
Root-Associated Microbial 
Communities of Different Strawberry 
Cultivars as Influenced by Soil Type, 

Verticillium dahliae Kleb. and 
Biofumigation  

Srivathsa Nallanchakravarthula 
Faculty of Natural Resources and Agricultural Sciences 

Department of Forest Mycology and Plant Pathology 
Uppsala 

  

Doctoral Thesis 
Swedish University of Agricultural Sciences 

Uppsala 2013 



Acta Universitatis Agriculturae Sueciae 
2013:48 

ISSN: 1652-6880 
ISBN: (Print) 978-91-576-7834-8; (Electronic) 978-91-576-7835-5 
© 2013 Srivathsa Nallanchakravarthula, Uppsala 
Print: SLU Service/Repro, Uppsala 2013 

Strawberry (Fragaria  x anannasa) Honeoye cultivar at its 
fruiting stage.(photo: Srivathsa Nallanchakravarthula) 



Root-Associated Microbial Communities of Different Strawberry 
Cultivars as Influenced by Soil Type, Verticillium dahliae Kleb. 
and Biofumigation 

Abstract 
Rhizosphere microorganisms and their interactions with plant roots play pivotal roles in 
controlling plant nutrition and health. Extremely high levels of soil microbial diversity, 
coupled with low levels of cultivability, complicate the study of these organisms but 
better mechanistic understanding of their interactions with each other and with plant 
roots is a prerequisite for development of sustainable management strategies to improve 
nutrient acquisition and control pathogens. This thesis describes different experiments 
designed to investigate how the community structure of fungi associated with 
rhizosphere soils and roots of strawberry plants are influenced by different soil types, 
different plant cultivars, the presence or absence of the soil-borne fungal pathogen 
Verticillium dahliae and biofumigation using plant residues of oilseed radish Raphanus 
sativus oleifera. 

In an outdoor pot experiment, using cloning and Sanger sequencing, the community 
composition and overall levels of colonization by arbuscular mycorrhizal fungi 
appeared to be more strongly influenced by soil type than by different strawberry 
cultivars. In a similar experiment the effects of inoculation with Verticillium dahliae on 
the total fungal community structure were analyzed using high throughput 454-
pyrosequencing. The inoculation with V. dahliae resulted in significant reduction in the 
numbers of operational taxonomic units (OTUs) associated with rhizosphere soil of 
four cultivars grown in a conventionally managed soil, but in an organically managed 
soil, no significant effects in two cultivars, and a large increase in numbers of OTUs in 
Florence, a tolerant cultivar. Non-metric multidimensional scaling (NMDS) analysis of 
rhizosphere communities in a less diverse peat-based soil revealed distinct clusters 
associated with Verticillium and non-Verticillium treatments but this effect was not 
visible in two more diverse field soils. 

A third study of fungal communities associated with biofumigation treatments in a 
field soil, using 454 pyrosequencing, indicated significantly increased numbers of 
OTUs associated with biofumigation and Verticillium-inoculation in the absence of 
strawberry plants, suggesting a green-manuring effect of oilseed radish incorporation. 
Biofumigation did not affect total OTUs in the presence of strawberry plants but 
NMDS analysis showed a clear effect of all treatments on community structure. 
Complementary analyses of changes in bacterial community structure in the same 
experiments are in progress and will hopefully shed more light on possible functional 
interactions underlying treatment effects and enable construction of hypotheses that can 
be tested in further experiments. 
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Om Asato Maa Sad-Gamaya | 
Tamaso Maa Jyotir-Gamaya | 
Mrtyor-Maa Amrtam Gamaya | 
Om Shaantih Shaantih Shaantih || 
 
Meaning: 

Lead us from unreality (of transitory existence) to the reality (of self), 
lead us from the darkness (of ignorance) to the light (of knowledge), and 
lead us from the fear of death to the knowledge of immortality. Peace, 
peace, peace. 
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Background 
Plants allocate carbon below ground in the form of root exudates thereby 
influencing the structure of microbial communities (Morgan et al., 2005; Drigo 
et al., 2010). The term ‘rhizosphere’ was coined by Lorenz Hiltner (Hiltner, 
1904) to define the volume of soil in close proximity to roots that is 
characterised by elevated microbial populations. The rhizosphere is under 
continuous influence of living roots and is a unique habitat for soil 
microorganisms. The rich nutrient supply and close contact to the living roots 
enables rhizosphere microorganisms to have a direct influence on plant growth 
and plant pathogens. The rhizosphere has been described as both a ‘playground 
and a battlefield for soil-borne pathogens and beneficial microorganisms’ 
(Raaijmakers et al., 2008).  

Root exudates regulate different kinds of associations between the plant and 
soil microorganisms. Such associations depend upon the physicochemical 
factors such as pH, moisture and soil type, which affect microbial composition 
and diversity. A wide range of microbial communities co-exist in the 
rhizosphere. Various interactions such as commensalism, symbiosis and 
mutualism exist between them. Rhizosphere-inhabiting microorganisms 
produce a range of compounds that can be antagonistic to plant pathogens or 
stimulate plant growth directly. Successful application of these microorganisms 
and their interactions requires better understanding of which microorganisms 
produce which compounds under different field conditions.  

 High input of chemical pesticides and fertilizers has led to the 
marginalization of the functions of the native communities. Increasing 
environmental concerns in many countries including Sweden, have led to a 
search for alternative strategies for sustainable management of agricultural 
systems. It is of fundamental importance to understand the various mechanisms 
and processes that regulate soil ecosystem functioning. For sustainable 
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agriculture it is crucial to understand the importance of soil microorganisms in 
enhancing nutrient acquisition and sustainable plant protection. 

This thesis unravels the microbial associations in the rhizosphere of 
strawberry Fragaria x ananassa Duchesne, the host plant, the effect of cultivar 
interactions and soil type in shaping community structure and the changes 
induced by biological management practices such as biofumigation against 
soil-borne pathogens.  
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1 Introduction 
 

“The soil is the great connector of lives, the source and destination of all. It is 
the healer and restorer and resurrector, by which disease passes into health, age 
into youth, death into life. Without proper care for it we can have no 
community, because without proper care for it we can have no life.”  

 
This statement made by Berry (1977) suggests the overarching importance of 
the soil-air-water biosphere for the organisms which inhabit it, and the human 
beings who depend upon it. Soil microorganisms play an important role in soil 
fertility and plant health (Berg, 2009). A fertile soil consists of diverse forms of 
organisms such as archaea, bacteria, fungi, protozoans, insects and, nematodes. 
Many different plant-microbe interactions occur in the rhizosphere, including 
those involving pathogens and symbionts. Microorganisms associated with 
plants have been demonstrated to suppress plant pathogens or act as 
biofertilizers. When such microorganisms are used in a controlled manner, 
these can enhance overall soil fertility and plant health (Berg, 2009).  

1.1 Microbial communities in the Rhizosphere  

In the rhizosphere many groups of micro-organisms predominate, and among 
these arbuscular mycorrhiza fungi (AMF), nitrogen-fixing bacteria, soil-borne 
pathogens, free-living fungi and bacteria, antagonistic/plant growth stimulating 
fungi and bacteria are some of these that are commonly known to occupy a 
shared micro-habitat. AMF are important components of soil microbial 
communities that form symbiotic associations with most terrestrial plants and 
contribute to host nutrient acquisition and pathogen control (Newsham et al., 
1995; Whipps, 2004). They belong to the phylum Glomeromycota. 
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Non-symbiotic bacteria and fungi in the rhizosphere, as well as those living 
endophytically in the roots, are also known to increase plant growth, either by 
facilitating nutrient uptake and production of plant growth hormones, or 
through conferring plant protection against pathogens. Plant growth promoting 
rhizobacteria are one of the most commonly studied rhizosphere components in 
terms of direct plant growth promotion and biological control (Lugtenberg & 
Kamilova, 2009). 

