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Abstract
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Basic inferential methods for analysing coefficients of variation in normally distributed data
are studied. The assumptions of normally distributed observations and a constant coefficient
of variation are discussed and motivated especially for immunoassay data. An approximate
F-test for comparing two coefficients of variation is introduced. All moments of the
proposed test statistic are shown to be approximately equal to the moments of an
F distribution. It is proved that the distribution of the logarithm of the test statistic equals
the distribution of the logarithm of an F distribution plus some error variables that are in
probability of small orders. The approximate F-test is compared with eight other tests in a
simulation study. The new test turns out to perform well, also in case of small sample sizes.
A generalized version of the approximate F-test is defined for the case that there are several
estimates of each coefficient of variation, calculated with different averages. The test is
based on a > approximation given 1932 by A.T. McKay. It is proved that McKay’s
approximation is noncentral beta distributed.
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Sammanfattning

Variationskoefficienten &r standardavvikelsen dividerad med medelvérdet. Detta
spridningsmatt anvinds pd ménga héll i praktiken ndr man &r intresserad av hur
stor variationen ir i relation till nivin pi observationerna. Anda analyseras
variationskoefficienter séllan statistiskt. Syftet med denna avhandling &r att
redogora for metoder for analys av variationskoefficienter i normalfordelade
material, sérskilt metoder for att berdkna konfidensintervall och for att préva
hypotesen att tvd variationskoefficienter ar lika, samt att introducera négra nya
idéer.

Nér standardavvikelsen dr proportionell mot medelvirdet &r det vanligt att
logaritmera observationerna och anta att de logaritmerade observationerna &r
normalfordelade. I denna avhandling argumenteras for alternativet att istéllet anta
normalfordelning i ursprunglig skala och analysera observationerna utan att forst
logaritmera dem. Speciellt visas for immunokemiska metoder att det kan vara
rimligt att anta att métviardena &r normalfordelade i ursprunglig skala och att
variationskoefficienten &r konstant.

Ett nytt test for att prova hypotesen att tvad variationskoefficienter &r lika
foreslas. Teststatistikan jaimfors med F-fordelningen. Alla teststatistikans moment
dr approximativt lika momenten for en F-fordelad variabel. Logaritmen av
teststatistikan &r i fordelning &r lika med logaritmen av en F-fordelad variabel plus
nagra feltermer som i sannolikhet &r av sma ordningar.

Teststatistikan 4r baserad pa A. T. McKays y’-approximation fran 1932. Méanga
har visat numeriskt och analytiskt att McKays approximation verkligen &r
approximativt x>-fordelad. I denna avhandling visas att McKays approximation ir
ickecentralt betafordelad.

Det nya testet jimfors med &tta andra test i en simuleringsstudie. I studien &r det
nya F-testet det enda som ger nistan korrekt typ I-fel nir antalet observationer ar
litet. Alternativet att logaritmera observationerna fore analys fungerar i studien
daligt nér variationskoefficienten &r stor.

Det nya testet gér, till skillnad frdn ménga andra test, att generalisera till fallet
att det finns ménga oberoende skattningar av variationskoefficienterna. Testet
generaliseras och tillimpas pé ett verkligt exempel fran diagnostisk forskning.
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1. Introduction

The coefficient of variation is the standard deviation divided by the mean.
Pearson (1896) defined the term and applied it when comparing various
measurements on females with corresponding measurements on males. Ever since
then it has been used as a measure of dispersion in many biological applications.
Schimmerl-Metz et al. (1999) provide a modern example from morphology. They
calculate coefficients of variation on measurements of the scapholunate joint
intercortical width of wrists.

When laboratory analytical procedures are employed the standard deviation of
repeated measurements are often proportional to the concentration being
measured. The precision of an analytical method is usually described by
coefficients of variation between and within assays. DeSilva et al (2003)
accordingly recommend that precision shall be expressed by coefficients of
variation. Comparing the performance of e.g. two laboratories or two instruments
thus involves the problem of comparing two coefficients of variation.

When clinical trials are studied not only the average effect of a treatment but
also the variation in the effect is considered. It is not always appropriate to assume
independence between effect size and variance. Often data indicate a constant
coefficient of wvariation. In crossover trials treatments are compared within
individuals. An individual is first given one treatment, and then a second treatment
and so on. Sometimes each individual receives each treatment several times. The
individuals may respond very differently on the treatments, and the standard
deviation in the replicated measurements is often proportional to the response. In
this case the coefficient of variation is a natural measure of dispersion. The Food
and Drug Administration (2001) establish that coefficients of variation shall be
reported in bioequivalence studies.

