primarily on the reflectance properties of an object, but also on
the colour of the light source, and the nature of the human visual system. To de-
scribe any particular colour, not only the intensity (amount) of light is used, but also
hue and saturation, which (together) determine the chromaticity of a given colour.
Colour models have been created to specify description of a particular colour, by

13



Figure 1: The Risan Mosaic represents Hypnos, the God of Sleep. It was found in
the second century A.D. building in the town of Risan in Kotor Bay, Montenegro.
This image of the pagan God Hypnos is the only known image of this deity in the
world.

identifying it as a point in a 3D coordinate system. As an example, in the colour
model that is most often used for video cameras and monitors, called RGB model,
a colour image consists of three independent image planes, one in each of the pri-
mary colours, red, green, and blue. A particular point in the colour image is assigned
three values (coordinates) specifying the amount of each of the primary components
present in it, in addition to two values indicating the spatial position of that point in
the image plane.

Together with the development of science and technology, imaging has become
a much more general term, related not only to capturing the reflectance of light,
but also other physical properties of the objects of interest. The challenge became
to make “images” of objects we cannot see, or “images” of new properties of ob-
jects (heat, density, water content, etc). Today, we can look at images of distant
stars, atomic-size objects, parts of a living human body, unborn babies, blood flow.
However, to be able to understand and interpret such images, the observer has to
know what physical property is mapped to a grey-level image and how that property
relates to the grey-levels present in the image. Consequently, image understand-
ing and interpretation have become much more difficult. Some imaging techniques
provide geometric information about the object (microscopy), some represent its
anatomy and/or functionality (magnetic resonance angiography – MRA, positron
emission tomography – PET), while others show topographic properties of an ob-
ject (radars, ultrasound). The acquired data are organized in a way that preserves
some spatial structure of the object of interest, even if that is not the main observed
property of the object; the analogy is why the process of creating such data struc-
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tures is called imaging, and data themselves – images. The spatial dimension of the
image may in various ways correspond to the dimension of the imaged space. 2D
images of 3D space may be projections (images of the visible surface of a 3D ob-
ject), distance images, images of a 2D slice of a 3D object, or reconstructed images,
obtained by tomography, when some information about internal density structure
is derived from measurements in a number of line directions and incorporated into
the 2D, or 3D, images of 3D objects. The most often used tomographic approaches
are computed tomography – CT, PET, and MRI (magnetic resonance imaging). In
addition, sequences of either 2D or 3D images over time are often of interest, where
the additional – temporal – dimension is added to the existing spatial dimensions,
and corresponding 3D and 4D images are created.

When extracting and analysing the information from the obtained images, we
rely more and more on computers. They can handle huge amounts of data and
accomplish some tasks, primarily those defined in terms of processing large sets
of numerical parameters, much faster, and much more reliable than humans can.
However, that requires developing computer vision systems, which is clearly a very
difficult task. “Teaching computers to see” seems to be an ongoing challenge, but
is still a constantly rewarding process. The application fields are numerous and
the variety of tasks endless. Computerized image analysis is rapidly developing,
supported by the development of technology and computer science and inspired by
demands from a variety of application fields.

When developing image analysis methods, we are not focused on any particular
method of grey-level image creation. No matter what physical property is imaged,
it is practically never homogeneously exhibited. Its gradual change over the image,
together with imprecision resulting from imaging conditions, like noise, or limited
resolution, make it difficult to clearly “see” and separate different objects appearing
in the image. The task of image segmentation is to extract the object(s) of interest,
by selecting the points in the image which belong to the object. Image segmenta-
tion is considered to be both the most important and the most difficult task in image
analysis. A decision if the point belongs to the object of interest, or not, is crucial
for the quality of all following analysis steps and is often difficult to make. How-
ever, a segmentation which has a binary (two-valued) image as a result, where object
points are mapped to “white”, and non-object points (background) to “black”, can
hardly handle realistically uncertainties and heterogeneity of object properties. As
a consequence, it becomes desirable to perform a fuzzy segmentation of an image.
Such an approach allows points to belong to an object to some extent, and therefore
avoids crisp decisions at this early analysis step. In this way, a larger amount of data
is preserved, and can be used later in the process. The result of a fuzzy segmenta-
tion is a grey-level image of an object of interest, where object points are “white”,
background is “black”, and grey-levels in between correspond to partial belonging
of the points to the object, determined according to intensity, geometric, or other
information available from the image.

In the development of methods for segmentation and further analysis of fuzzy
images, we use knowledge from the theory of fuzzy sets. Necessities are briefly
summarized in the next section.

15



Figure 2: Families of parameterized functions which are commonly used as mem-
bership functions. Elements of a reference set are mapped to the set of real numbers
and shown on the x-axis, while their memberships are given by µ. (a) Π-function.
(b) Trapezoidal function. (c) Semi-trapezoidal function. (d) Triangular function. (e)
Gaussian function. (f) S-function.

2.2 Fuzzy sets

A (continuous) fuzzy set is a collection of elements with a continuum of grades of
membership; it is characterized by a membership function, which assigns a mem-
bership value between zero and one to each element. A fuzzy set is a generalization
of a crisp set. While a crisp set either contains a given element, or it does not, which
is described by the membership values one and zero, respectively, belongingness of
an element to a fuzzy set can be partial, and is described by any value between zero
and one. Some of the most commonly used membership functions are presented in
Figure 2. The function in (a) is a Π-function, which is a membership function of a
crisp set, and is also known as the characteristic function of a (crisp) set. The other
presented functions can be used for fuzzification of any one-dimensional (1D) fea-
ture, where the assigned memberships reflect gradual changes of the feature values.
When introduced by Zadeh (1965), the notion of a fuzzy set was expected to provide
a starting point for the building of a conceptual framework, to exist in parallel with
the framework of crisp (“ordinary”) sets, but to be more general and potentially
provide increased applicability in different fields, including image analysis. The
framework was seen as a natural way of dealing with problems in which the source
of imprecision is in the absence of sharply defined criteria for class membership,
rather than in the presence of random variables. In other words, fuzzy set “large
boats” can be created from, e.g., boats in a harbour as a reference set, not because
the boats in the set are “probably large”, but because they are “large to some (lower,
or higher) extent”.

16



Having in mind the difficulties in image segmentation, mainly caused by the ex-
istence of non-sharp boundaries between the objects in an image, it is not surprising
that the comfortability of fuzzy sets, not forcing us to make hard decisions, became
appreciated and well accepted in image analysis; for an overview of the applica-
tions, see Rosenfeld (1998). An object in the image is presented as a fuzzy set to
which image points have graded memberships.

A fuzzy membership function is primarily defined as a mapping to the interval
of real numbers [0, 1] and is in general continuous. More formally, a fuzzy subset A
of a reference set X is a set of ordered pairs

A = {(x, µA(x)) | x ∈ X},

where
µA : X → [0, 1]

is the membership function of A in X .

The (crisp) set of points having (strictly) positive memberships to the set A is
called the support of A, while the core of a fuzzy set A contains the points with
the membership to A equal to 1 (it is sometimes referred to as the kernel. When
defined on a discrete domain, the membership function is a discrete function, and
a corresponding set is a discrete fuzzy set. To represent an object in an image, we
consider a fuzzy set defined on Z2 or Z3, being a typical space of discrete images.
Such a set is called a discrete spatial fuzzy set (Bloch (2005)). When represented
in a computer, the number of different membership values is finite, and limited by
internal properties of the computer. Integer values are most often chosen to represent
memberships, in order to increase the speed of computations. In this way, the range
of a discrete fuzzy function is not the interval [0, 1], but rather the set {0, 1, . . . , `}.
The value ` is often equal to 255, or 65 535, which corresponds to 8-, or 16-bit pixel
depth (number of bits used to represent a pixel value).

The theory of continuous fuzzy sets is well developed. The development of
discrete approaches requires adjustments of the existing results, but also creation of
new ones. In our research, we have sometimes used the concept of fuzzy step sets
(Bogomolny (1987)), which provides a link between continuous and discrete fuzzy
membership functions. This type of sets is defined by a step-function, which takes
` + 1 different values on its domain R2, where R2 is represented as a disjoint union
of `+1 open subsets, ` of which are bounded, with closures being rectifiable Jordan
arcs and the only possible pairwise intersections of the observed (closed) subsets.
The membership function is constant and positive on each of the bounded subsets,
and is equal to zero on the unbounded one. We interpret a fuzzy digital image as
a disjoint union of constant-valued image elements (pixels). Consequently, we can
directly apply some of the results derived for continuous fuzzy sets to the discrete
fuzzy sets we are primarily interested in.

However, a problem we are often facing, in connection with fuzzy image analy-
sis, is that the membership function of an observed fuzzy object is not analytically
defined. The membership values are derived from grey-levels of points, obtained
in an imaging process, and sometimes, additionally, from a set of criteria designed
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to capture geometric, structural, and other properties of the imaged object. Results
related to continuous fuzzy sets often rely on properties of an analytically defined
continuous membership function, and cannot always easily be adjusted to the sit-
uation where the corresponding membership function is not analytically derivable.
Consequently, we are most often forced to design methods appropriately applicable
to discrete fuzzy sets and add new building blocks to the developing mathematical
theories and algorithms for handling fuzzy discrete data appearing in digital images.

A representation of fuzzy sets which is often used as an alternative to repre-
sentation by a membership function, is the one based on α-cuts. For a fuzzy set
F , defined on a reference set X , the following two representations are equivalent
(Dubois and Jaulent (1987)):

• a membership function µF : X → [0, 1] which assigns to each x ∈ X its
membership grade µF (x) to the fuzzy set F ;

• the set of α-cuts C(F ) = {Fα | α ∈ (0, 1]} of the set F , where Fα = {x ∈
X | µF (x) ≥ α}.

The connection between the membership function and the stack of α-cuts provides
a common approach for fuzzification of crisp functions. The fuzzification principle,
based on one of the following equations:

f(S) =

∫ 1

0

f̂(Sα)dα, (1)

f(S) = sup
α∈(0,1]

[αf̂(Sα)] (2)

can be used to fuzzify a binary function f̂ . In this way, various properties defined
for binary sets (i.e., α-cuts) can be generalized to fuzzy sets, including the mem-
bership function itself; if the characteristic functions of the α-cuts are observed, the
membership function of the corresponding fuzzy set can be obtained by either their
integration, or by taking the supremum of their weighted values, over the “height”
of the stack.

The other approach to derive fuzzy definitions from crisp ones is to translate bi-
nary set theoretical and logical operations and relations into fuzzy equivalents. The
fuzzification is performed by, first, replacing the notion of a set by a notion of a
membership function, and then by fuzzifying negation (set complement), conjunc-
tion (set intersection), and implication (set inclusion), as the basic logic/set opera-
tions. Operators called negator, conjunctor, and implicator, respectively, can be used
for fuzzification (Dubois and Prade (1980)):

Negator is a unary operator on the interval [0, 1], which coincides with the Boolean
negation on {0, 1}. It can additionally be required to be a decreasing and
involutive mapping. An often used negator is defined by N (x) = 1 − x.

Conjunctor is a binary operator on the interval [0, 1], which coincides with the
Boolean conjunction on {0, 1}2. An operator most often used as a conjunctor

18



Figure 3: The discrete approximation of area coverage fuzzification facilitated by
super-sampling of (border) pixels. The membership of the presented pixel (divided
into 16 sub-pixels) to an object is equal to 5

42 .

is a t-norm. The properties of a t-norm are (1) it is an increasing mapping in
each variable, (2) for each x ∈ [0, 1] it holds that C(1, x) = C(x, 1) = x, (3)
it is commutative, (4) it is associative. Often used conjunctors are defined by
C(x, y) = min{x, y}, or C(x, y) = x · y. By duality, a t-conorm is derived
from a t-norm. It is often used to define disjunctors, binary operators on the
interval [0, 1], which coincide with the Boolean disjunction on {0, 1}2. A t-
conorm is increasing in each variable, commutative, associative, and has 0 as
the neutral element.

Implicator is a binary operator on the interval [0, 1], which coincides with the
Boolean implication on {0, 1}2, and is a decreasing mapping in the first,
and an increasing mapping in the second variable. In addition, for each
x ∈ [0, 1] it holds that T (1, x) = x. Often used implicators are defined
by T (x, y) = min{1, 1− x + y}, or T (x, y) = max{1 − x, y}.

Other set theoretic operations are easily derived from the operations listed above.

It is important to mention one additional fuzzification approach, the one most
often appearing in image analysis: fuzzification resulting from an imaging process,
and determined by the properties of the imaging device. It is often practically impos-
sible to analytically express a specific combination of characteristics of an imaging
device and conditions resulting from additional knowledge used in assigning mem-
berships to the points. However, it is very important to know which property is
imaged and what kind of correspondence between the observed property and result-
ing grey-levels in the image is exhibited, and to incorporate that knowledge in any
specific image analysis technique.
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Many imaging devices produce grey-level images with grey-levels correspond-
ing to the area of the pixel in the grid, covered by the imaged object. This is called
area coverage fuzzification. In this case, grey-levels conveniently reflect the grade of
belongingness of an image element to the object and a fuzzy discrete representation
of the object is immediately provided (by rescaling, memberships can be mapped to
the interval [0, 1]). Area coverage fuzzification is often used in our studies. In our
theoretical work, area coverage of a pixel is expressed as the number of sub-pixels
within the candidate pixel which have their centroids inside the (continuous) object.
This is facilitated by super-sampling of pixels located around the object border, as
illustrated in Figure 3. In this example, the centres of five (black) out of 16 sub-
pixels, obtained by super-sampling of an observed pixel by factor four, are covered
by an object. These five sub-pixels contribute to the fuzzy membership of the ob-
served pixel to the object, which is then equal to 5

42 . The same pixel does not belong
to the crisp digitization of the observed object, since its centre, marked by a grey
dot, is not covered by the object.
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3 Segmentation and defuzzification

Image segmentation is a process of partitioning an image into (several) areas con-
taining uniform feature characteristics. It is one of the first and most difficult tasks
of any image analysis process. Whatever the subsequent steps may be, object detec-
tion, feature extraction, object recognition, scene interpretation, or image coding,
they rely heavily on the quality of the segmentation process.

There are many different segmentation techniques proposed in the literature,
see e.g., Gonzalez and Woods (2002) and Sonka et al. (1998). All of them are
based on (one of) two basic properties of the grey-levels in an image: similarity and
discontinuity. According to that, segmentation algorithms can be roughly classified
into two categories; they can be region-based or boundary-based.