The harmful components of microbial communities in the rhizosphere can 
cause diseases in plants by disturbing their metabolism and absorption of 
nutrients from host cells. Intensive cultivation of agricultural crops is 
associated with a high risk for increased incidence of different fungal diseases. 
Fungal and oomycetous pathogens such as Verticillium dahliae, Rhizoctonia 
solani and Phythophthora spp. are soil-borne and known to cause diseases in 
several crops including strawberry. Different pathogens attack different crops 
at different developmental stages. They are difficult to control by current 
agricultural practices involving fungicide application. There is a growing 
interest in developing new strategies based on use of beneficial microbial 
components of the rhizosphere, selective rotation of crops and green manuring 
in combination with biofumigation and soil solarisation.  

1.1.1 Microbe interactions with plants 

There is accumulating evidence that different interactions of rhizosphere 
micro-organisms with each other and with plants influence plant health. Inter- 
and intra-specific variation between different plant hosts to the inoculation of 
AMF has been observed (Norman et al., 1996; Scheublin et al., 2007; Picard et 
al., 2008; Fan et al., 2011). In a study by (Norman et al., 1996), there were 
different responses to inoculation with Glomus fasciculatum, indicating that 
specific interactions occur between different AMF species and strawberry 
cultivars. Reduced sporulation by Phytophthora fragariae has been reported in 
AMF-colonised plants in comparison to that in non-mycorrhizal strawberry 
plants (Norman & Hooker, 2000). Bacteria are found in association with AMF 
and might help in certain functions, such as enhancement of AMF colonization 
of roots acquisition of nutrients and suppression of plant pathogens (Budi et 
al., 1999; Xavier & Germida, 2003). In an in vitro experiment Paenibacillius 
validus supported the growth of G. intraradices up to spore formation 
(Hildebrandt et al., 2006). The colonization of Gigaspora rosea has been 
shown to be promoted by P. putida UW4 (Gamalero et al., 2008). Various 
synergistic effects of AMF and bacteria can also be exploited for pathogen 
control and nutrient acquisition in low input agricultural systems (Johansson et 
al., 2004; Artursson et al., 2006; Bharadwaj, 2007).  
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Plants may influence rhizosphere microbial communities to inhibit 

pathogens in their vicinity (Berg et al., 2006). Interactions between plant 
associated rhizosphere microorganisms with plant pathogens have revealed 
different mechanisms of antagonism. Antagonism may be caused by different 
metabolites or by mycoparasitism or competition for space, or by enzymes or 
through induced systemic resistance (Raaijmakers et al., 2008; Raaijmakers & 
Mazzola, 2012). Some studies have demonstrated some of the detailed 
molecular mechanisms underlying antagonism of plant associated rhizosphere 
microorganisms towards soil-borne pathogens (Tjamos et al., 2005; Mendes et 
al., 2011; Berendsen et al., 2012). 

1.1.2 Factors affecting the structure of soil microbial communities 

Plants invest carbon in the form of various organic compounds thereby 
influencing the community structure of rhizosphere microorganisms (Morgan 
et al., 2005; Drigo et al., 2010). Different plants influence the structure of soil 
microbial communities by selecting specific micro-organisms in their 
rhizosphere (Costa et al., 2006; Haichar et al., 2008). Soil characteristics are 
also known to influence the microbial community structure in the rhizosphere 
(Berg et al., 2006; Berg & Smalla, 2009; Santos-González et al., 2011; Peiffer 
et al., 2013). When soil samples across two American continents were 
analysed for their bacterial communities they were unrelated to site, 
temperature, latitude, soil moisture or carbon:nitrogen ratio, among other 
variables, but were affected by pH (Fierer & Jackson, 2006) as also established 
by (Lauber et al., 2009). A higher abundance of functional genes was shown to 
be expressed in organically managed strawberry fields than in adjacently 
located conventional soils, indicating diversified functions of the soil microbial 
community in the organic soil (Reeve et al., 2010). A separate study conducted 
(Reganold et al., 2010) on the same sites with an aim to compare the fruit 
quality in relation to soil type, showed that strawberry fruit quality was better 
from the organic soils and there was no significant difference in pH between 
the two types of fields. 

Other than edaphic factors, biotic factors such as effect of plant and cultivar 
have also been studied (Sieling et al., 1997; Neupane et al., 2013). Berg et al., 
(2005) compared the strawberry and oilseed rape rhizospheres in V. dahliae-
infested fields, and found antagonistic Pseudomonas spp. to be specific to 
strawberry at Rostock and Braunschweig soil sites, while Serratia spp. were 
found to be oilseed rape-specific at a Berlin soil site. (Costa et al., 2006) also 
compared the bacterial profiles of oilseed rape and strawberry rhizospheres 
from different soil sites and found Streptomyces sp. and Rhizobium sp. to be 



16 

strawberry-specific and Arthrobacter to be oilseed rape-specific. A study using 
stable isotope probing confirmed that different plant species select particular 
bacterial communities (Haichar et al., 2008). Strawberry rhizosphere harboured 
distinct microbial communities with respect to Streptomyces, Rhizobium and 
Nocardia in the presence of Verticillium dahliae, the bacterial community was 
dominated by Pseudomonas spp. populations (Smalla et al., 2001; Berg et al., 
2005; Costa et al., 2006).  

In some studies, the effect of soil type on microbial community structure 
has been found to be more pronounced than the effect of cultivars (Wang et al., 
2008; Santos-González et al., 2011). AMF sub-groups and beneficial bacteria, 
such as nitrogen fixers, 2, 4-diacetylphloroglucinol- and pyrrolnitrin-producers 
were different in parents compared to in the hybrid maize cultivars (Picard et 
al., 2008). Studies using pyrosequencing and phylo-chips have also shown that 
potato cultivars can select specific bacterial communities (İnceoğlu et al.2011; 
Weinert et al., 2011).  

Different plant genotypes have recently been demonstrated to influence 
their associated microbial communities (Weinert et al., 2009, 2011; Bulgarelli 
et al., 2012; Lundberg et al., 2012; Peiffer et al., 2013) reported that significant 
differences occurred more frequently for fungi, especially Ascomycetes, than 
for bacteria. When all seven plant genotypes that were compared by the 
researchers, different cultivars had a greater effect on both bacterial and fungal 
communities than genetic modification (Weinert et al., 2009). Knowledge of 
the different components of soil microbial communities and their functions in 
different crops, such as oilseed rape, potato, strawberry, their cultivars grown 
in different soils, is fundamental for designing strategies for sustainable plant 
protection. 

1.2 Strawberry cultivation 

Strawberries were first described by the Roman senator Cato around 200 BC. 
Strawberry (Fragaria x ananassa Duch) belongs in the family Rosaceae and is 
a cross between two American varieties F. virginiana and F. chiloensis. 
Strawberry is an important cash crop, which is cultivated in most parts of the 
world. It is a perennial crop. According to FAO statistics in 2011 the total 
global land area used for strawberry cultivation was 244283 hectares 
(http://faostat.fao.org). In Sweden alone, in 2011 strawberry cultivation 
accounted for nearly 1800 hectares of land with a yield of more than 7200 
Kg/ha (http://faostat.fao.org). Strawberries are usually cultivated in open fields 
as well as in greenhouses and plastic tunnels. They grow best in sunny 
locations with well drained, sandy loam soils with an optimum pH range of 
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5.5-7.0 (Cornell guide to growing fruit at home, 2003; Lola-Luz, 2003). 
Strawberries are grown outdoors in matted rows and raised bed systems but 
also on table top systems in tunnels or greenhouses (Hochmuth et al., 1998; 
Daugaard, 2008; Shiigi et al., 2008). 

Many cultivars including Honeoye, Senga Sengana, Zephyr, Bounty, 
Elsanta, Korona, Polka and Pegasus are cultivated in Sweden 
(http://sv.wikipedia.org) of which Honeoye, Zephyr and Korona are preferred 
for their early production or high productivity and/or tolerance to fungal 
diseases grown for their berry quality yield (Davik et al., 2000). The cultivars 
can be classified into three categories; a) short day June bearers that can grow 
and initiate flower buds during short daylight seasons, giving a single but large 
yield b) long day ever bearers insensitive to light, producing fruits 2-3 times 
per year and c) day-neutral, insensitive to light, continuously producing fruits 
under favourable conditions (Guerena & Born, 2007). Some of these cultivars 
have been developed by breeding programs in Sweden (Hjalmarsson & 
Wallace, 2004). 