The reaction time of a task may differ much between a group of patients and a
control group. The coefficients of variation may however, according to Schafer &
Sullivan (1986), be similar or equal in the two groups.

Despite the large number of applications the properties of the coefficient of
variation is seldom discussed in statistical textbooks. As a consequence there is
among practitioners often an inadequate knowledge on how to make basic
statistical inference concerning the measure. We shall in this thesis investigate
different solutions and recommend statistical methods. We are motivated by the
gap between theory and practice. In theory the variance is the primary measure of
dispersion, but in practice it is, in some fields of interest, the coefficient of
variation. The objective is to collect and report existing information about how to
construct confidence intervals and hypothesis tests for the coefficient of variation
and add some new ideas. This investigation shall be a basis for future research.

A popular technique when the standard deviation is proportional to the average
is to apply the logarithmic transformation and perform the analysis on log values.
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The assumption of lognormally distributed data thus introduced is however not
always reasonable. We discuss this in Chapter 2 and provide especially for
immunoassay applications a rational for assuming a constant coefficient of
variation in combination with normally distributed data. In Chapter 3 we give an
overview of basic inference for the coefficient of variation when the distribution is
normal with positive expected value. We explain how to make exact confidence
intervals for coefficients of variation, based on the noncentral t distribution, or
how to calculate approximate confidence intervals with readily used formulas. We
engage especially in the comparison of two coefficients of variation and describe
several tests that could be of interest to the practitioner. In Chapter 4 we introduce
a new hypothesis test, which is an approximate F-test that we develop specifically
for the hypothesis of equal coefficients of variation. The test is easily generalized
to the case that there are several estimates per coefficient of variation. We show by
a real data example from diagnostic research how the approximate F-test and its
generalized version can be applied. In Chapter 5 we study the properties of the
approximate F-test theoretically. We show that all moments of the test statistic is
close to the moments of an F distributed random variable if the coefficient of
variation is sufficiently small. We also prove that the distribution of the logarithm
of the test statistic approximately equals the distribution of the logarithm of an F
distributed random variable. In Chapter 6 we compare the new test with other tests
by a simulation study. The new test turns out to perform well in comparison with
other tests. Since the new test is built on a y’ approximation given by
McKay (1932) we study in Chapter 7 the distribution of this approximation and
prove that it is actually noncentral beta distributed. Finally the thesis ends with a
discussion in Chapter 8.

2. The statistical model

We intend to model positive observations by assuming that the observations are
normally distributed and the coefficient of variation is constant. Before continuing
with issues about how to analyse data from such a model we shall discuss the
relevance of the model itself.

2.1. Assumptions

At first it may seem contradictory to assume normally distributed observations
when the data are genuinely positive. Nevertheless this assumption is often made
in practice. Introductory textbooks such as Kleinbaum, Kupper & Muller (1988),
explain how positive variables, e.g. blood pressure, waiting time or wavelength,
can be modelled with assumptions of normal distributions. Such analyses are very
informative despite the fact that the model admits negative measurements when
only positive values can be obtained. Of course it is assumed that the probability
of negative values is very small and negligible. In our setting it is reasonable to
require that the coefficient of variation is smaller than 1/3, because the probability
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of values deviating from the expected value more than 3 standard deviations is
small when the data is normally distributed. With this requirement it is also
unlikely that the average by chance is negative or close to zero. We can thus be
confident that the sample coefficient of variation, i.e. the estimated standard
deviation divided by the sample mean, is positive and that it does not explode
because of division by zero. In conclusion we can assume a normal distribution
provided that the coefficient of variation is smaller than 1/3. The assumption of
normal distribution is appropriate if we believe that the data are approximately
normally distributed. There is however no need to believe that the model is the
actual truth.

There is a strong tradition among statisticians to use the logarithmic
transformation when the standard deviation is proportional to the mean. The
standard deviation in log values is approximately equal to the coefficient of
variation. A Taylor series expansion of log y about y = 1 gives

1
logy zlogu+;(y—u),

so that Var(log y) = Var(y) / x>. Thus the standard deviation in log scale roughly
equals the coefficient of variation in the original scale. In terms of changes in u
the logarithmic transformation is variance stabilising when the coefficient of
variation in the original scale is constant.