Region-based segmentation relies on some similarity property. Its goal is to split
the image into disjoint sets of connected pixels, similar according to a homogeneity
criterion. Boundary-based algorithms use the discontinuity property to detect the
boundaries of objects within the image. In many cases, the segmentation perfor-
mance can be improved by utilizing combinations of the two approaches.

3.1 Crisp segmentation

The goal of crisp segmentation is to subdivide an image into crisp regions. The
simplest and most popular crisp segmentation technique is grey-level thresholding,
a process of partitioning image pixels into two regions — object and background
— by identifying a threshold value such that the grey-levels of the object points
are greater than or equal to the threshold, and the grey-levels of the background
points are less than the threshold, or vice versa. Thresholding is a special case of
pixel-wise classification where the decision whether a pixel belongs to an object or
not is based solely on the grey-value of the pixel. There exists a large number of
methods for selecting suitable threshold values; for an overview, see e.g., Gonzalez
and Woods (2002). The most popular ones are based on an analysis of the grey-
level histogram of the image. The histogram (Figure 4(b)) of the grey-level image
presented in Figure 4(a) shows a bi-modal distribution. The image can be segmented
by thresholding at the grey-level 120; the result is shown in Figure 4(c).

(a) (b) (c)

Figure 4: (a) Grey-level image. (b) Grey-level histogram of (a). (c) Crisp segmen-
tation of (a) based on thresholding.
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(a)

(b)

Figure 5: (a) Kasimir Malevich (1878–1935), White square on white background.
(b) Intensity histogram of (a).

A drawback of this type of methods is that they take into account neither infor-
mation from neighbourhood of a point, nor shape properties of the objects. Seg-
mentation by thresholding would not give good results if applied to, e.g., image in
Figure 5(a). The histogram of a grey-level converted version of the image is shown
in Figure 5(b). It is clear that not many segmentation methods would perform well
on this image. The shape information is probably essential in this case.

Region-based techniques assume partitioning of an image into a disjoint union
of connected regions, such that some property is satisfied for the points in each of
the regions, but not in any union of the regions. Partitioning can be performed by
region growing, or by region splitting and merging.

Region growing is a procedure which groups points into regions, starting from
a set of seed-points and iteratively adding to that set its neighbouring points with
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similar properties. Criteria related to size and shape of the object, or similarity of
the pixel to add and the region grown so far are often used to design the growing
process.

The region splitting and merging approach starts from an arbitrary subdivision
of an image into disjoint regions, instead from seed-points. By iterative divisions
and groupings, regions satisfying predefined criteria are obtained, while an optimal
number and size of regions are (preferably) achieved.

Boundary-based techniques are based on detection of grey-level discontinuities
in images, indicating (isolated) points, lines, and edges. An edge is a set of con-
nected pixels that lie on the boundary between two regions, which is, ideally, indi-
cated by a vertical step transition in grey-levels between two regions. However, in
practice, the transition is most often blurred; consequently, it may be hard to detect
relevant edges. Edge-linking is the next step performed in order to detect objects’
boundaries; both local and global techniques can be used for that.

Segmentation based on watersheds is a widely used method that combines con-
cepts from both region- and boundary-based approaches, see e.g., Vincent and Soille
(1991). In a region growing style, starting from local minima as seeds, regions are
simultaneously created and the boundaries between them are set at positions that
prevent region merging. Detected boundaries therefore reflect certain discontinu-
ities in the image.

Crisp segmentation methods are numerous; let us mention, in addition, de-
formable shape models (snakes), template matching, and level sets, as very popular
ones. Unfortunately, all of them lead to a significant loss of information contained
in a grey-level image, when a crisp dichotomization of pixels is performed. Crisp
segmentation techniques generally do not preserve the inherent uncertainties asso-
ciated with real images and also fail to overcome noise, blurring, and background
variation.

It seems that many of these problems could be solved by introducing fuzzy,
instead of crisp, segmentation.

3.2 Fuzzy segmentation

The process of converting the input image into a fuzzy set by indicating, for each
pixel, the degree of its membership to the object, is referred to as fuzzy segmen-
tation. The most straightforward way to perform fuzzy segmentation is to scale
grey-levels of an image to be between zero and one; in that way the grey-level of
a pixel can be seen as its membership to the set of high-valued (bright) pixels. If
the image contains a bright object on a dark background, such a scaling produces
the membership function of the object (the degree of belongingness of a pixel to the
object). In most cases, though, more advanced segmentation methods are required,
especially since it is rarely sufficient to use only the brightness of pixels to calculate
fuzzy membership values.

The work presented in this thesis, being related to the development of shape
analysis methods, is intended to be independent of any particular fuzzy segmenta-
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tion method, i.e., applicable to any fuzzy image. Therefore, segmentation is not
specially analysed, or discussed, in the included papers. However, we would like
to emphasize that the theory of fuzzy sets and fuzzy logic show their great power
particularly in image segmentation. Not only the nature of fuzzy sets, allowing par-
tial memberships, provides a natural way of representing objects with no sharply
defined borders, but also fuzzification of features relevant for object definition, and
their combination by using rules of fuzzy logic, provide reliable final conclusions
even in the case of contradicting or vague input features. Consequently, it becomes
much easier to incorporate and combine different pieces of information regarding
both imaged objects and imaging devices, and also to overcome the presence of
noise, or other undesired imaging effects, much more successfully than by conven-
tional (crisp) segmentation techniques.

In the following, two fuzzy segmentation methods are briefly described. These
are two particular methods applied to create objects that we have used in our stud-
ies on shape analysis methods. In addition, we consider them to be good repre-
sentatives that illustrate the main properties and the power of fuzzy segmentation
methods. They are both region-based and are known as fuzzy thresholding and fuzzy
segmentation based on connectedness.

3.2.1 Fuzzy thresholding

Thresholding is a segmentation method appropriate to use when the object and the
background are separable by grey-levels alone. In that case, the grey-level histogram
is often characterized by two modes and a suitable threshold is a value correspond-
ing to a valley point between the two modes.

It is often difficult to identify a unique threshold for crisp dichotomization of
pixels. Therefore, several “fuzzified” thresholding schemes are proposed; Jawahar
et al. (1997, 2000) give an overview.

Fuzzy thresholding is a process of partitioning an image into two fuzzy sets,
corresponding to the object and the background regions, by identifying the mem-
bership distributions associated with them. There are different ways to define the
membership functions; some of them reflect the ambiguity in the transition region
between the object and the background classes, whereas others depict the geometric
structure of the object and the background grey-level densities. In both cases, the
regions are no longer guaranteed to be mutually exclusive.

In Figure 6, membership distributions obtained by different algorithms are
shown. In all the cases, the memberships are assigned so that the fuzziness in the
image is minimized. The average amount of fuzziness in an image is expressed by
the index of fuzziness, which measures a distance (which can be defined in sev-
eral ways) in each point between its fuzzy membership value and the closest crisp
membership, and takes the average. Other optimizations of fuzziness, like, e.g.,
minimizing entropy, or maximizing the index of crispness, are also possible to use
for the same purpose (Pal and Rosenfeld (1988)). However, it should be noted that
using any of the mentioned criteria (index of fuzziness, index of crispness, and en-
tropy) assumes that the best segmentation result is a crisp one. This assumption
excludes intrinsic fuzziness possibly present in the image.
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Figure 6: Membership distributions assigned using (a) Murthy and Pal (1990) (b)
Huang and Wang (1995) (c) Fuzzy c-means (Bezdek (1981)) algorithms.

The algorithm suggested in Murthy and Pal (1990) identifies the fuzziness in the
transition region between the object and the background classes. The membership
value of a point to the object is determined by applying the S-function to the grey-
levels in an image:

S(x; a, b, c) =
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(3)

where b = a+c
2 . The value b is the cross-over point of the fuzzy set defined by

S(x; a, b, c), i.e., the membership value of x = b is equal to 0.5. For a range of
cross-over points and the fixed band-width ∆b = b − a = c − b, the S-function
is applied to the original grey-levels, and the index of fuzziness is calculated. The
cross-over point providing the lowest index of fuzziness is taken as a threshold.
The choice of ∆b is made in accordance with the original grey-level distribution.
The background region is determined as the complement of the object region.

The approach taken in Huang and Wang (1995) and the approach using fuzzy
c-means clustering (Bezdek (1981)), determine the membership value of a point
considering its grey-level, with respect to the mean grey-level value of a region
(object or background).

The object and background regions obtained by the algorithm suggested in
Huang and Wang (1995) are fuzzy sets with mutually exclusive supports; a point
is assigned either to the object, or to the background, with the membership between
0.5 and 1 (the closer the intensity of a point to the mean of the region, the higher
its membership to that region). The threshold is chosen in a way that minimizes the
fuzziness in the image, expressed by, e.g., entropy.

The fuzzy c-means classification algorithm (Bezdek (1981)) can also be used
to perform fuzzy thresholding if the fuzzy c-means objective function is adjusted
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Figure 7: (a) Grey-level image; (b) its grey-level histogram; (c) fuzzy segmentation
obtained by two-level thresholding, at levels 130 and 160, while keeping a fuzzy
border of the object. The object is a wood fibre, imaged in an electron microscope.

so that the number of clusters is c = 2 (object and background), the number of
elements to be classified is equal to the number of different grey-levels, and the
membership of an element to a cluster is expressed in terms of the frequency of
occurrence of a grey-level j and the membership value of j to each cluster. For
each cluster, the cluster mean (prototype) is taken to be the mean grey-level of the
region. Such an objective function is iteratively minimized by updating the cluster
means and memberships. The memberships of each point to the object and to the
background sum up to one, i.e., object and background regions complement each
other.

The thresholding method moth often used in our studies is the one suggested
in Murthy and Pal (1990). We have sometimes simplified it by utilizing the fact
that for objects in our focus the points are usually not difficult to classify into three
classes, by setting two thresholds. The points which are most certainly inside the
object (above the higher threshold) belong to one class and are assigned membership
one. Points which are most certainly background points (below the lower threshold)
are in the second class and are assigned membership zero. The transition between
these two classes, with grey-levels between the two thresholds, is kept as a fuzzy
border of the object, with memberships of the points obtained by linear rescaling
the grey-levels to values between zero and one. This fuzzy segmentation method,
appealing due to its simplicity, is appropriate in situations where grey-level distri-
butions of an object and a background are partly overlapping, which can, e.g., be
assumed if the grey-level histogram of the image is bi-modal. An example is shown
in Figure 7; a cross section of a wood fibre in a scanning electron microscope is pre-
sented in (a), and the image histogram is given in (b). The modes of the histogram
(after being convolved with a suitable kernel) are at 100 and at 175, approximately.
The distributions, assumed for the object and the background in accordance to the
shape of the histogram, overlap between grey-levels 130 and 160, approximately. A
fuzzy segmentation of a fibre is presented in (c), where the pixels with grey-levels
lower than 131 are assigned 0 (background), those with grey-levels higher than 159
are assigned 1 (object), while the pixels with grey-levels between 131 and 159 are
linearly rescaled to values between 0 and 1 and kept as a fuzzy border of the object.
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3.2.2 Segmentation based on fuzzy connectedness

Image segmentation can be performed by a region-growing procedure which deter-
mines an object as a maximal connected component of an image satisfying certain
properties. This approach relies on the basic concepts of digital topology, such as
adjacency and connectedness. In order to extend this segmentation method to the
fuzzy case, it is required to first extend some of the topological concepts needed.
Early results are presented in Rosenfeld (1979), where a fuzzy segmentation pro-
cedure based on topological features of fuzzy subsets is introduced. This work is
further developed in Udupa and Samarasekera (1996) and Saha et al. (2000).

As in the crisp case, a path between two points in a (crisp or fuzzy) digital image
is defined as a sequence of points such that every two successive points are adjacent
and the end-points of the sequence are the two pre-determined points.

A general definition of adjacency, as any reflexive and symmetric fuzzy relation,
independent of any image information, but only characterizing the underlying digital
grid, is given in Udupa and Samarasekera (1996). (Let us note that an n-ary fuzzy
relation on X is a fuzzy subset on Xn.) It is expected to be a non-increasing function
of the distance between points, i.e., the closer the points are, the more adjacent
they are to each other. This definition includes adjacencies commonly used in crisp
digital images. Even though they are all crisp relations, strictly distinguishing if two
points are adjacent or not, all of them can be used for defining adjacency between
points in a fuzzy set. One example of fuzzy adjacency function nPQ between two
points P and Q in the image space, given in Bloch (2005), is

nPQ =
1

1 + d(P, Q)
,

where d(P, Q) denotes the Euclidean distance between P and Q in S.

The strength of the path is defined as the strength of its “weakest link”. While
Rosenfeld (1979) considers the “weakest link” to be the point with the smallest in-
tensity (membership value) of all the points in the path, Udupa and Samarasekera
(1996) and Saha et al. (2000) express the strength of a link in terms of fuzzy affinity.
A fuzzy affinity is a fuzzy relation which combines adjacency, as a purely spatial con-
cept, with two components based on the intensities of the points — a homogeneity
based component and an object-feature based component.

The homogeneity based component reflects the degree of local “hanging-
togetherness” (intuitively recognizable belongingness to the same object) of the im-
age elements on account of similarity of their intensities. A function which can be
used to express the degree of homogeneity of a pair of image elements is, e.g., the
semi-trapezoidal function (Figure 2(c)) applied to the absolute value of the differ-
ence between the grey-levels of the observed points. It assigns membership one
to the pairs of points with grey-levels which differ less than some threshold and
membership zero to the pairs of points which are “less homogeneous” than some
other threshold. In-between homogeneities of pairs are described by monotonously
decreasing values between one and zero.
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The object-feature based component reflects the degree of “hanging-
togetherness” of points due to the similarity of their intensity values to some (spec-
ified) intensity, taken to represent the particular object which should be segmented.
A function which can be used to assign the degree of fulfilment of this criterion to
an image element is, e.g., trapezoidal membership function (Figure 2(b)) with the
modal value equal to the intensity of the specified feature. The function is applied
to the grey-levels of the points and assigns membership value 1 to those which are
“close enough” to the observed value, whereas the membership decreases for the
points whose grey-levels differ more.

In order to define fuzzy connectedness as a global (fuzzy) relation, every possi-
ble pair of grid points is observed. The strength of connectedness is assigned to each
pair of points and determined as the strength of the strongest path between them.