Strawberries are high in vitamin C, phenolic compounds (flavonoids e.g. 
anthocyanins) and minerals such as potassium and manganese. The red colour 
of strawberries is due to the anthocyanins, pelargonidin-3-glucoside and 
cyanidin-3-glucoside (Berries and their role in human health, 2005). Their 
phenolics are reported to have anti-cancer, antioxidant, and anti-inflammatory 
effects as well as having effects against type 2 diabetes and obesity (Hannum, 
2004; Giampieri et al., 2012). 

1.2.1 Diseases in Strawberry 

About 50% of the diseases of soft fruits are caused by fungi (Sigee, 2005). 
Strawberries are prone to attacks by various pests and pathogens. Among 
fungal pathogens, Botrytis cinerea (causes grey mould), Phytophthora 
cactorum (causes crown rot), Phytophthora fragariae var. fragariae (causes 
red stele or red core), Verticillium dahliae (causes Verticillium wilt), 
Colletotrichum acutatumi (causes black spot) and Sphaerotheca macularis 
(causes powdery mildew) are the major pathogens reported to occur in 
strawberry cultivations in Europe (Parikka, 2004). Different control measures 
such as crop rotation, cultural measures and chemicals are practised to reduce 
the damage caused by these pathogens (Guerena & Born, 2007). Attempts have 
been made to test the efficacy of some biological control agents such as 
Trichoderma spp, arbuscular mycorrhizal fungi (AMF) against grey mould and 
Phytophthora spp. respectively (Lola-Luz, 2003; Guerena & Born, 2007).  The 
results with their applications have been shown to be promising. Phytophthora 
spp are soil-borne that form root rot complex with other important fungal 
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pathogens, V. dahliae, Rhizoctonia spp. and Pythium spp. These affect many 
crops including strawberry crop world-wide.  

According to European and Mediterranean Plant Protection Organization, 
Verticillium spp. has been listed as a ‘principal strawberry pest’. The pathogen 
has a broad host range and can infect nearly 400 plant species. It forms conidia 
and microsclerotia. They germinate in the presence of root exudates and enter 
the plant through primary roots or wounds. Subsequently, the pathogen 
colonises the vascular system by forming conidia which accelerate the 
secondary infections. The symptoms on strawberry include outer leaves 
drooping, wilting and or become reddish-yellow, few new leaves develop and 
curl up along the mid vein. The pathogen overwinters in the soil in the form of 
microsclerotia on dead plant tissues or in the soil. Alternative strategies are 
required to control this pathogen because its total control is difficult without 
soil fungicides and disease resistant cultivars (Klosterman et al., 2009).  

Use of antagonistic micro-organisms has been attempted to reduce the 
damages caused by soil-borne fungal pathogens including V. dahliae (Elad et 
al., 1981; Berg et al., 2005; Tjamos et al., 2005). Biological agents such as 
Trichoderma, Serratia and Pseudomonas different plant extracts and 
biofumigation are some of the alternative strategies that have been explored to 
reduce/number of microsclerotia/wilt symptoms (Berg et al., 2001; Kurze et 
al., 2001; Steffek et al., 2006; Tahmatsidou et al., 2006; Meszka & Bielenin, 
2009).  

1.3 Biofumigation 

The earliest concept of biofumigation was documented by Theophastrus in 
300BC when he observed that the odours of cabbage were causing harmful 
effects on vines (Willis, 1985). After the ban of noxious chemicals for soil 
fumigation including methyl bromide, alternatives to pesticides have been 
increasingly explored (Duniway, 2002; Porter & Mattner, 2002). 
Biofumigation can also be considered as a form of green-manuring where the 
plant material is incorporated in the soil before planting of the main crop. With 
an aim to provide different alternative control strategies, effect of 
biofumigation have been studied against soil-borne fungal pathogens e.g. 
Rhizoctonia, Verticillium, Colletotrichum, Fusarium, Pythium, Phytophthora 
spp. (Zurera et al.; Steffek et al., 2006; Mattner et al., 2008; Friberg et al., 
2009). Glucosinolate-containing Brassica spp. is known to release volatilic 
isothiocyanates (ITCs) which are toxic to different pathogens (Kirkegaard et 
al., 1993; Matthiessen & Kirkegaard, 2006).   
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The chemistry involved in the biofumigation can be attributed to the action 
of myrosinases on the Glucosinolates (GLS) thereby releasing ITCs, 
thiocyanates, nitriles, oxalidine, dimethyl sulphide, methanethiol among other 
compounds (Matthiessen & Kirkegaard, 2006; Gimsing & Kirkegaard, 2008). 
About 20 different GLS have commonly been found depending upon the side 
organic chain. Their concentrations vary with the age of the plant and 
conditions in which they are grown (Sarwar & Kirkegaard, 1998). GLS are 
generally found in members of Tovariaceae, Resedaceae, Capparaceae, 
Moringaceae, and Brassicaceae (Brown & Morra, 1997), however ITCs 
remains the prime choice of interest for research because they are the main 
hydrolytic products of GLS compared to e.g. thiocyanates or nitriles (Gimsing 
& Kirkegaard, 2008). Concentrations of ITCs have been shown to decrease by 
90% within 24 hours of incorporation of Brassica residues (Brown et al., 
1991). Their persistence up to 45 days has also been demonstrated (Gimsing & 
Kirkegaard, 2008; Poulsen et al., 2008).  

Isothiocyanates are toxic to wide range of microorganisms (Walker et al., 
1937), they react with sulphur-containing proteins by a nonspecific and 
irreversible reactions (Brown & Morra, 1997). The bioactive compounds 
released during biofumigation suppress pathogens, weeds and influence 
rhizosphere microbial communities (Matthiessen & Kirkegaard, 2006; 
Hoagland et al., 2008). Brassica sp. as plant material or its seed meal has been 
tested by several researchers for green-manuring and was found to influence 
microbial community structures (Vera et al., 1987; Williams-Woodward et al., 
1997; Mazzola et al., 2001; Cohen & Mazzola, 2006; Hoagland et al., 2008; 
Friberg et al., 2009; Omirou et al., 2010). 

The incorporation of brassica plant material for biofumigation has been 
shown to increase or decrease the population of the rhizosphere micro-
organisms such as Trichoderma spp., Pythium spp., fluorescent pseudomonads, 
Streptomyces spp, actinomycetes and other antagonists of soil-borne pathogens 
depending on the plant species and soil type (Mazzola et al., 2001, 2012; 
Cohen & Mazzola, 2006; Perez et al., 2007; Mazzola & Zhao, 2010). Steffek et 
al., (2006) reported decreased number of microsclerotia in infested strawberry 
fields as a result of biofumigation with different glucosinolate-containing 
Brassica spp. The decrease of numbers varied between 0-30% depending on 
the field and the biofumigant. Biofumigation has also shown to reduce the 
nematode populations (Henderson et al., 2009; Zasada et al., 2010).  

Effects of Brassica spp. for biofumigation have been studied by several 
researchers with respect to soil microbial community dynamics as well as on 
pathogens (Steffek et al., 2006; Mattner et al., 2008; Friberg et al., 2009; 
Omirou et al., 2010). Their studies revealed that biofumigation affects number 
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of microsclerotia of V. dahliae, decreases growth of Phytophthora cactorum 
upto 20%, increases Ascomycetes community but confers no effect on 
ammonia-oxidising bacteria and the population of R. solani was found to be 
resilient. In these studies, the effect of biofumigation on the microbial 
community structure in the roots/rhizosphere of the main crop was not 
included.  

 
Figure 1. Studies published with regard to Brassica spp. plant incorporation (biofumigation). 