After having transformed all data into log values the statistical analyst often
proceeds by modelling an expected value under assumption of a normally
distributed error term. This additive error is normally distributed in log scale. In
original scale the error is multiplicative with a lognormal distribution. The
lognormal distribution is however not symmetric, but positively skewed. The final
analysis does for this reason not conform to an initial assumption of a symmetric
distribution with approximately normally distributed errors. There may be many
ways to deal with this problem. In this thesis we investigate the possibility to stick
to the assumption of normally distributed additive error and not transform the data
into log scale. For comparison we will however include the log method in the
example in Section 3.2 and in the simulation study in Chapter 6.

2.2. Application to immunoassays

The model we shall discuss is widely used for analysing immunoassay data. In
diagnostic research the coefficient of variation is the predominant measure of
dispersion. The data is often approximately normally distributed and the
coefficient of variation is often approximately constant over the measuring range.
This reality can be explained in the following way.

In immunoassays the amount of some particular substance is measured in a
blood sample. Let C denote the concentration of the particular molecules in the
sample, and let 7 denote the volume of the sample. The number N of molecules in
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the sample equals VC. The response obtained in an immunoassay could be
fluorescence or radioactivity, but if the immunoassay has good performance we
can assume that the response is proportional to N and without loss of generality
assume that the response equals N. This holds if the calibration curve, i.e. the
relationship between response and concentration, is linear.

There are many sources of errors in immunoassays. One important source of
error is the random variation in the pipetted volume of the sample. It is reasonable
to assume that the pipetted volume is not constantly equal to V, but perhaps
normally distributed with expected value u, and standard deviation oy. Then,
since we still have N= VC,

Var(N)=C’c; .

However, the result of an immunoassay is not an estimate of the number of the
particular molecules in the sample but an estimate of the concentration. This
estimate is obtained by division of the response N by the expected volume
(since the true volume ¥ is unknown). As a result the expected value of the
estimate of the concentration is

g Vg |- Cron-=c

Hy Hy Hy

and the variance in the estimate of the concentration is

2
Var l :Cza—z.
Ky Hy

Consequently the coefficient of variation in N/ yy, i.e. the coefficient of variation
in the estimate of the concentration, is constant and equals 7= oy / . Therefore
a model with normally distributed measurement errors and constant coefficient of
variation could be adequate for analysing immunoassay data.

As already indicated, in reality immunoassays are not as simple as suggested by
the arguments above. There are many sources of errors, not only the variation in
the pipetted volume of the sample, but also for example pipetted volumes of
reagents, temperature variations, variations in the solid phase on which the
specific antibody is attached efc. The resulting variance is thus a sum of many
variance components, many of which reasonably can be assumed to be
approximately normal. Therefore it is not surprising that in immunoassays the
final response is often approximately normally distributed.

Many authors have pointed out that the response of an immunoassay can be
regarded as a mixture of a Poisson distribution and other variance components.

Rodbard et al. (1976) writes ‘If there were no experimental errors in the pipetting
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of any of the reagents, nor in the separation of the bound and free fractions, such
that the response variable was subject only to the counting error caused by the
random radioactive decay process for the isotope, than one should have a true
Poisson variance for the observed (raw) counts.” Raab (1981) states ‘The variation
of the response includes the Poisson error of the radioactive counts (usually less
than 50 per cent of the total), as well as random errors for each of a series of steps
which consist of the addition of reagents, incubation and separation of the bound
radioactivity.” They both discuss the radioimmunoassay, in which the response is
radioactive counts. However, also if the response is fluorescence we may argue
that the response, i.e. essentially the number N of particular molecules in the
sample, is Poisson distributed. Even if the volume V was always pipetted without
variation the number of molecules in the sample would vary between samples.
Since each molecule has a small probability to be included in the sample, it is
reasonable to assume that the total number N included in the sample is Poisson
distributed. Still there is no contradiction between this assumption and the
assumption of normally distributed data, because N is usually very large and the
Poisson distribution is then well approximated by the normal distribution.