The relation “to be connected” defined in Rosenfeld (1979) is the crisp relation;
two points are connected if the strength of connectedness between them is not lower
than the minimum of their intensities. Such an approach provides a possibility to
keep the definition of an object to be the same as the classical (crisp) approach:
an object is the maximal connected component of an image. In order to extract
maximal (fuzzy-)connected components, it is suggested to start from the connected
regions of points with the highest (constant) grey-level and to detect all of the image
points fuzzy-connected to such a region. Each (maximal) region extracted this way
is a fuzzy object. Let us observe that the image points can have positive membership
to more than one object, i.e., objects may overlap.

If connectedness is defined to be a fuzzy relation, instead of defining an object
as a maximal connected component of an image, it is possible to introduce some
“tolerance”, and define a fuzzy object as a fuzzy connected component of an image
of a given strength, as it is done in Udupa and Samarasekera (1996) and Saha et al.
(2000). A fuzzy object is defined as a fuzzy subset of an image such that the strength
of connectedness of any two of its points is higher than the given strength.

We use the approach suggested in Rosenfeld (1979) to determine the strength of
connectedness of each point in an image to the core of the fuzzy set. By thresholding
at a relatively low strength of connectedness, we perform fuzzy segmentation in the
image examples shown in Paper VII.

3.3 Defuzzification

In spite of many advantages of fuzzy segmented images, a crisp representation of
objects may still be needed in the end. Reasons for that are, e.g., to facilitate easier
visualization and interpretation. To visually interpret fuzzy structures in an ob-
jective way is a difficult task. Even though it contains less information, a crisp
representation is usually easier to interpret and understand, especially if the spatial
dimensionality of the image is higher than two. Moreover, analogues for many tools
available for the analysis of binary images are still not developed for fuzzy images,
which may force us to perform at least some steps in the analysis process by using
a crisp representation of the image. In Paper VII, and to some extent in Paper III,
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we were interested in generating a crisp representation of a continuous (crisp) orig-
inal object by utilizing the information that can be derived about it from its fuzzy
discrete representation. The process of replacing a fuzzy set by some appropriately
chosen crisp representative is referred to as defuzzification. We used defuzzification
of a fuzzy segmented object as an alternative to a crisp segmentation of a grey-level
image. The main advantage of this method is that it provides the possibility to in-
corporate the knowledge about the object to be segmented, which is not necessarily
available in advance, but can be derived from a fuzzy representation, and can be
used in the crisp segmentation process.

In literature, defuzzification is most often seen as the reduction of a fuzzy set
to a (crisp) point; this approach is mostly used in fuzzy control systems. The best
known method, among several existing in the literature and practise, to reduce a
fuzzy set to a point is the Centre of gravity, which reduces the fuzzy set to its centre
of gravity, defined as

CoG(S) =









∫

X

x · µS(x, y) dxdy
∫

X

µS(x, y) dxdy

,

∫

X

y · µS(x, y) dxdy
∫

X

µS(x, y) dxdy









, (4)

for a fuzzy set S of X ⊂ R2. An analysis and evaluation of several other widely
used defuzzification techniques is presented in, e.g., Leekwijck and Kerre (1999).

The defuzzification process is often decomposed into two steps: first, replace-
ment of a fuzzy set with a crisp set, and second, reduction of a crisp set to a single
point, as suggested in Ogura et al. (2001). The first step in the defuzzification is
studied in, e.g., Roventa and Spircu (2003), where a selection of criteria, which
should be fulfilled in the process of replacing a fuzzy set with its crisp counterpart,
is formulated. We are primarily interested in defuzzification to a set; applied in
image processing, it corresponds to replacing a fuzzy image by a binary image.

In image processing, the selection of a specific α-cut is, in most cases, used as
the defuzzification method. This is essentially not more than thresholding a fuzzy
image. How to choose the most appropriate value of α to perform defuzzifica-
tion by thresholding is studied in, e.g., Udupa and Samarasekera (1996); Jawahar
et al. (2000); Pal and Rosenfeld (1988); Pal and Ghosh (1990). An alternative ap-
proach for defuzzification is to incorporate fuzzy set theory in the merging criteria
for various region growing segmentation methods. In that case, defuzzification is
performed for each point to be merged, in order to make a (crisp) decision whether
the point should be included in the region or not (Saha and Udupa (2001); Steudel
and Glesner (1999)).

Our opinion is that the most appropriate approach to perform defuzzification
in image processing is to combine two views, (1) where defuzzification is seen as
an inverse of fuzzification and aims to recover the fuzzified original by deriving
and applying the inverse of a fuzzification function to the fuzzy set, and (2) where
defuzzification is a mapping from the set of fuzzy sets to the set of crisp sets, defined
independently of any crisp fuzzified original that should be recovered. The two
approaches are illustrated in Figure 8. By combining them, we try to overcome the
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Figure 8: Two views of defuzzification: as a mapping from the set of fuzzy sets to
the set of crisp sets, and as an inverse to fuzzification.

lack of information about the fuzzification function, as it is most often unknown in
image processing. In Paper VII, we design a defuzzification function based on the
properties of fuzzy sets, at the same time providing recovering of the original object.
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4 Shape analysis

The shape of an object is a representation of its extent. It can be thought of as a
silhouette of the object. It is often referred to as a region.

The shape of an object is invariant to geometric transformations such as transla-
tion, rotation, (uniform) scaling, and reflection. Therefore, shape can be understood
as an equivalence class in the set of objects; two objects are equivalent (i.e., have the
same shape) if there exists a series of translations, rotations, scalings, and reflections
that maps one of them to the other.

There are many situations where image analysis can be reduced to the analysis
of shapes. Shape analysis is an integral part of most applications of image analysis,
being the major task in some of them, e.g., in robot navigation or optical character
recognition (OCR). In our work, presented in Papers I–VI, well-known methods for
analysis of crisp shapes, based on (1) moments, (2) signature, and (3) geometric
descriptors of a shape, are generalized and applied to the analysis of fuzzy shapes.
In this section, we give a brief description of these crisp techniques.

4.1 General aspects of shape analysis

There exist different classifications of shape analysis techniques, see, e.g., Loncaric
(1998) for an overview. Depending whether only the shape boundary points are used
for the description, or alternatively, the whole interior of a shape is used, the two
resulting classes of algorithms are known as boundary-based (external) and region-
based (internal), respectively. Another criterion for the classification of shape analy-
sis techniques is based on different mathematical means used to describe a shape
(Kidratenko (2003)); according to it, the functional approach corresponds to the
boundary based one, whereas the set theoretical approach corresponds to the re-
gion based one. Examples of the former class are algorithms which parse the shape
boundary and various Fourier transforms of the boundary. Their main advantages
are reduction of data and (in some cases) a convenient description of complex forms.
Region-based methods include, e.g., the medial axis transform, moment-based ap-
proaches, and methods of shape decomposition into the primitive parts. Their main
advantages are easier characterisation and stability in practical applications, where
there is unavoidable noise.

A description of a shape is data representing it in a way suitable for further com-
puter processing. Such data can be low-dimensional (perimeter and moments), or
high-dimensional (medial axis and primitive parts). The first type of data is suitable
for, e.g., shape classification, while the second, often called shape representation,
provides good visual interpretation and compression.

A classification scheme for shape analysis methods may look as follows (Lon-
caric (1998)):

Boundary based numeric methods result in a numerical description based on
shape boundary points. An example of this approach is perimeter (understood as
the length of the boundary of a 2D shape, and not as the boundary itself), but also
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one-dimensional functions constructed from the two-dimensional shape boundary,
called shape signatures. In that case, the shape is described indirectly by means
of a one-dimensional characteristic function of the boundary, instead of the two-
dimensional boundary itself. The Fourier transform is often applied to the signature
functions, and used as a shape descriptor.

Boundary-based non-numeric methods take shape boundary as input and pro-
duce the result in a pictorial or a graph form. Examples are boundary approxima-
tions by polygons and splines, and boundary decomposition.

Region-based numeric methods compute scalar result(s) based on the global
shape. Moment-based methods are popular examples from this group. Area and
compactness measures are also often used, although not information-preserving; it
is not possible to recover the shape if only its area, or its compactness measure, are
known.

Region-based non-numeric methods result in a spatial representation of a
shape, based on the whole shape’s interior. The most popular methods in this
group are the medial axis transform and the shape decomposition. Mathematical
morphology, suitable for shape-related processing, since morphological opera-
tions are directly related to object shape, belongs to this group of approaches as well.

The goal of a shape description is to uniquely characterize the shape. The de-
sired properties of a shape description scheme are invariance to translation, scale,
and rotation; these three transformations, by definition, do not change the shape of
an object, and consequently should not change its descriptor. However, it should be
noted that in the discrete case such invariance exists only up to discretization effects,
and often special care must be taken in order to fulfil it.

Additional desired properties of a good shape description method are (Loncaric
(1998)):

• accessibility – How easy is it to compute a descriptor in terms of memory
requirements and computational time; are the operations local or global?

• scope – How wide is the class of shapes that can be described by the method?

• uniqueness – Is the representation uniquely determined for a given shape?

• information preservation – Is it possible to recover the shape from its descrip-
tor?

• stability and sensitivity – How sensitive is a shape descriptor to small changes
of a shape?

Our research, presented in this thesis, has been related to three different shape
description methods. We studied moments of a shape (Papers I–III), the signature
of a shape based on the distance from the shape centroid (Paper IV), and 2D and 3D
geometric shape descriptors – area, perimeter and compactness measure of a shape,
as well as volume, surface area, and sphericity measure (Papers V and VI). The
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main intention has been to extend these well-known descriptors and to apply them
to the analysis of discrete spatial fuzzy sets. In the following, we briefly present our
starting points regarding each of the shape analysis methods observed, before we
give an overview of our contributions to the field in Section 5.

4.2 Moments of a discrete shape

The two-dimensional Cartesian moment, mp,q of a function f(x, y) is defined as

mp,q =

∫

∞

−∞

∫

∞

−∞

f(x, y)xpyq dxdy ,

for integers p, q ≥ 0. The moment mp,q(S) has the order p + q. Cartesian moments
are often referred to as geometric moments.

A complete moment set of order n consists of all moments mp,q such that p+q ≤
n. The geometric moment mp,q can be seen as the projection of f(x, y) to the
monomial basis set xpyq .

Moments were introduced into image analysis by Hu (1962). Hu stated that for
a piece-wise continuous function f = f(x, y), non-negative only within a bounded
set in R2, the moments of all orders exist. Moreover, the set of moments of a
function f is uniquely determined by f , and conversely, the set of all moments of
f uniquely determines f . Hu’s statement holds for image functions, since they are
bounded and can be interpreted as piece-wise constant (i.e., step-) functions.

In order to apply geometric moments as shape descriptors, their behaviour under
scaling, translation, rotation, and reflection are studied. To provide invariance of a
shape descriptor to scale, translation, and rotation of a shape, Hu defined seven
nonlinear combinations of geometric moments up to order three, which are known
as the absolute moment invariants.

When used in image analysis, moments are calculated for discrete functions on
discrete bounded domains. The definition of a geometric moment mp,q of a digital
image f(x, y) is

mp,q =
∑

i

∑

j

f(i, j)ipjq ,

where (i, j) are points in the (integer) sampling grid.

An image is always bounded and an image function is piece-wise continuous,
which ensures that the Hu’s statement holds for digital images. However, potentially
huge number of moments (as many as there are pixels in the image itself) may
be required for a unique representation and reconstruction of a digital image. To
make the description practically feasible, a finite set of moments has to be used, and
consequently, only an approximate reconstruction can be provided. The important
question is, therefore, how to make an appropriate selection of moments, such that
sufficient information is provided for a unique characterization of the image.

It was noticed already by Hu that, in some experiments, object descriptions by
moments were very similar for rather different shapes, and that the size of variation
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of shapes was not consistent with the size of variation in the description. This was,
quite naturally, seen as a consequence of a limited resolution of the image, as well
as the limited number of moments involved in the description. It is clear that the
image resolution has a large influence on the quality of the description by moments.
That is confirmed by, among others (Klette and Žunić (2000); Teh and Chin (1986)),
our results presented in Papers I–III. It is, however, not easy to fully understand and
predict the influence of the behaviour of high-order moments in the image descrip-
tion. If the image function is described by integer values in the integer grid, the
corresponding moments are integer-valued, which is advantageous, since floating-
point calculations and, consequently, rounding errors, are avoided. Unfortunately,
in that case, higher order moments increase in size very rapidly, and are rather sen-
sitive to noise, which gives reasons to try to avoid using them in the description.
If, alternatively, the rescaling of image is performed, and the domain (and conse-
quently, the basis monomials) is restricted to the interval [−1, 1], the monomials are
highly correlated and the important information is contained within a small differ-
ence between them. This problem is studied in Talenti (1987), where it is concluded
that (even in the continuous case) the problem of reconstruction of a function from
its (infinite) set of geometric moments (known as the Hausdorff moment problem)
is ill-posed, i.e., the required inverse is not continuous; an arbitrarily small change
of “input” moment values can produce unpredictable change of the reconstructed
function. This has been found to be a consequence of the non-orthogonality of the
basis monomials xpyq and has initiated several alternative approaches. Polynomials
of an orthogonal basis set are used for moment definitions (e.g., Legendre, Zernike),
in order to provide a stable and simple reconstruction. For an overview, see Prokop
and Reeves (1992).

Still, geometric moments have become well accepted shape descriptors, due to
their simple definition, their uniqueness for a given shape, the possibility to derive
descriptors invariant to rotation, translation, and scaling, and to express them as
integers, their linearity, and the possibility to reconstruct a number of features of a
shape from an appropriately chosen set of its moments. In addition, it is possible to
express all other types of moments in terms of geometric moments.

The disadvantage of sensitivity to noise mostly applies to high-order moments.
Their use in object description can be avoided (or, at least, reduced) by, e.g., first
decomposing complex shapes to simpler and more regular parts, which can, then,
be represented by a smaller set of the corresponding moments. This approach was
a motivation for our studies performed for disks, which are among the most com-
monly appearing shapes in images. We have analysed representation and recon-
struction of both crisp and fuzzy disks by the set of their appropriately chosen mo-
ments.