1.4 Analysis of community dynamics  

Cultivation-dependent methods reveal only a fraction of the soil microbial 
diversity (Torsvik & Øvreås, 2002). With the use of molecular methods for soil 
community analysis, it has been possible to discover the untapped components 
of the communities. The commonly used phylogenetic markers are e.g 16S 



21 

rRNA genes (for bacteria) and internal transcribed spacer regions (ITS, for 
fungi) as well as functional genes e.g. nif, amoA, gacA (Mahmood et al., 2006; 
Weinert et al., 2009; Xuan et al. 2012). Other phylogenetic markers such as 
RNA polymerase beta subunit (rpoB), gyrase beta subunit (gyrB), recombinase 
A (recA) and heat shock protein 60 (hsp60) have also been used to study 
microbial communities (Woese & Fox, 1977; White et al., 1990; Dahllof et al., 
2000; Ghebremedhin et al., 2008). These methods focus on the conserved 
regions of the genomes. Most microbial community studies are based on DNA 
and provide information on total and/or abundant members of the community. 
In contrast, RNA-based analysis provides information on active members of 
the community (Duineveld et al., 2001; Norris et al., 2002; Griffiths et al., 
2003; Nicol et al., 2003; Mahmood et al., 2005; Hoshino & Matsumoto, 2007). 
Many of these cultivation-independent molecular techniques have limitations 
(Rastogi & Sani, 2011; Lee et al., 2012). 

1.4.1 Denaturing gradient gel electrophoresis (DGGE) 

DGGE method has been used widely for fingerprinting of environmental 
microbial communities (Muyzer et al., 1993; Mahmood et al., 2005; Costa et 
al., 2006). The principle of DGGE involves separating DNA fragments (PCR 
products) of the same length in presence of a chemical denaturant across a 
polyacrylamide gel under constant temperature. This separation is based on 
melting behaviour of double stranded DNA that depends on the base pair 
content. The use of a 5’ end attached ‘GC’ (Guanine and Cytosine) clamp 
helps in preventing complete melting of double strands during electrophoresis. 
When a PCR product migrates in the gel matrix with low-to-high denaturant 
gradient, it starts melting depending on the denaturant concentration at various 
points and thus leaves behind several fragments of DNA varying in ‘GC’ 
content. The banding patterns thus produced represent a community profile and 
generally it is assumed that each band on the gel represents a unique member 
of the microbial community. DGGE has better resolution than T-RFLP as it 
allows sequencing bands of interest to identify members in a complex 
microbial community. Due to technological advancement in recent years it has 
become possible to study microbial communities using high throughput 
methods. 

1.4.2 Pyrosequencing 

Pyrosequencing technology was invented by (Ronaghi et al., 1998). It has 
become one of the large-scale sequencing methods (e.g. Illumina, 454, Ion 
torrent) that allow studying microbial communities in depth. It is based on the 
principle that synthesis of the complementary DNA takes place by addition of 
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one nucleotide at a time and during this process, pyrophosphate gets released 
and transformed into adenosine tri-phosphate (ATP). ATP reacts with luciferin, 
which generates light in an amount that is proportional to the amount of ATP 
(Ronaghi, 2001). The light thus emitted is captured and analysed. 
Pyrosequencing is currently being used to reveal the microbial associations in 
terrestrial systems, aquatic systems and in medical sciences. (Hewson et al., 
2009; Rastogi & Sani, 2011; van Boheemen et al., 2012; Xuan et al., 2012; 
Zaki et al., 2012).   
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Figure 2. Pyrosequencing work flow. (A) Start of sequencing of samples such as PCR products 
including genomic DNA, and cDNA. (B) Library preparation using specific adapters to the 
samples (C) Attach library to DNA capture beads (D) Amplify the entire emulsion in parallel to 
create millions of clonally copies of each library fragment on each bead (E) Load the beads onto 
the PicoTiterPlate device, where the surface design allows for only one bead per well. The PTP 
Device is then loaded in instrument for sequencing. Individual nucleotides are flowed in sequence 
across the wells. Each incorporation of a nucleotide complementary to the template strand results 
in a chemiluminescent light signal recorded by the camera. (F) Pyrosequencing reaction of 
millions of copies of a single clonal fragment is contained on each DNA capture bead. (G) 454 
sequencing data analysis software uses the signal intensity of each incorporation event at each 
well position to determine the sequence of all reads in parallel (adapted from 
http://454.com/products/technology.asp). 
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1.5 Aims of the study 

- To explore the cultivar type and soil interaction effects on arbuscular 
mycorrhiza fungal communities (Paper I). 

- To explore the pathogen/cultivar/soil interaction effects on fungal 
communities. If presence of a soil-borne fungus, V. dahliae pathogenic 
to strawberry affects soil microbial community, if there are any 
cultivar-specific responses. (Paper II) 

- To explore and biofumigation/pathogen interaction effect on changes 
in fungal communities and if bio-fumigation effect is due to build-up 
of antagonistic fungi. (Paper III) 

Strawberry was used as the host plant and oilseed radish was used as 
biofumigant plant species. Strawberry was grown in soils with different 
cultivation management practices.  

Cultivation-independent molecular techniques cloning and sequencing, 
DGGE and 454-pyrosequencing were employed to study changes in microbial 
communities as a result of different interactions in the rhizosphere.  

Figure 3. Overview showing the relationship between the studies performed. 
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2 Materials and Methods 

2.1 Soils and plant material 

Physico-chemically different soils were selected for the studies, three were 
field soils and one was a greenhouse commercial soil (peat-based, Hasselfors, 
Sweden). Physical and chemical characteristics of the field soils in papers I and 
II were the same and the peat-based soil was used only in paper II. The field 
soils were collected from two agricultural fields located in Hörby (55° 50′N, 
13°35′E) and Kristianstad (56° 06′N, 14° 01′E), Southern Sweden. These fields 
are situated 38 km apart from each other and are differently managed. The field 
in Hörby is an arable soil that is organically managed with tilling, yearly crop 
rotation since 1983 and pre-cropped with potatoes prior to sampling. The field 
in Kristianstad is conventional managed and pre-cropped with strawberry. In 
this thesis Hörby soil is referred to as an ‘organic’ soil and Kristianstad soil as 
‘conventional’ soil. The field soil in Paper III had pH 6.2 and contained carbon 
2.15%, nitrogen 0.22% and phosphorus16.3 mg/100 g. 

Twenty soil cores (10 cm diameter and 30 cm deep) were collected at 
random locations from each field and thoroughly mixed. The soil in paper III 
was collected an agricultural field north of SVA, SLU, Uppsala (59° 48N, 17° 
39′E) and it had no history of strawberry cultivation. Four replicated samples 
of each soil were analysed for physico-chemical characteristics (Agrilab AB, 
Uppsala, Sweden).  

Plantlets of four strawberry cultivars (‘Honeoye’, ‘Senga Sengana’, 
‘Florence’ and ‘Zephyr’) were planted in organic and conventional soils. Senga 
Sengana and Zephyr (denoted as the ‘old’ cultivars in this thesis) All plantlets 
were obtained from Elof Dahlén AB, Vara, Västergötland, Sweden. All 
plantlets were of the type frigo A+ (plants that were pulled out carefully from 
the field during winter and stored at −2 °C).  
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2.2 Experimental design, pathogen introduction 

In paper II and III, the soil-borne pathogen, three isolates of Verticillium 
dahliae originating from strawberry plants were obtained from C. Dixelius, 
Department of Plant Biology and Forest Genetics, SLU, Uppsala. The isolates 
were purified and grown in potato dextrose broth as stationary cultures for 
inoculum preparation. Preparatory studies were conducted to confirm their 
pathogenicity on strawberry plants. The isolate, V. dahliae 12086 was selected 
for this study. The isolate was grown as stationary culture for inoculum 
preparation. The plant roots were injured to stimulate the pathogen infection. 
The control plants were treated in a similar manner but with the suspension 
medium.  

An outdoor pot experiment (paper II) was set up using four different 
strawberry cultivar Honeoye, Senga Sengana, Florence and Zephyr plantlets 
(n=7) in three different soils. Four weeks after planting V. dahliae was 
inoculated at the base of strawberry crowns and their controls were inoculated 
with suspension medium but without pathogen. Root and rhizosphere samples 
were collected after 12 and 14 weeks after planting and analysed for respective 
microbial communities. 
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Figure 4. Study design of paper I and II. 