To study this argument a little bit more carefully, assume that N is Poisson
distributed with expected value VC. Assume also, as before, that V' is normally
distributed with expected value 1 and standard deviation oy. Since N is large, N is
approximately normally distributed with expected value V'C and variance VC. We
can write

d
N=VC+ZJVC

where Z is a standardized normal variable independent on V, and d denotes
equality in distribution. The expected value of N is

E(N)~C E(V)=Cu,,
and the variance is
Var(N)=E((VC + Z-[VC)*) — (E(VC + Z-[VC))?
= E(V?C? +22ZVC[VC + Z*VC) - (E(VC) + E(Z-[VC))?
=E(V’C*)+E(C)-(E(VC))’
=C* Var(V)+C E(V).

The coefficient of variation in the estimate N / y of the concentration is equal to
the coefficient of variation in N. This is because the coefficient of variation is not
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affected if the observations are multiplied or divided by a constant. In conclusion,
the coefficient of variation in the estimate N / z of the concentration is

JC*c2+C
% /JV: ]/24_#: 7/54_;
E(N)

Cuy g Cry

where y = oy / wy, is the coefficient of variation in the sample volume. Note that
the squared coefficient of variation in the Poisson error is 1/E(N). The total
coefficient of variation is thus the square root of the sum of two variance
components. When N is large the coefficient of variation in the estimate of the
concentration is approximately constant and equal to the coefficient of variation in
the sample volume. Thus once again we conclude that a model with constant
coefficient of variation may be appropriate for analysing immunoassay data.

3. Review of inference for coefficients of
variation

We shall survey basic statistical methods for inference on the coefficient of
variation when the data is normally distributed. Several methods have been
proposed for calculating approximate confidence intervals for the coefficient of
variation. Usually it is however possible to calculate an exact confidence interval
that is finite. A small example will indicate that some of the approximate
confidence intervals are better than others. Also various test statistics have been
proposed for the hypothesis that two coefficients of variation are equal. The most
well known are included in this chapter. Their performances are later investigated
in a simulation study in Chapter 6.

3.1. Point estimator

Let y; = u + e, where ¢; are independently distributed NO,(uy™),j=1,2,.. ., n,
with positive population coefficient of variation y and positive expected value z.
Let m denote the average, and ¢ denote the sample coefficient of variation:

1< 1 I &
m=—2y;. c=—\/ 2y, —m)’. (3.1)
n j:l m —

I’l—l j—l

Usually c is used as a point estimate of y. Since the density of m is positive in a
neighbourhood of zero the expected value of ¢ does not exist. In applications this
is seldom a problem. In many situations, e.g. when measuring length or
concentration, the measurements can only take positive values, but they may
nevertheless be approximately normally distributed. If the probability of a
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negative sample coefficient of variation is negligible the expected value of c is,
according to Reh & Scheffler (1996),

1 y? 1
Elc)=y|1—-—+"—|=y|1——|,
(c) 7/( 4n+ nj 7( 4nj

where the second approximate equality (=) holds if yis small, which is usually the
case. We note that the expected value of s = cm is (Lynch & Walsh, 1997)

E(s)~ 0'(1—1].

4n

The bias of the coefficient of variation is thus of the same magnitude as the bias of
the standard deviation.

3.2. Confidence intervals

In the well-known t-test of the hypothesis that the expected value of a normally
distributed random variable equals zero the test statistic

m__An

tzm: 5

is t distributed with » — 1 degrees of freedom under assumption that the hypothesis
is true. Generally ¢ follows a noncentral t distribution with » — 1 degrees of
freedom and noncentrality parameter 7 = n'*/y. Owen (1968) discusses this and
other applications of the noncentral t distribution. A confidence set for 7 can be
constructed by inverting the acceptance region of a test of the hypothesis about =
(Shao, 2003). Thus, if Pr(r<n"*/c| 7 = 7)) = a/2 and Pr(t > n"*/c| 7 = n) = a /2
then [z, 7y] is a 100(1 - @)% confidence interval for z. An exact finite confidence
interval for yis easily obtained from the confidence interval for 7 provided that the
latter does not include zero, which is commonly the case in practice. The exact
finite confidence interval is

(3.2)

2

n An

3 3} .