Our focus was on the analysis of the errors of estimation of moments of a contin-
uous shape from the corresponding moments of its (crisp or fuzzy) digitization. The
interest for such research was emphasized in, e.g., Teh and Chin (1986); Liao and
Pawlak (1996). Our theoretical results, primarily derived in Paper III, confirm em-
pirical studies presented in Teh and Chin (1986). Paper I is devoted to the properties
of representation and reconstruction of crisp (digital) ellipsoids (spheres, ellipses,
and disks are observed as special cases) from the set of shape moments up to order
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two. Papers II and III are focused on fuzzy spatial sets. In Paper II we study the
objects fuzzified by the area coverage approach, and relate fuzzy and spatial res-
olution. In Paper III, we observe a fuzzy digital disk with a membership function
defined by a non-increasing function of the distance of a point to the chosen central
point. Various aspects of the shape representation by moments are considered in
both cases, and advantages of using fuzzy spatial sets are confirmed.

4.3 Shape signature based on the distance from the centroid

A signature is a one-dimensional functional representation of a two-dimensional
shape boundary. The simplest way to generate a signature is to traverse the bound-
ary and plot the distance from the centroid (or, alternatively, some other point of
special interest) to the boundary as a function of the central angle, starting from
some reference line, see Figure 9. This function is also called the radius-vector
function (Kidratenko (2003)).
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Figure 9: A star-shaped object with respect to the centroid and its corresponding
shape signature.

In order to provide uniqueness and recoverability of this shape descriptor, it is
necessary that the object is star-shaped with respect to the chosen central point.
The object is star-shaped with respect to a point O, if for any point P on the ob-
ject boundary, the line segment connecting P and O is entirely contained in the
object. The set of all points with respect to which the object is star-shaped is called
the kernel of the star-shaped object. If the central point of a shape belongs to the
kernel, the radius-vector function uniquely describes the shape. Hence, the unique
reconstruction is possible.

The radius-vector function of a continuous star-shaped object is invariant under
translation, but depends on scaling, rotation, and reflection (Kidratenko (2003)).

In the discrete case, however, even translation affects the signature of a shape.
In addition, a selection of boundary points to be used for the representation by the
radius-vector function has to be done. The points can be chosen in several ways
and the selection, in general, affects the description. Some possible ways to choose
the boundary points for representation are, e.g., (1) to take equidistant points on the
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boundary, (2) to use vertices of a polygonal approximation of the boundary, (3) to
select points where the curvature of a boundary is high. The most common way is
to take the boundary points so that the central angles are equal.

Our study on shape signature (Paper IV), based on the distances from the shape
centroid, was performed with the intention to reduce the sensitivity of this shape
descriptor to translation of the shape centroid within a pixel, by using fuzzy, instead
of crisp, representation of shapes.

4.4 Geometric descriptors

In many applications of digital image analysis, quantitative geometric measures of
the imaged continuous objects are of great interest. The information about perime-
ter and area of 2D objects, as well as surface area and volume of 3D objects, is often
required. If obtained from digital images, these measurements are only estimates
of the true object properties. The quality of the estimates is expressed in terms of
accuracy and precision, but also in terms of computational demands, algorithmic
complexity, and sensitivity to noise. Various approaches are known in the literature,
related to both crisp and grey-level objects. Area, perimeter, and compactness mea-
sure (in 2D), and volume, surface area, and sphericity (in 3D) are considered in the
following and referred to as geometric descriptors.

4.4.1 Geometric descriptors of crisp shapes

The estimation of the area of a 2D (crisp) object, and the volume of a 3D (crisp)
object, from its digital image is usually done by counting pixels/voxels within the
object. It is well-known that the relative error of these estimators is related to the
sampling density (resolution) of an image, both in 2D and 3D case. The area (vol-
ume) estimation method, based on the grey-volume (the volume of a grey-level
landscape) measurements, which combines counting pixels and edge detection, and
exploits the sampling theory, is presented in Verbeek and van Vliet (1992).

The perimeter of a digital object can be estimated as the cumulative distance
between neighbouring pixels on the border of an object. This method is based on
the Freeman chain code representation (Freeman (1961)), where the weights 1 and√

2 are assigned to isothetic and diagonal steps, respectively. These step weights
are not optimal when measuring digitized straight lines. Optimized for infinitely
long straight lines, the weights 0.948 and 1.343 are obtained for isothetic and diag-
onal steps, respectively, (Proffit and Rosen (1979), Kulpa (1977)). An overview of
this type of estimators, which use local computations, is given by Dorst and Smeul-
ders (1987). These weights are often used also for measuring the lengths of digital
curves. Global estimators of perimeter are mostly based on a polygonalization of
the object. A comparative evaluation of several estimators of the length of a binary
digitized curve, both local and global, is presented by Coeurjolly and Klette (2004).
The results show that length estimators which are multigrid convergent, i.e., perform
better and better with increasing image resolution, are all global. However, both lo-
cal and global methods produce either over- or under-estimation at low resolutions,
i.e., when the object of interest is small in terms of the number of pixels.
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In 3D space, the surface area of a digitized object can be estimated by counting
the number of faces of the voxels at the boundary between the object and the back-
ground (Udupa (1994)). This gives a severe overestimation of the surface area. By
approximating the boundary with a triangular representation, e.g., the one obtained
from the Marching Cubes algorithm (Lorensen and Cline (1987)), more correct
surface area estimates are obtained. An alternative approach is taken by Lindblad
(2005), where surface area is estimated by using weighted local configurations, with
weights optimized for planar surfaces. Multigrid convergent surface area estimators
are studied in Coeurjolly et al. (2003); Kenmochi and Klette (2000).

In order to improve the precision of the estimations, methods based on grey-level
images were developed. Estimation of the edge length (in 2D) and the surface area
(in 3D) using grey-level information is analysed in Verbeek and van Vliet (1992);
Eberly and Lancaster (1991); Eberly et al. (1991). Verbeek and van Vliet (1992)
combine edge detection with the edge length (surface area) estimation technique,
where edge length is expressed as a volume measure, and a so-called grey-volume
estimator is then used. The methods presented in Eberly and Lancaster (1991);
Eberly et al. (1991), for estimating arc length and 2D area, as well as surface area
and volume, are based on unit normal vector construction at curve (surface) points.
The normal construction is performed by using grey-level image data.

In the context of the perimeter and area estimators, it may be of interest to
analyse how they affect the well-known P 2/A shape descriptor. A measure of the
compactness of a shape S, also called roundness index, or roundness factor, is cal-
culated as

P 2/A (S) =
perimeter2(S)

4π · area(S)
.

Based on the isoperimetric inequality,

perimeter2(S) ≥ 4π · area(S), (5)

the P 2/A measure is lowest – equal to one – for a crisp continuous disk, compared
to any other crisp continuous set. In other words, the P 2/A measure is the lowest
for the most compact continuous shape.

One possible extension of the 2D compactness measure to 3D is a roundness
measure of a shape S, calculated as

roundness(S) =
surface area(S)

3

√

36π · volume2(S)
. (6)

In the continuous case, the roundness measure of any object is larger or equal to
one; it reaches its minimum for balls. In the discrete case, both the compactness and
the roundness measures are under-estimated for digital disks and balls with small
radii, so they can easily be lower than one.

4.4.2 Geometric descriptors of fuzzy shapes

The area (in 2D), and volume (in 3D), of a continuous fuzzy subset are defined as
the integral of the corresponding membership function over the reference set. For
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the discrete case, it holds (Rosenfeld (1984)):

The area A(S) (in 2D), and volume V (S) (in 3D) of a (discrete) fuzzy subset S of
a reference set X , given by its membership function µS , are defined as

∑

x∈X

µS(x).

Note that area and volume are equal to the cardinality of a fuzzy set, according to
one of several definitions of cardinality existing in the literature (Wygralak (1999)).
Area and volume are scalar cardinalities, assigning a crisp number to a fuzzy set, as
opposed to fuzzy cardinalities.

The perimeter P (S) of a fuzzy set S given by a piecewise constant membership
function (fuzzy step set) µS , is defined by Rosenfeld and Haber (1985) as

P (S) =
∑

i,j,k

i<j

|µSi
− µSj

| · |Aijk |,

where Aijk is the kth arc along which bounded regions Si and Sj , defined by
(constant-valued) membership functions µSi

and µSj
, meet.

Even though the definitions given by Rosenfeld (1984) and Rosenfeld and Haber
(1985) are generalisations of the area and perimeter of a crisp set, some simple inter-
relations related to these measures, like e.g., the isoperimetric inequality, given by
Relation (5), that hold in the crisp case, do not hold if the perimeter and area are
defined as above. This fact initialized further research and resulted in the modified
definition of the perimeter of a fuzzy subset, given in Bogomolny (1987):

The perimeter P (S) of a fuzzy step subset S, given by its membership function
µS , is defined as

P (S) =
∑

i,j,k

i<j

|√µSi
−√

µSj
| · |Aijk |.

The idea followed by Bogomolny (1987) was to ensure that some well-known
inter-relations between geometric properties of crisp objects, including the isoperi-
metric inequality, hold in a “proper” way for fuzzy objects as well. For that purpose,√

µ, instead of µ, is substituted in the definitions given previously in Rosenfeld and
Haber (1985). Even though for a crisp set

√
µS = µS (as µS ≡ 1), and both defi-

nitions, Rosenfeld and Haber (1985) and Bogomolny (1987), provide, formally, the
analogy with the definition of a perimeter of a crisp set, the difference between the
two definitions is essential, and significantly affects the observed inter-relations in
the two cases.

The behaviour of the compactness measure of fuzzy sets depends on the defini-
tion of the perimeter. It can be shown that the P 2/A measure decreases, i.e., that the
compactness increases with the increase in fuzziness, if the perimeter is defined as
in Rosenfeld and Haber (1985). A more intuitive result follows from the definition
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of perimeter given in Bogomolny (1987); the P 2/A measure indicates the crisp disk
as the most compact fuzzy discrete shape.

In Papers V and VI, we studied perimeter and surface area, as well as area, vol-
ume, compactness and roundness, of discrete fuzzy objects, obtained by adjusting
the definitions given in both Rosenfeld and Haber (1985) and Bogomolny (1987).
Our main interest was to obtain good estimates of the analogous properties, of con-
tinuous crisp shapes. Statistical results show that fuzzy digital representations of a
shape provide improved precision, compared to the results obtained if crisp digital
representations are used. As expected, the improvements are most significant at low
resolutions. Even though the approach presented in Bogomolny (1987) considers
important principles, like inter-relations preservation, when generalizing notions
from crisp to fuzzy sets, the corresponding measures give high over-estimates of
continuous crisp analogues. We find that the approach suggested in Rosenfeld and
Haber (1985) is more appropriate for estimations of the compactness measure of a
real shape.
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5 Contributions

This section contains a brief description of the results presented in Papers I–VII.

5.1 Moments of a spatial fuzzy set

The research presented in Papers I–III is focused on geometric moments and their
application in representation and reconstruction of shapes.

General objects may require relatively large sets of moments for a reliable rep-
resentation and reconstruction, which has the disadvantage of increased computa-
tional complexity, but even more important, increased sensitivity to noise due to the
use of higher order moments. However, elementary geometric shapes, like disks
and regular polygons, at least in the continuous case, are often uniquely represented
by sets of moments of a relatively low order, while, in addition, such a description
provides a unique reconstruction. These properties are appealing for a shape de-
scriptor, which makes it interesting to study the behaviour of moments of discrete
equivalents of regular shapes. Moreover, complex shapes most often can be decom-
posed into simpler shapes like ellipses (disks) or regular polygons, which makes the
results obtained for simplified cases more generally applicable.

Our study on geometric moments of discrete regular shapes is performed on two
main tracks:

• We aim to find moment-based descriptors for the observed set of discrete
shapes such that a one-to-one correspondence between the shapes and their
descriptors exists;

• We also aim to have an information on how well the moments of a continuous
shape and the relevant shape parameters can be estimated from the moments
of the discretization of a shape.

We are particularly interested in the effects of using a fuzzy shape representation
on the accuracy and precision of the estimation of the relevant parameters of the
continuous shape, by using moments.

The one-to-one correspondence between digital shapes and their moment de-
scriptors is studied in Papers I and III. The shapes considered in Paper I are ellipses
and disks in 2D, and ellipsoids and balls as their 3D extensions. Moments of their
crisp digitizations of orders up to two are analysed. The study of disks is further
extended to the case of fuzzy disks, and the results are presented in Paper III.

Error bounds for the estimation of moments of a continuous set are derived in
Paper I, for crisp shapes, and in Papers II and III, for fuzzy shapes obtained by two
different fuzzification approaches.

In order to explore the existence of a one-to-one correspondence between the
set of discrete shapes and the set of their moments, we utilize the idea of separating
sets, introduced in Klette et al. (1996). Let us observe two discrete sets, S1 and S2
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in Z2, both containing n points. Let us assume that there exists a curve F (x, y) = 0
such that

F (x, y) < 0 for all (x, y) ∈ S1 and F (x, y) > 0 for all (x, y) ∈ S2.

We say that F separates the sets S1 and S2.

If F is a linear combination of monomials xpyq , e.g., F (x, y) = ax2 + bxy +
cy2 + dx + ey + f = 0, then, by summing n inequalities obtained for each point in
the set S1, it holds that

a
∑

(x,y)∈S1

x2+b
∑

(x,y)∈S1

xy+c
∑

(x,y)∈S1

y2+d
∑

(x,y)∈S1

x+e
∑

(x,y)∈S1

y+f
∑

(x,y)∈S1

1 < 0

whereas, at the same time, for the set S2 we get

a
∑

(x,y)∈S2

x2+b
∑

(x,y)∈S2

xy+c
∑

(x,y)∈S2

y2+d
∑

(x,y)∈S2

x+e
∑

(x,y)∈S2

y+f
∑

(x,y)∈S2

1 > 0.

In other words,

a m2,0(S1) + b m1,1(S1) + c m0,2(S1) + d m1,0(S1) + e m0,1(S1) + f m0,0(S1) (7)

< a m2,0(S2) + b m1,1(S2) + c m0,2(S2) + d m1,0(S2) + e m0,1(S2) + f m0,0(S2).

It is easy to conclude that S1 and S2 cannot have all of the corresponding moments,
appearing in inequality (7), equal, which indicates that an appropriate choice of
descriptor for these shapes can be (m2,0; m1,1; m0,2; m1,0; m0,1; m0,0). Clearly,
the form of F determines which moments to choose for the description.