A greenhouse pot experiment (paper III) was set up using oilseed radish as 
a biofumigant (n=6) in a field soil. In one of the treatments V. dahliae was also 
inoculated where a biofumigant crop was sown. Fourteen weeks after planting, 
the biofumigant crop was mulched into the soil (sample 0 h). Soil samples 
were collected regularly after incorporation. Eighteen days after oilseed radish 
incorporation, strawberry plantlets of Honeoye cultivar were planted (n=10). 
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Soils in all pots were sampled by destructive sampling at 12, 14 and 16 weeks 
after strawberry planting and analysed for microbial communities. 

Figure 5. Study design of paper III. 
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2.3 Sampling strategy  

The rhizosphere soils and roots were sampled 12 and 14 weeks after strawberry 
planting for paper I, II and III. In paper III, soil was also sampled before 
incorporation (=zero hour), and 2, 4, 6, 8, 10, 12, 24, 48, 72 hours after 
incorporation of biofumigant plant material, 18 days after incorporation/before 
planting and 12,14 and 16 weeks after planting strawberry plantlets. Three 
replicate pots per treatment were sampled destructively. The soil samples were 
stored at −20 °C and the roots stored in glycerol at −20 °C prior to community 
analyses.  

2.4 The microbial community analyses 

Bacterial and fungal community analysis was performed with DGGE and 
pyrosequencing except for AMF communities that were analysed using cloning 
and sequencing. 

2.4.1 AMF community analysis (Paper I) 

The roots were washed, processed for microscopy and DNA extraction as 
described in paper I. Microscopy was done after staining the roots with trypan 
blue and AMF colonisation was quantified using an intersection method. The 
DNA was extracted using DNeasy plant kit (Qiagen, Crawley, UK). The 
primer pairs, AML1 and AML2 used in the amplification are described in Lee 
et al., (2008). The amplicons were cloned into One Shot™ TOP10 chemically 
competent Escherichia coli (Invitrogen, California, USA) following the 
manufacturer’s instructions. Using AML1 as sequencing primer, the 
sequencing reactions were carried out in an ABI 3100 Sequencer (Applied 
Biosystems, Foster City, CA, USA). The sequencing data were subjected to 
phylogenetic analysis. 

2.4.2 Microbial community analysis (Paper II and III) 

Nucleic acids were extracted from the rhizosphere soil samples using CTAB 
(hexadecyltrimethyl ammonium bromide) as described by Griffiths et al., 
(2000). Using this approach, the pathogen-inoculated samples did not give 
reproducible results for the triplicates. Hence, another nucleic acid extraction 
method was employed to test the reproducibility. This method was based on a 
commercial kit, ‘RNA power soil total RNA isolation and DNA elution 
accessory kits (MOBIO laboratories, California, USA) (paper II). Using the 
‘MOBIO’ kit, the reproducibility improved significantly between the 
replicates.  
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DGGE analysis using nucleic acids from Griffiths et al., (2000) method and 
the MOBIO kit revealed significantly different community fingerprints (paper 
III) and therefore, nucleic acid extracts from both methods were pooled for 
454-pyrosequencing (Paper II and III).  

The nucleic acids were subjected to DNase treatment (Promega, USA) 
according to manufacturer’s instructions. To target active components of 
bacterial communities, cDNA was generated as described by Mahmood et al., 
(2005) and analysed on a DGGE gel following PCR amplifications using 357f 
and 518r primer sets (Muyzer et al., 1993). The ‘cDNA’ was also generated 
using IScriptTM cDNA synthesis kit (BIORAD, USA) and the comparison of 
results showed no difference between the two methods. The method of 
iScriptTM cDNA synthesis was decided to be used for bacterial community 
analysis with pooled nucleic acid extracts (data not included).  

Attempts were made to target active fungal community using cDNA from 
the iScriptTM synthesis kit targeting the ‘ITS’ region. No reproducibility was 
found between the replicates using primers targeting ITS region. Primers 
targeting 18S rRNA region were not tested because they are known to amplify 
non-target eukaryotes in addition to fungi, (Anderson et al., 2008) DNA-based 
approach was therefore implemented for fungal community analysis.  

DGGE 
PCR products generated by using either fungal or bacterial universal primers 
were run on a DGGE gels. A nested approach (DNA) was employed for both 
bacterial and fungal amplifications. Bacterial amplifications were carried out 
using the primers 27F and 1492R for primary PCR, 357F with a ‘GC’ clamp 
and 518R for secondary PCR (Muyzer et al., 1993). Fungal amplifications 
were carried out using ITS1F and ITS4 followed by a secondary PCR using 
ITS1F with a ‘GC’ clamp and ITS2.  

The PCR products were analysed using DGGE which was performed on 
DcodeTM universal mutation detection system (BIORAD, USA). Acrylamide 
gels (8%) were prepared with urea (Sigma-Aldrich, USA) and formamide as a 
denaturant with a gradient of 20%-50% for fungal community analysis (Figure 
10) and 35%-65% for bacterial community analysis (Figure 6). Equal volumes 
of PCR products were loaded in the wells and ran at 75 V in 1X TAE buffer at 
60°C, for 16 h. The gels were stained and developed as described by Mahmood 
et al. (2006) and scanned. Numerical analysis of the gels was performed using 
TotalLab software (TotalLab, Newcastle, U.K.). 
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Figure 6. Denaturing gradient gel electrophoresis (DGGE) banding profiles of rhizosphere 
bacterial communities of four strawberry cultivars (Honeoye, Senga Sengana, Florence, Zephyr) 
when grown in three different soils. Lanes 1-3 relate to triplicate samples that were harvested 
destructively from the strawberry rhizosphere at week 12.  

Pyrosequencing 
The DNA from the two extraction methods was pooled and used as a template 
for generating PCR amplicons for pyrosequencing. Prior to pyrosequencing, 
the control samples were subjected to DGGE-based analysis following PCR 
amplification. The samples were amplified using primers, fITS7 and ITS4 
(Ihrmark et al., 2012). Each sample was tagged with ITS4 primer with a unique 
sample identifier consisting of eight bases. The samples were purified, 
quantified, pooled and freeze-dried prior to pyrosequencing, which was carried 
out by LGC Genomics (Berlin) using Roche 454/GS-FLX+ Titanium 
technology. 
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2.4.3 Data analyses (Papers I, II and III) 

Most data were subjected to non-parametric analysis. Microbial community 
analyses were conducted with respect to cultivars/soils, characteristics of field 
soils, dynamics in OTUs diversity in absence/presence of V. dahliae, the 
relative abundance and number of OTUs with respect to different phyla. 

Multivariate methods were employed to analyse the structure of microbial 
communities in pyrosequencing studies. Non-metric multidimensional scaling 
(NMDS) is known to be used in various community analyses (Ramette, 2007). 
NMDS uses ranks for mapping the objects by several iterations in order to 
obtain the lowest stress value possible (Shepard’s plot stress value) in a two-
dimensional ordination space. Different distance measures can be employed for 
computing distances in NMDS. In the ordination, the proximity between the 
treatments corresponds to their similarity. The ordination distances do not 
correspond to the original distances among treatments but to their ranked order. 
However tests such as similarity percentage (SIMPER, Papers II and III) and 
multi-response permutation procedure (MRPP, Paper I) reveal the observed 
difference or similarity between the treatments. SIMPER is used for assessing 
the taxa that are primarily responsible for an observed difference between 
groups of samples. A pairwise comparison of the samples and also a pooled 
sample can be used for the analysis.  