If the percentiles of the noncentral t distribution are not available there are

several ways to calculate approximate confidence intervals. When the sample size

is not too small asymptotic normality can be used. Miller (1991) shows that c¢ is
asymptotically normally distributed with expected value y and variance
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7 (1+2y%)

33
2(n—1) )

Miller & Feltz (1997) suggest that * in (3.3) are estimated by ¢

approximate 100(1 - @)% confidence interval for yis calculated as

c’(1+2c¢%) c’(1+2¢%)
— , Ctrz |, (3.4)
2(n—1) 2(n—1)
where z is the 100(1 — « /2):th percentile of the standard normal distribution. This
confidence interval is symmetric around c¢. An unsymmetrical interval, more likely

to perform well also for smaller sample sizes, is obtained if only the second y*
in (3.3) is estimated by ¢*. Hence

, and that an

c—y
y(+2¢%)/2(n-1)

is approximately distributed as a standard normal distribution. The corresponding
100(1 - @)% confidence interval for yis

C (4

1+z./0+20)/Q2n-1) ~ 1-z/0+2)/Qn-1) |

3.5)

Graf et al. (1987) suggest, according to Reh & Scheffler (1996), this approximate
confidence interval. Hald (1952) gives another approximate confidence interval
based on asymptotic normality.

McKay (1932) shows that if yis small, i.e. less than 1/3, and if

e_n—l
n
then
/(146 )
(n—l)z 5 (3.6)
7P /(+y%)

is approximately x> distributed with n - 1 degrees of freedom. As explained in
Chapter 2 the condition y < 1/3 is in practice often reasonable since it makes
negative observations unlikely. Since (3.6) is an approximate pivotal quantity it
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can be used for calculating an approximate confidence interval (Shao, 2003). This
interval can be written

C C
u u u u
e -1 2 42
n—1 n n—1 n
where u; = y7,.11.02 denote the (100(1 - o/2)):th percentile of a % distribution
with n - 1 degrees of freedom, and where u; = y 7, ,» denote the (100(c/2)):th
percentile of a y* distribution with n - 1 degrees of freedom Of course, as
David (1949) points out, we might expect (3.6) to be approximately > distributed

with n - 1 degrees of freedom also if & = 1. Vangel (1996) derives an optimal
choice of @ for calculating quantiles. He finds that

3.7)

ezn—l 2 .

2
n Zn—l,a

is suitable for calculating the (100a):th percentile of the sample coefficient of
variation. The confidence interval based on this approximation can be written

c c
u, _I_cz(ul +2 _lj U, +cz(u2 +2 _lj
n—1 n n—1 n

This interval is accurate even for small sample sizes.

Another approximate method, developed by Wong & Wu (2002), for calculating
confidence intervals is based on the modified signed log likelihood ratio statistic
defined by Barndorff-Nielsen (1986, 1991). This method is also claimed to give
accurate results in case of small sample sizes.

It is also possible to use the logarithmic approach discussed in Chapter 2.
According to this approach the logarithmic transformation is applied to all
measurements and the coefficient of variation in original scale is estimated by the
standard deviation in log scale. The usual confidence interval for a standard
deviation calculated on log values is thus an approximate confidence interval for
the coefficient of variation in the original values. This confidence interval is
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(3.9)

where 504, is the standard deviation calculated on log values.

In the following example we also include the ‘naive’ interval

(n-1c*

2
Xn-tai2

(3.10)

This interval is obtained if the coefficient of variation is treated as if it was a
proper standard deviation, i.e. if the limits of the usual confidence interval for o*
are divided by the average m. Vangel (1996) compares analytically the errors in
this naive approximation with the error in the McKay approximation and conclude
that the naive approximation is ‘substantially less accurate.’

As an example we calculate the presented confidence intervals on the tensile
strength data given by Vangel (1996). We obtain the exact confidence interval
using the function tnonct in Release 9.1 of the SAS System (SAS Institute Inc.,
Cary, NC, USA). The data, presented in Table 3.1, consists of measurements on
five specimens of a composite material.

Table 3.1. Tensile strength data

Specimen Tensile strength (1000 psi)
1 326

2 302

3 307

4 299

5 329

Mean (1000 psi) 312.6
Coefficient of variation 0.0446

The calculated confidence intervals are given in Table 3.2.

Table 3.2. 95% confidence intervals for the coefficient of variation in the tensile strength
data

Method (Formula) Confidence interval
Exact (3.2) [0.0267 , 0.1287]
Miller & Feltz (3.4) [0.0136, 0.0756]
Graaf et al. (3.5) [0.0263 , 0.1459]
McKay (3.7) [0.0267 ,0.1291]
Vangel (3.8) [0.0267 , 0.1287]
Log (3.9) [0.0266 , 0.1274]
Naive (3.10) [0.0267 ,0.1281]
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In this dataset the estimated coefficient of variation is not very large (4.46%).
Most of the approximate confidence intervals are similar to the exact confidence
interval. The symmetric Miller & Feltz confidence interval does however not
perform well. The confidence interval suggested by Graf et al. (1987), based on
the same normal approximation, is much better. The McKay approximation seems
to be very accurate, and the modification due to Vangel (1996) is successful. The
method of logarithmic transformation works fine in this example but is not as
good as the McKay approximation. The naive method, finally, performs well, but
the interval is a little bit too narrow since it ignores the variation in the estimate of
the average.