Note that the linearity of moments allows us to apply the idea of separation even
when S1 and S2 have a non-empty intersection. In that case, a curve that separates
S1 \ S2 and S2 \ S1 is used, taking into account that the contributions of the points
in S1 ∩ S2 to the moments of S1 and S2 are equal.

In Paper I, this idea is applied to crisp discretizations of ellipses, disks, ellip-
soids, and balls, and the choice of moments, providing a one-to-one correspondence
between the set of discrete shapes and the set of moment descriptors, is made in
each case, depending on the separating curve.

As an example, let us observe that the difference sets of two isothetic digital
ellipses can always be separated by a curve F (x, y) = ax2 + bx + cy + d, as
illustrated in Figure 10. Therefore, the descriptor (m2,0; m1,0; m0,1; m0,0) provides
a unique representation of this type of shapes.

A representation (coding) of ellipses by moments requires an asymptotically op-
timal amount of bits. It provides recoverability of the shape from its code, due to the
one-to-one correspondence established. In addition, this coding scheme is based on
integers, which implies that the floating point calculation errors and approximations
unavoidably introduced if real numbers are used, are avoided.

In Paper III, digital fuzzy disks are interpreted as 3D crisp shapes, in order to ap-
ply the same separation technique. This initiated the introduction of the generalized
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Figure 10: Separating curve for the difference sets of two isothetic ellipses. (a) A
separator is of the form ax+by+c = 0 if two ellipses have at most three intersecting
points. For the difference sets of ellipses E1 and E2, E3 and E4, E1 and E3,
and E2 and E4, having zero, one, two, and three intersecting points, respectively,
separators are straight lines l0, l1, l2, and l3, respectively. (b) A separator is of the
form ax2+dx+ey+f = 0 or ax2+dx+f = 0 if two ellipses have four intersecting
points. The difference sets of ellipses E1 and E2 are separated by parabola p, while
the difference sets of E3 and E4 are separated by two parallel straight lines, l1 and
l2.

moments of a fuzzy shape; it proved to be necessary to incorporate membership
direction information into the description of a 2D fuzzy shape. The membership
direction can be interpreted as an additional (third) spatial dimension. A guidance
regarding which moments to introduce, and the proof of uniqueness of representa-
tion were provided by the existence and the form of a separating surface. Figure 11
presents these surfaces.

Accuracy and precision of estimation of moments of a continuous shape from
the moments of its digitization is studied in Papers I–III. Knowing that both the
accuracy of the estimation and the computational complexity increase with the in-
creased resolution of an image, we were interested in answering the following ques-
tions:

• What is the spatial image resolution that should be used in order to obtain the
required precision in the reconstruction of the original image?

• If we are not able to increase the spatial resolution of an image in order to
achieve an increased accuracy of the shape moment estimation (which is of-
ten the case for real images), how much do we gain if we use a fuzzy repre-
sentation of the object instead of a crisp one?

The dependence of the estimates from the image resolution is conveniently stud-
ied by using a multigrid approach. An object is inscribed into the grid and subse-
quently either dilated r times, or equivalently, observed in an r times refined grid,
for increasing values of r.
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(a) (b)

Figure 11: 3D illustrations of two intersecting fuzzy disks (light and dark grey)
having (a) the same and (b) different border widths. The disks in (a) are separated
by a plane, whereas to separate the disks in (b) a parabolic surface is required.

All the results are based on the strong number-theoretical results derived
by Huxley (1990), related to the estimation of the the number of grid points inside
of a 3-smooth convex set. In Paper I, Huxley’s result is incorporated in the estimates
of moments up to order two, for isothetic ellipses. Either by generalization, or by
reduction to a special case, estimates are derived for ellipses in general position,
ellipsoids, disks, and balls. They are further generalized by Klette and Žunić (2000)
to any convex 2D shape.

Being interested in fuzzy approaches, we performed a study of possible further
generalization of the error bounds given by Klette and Žunić (2000) to the esti-
mations from shapes fuzzified by area coverage approach. The results from Paper
II prove that it is possible to overcome problems of insufficient available spatial
resolution by utilizing an often already existing membership resolution. Derived
asymptotic expressions for the estimation of moments of convex shapes from their
fuzzy discrete representations show that an increase in membership resolution of an
image can be used to achieve the improved accuracy of the estimation in the same
way as by an increase in the spatial resolution. Even though the theory only guaran-
tees this behaviour after a certain spatial resolution is reached, the simulations show
that it is also present at low resolutions.

The asymptotic expressions are derived by observing the correspondence be-
tween the supersampling of (border) pixels in order to derive fuzzy memberships in
accordance with the area coverage and the refinement in a crisp multigrid approach.
We notice that the difference between local contributions obtained from the two ap-
proaches increases with an increase in the order of a moment, due to the increased
influence of the pixel position to the moment calculation. As an example, we can
observe one fuzzy pixel located at position (x, y) on the border of the imaged object,
in an image with a spatial resolution rs and a membership resolution 16, or equiva-
lently, a block of 4× 4 crisp pixels in an image with a spatial resolution rs × rf , as
presented in Figure 12.

The presented configuration is described by the number k = 5 of (crisp) sub-
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Figure 12: A pixel on the fuzzy border of a discretized object and, equivalently, a
4 × 4 block of crisp pixels with a 4 times dilated object.

pixels with centroids covered by the object,the super-sampling factor rf = 4, and
the positions (i, j) of sub-pixels within the 4 × 4 block. The local contribution of
this configuration to the moments up to the order two is calculated as:

cm̃
(1)
0,0(rsrf S) = k = 5 ,

fm̃
(1)
0,0(rsS) =

k

r2
f

=
5

16
,

cm̃
(1)
1,0(rsrf S) = k

(

rsrfx − rf

2
+

1

2

)

+
∑

i = 20rsx − 7

2
,

fm̃
(1)
1,0(rsS) = rsx

k

r2
f

=
5

16
rsx ,

cm̃
(1)
2,0(rsrf S) = k

(

rsrfx − rf

2
+

1

2

)2

+ 2

(

rsrfx − rf

2
+

1

2

)

∑

i +
∑

i2

= 90r2
sx

2 − 28rsx +
21

4
,

fm̃
(1)
2,0(rsS) = r2

sx2 k

r2
f

=
5

16
r2
sx2.

The notation is the same as in Paper II; cm̃p,q corresponds to the (p, q)-moment of
a crisp discrete shape, while fm̃p,q denotes the (p, q)-moment of a fuzzy discrete
shape. Upper index (1) stands for a one pixel contribution.

The above calculations agree with the theoretical expressions for one fuzzy
pixel/crisp block contributions, derived for the worst case when a half of the sub-
pixels are included in the digitization:

cm̃
(1)
0,0(rsrfS) = r2

f fm̃
(1)
0,0(rsS)

cm̃
(1)
1,0(rsrfS) = r3

f fm̃
(1)
1,0(rsS) + O

(

r3
f

)

cm̃
(1)
2,0(rsrfS) = r4

f fm̃
(1)
1,0(rsS) + O

(

rsr
4
f

)

.

Assuming that the worst case configurations can appear only on the border of the
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object, while deriving that the inner (fully covered) pixels do not introduce any error,
we obtain that the order of error of the estimation of moments up to the order two
of the continuous convex set is reduced by a factor r, when either spatial resolution,
or membership resolution, is increased by the factor r. (Note that in the worst
theoretical case, where all the pixels in the image are half covered by the object, the
order of estimation error is the same as in the crisp case.)

Our statistical study shows high accordance with the theoretical results. Tests are
performed for 2 000 randomly positioned disks and for 10 000 randomly positioned
squares, for each of the observed increasing sizes of the objects. This approach
is used to express multigrid resolution. Squares are of interest as convex objects
containing straight line borders, while disks are studied as examples of 3-smooth
objects. The different membership resolutions used are expressed by observing rf ∈
{1, 2, 4, 8, 16}.

For each object size, we determine the maximal relative estimation error for mo-
ments up to order two. The results for m2,0 moments estimation, both for squares
and for disks, are shown in Figure 13. The plots are presented in a logarithmic scale
so that the “slope” of the curves corresponds to the order of the estimation error, and
can be compared with the straight line having the slope equal to the theoretically de-
rived order of error, which is plotted, as well. The expected asymptotic behaviour
assumes higher errors at low resolutions. However, for the presented membership
resolutions, the plots show accordance with the asymptotic bounds even at low spa-
tial resolutions. The relative position of the curves shows that the estimation error
becomes smaller both with the increase in spatial and membership resolution.

Fuzzification by area coverage, considered in Paper II, is of interest because of
its good correspondence with the output of many imaging devices used in practise.
It does not, however, preserve all of the shape properties, which makes theoreti-
cal studies related to, e.g., uniqueness and recoverability of the representation by
moments difficult. For example, according to the definition given by Bogomolny
(1987), a fuzzy disk is a convex fuzzy set defined by a membership function which
depends only on the distance of a point from the centre of a disk. A pixel area fuzzi-
fication of a disk does not necessarily produce a fuzzy discrete disk, as shown in Fig-
ure 14; for the indicated pixels A and B it holds that dA = dB , while µ(A) < µ(B).

In Paper III, we studied properties of moments of a theoretically well defined
continuous fuzzy object, as well as of its digitization. By introducing the notion of
generalized moments of a fuzzy set, we have proved a one-to-one correspondence
between the set of fuzzy discrete disks and the set of their moments. Generalized
moments, inspired by the possibility to interpret 2D fuzzy sets as 3D crisp objects,
enable the use of already developed techniques, while a different treatment of spatial
and membership information can, but need not, exist.

We have studied the accuracy of the estimation of moments of a continuous
fuzzy disk from the moments of its digitization, and have derived error bounds for
the estimates. It is shown that the error depends both on spatial and membership
resolution. Moreover, it is concluded that increasing only one type of resolution can
provide only a limited improvement of the accuracy of estimates; in other words,
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Figure 13: Error bounds for the second order moment estimation. (a) Moments
estimation of a square. (b) Moments estimation of a disk.

spatial and membership resolution should be well balanced in order to get an op-
timal estimation result. The results are presented in Figure 15, where maximal
relative errors (in logarithmic scale) for (generalized) moments of the first order are
plotted. The lines corresponding to the asymptotes of the theoretical expressions are
included in the plots, to simplify the comparison with the theoretically derived error
bounds.
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Figure 15: Maximal relative errors for the estimation of moments of a continuous
fuzzy disk from the moments of its digitization at different resolutions. (a) m1,0;0

(b) m0,0;1

We conclude by listing three theorems expressing error bounds for moment es-
timations. The first one is related to estimation of moments of a crisp continuous
convex set from the moments of its crisp digitization, (Klette and Žunić (2000)), the
second one is related to the estimation of moments of a crisp continuous convex set
from the moments of its fuzzy digitization (Paper II), whereas the third theorem is
related to the estimation of moments of a fuzzy continuous disk from the generalized
moments of its fuzzy digitization (Paper III).
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Theorem 1 Klette and Žunić (2000) The moments cmp,q of a crisp convex set S,
with a boundary consisting of a finite number of C3 arcs, can be estimated from the
digitization D(rsS) of an rs times dilated set S, by the estimation formula

cmp,q(S) =
1

rp+q+2
s

cm̃p,q(D(rsS)) + O
(

1

rs

)

for p + q ≤ 2. If S is a 3-smooth set, the estimation formula is

cmp,q(S) =
1

rp+q+2
s

cm̃p,q(D(rsS)) + O
(

1

r
15

11
−ε

s

)

for p + q ≤ 2.

Theorem 2 (Paper II) The moments of a convex set S, with a boundary consisting of
a finite number of C3 arcs, can be estimated from the digitization of rsS, fuzzified by
area coverage fuzzification in membership resolution r2

f , by the estimation formula

cmp,q(S) =
1

rp+q+2
s

fm̃p,q(D(rsS)) + O
(

1

rsrf

)

, for rs > Crf ,

for p + q ≤ 2. If S is a 3-smooth set, the estimation formula is

cmp,q(S) =
1

rp+q+2
s

fm̃p,q(D(rsS)) +O
(

1

(rsrf )
15

11
−ε

)

, for rs > Crf
15

7
+ε,

for p + q ≤ 2. C is a constant.

Theorem 3 (Paper III) The generalized moments of a continuous convex fuzzy disk
S with bounded support, can be estimated from the generalized moments of it dig-
itization in a grid with spatial resolution rs and membership resolution `, by the
estimation formula

fmp,q;φ(S) =
1

rs
p+q+2 `φ+1

fm̃p,q;φ(D`(rsS)) + O
(

1

r
15

11
−ε

s

)

+ O
(

1

`

)

,

for p + q ≤ 2 and φ ≤ 1.

5.2 Shape signature of a spatial fuzzy set

In the continuous case, a shape signature based on the distance of the boundary
points from the centroid of the shape is translation-invariant. However, the dis-
cretization of a shape in general depends on the position of the shape within the
grid, which affects many properties of discrete objects. With intention of increasing
the invariance of the signature of a discrete shape under translation, in Paper IV we
suggest to represent a shape by a fuzzy discrete spatial set, and to use the signature
of a fuzzy shape as a descriptor.
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Even though it may seem more appropriate to use region-based shape descrip-
tors to describe fuzzy shapes, since possible membership variations can be captured
if the properties of the whole region are considered, there are reasons to consider
the adjustment of boundary-based approaches to fuzzy sets. Boundary-based shape
descriptors are often very sensitive to noise and to any change of the boundary posi-
tion. Translation of the shape centroid within a pixel can affect crisp segmentation,
and consequently the border position, quite significantly, which further propagates
to the shape signature. On the other hand, a fuzzy border is often less sensitive to
the translation of a shape, so it seems natural to use a fuzzy representation for the
shape description. Such descriptions might be particularly appropriate when fuzzi-
ness appears primarily on the border of the object, which is often the case in image
analysis.

Another reason to believe that the fuzzy set representation can be appropriate for
boundary-shape description is because it is often possible to incorporate information
about the inner region of the shape into the descriptor, even if the main focus is on
the boundary points. Such additional information can improve the reliability of the
description.

In Paper IV, we analysed how to define and calculate the radius-vector function
of a fuzzy set. The extension is derived both for the continuous and the discrete
cases, and a significant difference between them is noticed, first of all, regarding the
uniqueness of the solution.