2.4.4 Advantages and limitations of the methodology 

A wide array of methods is used for microbial community analyses. Both 
cultivation-dependent and cultivation-independent methods are being still 
employed. Since the advent of cultivation-independent methods, the 
knowledge about microbial communities is constantly increasing. Molecular 
methods including DGGE, cloning and sequencing, pyrosequencing have 
allowed detection of the changes in communities with a higher resolution in 
comparison with cultivation-dependent methods, however newer high 
throughput methods such as pyrosequencing can detect many more taxa 
simultaneously. Differences in community fingerprints were observed in this 
study depending on the nucleic acid extraction method, the MOBIO kit seemed 
to work better than the CTAB-method, depending on the soil type and detected 
other taxa. In order to maximise coverage of community templates, the nucleic 
acids from the two methods were pooled prior to pyrosequencing. 
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3 Results and discussion 

3.1 Influence of soil type on AMF community in strawberry 
cultivars (Paper I) 

Arbuscular mycorrhizal fungi play important roles in nutrient acquisition in 
different soils and strawberry is known to respond to inoculation with AMF. 
Cultivars have shown to respond differently to AMF inoculation in several 
experimental studies (Azcon & Ocampo, 1981; Vestberg, 1992; Ross & 
Hoover, 2004), but no study has addressed whether different cultivars associate 
preferentially with different AMF taxa in different soil types. 

In this study, the effects of soil type on AMF communities colonising the 
roots of different strawberry cultivars grown in two different field soils were 
evaluated. Cloning and Sanger sequencing were employed. The field soils 
displayed significant differences in mull content, pH, total carbon, nitrogen and 
phosphorus.  

 
Figure 7. Strawberry roots colonized by AMF: (A) vesicles, (B) hypha entering the root. 

!" #"
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Total AMF root colonisation was higher in an organically managed soil 
(Hörby, referred to as ‘organic’ in this thesis) than in a conventionally 
managed soil (Kristianstad, referred to as ‘conventional’) (Figures 7 and 8). 

Figure 8. Percentage of root length colonised by AMF in four strawberry cultivars grown in two 
agricultural soils. Columns represent mean values, and error bars show ±SD (n=3). 

No significant difference in total AMF colonisation could be detected 
between the cultivars (Figure 9). The relative abundance of Glomus spp. was 
higher in conventional soil than in organic and Acaulospora spp. dominated the 
AMF assemblages in the organic soil. The latter was not detected in the 
conventional soil. These results suggest that physico-chemical characteristics 
and management can play a role in determining the identity and structure of 
root-associated microbial communities in agricultural systems. 

Figure 9. Distribution and proportions of different AMF taxa on strawberry roots from different 
cultivars when grown in different soils. The x-axis indicates the relative frequencies of OTUs 
within each soil. Relative frequencies were first calculated for each OTU within samples since the 
number of sequenced clones is not the same across the samples, and afterwards referred as 
proportions for each soil. 
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No significant differences between the structures of AMF communities 
colonising the roots of different cultivars could be detected after 12 weeks 
using the cloning and sequencing. However, analyses of additional samples 
collected at different time points may have revealed differences due to different 
growth rates of the strawberry cultivars. Other studies (Picard et al., 2008; 
Weinert et al., 2009) have demonstrated cultivar-specific effects with respect 
to fungal communities and it is possible that use of high-resolution sequencing 
technologies such as pyrosequencing might have also revealed AMF-based 
differences between the cultivars.  

The exclusive appearance of Acaulospora spp. in the organically managed 
soil is consistent with the suggestion of Oehl et al., (2004) that this genus may 
play an important role in organic farming where P values may be low. 
However the P concentration in organic soil was almost double that in the 
conventional soil suggesting that some other explanation contributes to its 
dominance.  

3.2 Influence of soil type and V. dahliae inoculation on 
rhizosphere fungal community structure in strawberry 
cultivars (Paper II) 

Selection of cultivars with better resistance to pathogens is an important tool in 
breeding for improved plant health. Improved resistance may depend upon, a) 
direct alteration of physical and chemical plant characteristics, b) indirect 
interactions with pathogens and/or c) modification of the rhizosphere microbial 
communities that have an indirect effect on plant health through their 
antagonism towards plant pathogens. Although there have been many 
investigations of the effects of inoculated biocontrol microorganisms on the 
structure of rhizosphere microbial communities, there have been fewer detailed 
examinations of the effects of plant pathogens on these communities. The roles 
of cultivar specificity and soil type in this respect are still poorly known. The 
diversity of these communities is exceptionally high and cultivation-
independent methods with high taxonomic resolution provide better 
understanding of these interactions. In this study, we examined the effects of 
inoculation of V. dahliae on rhizosphere fungal community structure of four 
strawberry cultivars, Florence, Honeoye, Senga Sengana and Zephyr, 
cultivated in three different soils, conventional, organic and peat-based.  
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Rhizosphere soils from uninoculated (control) samples from 12 and 14 
weeks were subjected to DGGE-based community finger-printing following 
PCR amplification. The results showed greater changes in community structure 
in response to the cultivar differences observed at the first sampling, 12 weeks 
after planting, than at 14 weeks (Figure 10). Pyrosequencing was then used to 
analyse the 12 week samples.  

 
Figure 10. Denaturing gradient gel electrophoresis (DGGE) banding profiles of rhizosphere 
fungal communities of four strawberry cultivars (Honeoye, Senga Sengana, Florence, Zephyr) 
when grown in three different soils. Lanes 1-3 relate to triplicate samples that were harvested 
destructively from the strawberry rhizosphere at week 12. Marker in lane M consisted of banding 
profiles of an unrelated fungal community with known electrophoretic behavior on DGGE gels. 
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In the absence of V. dahliae, the strawberry yield differed significantly 

between the cultivars in all three soils (conventional p=0.0014, organic 
p=0.0087 and peat p=0.0022). Yield of the Senga Sengana cultivar was 
consistently low in all soils. In the presence of V. dahliae, the yield levels 
differed depending on both soil and cultivar type. Honeoye and Zephyr had 
low berry yield in peat-based soil and a similar trend was observed in the other 
two soils, with one exception (Honeoye in organic soil) but it was not 
significantly different. Florence and Senga Sengana are known for their 
tolerance to V. dahliae. Interestingly, Florence yielded significantly lower in 
organic soil than in conventional soil inoculated with V. dahliae, indicating that 
its tolerance is soil type dependent. 

Bioinformatic analysis of rhizosphere soil revealed 16923 pyrosequencing 
reads that passed the quality control checks revealed 589 clusters, 86% of 
which were of fungal origin. In general, lower numbers of reads were observed 
for most cultivars grown in the three pathogen-inoculated soils, the exception 
being Florence in organically managed soil. Bioinformatic analysis of the 
molecular data from root samples revealed 47153 reads passing quality control, 
grouped into 312 clusters. Dominant taxa in roots belonged to the genera 
Leptodontidium, Entrophospora, Ilyonectria, Exophiala, Scytalidium, 
Acremonium, Fusarium, and Cephalosporium. The fourteen most abundant 
taxa constituted >50% of the reads.   

In the absence of V. dahliae, the number of OTUs in rhizosphere soil of 
four cultivars, in general, was highest when grown in conventional, 
intermediate in organic and lowest in peat-based soil indicating that the soil 
type has a strong effect on the fungal diversity. The lowest fungal diversity in 
all cultivars grown in the peat-based soil is most likely due to its relatively less 
complex biogeochemical characteristics compared to that of the field soils. The 
higher diversity in the rhizosphere of cultivars in conventional soil could be 
attributed to differences in soil biogeochemical characteristics including (pH), 
which was significantly lower in conventional (5.97) than in organic soil (6.36) 
(Santos-González et al., 2011). In general, organically managed soils have 
been reported to have higher functional diversity and microbial biomass than 
conventionally managed soils (Oehl et al., 2004; Reeve et al., 2010). 

In general, the treatments caused changes mainly in the proportions of 
Ascomycota and Basidiomycota in the rhizosphere. The relative abundance of 
Basidiomycota was found to be much higher than that of Ascomycota in all 
treatments in organic soil. In two field soils numbers of OTUs belonging to 
Basidiomycota were only half than those belonging to Ascomycota, but this 
difference was not evident in peat-based soil. 
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Surprisingly only three reads of V. dahliae were detected in the rhizosphere 
in Verticillium-inoculated treatments despite the fact that the strawberry yield 
was affected negatively. However over 560 reads of V. dahliae were detected 
in root material. Preliminary light microscopy of cleared and stained roots of 
strawberry plants grown in the presence of V. dahliae showed microsclerotia-
like structures that seemed to be absent in controls (Figure 11). Further 
molecular analysis based on FISH (Fluorescent in situ Hybridisation) is needed 
to confirm the true identity of the structures. 