3.3. Tests for equality of two coefficients of variation

Let y; = 1; + e;, where e; are independently distributed N(O,( 1)), i=1,2 and
j=1,2,... n, with positive population coefficients of variation » and positive
expected values ;. We shall study tests of the null hypothesis Hy: 31 = 7 of equal
population coefficients of variation.

3.3.1. Likelihood ratio test

Several authors explore the likelihood ratio test of the hypothesis. Miller & Karson
(1977) and Bhoj & Ahsanullah (1993) deal with the special case of equal sample
sizes. Lohrding (1975), Bennett (1977) and Doornbos & Dijkstra (1983) consider
the general case of unequal sample sizes. According to Gerig & Sen (1980), the
maximum likelihood estimates of z, 1, and yare

A

" nm, i
_ 1771 /72
M= )

A
(n, +n,) u,—n,m,

and

y = - , (3.11)

respectively, where m; denotes the average response in sample i, and where

2
p=(n +n,)c; +n,,
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q= —(2nzcl2 +(2n, —n,))m,
and

3 ) -+

n, +n2

The likelihood ratio test statistic can be written

AN 2
(7:“1)
1

where A is the likelihood ratio. Asymptotically R is x> distributed with 1 degree of
freedom.

3.3.2 Bennett’s test

Bennett (1976) utilise the approximation (3.6) given by McKay (1932) and applies
a test according to Pitman (1939) of the hypothesis of equal scale parameters of
gamma variables. Shafer & Sullivan (1986) note that Bennett by mistake uses a
variance with devisor n - 1 where McKay in his article uses a variance with
devisor n. For this reason they modify Bennett’s test correspondingly. The
modified Bennett’s test statistic is

nlelclz nzezcj
1+0,c] 1+6,c;

B=(n +n,-2)log

n +n,—2
mbc; ny0,¢;
1+6,¢c; 1+6,c;
—(n, ~Dlog| ~ A | _(n, ~1)log| 22| 313
n, — n, —1

where 8; = (n; — 1) / n;, i = 1, 2. The value of the test statistic shall be compared
with a % distribution with 1 degree of freedom.
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3.3.3. Miller’s test

When there are many observations, the sample coefficient of variation has an
approximate normal distribution. Miller (1991) gives a test based on this
asymptotic normality. The population coefficient of variation y is estimated by a
weighted average, yw, of the sample coefficients of variation:

(n1 B 1)01 + (nz B 1)62
n+n,—2 '

Yw =

This estimate is employed in the calculation of a test statistic

G-6
Yw . Yw o, Yw ., Vw
2(n,-1) n -1 2(n,-1) n,-1

M=

, (3.14)

which is compared with a standard normal distribution.

3.3.4. Wald test

The Wald statistic given by Rao & Vidya (1992) for the case of equal sample sizes
is modified to the general case of unequal sample sizes by Gupta & Ma (1996).
The statistic

2

(¢, —¢)
o ¢ o o
S a9, %9 9
2n, n, 2n, n,

W= (3.15)

is approximately x* distributed with 1 degree of freedom. This test statistic is
obviously closely related to Miller’s statistic (3.14). Bhoj & Ahsanullah (1993)
give a third statistic on the same theme, but only for the case of equal sample
sizes.

3.3.5. Score test

Gupta & Ma (1996) derive the score test, based on the maximum likelihood
estimate (3.11). Its explicit value is given by

A 2 A 4 2 2
S = 1(7) +[7/) [alﬁtaz} (3.16)
2 n, n,

where
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-2 -3 n; A AN
ai:(:uij (7) Z(ytj_:ui)z - ni(}/] s i=1,2.
=

The test statistic (3.16) shall be compared with a y* distribution with 1 degree of
freedom.