The centroid (centre of gravity) of a continuous fuzzy set is defined by Equa-
tion (4). Analogously to the crisp case, the applicability of the signature function is
restricted to fuzzy sets which are star-shaped with respect to the centroid. A fuzzy
set is star-shaped with respect to a point O if all its α-cuts are star-shaped with re-
spect to O (Diamond (1990)). This implies that all the α-cuts of a fuzzy set, which
is star-shaped with respect to the centroid, contain the centroid. It also follows that
the centroid of such a set has maximal membership to the fuzzy set.

Depending on the representation of a fuzzy set, (1) by its membership function,
or (2) as the stack of its α-cuts, two approaches for defining the signature of a fuzzy
shape are suggested. They differ in the choice of a distance measure and in the
interpretation of the boundary of a fuzzy set.

The first approach relies on the representation of a fuzzy set by its membership
function. For a fuzzy star-shaped set, the membership function is radially non-
increasing and, for a set with a bounded support (which is an assumed property of
the fuzzy sets we observe), it is equal to zero outside the support of the fuzzy set.
The signature of a fuzzy set is calculated by radial integration of a membership func-
tion from the centroid of a shape. The contribution of the region outside the support
of the set to the integral is equal to zero. Therefore, the signature is determined by
the integration performed from the centroid of the fuzzy set to the boundary of its
support. The length of a path in a fuzzy set is defined as the integral of the member-
ship function along the path, as suggested in Saha et al. (2002). If applied to a crisp
set, this method reduces to the conventional signature of the set.

The second suggested approach is based on the representation of a fuzzy set by
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the stack of its α-cuts. To obtain the signature function of a fuzzy set, the fuzzifi-
cation principle given by Equation (1) is applied. That means that the signature of
a fuzzy set is calculated (by integration) from the signatures of all the α-cuts of a
fuzzy set.

The two suggested methods are equivalent in the continuous case, which is a
consequence of the properties of the membership function of a fuzzy star-shaped set,
being radially non-increasing. One radial cut of a membership function corresponds
to the path to be measured in order to determine the distance to the boundary point,
but the same radial cut can also be seen as the signature-profile corresponding to the
boundary point in the same radial direction for all the α-cuts. Integration in both
cases gives the same result, assigned as the signature value to the observed point.
However, the issues induced by the discretization lead to different performances of
the proposed methods, when they are applied to discrete shapes.

For both suggested methods, the centre of gravity (centroid) of a discrete set is
computed by taking the sum, instead of the integral, in Equation (4). The boundary
of the support of a discrete fuzzy set (Method 1), or the boundaries of its α-cuts
(Method 2), are extracted. The number of observed α-cuts is finite and is equal to
the number of grey-levels representing different membership values of the points.

For Method 1, the straight continuous line segments between the centroid and
each of the points on the discrete boundary are discretized and the length of a dis-
crete path in a fuzzy set is determined as suggested in Saha et al. (2002), i.e., ap-
proximating the integral by a finite integral sum along the discrete line segment.

For Method 2, the signature of a fuzzy set is obtained by averaging the signature
functions calculated for each of the α-cuts. The signature of an α-cut is determined
by using the Euclidean distance to each of the points on the discrete boundary. Since
the boundaries of the α-cuts in general do not contain the same number of points, re-
sampling of the signatures is needed, in order to obtain all of them having the same
length (equal to the longest). Care is taken so that the correspondence between the
points is preserved, and indexing is such that the same index in all of the signatures
indicates the border points belonging (approximately) to the same radial cut.

The results obtained for a digital disk are presented in Figure 16. Let us re-
call that the signature of a continuous disk is a constant function which maps each
boundary point to the value equal to the radius of the disk.

The performances of the methods are studied on a set of digital fuzzy disks,
positioned randomly within a pixel. Fuzzification based on area coverage is used.
The evaluation is based on signal-to-noise ratio (SNR), which is calculated as the
ratio between the total of squared values of the observed signal and the total of
squared values of the noise contribution.

The average SNR values obtained for 50 disks of each observed real-valued
radius are presented in Figure 17, for increasing disk radii. The SNR is calculated
in a way that emphasizes the precision of the methods, rather than their accuracy
(the mean of estimates is used instead of the truth value). A motivation is that the
most significant improvement obtained by using fuzzy, instead of the crisp shape
representation, is expected in terms of the precision of the estimates.
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Figure 16: Shape signatures for a disk. Method 1 applied to (a) a crisp and (b) a
fuzzy disk. Method 2 applied to (c) a crisp and (d) a fuzzy disk.
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Figure 17: SNR of computed shape signatures for disks; comparative study of the
two methods on crisp and fuzzy shapes.

It can be noticed that for both methods, the use of a fuzzy, instead of a crisp
object, improves the description. However, for Method 1, the improvement tends to
zero when the radius increases. Method 2 greatly outperforms Method 1, both in
the crisp and in the fuzzy case. Furthermore, for Method 2 the advantage of using
fuzzy objects is obvious and remains so also with the increase in the radius of the
object.

The poor performance of Method 1 is not surprising, since the method relies on
a discrete approximation of a straight line, and on the estimated length of a line seg-
ment, while Method 2 directly uses Euclidean distances. However, the first method
can be seen as more general, since it can naturally be extended to shape signa-
ture calculation of non-star-shaped sets, while non-star-shapedness causes problems
(also in the crisp case) when the second approach is used. The difficulties are re-
lated to the treatment of “external” parts of the line connecting the centroid with the
boundary point, where “external” becomes a rather subtle notion for the relatively
complex fuzzy topological issues. Hence, this is a reason to be interested in the less
efficient approach.

An important conclusion is that the use of fuzzy sets greatly improves the qual-
ity of the shape description; the sensitivity to the digitization effects is significantly
reduced, compared to the crisp case. An example presented in Figure 18, where
signatures of a rectangle in two rotations are compared, while the same starting
boundary point is used in both positions. The resulting signatures should, theoret-
ically, be the same. Due to discretization, they are not, in neither the crisp, nor
the fuzzy case. However, fuzzy representation of an object provides a more stable
description.
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Figure 18: Four digitizations of a rectangle and the corresponding signatures. Cen-
tres of gravity are marked by crosses. The boundaries are traversed in the coun-
terclockwise direction, starting from the upper left pixel of the support. (a) Crisp
isothetic. (b) Crisp rotated. (c) Fuzzy isothetic. (d) Fuzzy rotated. (e) Signatures of
the shapes in (a) and (b). (f) Signatures of the shapes in (c) and (d).

5.3 Geometric descriptors of a spatial fuzzy set

In Papers V and VI we studied the behaviour of the perimeter and the area of a dis-
crete fuzzy shape, in order to use them in estimations of the perimeter and area of
continuous crisp shapes. We extended the study to the 3D case, i.e., to the estima-
tions of the surface area and the volume of an object. We utilized already existing
definitions of the area and perimeter of a fuzzy set, given by Rosenfeld and Haber
(1985) and Bogomolny (1987). Our goals were to

• appropriately adjust the existing definitions to a discrete case;

• propose an algorithm for calculating the perimeter of a discrete fuzzy set;

• use the obtained results for estimations of measures of continuous crisp
shapes and perform a study on the precision of the designed estimators, with
focus on small objects;

• extend the obtained results to 3D objects.

As we expected, one of the advantages of a fuzzy approach was shown to be
in the increased stability of the fuzzy representation of a continuous shape under
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digitization, compared to a crisp representation, present especially at low spatial
resolutions (i.e., small objects). For an illustration, the objects in Figure 18(b) and
(d) can be compared; they are both digitizations of the same continuous rectangle,
and the shape properties are far better preserved in (d), where a fuzzy representation
(based on area coverage) is used, than in (b), where a crisp digitization is shown.
Another important advantage of a fuzzy approach in the perimeter (and area) es-
timation method presented in Papers V and VI is that there is no need for (crisp)
boundary detection; the estimation is done directly on the fuzzy segmented discrete
object.

It is reasonable to expect that the area of a fuzzy set, based on area coverage
fuzzification, provides a good estimate of the area of a corresponding crisp contin-
uous original. Memberships of pixels are derived so that the contribution of a pixel
to the area of an object is reflected. Summing memberships in order to estimate the
area gives a very precise result, which is supported by a statistical study performed
for a set of disks and a set of squares of various sizes, randomly positioned in the
digitization grid. At this point, we mention that the theoretical error bounds for
the estimation of the moment of zero-order, derived in Paper III, confirm increased
precision of the area estimator based on fuzzy memberships of the points.

Similarly, the volume of a 3D continuous shape is estimated with high precision
by summing memberships of voxels to the corresponding fuzzy digital shape, i.e.,
by the volume of the corresponding fuzzy digital shape. The results of our statistical
study, performed for small balls, are presented in Paper VI.

In order to design an algorithm for computation of the perimeter of a fuzzy
set, we considered the definitions given by Rosenfeld and Haber (1985) and Bogo-
molny (1987), which lead to computation based on local contributions of pixels to
the perimeter, and also to the fuzzification principle expressed by Expression (1),
which assumes computation of the perimeter of the fuzzy set as an averaged sum
of perimeters of all the α-cuts of the set. Algorithms based on local contributions
are given in both Papers V and VI. Since both definitions of a perimeter, given by
Rosenfeld and Haber (1985) and Bogomolny (1987), require the calculation of the
length of a border line between two sets of iso-membership pixels, the accuracy of
the estimation of a perimeter of a continuous set from its fuzzy digital representation
strongly depends on the accuracy of the estimation of the length of a crisp digital
curve.

The algorithm which incorporates a length estimation method given in Dorst and
Smeulders (1987) into the computation of the perimeter of a fuzzy set is presented
in Paper V. The algorithm is restricted to locally convex shapes (i.e., sets where
the 3 × 3 neighbourhood of each pixel is a convex set), and based on weighted
local (isothetic and diagonal) steps. It is implemented for both considered perimeter
definitions, and tested on a set of disks and a set of squares. Estimations exhibit
improved precision, compared to the crisp digital case; when observed for small
digital disks, with radii up to 20 pixels, estimates based on the definition given by
Rosenfeld and Haber (1985) are more accurate than those based on the definition
of Bogomolny (1987).
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Figure 19: Calculation of the contribution to perimeter of a fuzzy m-square. There
is a pixel in each corner of the square. Black dots are set pixels.

In order to further improve perimeter estimation based on fuzzy sets, and to
avoid restriction to locally convex shapes, in Paper VI we present an algorithm
where we utilize a marching squares method, as an alternative length estimator.
Such an approach provides increased accuracy of the estimates, compared to the
method used in Paper V, since it incorporates a more accurate estimation of the
perimeter of the crisp set. In addition, it can be applied to any fuzzy shape, not only
to locally convex ones.

A marching square (m-square) is the square bounded by the centres of 4 pixels
in a 2 × 2 neighbourhood. If object and background are considered (i.e., if the
configuration is binary) there are 24 = 16 possible configurations of pixels forming
an m-square. Grouping symmetry and complementary cases results in 4 different
configurations. The length of the border, corresponding to these configurations, is
equal to

• 0, when all 4 pixels are set or when none of them is set;

• b
2 , when one of the 4 pixels is set or when one of them is not set;

• a, when two edge-neighbours are set;

• b, when two vertex-neighbours are set,

where a- and b-step are the estimates (weights) of the isothetic and the diagonal dis-
tance between two neighbouring pixels, respectively. We use aMSEn→∞

≈ 0.948
and bMSEn→∞

≈ 1.343 (Dorst and Smeulders (1987), Kulpa (1977)) to minimize
the expected mean square error (MSE) for measurement of the length of long line
segments (when length tends to infinity) and to give an unbiased estimate.

The perimeter of a digital fuzzy subset is obtained by summing the contributions
for each 2 × 2 configuration. The individual contribution is calculated by summing
the differences between membership values of the pixels belonging to two succes-
sive α-cuts in the m-square multiplied by the lengths of the corresponding border
lines. An example of the calculation of a local contribution of a fuzzy Marching
Square is shown in Figure 19.

56



10 2 3 4

98765

10 11 12 13

Figure 20: Marching cubes of 2× 2× 2 voxels. Voxels denoted by • are inside the
object.

Note that the suggested local calculation provides the same global result as the
weighted summation of the perimeters of all the α-cuts, which corresponds to the
fuzzification principle expressed by Expression (1). This follows from the fact that
for each 2×2 configuration a corresponding part of the (crisp) boundary, that would
occur at each α-cut, is considered; a part is weighted by the difference to the closest
higher α-cut. After scanning the whole image, all crisp boundaries, appearing at
each α-cut, are generated, with the assigned corresponding weights. However, the
summation is done “vertically”, instead of “horizontally”. A similar result is ob-
tained in Dubois and Jaulent (1987), where the expected perimeter is shown to be in
accordance with Rosenfeld and Haber (1985). An important property of our imple-
mentation is that local calculations are sufficient. Neither generation of α-cuts, nor
detection of their borders, are necessary. The complexity of the algorithm is a linear
function of the number of image points.

Paper VI extends the proposed perimeter estimation method to 3D. A surface
area estimator, incorporating Marching Cube configurations (Lorensen and Cline
(1987)), presented in Figure 20, and local surface contribution weights derived
by Lindblad (2005) for crisp digital surface area estimation, is developed and its
performance for digital balls with fuzzy borders is analysed. The approach taken
in Rosenfeld and Haber (1985) is generalized, since it shows higher precision of
estimates in 2D, compared to the approach of Bogomolny (1987). The results show
high accuracy and precision of the estimates, compared to existing binary surface
area estimation results (Coeurjolly et al. (2003); Kenmochi and Klette (2000)), es-
pecially in the case of small digital objects, having up to 20 voxels in diameter.

In both Paper V and Paper VI, the measures of compactness, P 2/A in 2D and
roundness in 3D, are analysed. We conclude that the estimate for P 2/A measure
for the disks is rather close to the true value (that is 1 for real disks). Not only is
the precision of the estimation improved by introducing fuzzy segmentation, but the
P 2/A measure is stabilized to be larger than 1. In other words, the isoperimetric
inequality is satisfied at lower spatial resolution than in the crisp case. In the 3D
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Figure 21: P 2/A measure estimation for digitized disks. Left: Results based on the
definitions by Rosenfeld and Haber (1985). Right: Results based on the definitions
by Bogomolny (1987) .

continuous case, the roundness measure of any object is larger or equal to 1; it
reaches its minimum for continuous balls. In the discrete case, however, this mea-
sure is under-estimated for digital balls with small radii. Using the obtained estima-
tions for the surface area and volume of a fuzzy digital shape, we get a roundness
measure which is still under-estimated, but the precision of the results is improved.