 
Figure 11. Strawberry roots showing V. dahliae-like microsclerotia structures. 

The effect of V. dahliae inoculation was more pronounced in the four 
cultivars grown in peat-based soil, where the relative abundance of 
Ascomycota increased and Basidiomycota decreased. Furthermore, the relative 
abundance of Ascomycota increased in the rhizosphere of Florence and 
Zephyr, whereas no differences were evident in Honeoye and Senga Sengana 
in conventional soil in the presence of V. dahliae. No such clear trend in 
relative abundance of the two phyla was observed in relation to the cultivars in 
the organic soil, except that Ascomycota decreased in Florence and 
Basidiomycota decreased in Zephyr in the presence of V. dahliae.  

Evidence is available on the effects of interactions of cultivars with 
pathogens on endophytic bacterial communities (e.g. Reiter et al., 2002). 
However information on the effects of cultivar-soil type-pathogen interactions 
on fungal communities does not appear to be available in the literature. 

NMDS ordination depicted a clear separation of communities with respect 
to soil type. In the two field soils, V. dahliae inoculation appeared to have little 
effect on rhizosphere fungal community structure, however more pronounced 
effect of V. dahliae inoculation was observed in peat soil. SIMPER was 

!" #"
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performed using abundance data for all taxa with more than 50 reads to assess 
which particular taxa were primarily responsible for the observed differences 
between all treatments. Senga Sengana and Zephyr (‘old’ cultivars) showed 
greater dissimilarity in all three soils indicating differences in composition of 
communities associated with ‘old’ cultivars compared to ‘new’ cultivars. 
Further experiments are needed to explore the basis of this dissimilarity. 

 In order to detect the taxa that responded to the treatments, the OTUs with 
>50 reads were selected for cell plot analysis. Fungal community structure was 
found to be more affected by V. dahliae-inoculation than by plant cultivar. 

3.3 Influence of biofumigation on rhizosphere soil fungal 
communities in presence and absence of V. dahliae (Paper 
III) 

Biofumigation has been investigated as an alternative method of plant 
protection, especially for soil-borne pathogens. Biofumigation typically 
releases isothiocyanates which may have a direct antagonistic effect against 
pathogens; however these chemicals may have an indirect impact on plant 
health through modification of rhizosphere communities which may influence 
the structure and/or activity of antagonists. The residues of biofumigant crops 
may also act as green manure, causing further effects on microbial community 
structure through stimulation of decomposers.  

The impact of biofumigation on structure of soil microbial communities and 
soil-borne plant pathogens prior to the main crop cultivation has been studied 
but its effects on the dynamics of the community composition in the 
rhizosphere of the main crop is not yet fully elucidated. In this study, we used 
454-pyrosequencing to examine possible changes in fungal community 
structure in the rhizosphere of strawberry following incorporation of oilseed 
radish plant material in the presence and absence of a soil-borne pathogen; V. 
dahliae. The study was carried out using a field soil different from the field 
soils in Papers I and II. 

Four weeks after strawberry planting, reduction in plant growth was 
observed in the presence of V. dahliae, irrespective of the biofumigation 
treatment. In absence of V. dahliae, biofumigation induced early flowering in 
>50% of the strawberry plants, lower numbers of buds and delayed flowering 
were observed in control plants. Furthermore, a significant decrease in berry 
yield was observed in response to biofumigation. In the presence of V. dahliae, 
a similar effect of biofumigation was observed but it was not statistically 
significant. These results are consistent with those reported by Vera et al. 
(1987) who studied the effects of incorporation of different types of cruciferous 
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plant material on the stand establishment and yield of the five crops and 
demonstrated negative effects of the treatments on both parameters in barley, 
flax, oilseed rape and wheat. Biofumigation effects have been attributed to 
changes in the structure of the native microbial communities (Mazzola et al. 
2012; Hoagland et al. 2008; Sarwar & Kirkegaard 1998; Mazzola et al. 2001; 
Rumberger & Marschner 2003; Matthiessen & Kirkegaard 2006; Lu et al. 
2009). 

Prior to pyrosequencing, samples from different time points; 0 h, 24 h and 
18 d after biofumigant incorporation, and 90 d and 120 d after strawberry 
planting was subjected to DGGE-based analysis following PCR amplification. 
Based on the findings that the maximum effect after strawberry planting on 
fungal community composition occurred after 90 d, further analysis using 
pyrosequencing did not include samples from 120 d. Furthermore, DGGE-
based analysis did not reveal any difference in community structure between 0 
h and 24 h and hence only samples from 0 h were included in the analysis. 
Bioinformatic analysis of 622 clusters obtained from 28971 reads revealed also 
86% clusters of fungal origin.  

Bioinformatic analysis of the molecular data from root samples revealed 
47433 reads passing quality control, grouped into 986 clusters. Dominant taxa 
in roots belonged to the genera Leptodontidium, Tetracladium, Leptosphaeria, 
Cephalosporium, Setophoma, Ilyonectria, Phomopsis and Chaetomium. The 20 
most abundant taxa constituted >50% of the reads. 

The estimated richness showed significantly higher numbers of OTUs in the 
rhizosphere of strawberry plants than in the bulk soil, in the absence of 
biofumigation and V. dahliae, demonstrating the positive effects of strawberry 
plant root exudates on the diversity and abundance of fungal communities 
(Hilton et al. 2013).  

Biofumigation with oilseed radish in itself increased fungal OTUs in the 
soil indicating its green-manuring effect in this study. Combined treatments of 
biofumigant and inoculation of V. dahliae also increased number of OTUs 
significantly in the soil in absence of strawberry plants confirming the green-
manuring effect of the oilseed radish incorporation on fungal community 
structure. Our results contrast with those of Hollister et al. (2013) who reported 
a reduction in numbers of OTUs in mustard-amended soil compared to the 
numbers in un-amended soil. However, they used mustard meal while the 
present study was based on incorporation of fresh plant material. 
Biofumigation did not appear to have any significant effect on the number of 
OTUs of the strawberry rhizosphere fungal communities. 

The above OTUs were grouped into Ascomycota, Basidiomycota, 
Chytridiomycota, Glomeromycota, early diverging fungal lineages, 
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environmental samples and uncultured fungi (unidentified fungal sequences 
according to the NCBI database) and similar to the results in Paper II, the three 
most abundant groups were Ascomycota and Basidiomycota. In addition, 
OTUs of early diverging fungal lineages (e.g. Mortierella spp.) were also 
abundant compared to the other phyla detected.  

 Overall, the number of OTUs representing Ascomycota was nearly two 
times higher than that of Basidiomycota. In the absence of biofumigation and 
V. dahliae-inoculation, their OTUs increased significantly in the rhizosphere of 
strawberry plant suggesting an effect of strawberry root exudates and that the 
increase in total fungal OTUs can be attributed to the increase in OTUs of 
these two phyla. In presence of biofumigation only, an increase in OTUs of all 
three groups, Ascomycota, Basidiomycota and early diverging fungal lineages 
was also evident in the absence of strawberry indicating an effect of green 
manuring. No effect of treatments with biofumigant and/or inoculation with V. 
dahliae was observed on numbers of OTUs of the three fungal phyla in 
strawberry rhizosphere compared to that in the corresponding control soil.  

The results indicated that the inoculation with the pathogen isolate in this 
study may not influence the structure of abundant groups of fungal 
communities in the strawberry rhizosphere may depend on the soil type. The 
field soil and the method of pathogen inoculation used in this study were 
different from those used in Paper I and II. Mazzola et al., (2012) showed that 
the soil-type affects the composition of different Pythium populations that were 
recovered as a result of mustard seed meal incorporation. 