3.3.6. Doornbos & Dijkstra’s test

Doornbos & Dijkstra (1983) develop a test based on the distribution of the inverse
of the sample coefficient of variation. Let b; = 1 / ¢;, and let by denote a weighted
average of b, and by:

b nb, +n,b,
W - .
n, +n,

The total sum of squares
2 2
T =n,(b, —by )" +n,(b, —by)

is sensitive to deviations from the null hypothesis. Doornbos & Dijkstra estimate
the expectation of T by

]%(T _ n,(n, —1) n n,(n, —1)
(n, +n,)(n, =3)  (n, +ny)(n, —3)

1 [ nn, (n, —1) " nn, (n, —1)

C,z, (n, +ny)(n, =3)  (n, +n,)(n, —3)
1
+ (nlzelz + nzzezz —(ne + nzez)z):|
nl + nz

where ¢, is an estimate of the common population coefficient of variation y:

ny(n, —1) n n,(n, —1)

2 n, —3 n, =3
c. = ,
’ n-1 n, -1
nb! +n,b; —| - + 2
n -3 n,-3

and
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The test statistic

is approximately x? distr

3.3.7 Log test

ibuted with 1 degree of freedom.

(3.17)

A test based on the logarithmic approach discussed in Chapter 2 can be made in
the following way. Take the logarithm of all observations and calculate the
standard deviation s, (log y) in sample 1 and the standard deviation s, (log y) in

sample 2. Then compare

with an F distribution with n; — 1 and n, — 1 degrees of freedom.

3.3.8. Naive test

_si(logy)
s;(log y)

(3.18)

With the ‘naive’ test we mean comparing the sample coefficients of variation by

an F-test in the same way as proper standard deviations are compared. Thus

2
NoG

2
¢,

(3.19)

is compared with an F distribution with n; — 1 and n, — 1 degrees of freedom.

4. An approximate F-test

We shall now develop an approximate F-test for the hypothesis of equality of two
coefficients of variation. In our search for a constructive statistical method it is
natural to look for an F-test, since such tests are used for comparing variances.
The ordinary test statistic for comparing two variances is the ratio between the two
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variances. If we, for the comparison of two coefficients of variation, analogously
take the ratio between the two coefficients of variation we get the naive test (3.19).
This test does not take into account the variation in the estimated averages in the
denominators of the coefficients of variation. Therefore it is natural to suppose
that it is better to use the ratio between two McKay transformations.

4.1. The idea of the approximate F-test

Let again y; = 4 + e;, where e; are independently distributed N(0,(3 ), i=1,2
and j = 1, 2, . . ., n;, with positive population coefficients of variation y and
positive expected values ;. Assume also that » < 1/3. Then we know from (3.6)
that

2 /(1+80 c?
(ni—l)’z(z’), i=1,2,
yi/+yh)

is approximately y* distributed with n, - 1 degrees of freedom when @
= (n; - 1)/ n;. Consequently we can, if Hy: 1 = p» is true, anticipate

7 (/0007 [+ 1) _ /(A +0(m)e)
(e /(1+0(m)e)/ (3 [+73)) ¢ [(1+0(n,)e3)

4.1)

to be approximately F distributed with n; - 1 and n, - 1 degrees of freedom.
In (4.1) @ is a function of n;, which not necessarily equals (n;- 1)/n; Since
/(1 + 6% is an increasing function of ¢, the statistic F is an increasing function
of ¢, and a decreasing function of ¢,. Large deviations between ¢; and ¢, result in
large deviations of F' from one. Thus F is a plausible test statistic for the
hypothesis of equal coefficients of variation.

For inference it is essential that F' is approximately F distributed. We assume
that this is the case because F is a quotient between two > approximations divided
by their degrees of freedom. We can however not take it for granted, and will
therefore investigate the properties of F analytically (Chapter 5). We shall also
perform a simulation study (Chapter 6).

At first we shall investigate the possibility that (r; — 1) / n; is not the best choice
of @ (n;) for the F-test. This issue is motivated because David (1949) noted
that (3.6) is approximately %> distributed also if = 1, and Vangel (1996) showed
that

Hzn_l 2 +1

2
n anl,a
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is an optimal choice for calculating confidence intervals (see Section 3.2). Note
also that 8 (n;) =0 in (4.1) gives the ‘naive’ F-test (3.19). According to this test the
coefficients of variation are analysed as if they were standard deviations. No
account is made for the variation in the averages.