The perimeter definition suggested in Bogomolny (1987), when adjusted to dis-
crete shapes, leads to the P 2/A measure which indicates the crisp discrete disk as
the most compact fuzzy discrete shape. Moreover, the consequences of the def-
inition of Bogomolny (1987) propagate to the compactness measure not only by
ensuring that it has a value higher than one, but also by providing that it has a
more intuitive behaviour; increase in fuzziness leads to decrease in compactness.
However, the P 2/A with definition of Bogomolny (1987) gives high over-estimates
when used for estimation of P 2/A of a crisp continuous object, and therefore it is
less appropriate for approximations of real shape compactness measure. Statistical
results obtained for digital disks are shown in Figure 21. The different curves denote
different levels of fuzziness.

According to the results presented in Papers V and VI, the perimeter estima-
tion method based on the definition of Rosenfeld and Haber (1985) considerably
improves estimation precision even in the very delicate case of a shape bounded
by straight line segments aligned with the grid. That is the reason we suggest to
select Rosenfeld’s definition, whenever the precision of the estimates is a priority.
We believe, however, that Bogomolny’s definition treats some important geometric
properties of fuzzy sets in a good and natural way, and is worth further exploration.

5.4 Defuzzification based on feature invariance

In Papers VII and III, we are interested in generating a crisp representation of a fuzzy
digital object. Such a process is known as defuzzification, and can be performed
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either as an inverse of fuzzification, with the intention to recover the fuzzified crisp
original, or as a process independent of any fuzzification, but based on some pre-
defined conditions that should be fulfilled for a crisp set to be the representation
of a given fuzzy set. We conclude that the applications in image analysis require
a combination of the two views. The goal is to reconstruct the crisp continuous
original from its fuzzy digital representation, but the fuzzification function is rarely
known, and practically never analytically defined; consequently its inverse cannot
be used. Instead, a fuzzy representation of a set is used as a source of valuable
information about the geometric properties of the object that was fuzzified.

In Paper VII, we present a defuzzification method which generates a crisp ob-
ject having area, perimeter, and centre of gravity as close as possible to the cor-
responding features of the fuzzy set, while preserving the similarity between the
membership values of the points of the two sets as well as possible. In Paper III, we
investigate defuzzification of a fuzzy disk based on preservation of some geometric
inter-relations, when geometric features (in particular, area and radius of a disk) are
derived from a fuzzy set.

5.4.1 Geometric features

The defuzzification method presented in Paper VII is based on similarity between a
crisp object C and a fuzzy object F . Similarity can be quantitatively expressed in
terms of various local and global numerically represented features. Local similarity
is measured in each point. It is essential for the localization of the crisp object,
since local features are, by nature, position variant. Global similarity is related to
(global) geometric properties of the compared fuzzy and crisp object. Inclusion of
global properties can be seen as a refinement of the selection procedure. Often being
position invariant, global features are used to choose a crisp configuration, by using,
among detected well-positioned ones, the configuration providing the highest global
similarity. Local features that can be incorporated into the similarity measure are,
e.g., membership values, gradients, and curvatures in corresponding points of C and
F . Global features that we find interesting to consider are perimeter, area and other
moments, centre of gravity, convexity, and/or other shape descriptors.

We demand that similar objects have low point-wise difference in membership
values. Intuitively, the points with high memberships to the fuzzy object should
be included in its crisp counterpart, and those with low memberships should be as-
signed to the background. In addition, we use gradient information from a fuzzy
segmented image, since high gradient values correspond to the most probable bor-
der positions. In order to take the global geometry of the object into account, we
consider area, perimeter, and centre of gravity similarity between the objects. In
general, which features to chose and how to combine them depends on the particu-
lar problem in focus and available knowledge about specific object features.

In Paper VII, we define the similarity measure Ψ as a linear combination of
similarity terms

Ψ =
∑

f∈Φ

ωfΨf , (8)
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where the parameters ωf are weights assigned to the feature similarities Ψf from the
selected feature set Φ. To simplify comparison, all the similarity terms are defined to
have values in the range [0, 1]. By adjusting the weights ωf , the different similarity
terms Ψf can be taken into account to different extents in the process, in order to
make it appropriately adjusted to the application.

The synthetic image presented in Figure 22(a) can be used as an illustration of
the effect of each of the observed features on the defuzzification. The shape we
observe is composed of an (fuzzy) ellipse inscribed into a (fuzzy) disk, with a radi-
ally non-increasing membership function. The image is defuzzified using different
combinations of the terms in the similarity function. The kernel of the fuzzy set
is indicated with a darker shade of grey in the defuzzified images. The centre of
gravity of the fuzzy set and of the defuzzified set are marked with “×” and “+”, re-
spectively. When the two centres of gravity coincide, the marks overlap and create
“+× ”.

The terms based on membership and gradient, respectively, are position-variant.
Hence, they provide good positioning of the crisp object with respect to the fuzzy
object, but global geometry is not considered. However, defuzzification based only
on the membership term simply provides thresholding of the membership function
at 0.5. This is illustrated in Figure 22(b). Defuzzification by using the gradient
similarity term only, presented in Figure 22(c), here extracts only the kernel of the
object, which corresponds to the position of the strongest edges in this image.

Area and perimeter are position-invariant global features, closely related to the
object geometry. It is difficult, if not impossible, to obtain a visually appealing
defuzzification when area and/or perimeter are used alone. If area is used as the
only parameter to be matched, the crisp object is created by filling the support of the
fuzzy object in the order of adding pixel decided by the optimization algorithm, until
the desired area is reached, see Figure 22(d). The result if using only the perimeter
similarity term is presented in Figure 22(e). In this case, one-pixel-size holes and
one-pixel-size components often appear in the defuzzification, since they provide a
fast increase in the perimeter towards the goal value. When combined with other
features, this undesired tendency of the perimeter term is suppressed.

Centre of gravity (CoG) is a global position-variant feature; it puts constraints
both on the position and on the shape of the defuzzification result. This is illus-
trated in Figure 22(f), where CoG similarity is combined with area similarity; both
the positioning and the shape of defuzzification are more similar to the object in
Figure 22(a), compared to the result based on area only, Figure 22(d). However,
the defuzzification is not at all satisfactory, and is finally improved by combining
all the observed features, Figure 22(g). We conclude that the defuzzification result
is both well-located and has reliable shape characteristics if both position-invariant
and -variant features are used.

In Table 1, the values for different similarity terms in defuzzification of the shape
in Figure 22(a) are presented. The defuzzification shown in Figure 22(b)–(g) are
considered. This example emphasizes the importance of combining all the features
in order to obtain good defuzzification results, mostly due to high fuzziness and a
rather wide fuzzy border, present in the shape in Figure 22(a). It is clear that it is
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Figure 22: A fuzzy shape (a) and its defuzzification based on different features.
Simulated annealing algorithm is applied. (b) Membership similarity. (c) Gradient
similarity. (d) Area similarity. (e) Perimeter similarity. (f) Area and centre of
gravity similarity. (g) Membership, gradient, area, perimeter, and centre of gravity
similarity. In (b)–(g), the grey pixels within the defuzzification are kernel pixels,
whereas the white ones are added during the optimization process.
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Table 1: Values for the different similarity terms in the similarity function Ψ when
defuzzifying the shape in Figure 22(a). Simulated annealing algorithm is used. Fea-
tures which are used in the optimization (with weights wf = 1) have values writ-
ten in bold. Other features are not considered during the optimization, by setting
wf = 0. ΨM , ΨG, ΨA, ΨP , and ΨCoG denote membership, gradient, area, perime-
ter, and centre of gravity similarity terms, respectively.

Figure ΨM ΨG ΨA ΨP ΨCoG Total
22(b) 0.806 0.977 0.707 0.943 0.994 4.427
22(c) 0.686 0.981 0.083 0.455 0.992 3.197
22(d) 0.563 0.964 1.000 0.848 0.469 3.844
22(e) 0.672 0.968 0.162 1.000 0.553 3.355
22(f) 0.576 0.764 1.000 0.142 1.000 3.482
22(g) 0.747 0.970 1.000 0.999 0.999 4.715

possible to get high similarity(ies) for only the feature(s) explicitly used in defuzzi-
fication, while the other similarities are low, see, e.g., Figure 22(e). Consequently,
the defuzzification results may look poor, and not in accordance with what might
be expected from the fuzzy image, if insufficient demands (number of features to
match) are put on the defuzzification.

In order to find the desired defuzzification, i.e., the crisp object that is the most
similar to the fuzzy set, we search for the crisp configuration that maximizes the
given similarity function Ψ. Even though the basic idea of the suggested method
is straightforward and intuitive, its direct implementation, relying on an exhaustive
search procedure, would lead to an extremely high time consumption in any real
application. Since this optimization problem is well decoupled from the theoretical
idea of defuzzification by feature invariance, almost any optimization method can
be adjusted to the task of finding the (global) maximum of the similarity function.
We investigated different heuristic search algorithms and presented two of them,
floating search (Pudil et al. (1994a,b)) and simulated annealing (Metropolis et al.
(1953)). The two methods provide a good trade-off between robustness and speed.
Floating search is relatively faster and deterministic, while the non-deterministic
simulated annealing can provide higher accuracy at the cost of higher computational
complexity, due to cooling scheme that can be designed by a user. By changing the
cooling speed of the simulated annealing, the search for the optimal solution can
be made more or less thorough. On the other hand, the speed of floating search
decreases more significantly with the increase in a search space, than the speed of
simulated annealing. The choice of algorithm should be made in accordance with
the demands of the task to solve.

Tested on MRA images of human aorta in Paper VII, the defuzzification method
shows an ability to deal with the topological properties of fuzzy images. Even
though constraints related to the number of components in defuzzification can be
incorporated in the procedure (we suggested one method based on preservation of
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Table 2: Values for the different similarity terms in the similarity function Ψ when
defuzzifying the shape in Figure 23(a).

Figure ΨM ΨG ΨA ΨP ΨCoG Total
23(c) 0.904 0.914 1.000 0.999 1.000 4.817
23(d) 0.908 0.917 1.000 1.000 1.000 4.825

the number of components of the kernel and one method based on manual seed-
ing), it is noticed that the solution selected by the similarity optimization process,
when applied without constraints, is often appealing for a human observer. Such an
approach provides a good alternative when a priori topology information is unavail-
able.

The performance of both search algorithms, applied with no additional (topo-
logical) constraints to the fuzzy segmented scanning electron microscope image of
a cross section of a wood fibre is presented in Figure 23. The image in Figure 23(a)
is fuzzy segmented using fuzzy thresholding based on entropy minimization, as de-
scribed in Pal and Rosenfeld (1988), with a bandwidth δ = 50 (of 255), which
preserves a large amount of fuzziness in the images. To remove close lying struc-
tures which are not part of the fibre, points of the segmented object are assigned
membership value zero, if they have a fuzzy connectedness (Rosenfeld (1984)) to
the kernel of the fibre lower than 0.1. The result is presented in Figure 23(b). This
image is defuzzified by floating search, Figure 23(c), and simulated annealing, Fig-
ure 23(d). The values of the similarity terms for both methods are given in Table 2.
We find that both methods provide high similarity with the fuzzy object, and pro-
duce visually acceptable result.

5.4.2 Moments

In Paper III, we study the representation and reconstruction of a fuzzy disk by using
moments. In connection to that, we analyse the most appropriate defuzzification of
an analytically defined fuzzy disk, to a crisp disk. We would like to design defuzzi-
fication so that it is an acceptable approximation of an “inverse” of area coverage
fuzzification, and to “couple” it with analytical fuzzification which is a good ap-
proximation of area coverage. Our study is restricted to disks; to perform defuzzifi-
cation, it is enough to define the centre position and the radius of the corresponding
crisp disk. We choose to follow the idea of preservation of well-known geometric
inter-relations for generated defuzzified shapes. The centre of gravity of a (fuzzy)
shape is defined in terms of moments. Using the same point to be the centre (of
gravity) of both fuzzy and defuzzified shape is equivalent to demanding centre of
gravity invariance, as in the method presented in Paper VII. The zero-order moment
of a fuzzy shape gives its area. The radius of defuzzification of a fuzzy disk can be
defined such that area = radius2π holds, for area obtained from the zero-order
moment. Consequently, area invariance is provided, as well as invariance of radii of
fuzzy and crisp disks, where the radius is a feature of a special interest in this case.
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(a) (b)

Ψ = 4.817

(c)

Ψ = 4.825

(d)

Figure 23: (a) A cross section of a wood fibre in a scanning electron microscope.
(b) Fuzzy segmentation of (a). (c) Defuzzification of (b) by floating search. (d)
Defuzzification of (b) by simulated annealing. In (c) and (d), the grey pixels within
the defuzzification are kernel pixels, whereas the white ones are added during the
optimization process.

5.4.3 Remark

The correspondence between fuzzy and crisp spatial sets can be established, and
evaluated, in many ways. To perform a thorough evaluation of the defuzzification
method that we suggest would require consideration of a variety of fuzzification
methods and to perform an analysis of the dependence of the defuzzification results
on the input fuzzification. That is an extensive work. In addition, a large number of
features and parameters should be tested in many combinations. Instead of carrying
out such an evaluation, we have presented some illustrative examples of the perfor-
mance of the method. An interesting evaluation criterion could be the invariance of
the defuzzification to translation of the object within the digitization grid, consider-
ing that the estimators of the features chosen to be matched are improved by using a
fuzzy shape representation so that they are less sensitive to translation. However, the
non-deterministic nature of one of the suggested optimization algorithms (simulated
annealing) makes it difficult to derive reliable conclusions regarding this problem.
Additionally, a qualitative evaluation of the defuzzification results is of high interest,
but being naturally subjective, it is rather difficult to perform it reliably.
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One of the approaches to establish the correspondence between fuzzy and crisp
spatial sets is to match their selected properties. Our work has taken that direction.
We consider it to be consistent with a general approach in the development of fuzzy
set theory: properties of fuzzy sets should be defined so that the restriction to the
crisp sets fits already existing results from the theory of crisp sets. The remaining
“space” in the fuzzy set theory is open for a variety of solutions, both purely the-
oretically appealing, and coming as demands of practice. We took some steps in
that field, finding a combination of theoretical and practical demands to be the most
appealing guidance.
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6 Brief summary of the included papers

A brief summary, containing the focus and the main results, is given for each of the
seven included papers.