NMDS analysis carried out on all fungal OTUs 12 weeks after strawberry 
planting separated all the treatments significantly. Olpidium brassicae, an 
obligate plant pathogen was detected in all treatments subjected to 
biofumigation. The presence and absence of different pathogens was not 
known for the field soil used for the study. The OTUs of this fungus seemed to 
be present before growing the oilseed radish and its incorporation. 
Interestingly, its population was shown to decrease in rhizosphere soil of 
strawberry. This can be explained by strawberry being a non-host of O. 
brassicae. Surprisingly V. dahliae was not detected in any of the Verticillium-
inoculated treatments despite the fact that the strawberry plant growth was 
affected negatively. Possible explanations are inherent PCR bias of the primers 
chosen for the study or insensitivity of their specificity to detect the pathogen 
(Hong et al., 2009; Prosser et al., 2011; Schloss et al., 2011; Peiffer et al., 
2013).  

Mortierella spp. usually a non-pathogenic soil fungus has been considered 
to be the first organism growing on root was detected in all treatments. The 
fungus is a saprophyte and is known to produce extracellular hydrolases such 
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as chitinases (Boer et al., 1999). Certain members of Mortierella have been 
demonstrated for their potential as bio-control agents of phytopathogens such 
as pathogenic oomycetes and Streptomyces spp. (potato scab) (Wills & Lambe, 
1980; Wills, 1989; Tagawa et al., 2010). Oomycetes were marked by their 
absence in all the treatments in this study, the same were detected in the three 
soils in Paper II. Interestingly, relative abundance of Mortierella seemed to 
increase in presence of V. dahliae regardless of the presence or absence of 
strawberry plant or biofumigant incorporation. Further studies will reveal the 
role of Mortierella in influencing the population of oomycetous pathogens of 
strawberry and its potential role as a bio-control agent against Verticillium wilt 
disease.  
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4 Conclusions  
This is, to the best of our knowledge, the first study describing the effect of 

soil type-cultivar-pathogen-biofumigation interactions on the structure of 
rhizosphere fungal communities in strawberry, using high resolution 454 
pyrosequencing. 

• Verticillium has often been mentioned in connection with diseases of 
strawberry but the studies described in this thesis are the first of their 
kind in Sweden. Inoculation with V. dahliae resulted in decreased 
berry yield in a number of cases, but increased berry yield in the 
Florence cultivar grown in conventional soil.  

• For unknown reasons, Senga Sengana had much lower yields than 
three other cultivars in the three soils tested, although the numbers of 
flowers were not the lowest of all cultivars. 

• The numbers of fungal operational taxonomic units (OTUs) were 
consistently higher in the conventional soil, lower in organic soil and 
lowest in peat-based growth substrate. 

• In the conventional soil, the number of fungal OTUs showed a 
consistent decrease in response to V. dahliae inoculation. However, 
the number of fungal OTUs increased in response to V. dahliae 
inoculation in the rhizosphere of the Florence cultivar in organic soil. 
Speculation: Is the decreased yield of berries in Florence in organic 
soil due to carbon allocation to extra fungal OTUs in the rhizosphere 
soil in the presence of V. dahliae? 

• There was a strong effect of soil type on total rhizosphere soil fungal 
community composition in all treatments. 

• In the two field soils, there was no visible effect of V. dahliae 
inoculation on total rhizosphere soil fungal community structure; 
however its inoculation resulted in distinct fungal communities in the 
species-poor peat-based growth substrate.  
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• The cultivar effect on rhizosphere fungal community structure varied 
in different soils.  

• Biofumigation induced early flowering and a decrease in berry yield. 
• There were clear effects of biofumigation and strawberry plant root 

exudates on total numbers of rhizosphere soil fungal OTUs. 
• Significantly increased numbers of OTUs were associated with 

biofumigation and Verticillium-inoculation in the absence of 
strawberry plants, suggesting a green-manuring effect of oilseed radish 
incorporation.  

• In the absence of biofumigation and V. dahliae inoculation, the total 
fungal diversity estimates revealed significantly higher numbers of 
OTUs in the presence of strawberry plants than in their absence, 
indicating a stimulatory effect of their root exudates on fungal taxa. 

• Biofumigation did not affect total OTUs in the presence of strawberry 
plants but NMDS analysis showed a clear effect of all treatments on 
community structure indicating the interaction effects of 
biofumigation, V. dahliae inoculation and strawberry root exudates. 

• The relative abundance increased in the presence of V. dahliae of 
Mortierella spp. irrespective of biofumigation and presence of 
strawberry plant indicating its potential role in biocontrol of V. 
dahliae.  

• Acremonium and Coniothyrium two fungi with known biocontrol 
potential, were detected at low levels of abundance in the rhizosphere 
soil but were the sixth and eleventh most abundant fungi respectively 
in the roots.  

• The abundance of Olpidium brassicae decreased in all treatments after 
planting of strawberry suggesting the role of strawberry as a precrop to 
Brassica spp.   

• Depending on the soil type, the degree of arbuscular mycorrhizal 
colonisation and assemblage structure changed in the strawberry roots. 
No clear differences were observed between the cultivars.  

• Acaulospora spp. seems to be exclusively associated with organic 
soils. Members of this genus and its microbial associates may be 
explored for plant growth stimulation through improved nutrient 
acquisition and biocontrol. 

• Nucleic acid extraction methods influenced the outcome of results on 
fungal community structures suggesting that utmost care should be 
taken to choose the appropriate method for community analysis. 

• Further studies are needed to study the functional aspects of the fungal 
communities reported in this study.  
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5 Future perspectives 
Plant-microbe interactions play an important role in plant protection and 

plant health. Many studies have examined the effects of biological control 
agents on pathogen populations and other microbial communities; however 
effects of plant pathogens on microbial communities have not normally been 
the focus of most studies. This study is one of the first describing such 
interactions with respect to host variation. Many interesting observations in 
relation to this study have revealed number of thought-provoking ideas and 
questions such as 

 
• Single inoculation studies of the taxa that were found responding to 

certain treatments should be explored to investigate their potential 
as biocontrol agents and/or their capacity to improve plant nutrient 
acquisition. 

• The taxa that were found inhabiting the roots and rhizosphere 
might play different roles either in protecting the plants from 
pathogens or in biogeochemical cycling of nutrients. Further 
studies are required to investigate the functional complementarity 
between the root and rhizosphere microbial communities. 

• Do endophytes respond more strongly to a pathogens presence than 
the rhizosphere microbial community?  

• Are bacteria more prone to stress caused by pathogens presence 
than fungi?  

• How to distinguish between true endophytes and opportunistic taxa 
entering the roots through wounds? 

• What role does soil-type play for production of plant growth 
stimulators or pathogen antagonistic substances?  

• There are indications of pathogen helper taxa (PHT) which could 
be beneficial to a pathogen as well as plant-induced antagonists 
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(PIA) which may provide protection to plant. Further investigations 
are needed to conceptualize such plant-pathogen-microbial 
community interactions. To have a concrete evidence, the results of 
this study should be validated in field trails and substantiated 
further by more molecular studies of plant-microbial community 
interactions. 

• With respect to plant-microbe-pathogen interactions in rhizosphere, 
the nutrient use efficiency of different plant cultivars should also be 
investigated in such studies.  

• Does biofumigation favour glucosinolate-degrading 
microorganisms and can such organisms improve disease resistance 
in plants or act as antagonists against soil-borne pathogens? 

• In the presence of a pathogen and/or a biocontrol agent in the 
rhizosphere, do carbon allocation patterns below-ground change? 

• What is the functional role of Acaulospora in plant protection 
and/or nutrient acquisition? 

• Further studies based on soil metagenomics should be carried out 
in order to find the functional roles of the microbial communities 
that respond to pathogen inoculations. This would enable us to 
understand the mechanisms underlying the changes in community 
composition. 

 
The importance of the soil- air-water biosphere for sustainability has been 

summarised succinctly by Eliot Coleman…. 
 

“The only truly dependable production technologies are those that are 
sustainable over the long term. By that very definition, they must avoid 
erosion, pollution, environmental degradation, and resource waste. Any 
rational food-production system will emphasize the well-being of the soil-air-
water biosphere, the creatures which inhabit it, and the human beings who 
depend upon it.”  
― The New Organic Grower: A Master's Manual of Tools and 
Techniques for the Home and Market Gardener  
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