Paper I Representation and reconstruction of ellipses from their digitizations are
considered. The main result is that the set of digital ellipses is in a one-to-one
correspondence with their (finite) moment based representations. This en-
ables both unique coding and recoverability of a digital shape from its code.
In addition, error bounds for the approximate reconstruction of a continuous
ellipse from the moments of its digitization are derived. The results are ex-
tended to 3D.

Paper II Error bounds for the estimation of moments from a fuzzy representation
of a shape are derived and compared with the estimations from a crisp repre-
sentation. It is shown that a fuzzy membership function based on pixel area
coverage provides higher accuracy, compared to binary Gauss digitization at
the same spatial resolution. The errors of the estimates decrease both with
increased size of a shape (spatial resolution) and increased membership reso-
lution (number of available grey-levels).

Paper III Representation and reconstruction of fuzzy disks by using moments are
analysed, in both the continuous and the discrete case. It is shown that for
a certain class of membership functions defining a fuzzy disk, there exists
a one-to-one correspondence between the set of fuzzy disks and the set of
their generalized moment representations. Theoretical error bounds for the
accuracy of the estimation of moments of a continuous fuzzy disk from the
moments of its digitization and, in connection with that, the accuracy of an
approximate reconstruction of a continuous fuzzy disk from the moments of
its digitization, are derived.

Paper IV Shape description by the shape signature based on the distance of the
boundary points from the shape centroid is analysed and extended to the case
of fuzzy sets. An analysis of the transition from a crisp to a fuzzy shape
descriptor is given for both the continuous and the discrete case. The specific
issues induced by using a discrete representation of the objects are of the
highest interest. Two methods for calculating the signature of a fuzzy shape
are considered. The methods are derived from two ways of defining a fuzzy
set: first, by its membership function, and second, as a stack of α-cuts. A
statistical study, characterizing the performance of each method in the discrete
case, is done.

Paper V An initial investigation of the perimeter, area, and P 2/A estimations, de-
rived from a fuzzy representation of a discrete shape, is performed. A novel
method is developed for the estimation of perimeter of a discrete fuzzy shape.
The performance of the suggested estimators is studied for digitized disks and
digitized squares, fuzzified by the area coverage approach. The suggested es-
timation methods exhibit much better performance than the results obtained
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from the crisp shape representation, especially in the case of low resolution
images.

Paper VI The results presented in Paper V are further improved and the precision
of the estimation of the perimeter, area, and P 2/A measure, obtained from a
fuzzy representation of a discrete shape is increased. The study is extended to
3D and the performance of surface area, volume, and roundness measure esti-
mators for digitized balls with fuzzy borders is analysed. It is shown that the
suggested method provides significant improvement in precision, compared
to analogous estimation results obtained from a crisp shape representation,
especially at low resolutions.

Paper VII A defuzzification method based on the invariance of feature values be-
tween fuzzy and crisp representations is presented. The method produces
crisp shapes from fuzzy shapes, while keeping selected properties of the two
representations as similar as possible. Combining two defuzzification ap-
proaches, we utilize the information contained in the fuzzy representation
both for defining a mapping from the set of fuzzy sets to the set of crisp sets,
and for an approximate reconstruction of an unknown crisp original. We sug-
gest two search algorithms for optimizing similarity based on perimeter, area,
membership values, gradient, and centre of gravity of the two shapes.
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7 Applications

The work presented in Papers I–VII is performed independent of any particular
application. Nevertheless, the possible applications are numerous. We have been
working on improving accuracy and precision of some well-known shape descrip-
tors and our results could be applied wherever precise estimates of shape properties
are required, especially in conditions of limited spatial resolution. We showed, ei-
ther theoretically, or empirically, that fuzzy segmented images provide valuable in-
formation contained in grey-levels, and that so-called membership resolution avail-
able can be successfully utilized to overcome the lack of spatial resolution.

While testing our methods, we used synthetic shapes, with known values of the
parameters to be estimated (perimeter, area, signature, moments). Tests on real im-
ages usually allow only subjective evaluation, since the ground truth is seldom avail-
able. Having a ground truth data is essential when comparing the performance of
different methods and when evaluating new ones. The performance of our perime-
ter estimation, as well as of the signature calculation, are evaluated by the statistical
studies of fuzzy disks. Our moment estimation error analysis is performed and
proved theoretically, and additionally supported by empirical results obtained for
fuzzy disks and fuzzy squares.

After having shown the improved performance of the presented methods based
on fuzzy sets, we suggested some possible applications. In Paper III, we observe
fuzzy disks defined by analytical functions, and show their similarity with fuzzy
disks obtained by (theoretical) area coverage fuzzification. Consequently, our theo-
retical study is put in connection with fuzzy shapes obtained from real imaging situ-
ations, since many imaging devices produce images with grey-levels of pixels based
on area coverage. As an example, Figure 24 shows fuzzy digital objects obtained
by different approaches: (a) fuzzification by a piecewise linear non-increasing func-
tion; (b) fuzzification by discrete area coverage approach; (c) imaging of a circular
object by a scanner set; (d) MRA imaging – a cross-section of a human aorta. We
find that the synthetic ones, (a) and (b), are visually similar to (c) and (d), resulting
from real imaging processes. Consequently, we hope that the methods developed
and tested on synthetic images like, e.g., (a) and (b), will find applications in the
analysis of real images like, e.g., (c) and (d).

Paper VII presents one application of the improved perimeter and area estima-
tion methods, described in Papers V and VI. Defuzzification based on feature in-
variance relies on improved estimations of measures of the observed shape. We
applied the defuzzification method to several real images, and found the defuzzi-
fication results good, both visually and in terms of numerical evaluation. One of
the examples is defuzzification of a fuzzy segmented scanning electron microscope
image of a cross-section of a wood fibre, shown in Figure 23. Another example is
defuzzification of a part of a histological image of a bone implant (inserted in a leg
of a rabbit), presented in Figure 25. The original is the colour image acquired by a
light microscope. We tested our method on a part of the image, containing a bone
area (in purple/bluish), surrounded by a non-bone area (light).

Our opinion is that our defuzzification method, following fuzzy segmentation,
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(a) (b) (c) (d)

Figure 24: Fuzzy discrete objects. (a) Fuzzy discrete disk obtained by using a piece-
wise linear non-increasing function. (b) Pixel area coverage based fuzzification of
a disk. (c) Image of a circular hole in dark paper, obtained by a scanner set. (d)
Cross-section of an MRA image of a human aorta.

can be successfully used in rather difficult crisp segmentation tasks where topolog-
ical properties of fuzzy sets are not easily interpreted in terms of crisp sets. As
an example, the defuzzification of three consecutive slices of a three-dimensional
MRA image of a human aorta is shown in Figure 26(a). The three slices display
the region where the aorta separates into the two iliac arteries, leading from the ab-
domen into the legs. The decision on how many components there exist in each
slice is clearly subjective and highly dependent on the contrast settings. In this spe-
cific case, knowledge about the image content and human anatomy does not provide
any additional help. We find that the solution selected by the similarity optimiza-
tion process, when applied without constraints, is appealing for a human observer
and can be seen as a good defuzzification (crisp segmentation) result. Such an ap-
proach provides a good alternative when a priori topology information is unavail-
able. Alternatively, existing a priori knowledge about topology of the object can be
incorporated into the process.

Our hope is that all the methods presented in Papers I–VII will show applicabil-
ity in practice. We would like to continue our work not only in further theoretical
development of the analysis of fuzzy spatial sets, but also in finding ways to use the
theoretical results in solving real image analysis problems.
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Figure 25: Defuzzification of a selected part of the microscope image of a bone
implant. The implant is the black shape in the colour (grey-level) image. The pur-
ple/bluish (dark grey) area is bone, the light parts (light grey) are non-bone areas.
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(a) Fuzzy segmented vessels from an MRA image

Ψ = 4.702 Ψ = 4.710 Ψ = 4.690

(b) Defuzzification by floating search

Ψ = 4.705 Ψ = 4.715 Ψ = 4.708

(c) Defuzzification by simulated annealing

Figure 26: Defuzzifications of three vessel slices using no topological constraints.
The similarity Ψ, defined as in Equation (8), is given for each solution. Weights are
set to 1 for all the terms. Kernels of the fuzzy sets in (a) are shown in grey in (b)
and (c).
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8 Closing remarks

Our main hypothesis, that fuzzy spatial sets can provide improved descriptions of
discretized continuous shapes, compared to representations based on classically
used crisp sets, has been confirmed by the work presented in this Thesis. In addi-
tion, it has become clear that there are many specificities of a discrete space which
often lead to difficulties when results from the continuous space are to be adjusted to
the discrete case. We have suggested some approaches appropriate for the analysis
of discrete fuzzy spatial sets. However, every question we answered lead to new
questions that we would like to answer.

8.1 Future work

Our results regarding moments of a fuzzy shape, presented in Papers I–III, are ob-
tained for restricted classes of shapes. The results related to moment estimations
hold for the shapes whose boundaries are piece-wise 3-smooth curves, but the re-
construction of the shapes is analysed only in cases where exists relatively simple
functional dependence between relevant parameters of the shape and its moments.
We are interested in extending our study to more general shapes, but also in using
other types of moments, than geometric ones. The moments defined on orthog-
onal bases (e.g., Zernike moments) are of special interest. Orthogonal moments
have more simply defined inverse transforms, which provides easier recovering of a
shape than from the geometric moments. It would be interesting to investigate their
behaviour in representation and reconstruction of fuzzy shapes.

Further exploration of the properties of theoretically defined fuzzy sets and their
connections with shapes appearing in imaging is also a challenge. A variety of fuzzy
membership functions, that can be used to mathematically define fuzzy shapes, en-
ables approximation of different real shapes, coming from different imaging con-
ditions and applications , with some appropriately chosen mathematically defined
fuzzy shape. The knowledge about mathematical shapes, easy to derive and work
with, can be used in the analysis of real, more complex, shapes, present in real world
applications. We find it worth an effort to put in connection fuzzy shapes resulting
from fuzzification functions and fuzzy shapes resulting from imaging by particular
imaging devices.

The results related to shape signatures, given in Paper IV, are obtained for the
class of star-shaped fuzzy sets. We think that the power of a fuzzy approach will
be even better exhibited when extended to more general cases and used to deal
with topology-related issues (like, e.g., “internal” and “external”). In connection
with that, it might be of interest to explore various fuzzy distance functions, to be
possibly incorporated into the definition of a signature function.

More generally, it is of interest to explore deeper how the definitions of various
concepts of interest, when adjusted or introduced to be applied to discrete fuzzy
sets, behave depending on which of the two representations of fuzzy sets – (1) by
its membership function, and (2) as a stack of its α-cuts – is used. Two examples,
the signature and the perimeter of a fuzzy shape, exhibit different behaviours. The
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signature, calculated as suggested in Paper IV, commutes with the integration within
the fuzzification (the integrated signatures of all α-cuts give the same result as the
signature calculated by integrated distances) in the continuous case, while the same
does not hold in the discrete case. On the other hand, the perimeter of a fuzzy shape
can be calculated either by integrating perimeters over the α-cuts of a shape, or by
using a membership function directly; results are the same, which holds both for the
continuous and the discrete case. A more general conclusion with respect to this
question is desired.

Geometric shape descriptors, studied in Papers V and VI, could be revisited,
while putting into focus the approach suggested by Bogomolny (1987). More gen-
erally, the study of fuzzy sets can be done with stronger emphasis on their inner
properties. The main interest of our studies, so far, has been to utilize information
present in a fuzzy representation of a shape in order to obtain improved estimations
of various shape measures. We feel that there are more possibilities to exploit the
information-rich fuzzy representations.

A theoretical justification of the statistically confirmed results on perimeter and
surface area estimations should be derived.

In our theoretical studies, one of the prior future tasks is to utilize fuzzy numbers
as measures of fuzzy sets. An appealing direction to take is also towards studies on
topological properties of fuzzy discrete sets.

Defuzzification methods can be further developed. The similarity function can
be modified to incorporate some additional/alternative features. With respect to
that, the shape signature and the moments of higher order are of interest, but also
any other feature which can be estimated with high precision from the fuzzy repre-
sentation of a shape. The questions of an optimal number of features to use, or their
appropriate choice, could be interesting to address, as well. A modification of the
similarity function so that the features are incorporated in it in some other way than
as a linear combination is considered. Initial steps in that direction have already
been taken.

Another direction to take is to perform defuzzification based on feature similar-
ity in such a way that the crisp object is generated at a higher spatial resolution than
the fuzzy object used as a source of the estimates for the selected features (Borga
(2005)). Our results presented in Papers II and III show that the precision of the
moments estimations from a fuzzy shape representation is higher than the precision
obtained if a crisp representation is used at the same spatial resolution. If similar
results can be proven for other features of interest, defuzzification at an increased
spatial resolution, with the preserved precision of the feature estimates, is a natural
consequence and a reasonable goal. It is interesting to investigate what features can
easily be adjusted and used in the optimization of the similarity between two shapes,
when the goal is to reconstruct the shape at sub-pixel resolution. A theoretical study
of the optimal increase in the resolution in such a reconstruction is desired.

Application of the developed methods to image analysis tasks coming from the
real world is, certainly, of a great interest. The pleasure we have had while working
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with fuzzy sets will be even bigger if the methods we considered find their use in
practice. We have no doubts that it will happen.

8.2 Closing words

The wonderful richness of the world around us is in nuances and variations of every-
thing that appears in it. Hardly anything is just “black” or “white”. It is possible
to avoid imposing hard divisions and extreme decisions, so often undesired and
misleading, through exploring of soft transitions and grading between the two ex-
tremes, and through incorporating the levels of tolerance and the huge potential of
“in-between” solutions.

To learn to understand the infinite power of different compositions of colours,
shapes, materials, impressions, feelings, views, and goals, and to take the best from
them, is a challenge we find worth putting an effort in, both in our work within
image analysis, and in all other aspects of our life.
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The author has also been author or co-author of the following papers:
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• Žunić, J. and Sladoje, N. (1997). A Characterization of Digital Disks by
Discrete Moments. In G. Sommer, K. Daniilidis, and J. Pauli, eds., Proc.
of Computer Analysis of Images and Patterns, Lecture Notes in Computer
Science 1296:582–589, Springer-Verlag.
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