We shall look for a function € ; = & (n;) such that F' is approximately F
distributed when the null hypothesis is true. This search will be made by
comparing the moments of F with the moments of an F distributed random
variable. Primarily we want the first moments to be as similar as possible when the
sample sizes, i.e. n; and n,, are equal. It is a difficulty that the moments depend on
the unknown coefficients of variation 3 and 7, which under the null hypothesis
are equal to the unknown common coefficient of variation . We shall make a
Taylor series expansion of F about y = 0, because in applications y is often small
(see Chapter 2 for a discussion of the assumption that y < 1/3).

Finally we require that & in the numerator of (4.1) is the same function as & in
the denominator of (4.1). Different functions would result in different inferential
conclusions depending on which sample was considered as sample 1 and which
sample was considered as sample 2. When the functions are the same, however,
the inference is not influenced, because the 100(1 - «/2):th percentile of the
F distribution with v; and v, degrees of freedom is equal to the inverse of the
100( e /2):th percentile of the F distribution with v, and v, degrees of freedom.

4.2. Development of the approximate F-test

Let W denote a * distributed random variable divided by its degrees of freedom,
and let Z denote a standardized normal random variable. Then, for the average m
given in (3.1),

d o

m=u+7Z
T

and

JUDZ@ -y’ o

where o =y u and d denotes equality in distribution. With this notation we can
write the squared sample coefficient of variation

2
o2 = Wy ’

(%]
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which turns (4.1) into

where we have written &, and 6 instead of 8 (n;) and 6 (n,) respectively. Note that
W, W, Z, and Z, are independent. Also recall that W,/ W, is F distributed with
n;— 1 and n, - 1 degrees of freedom.

Since y is often small in applications it makes sense to expand F in a Taylor
series about y = 0. Thus, in a neighbourhood of y = 0,

ol 5

w .z} | ZZ, Z2
AN T el et M R} TN A
Lo Jmn, n2
W, z? 772, 2,2} ( oW, ew] oWz,
AR R ) 4770 9 Z,-2 y?
T R T PR i R o GRS
Z4 3 272
s 5218 L2 34 +(39W 10‘9W] 72 48922,
Wy n ny~nn, mn, n n AT,

_omz;

n,

+ oW (OW, —92W2)J7/4 + 0(75)~ 4.2)

Since E(Z)) = E(Z,) = E(ZiZ,) = E(Z)*) = 0 and E(Z)%) = E(Z°) = 1, the
expectation of F, in a neighbourhood of y = 0, can be written

E(F)=E[E(F |W,,W,)]

W, W,
=E| ' |+y°E| - iJri—@lWlsz2 +0(r"),
w, W,\n, n,
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where E(F' | W1, W,) denotes the conditional expectation of F given W, and .

Furthermore, since the expectation of an F distribution is E(W, / W,) = (ny- 1) /
(1, — 3) when n, > 3, and since E(W,%) = (n; + 1) (n, — 1) we have

1\ W, w?
EH?’JFJ‘—HI ‘+<92W]}
n. n, )W, w,

_(3 1Jn2—1_91<n2—1><n1+1>+92
n, -3 (n, =3)(n, —1)

n, o n,

when n, > 3. If we now let

the expectation of F'is, in a neighbourhood of y = 0,

E(F):E(ij+2n2 _l(l—lj *+o0@u"), n,>3.

2 n,=3\n n,

Obviously the expectation of F is then close to the expectation of an
F distribution. This is true especially in the balanced case, i.e. when n; = n, = n,
but also otherwise since y is small. In the balanced case we get from (4.2), since
EZ" =3 and EW*) = (n; + 1) (n, + 3) / (n, — 1), that

W, n’ =3n+2
E(F)=E| —L |-2=———""Z4* 1 0(°).
(F) [sz -3 )

It is proved in Chapter 5 that the 7:th moment of F'is

E(F’):E(WIJ +2rE(W1] (2_7—FJ 2+0(%),(43)
w, w, n n,

provided that n, > 2r + 1. We conclude that the original choice of 6, suggested by
McKay (1932), is indeed appropriate also for the F statistic. Thus we introduce the
following test statistic for testing equality of two coefficients of variation.
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Definition 4.1. Let there be two samples. Let y; denote the j:th observation in
sample i. Let n; denote the number of observations, m; the average and c; the
coefficient of variation in the i:th sample:

1 & 1 1 < )
m. = — . ¢, =— | —— —m)T, i=1,2
i Zylj m nl_lg(y/ )

= i

The statistic F is defined as

-1
cl{l+n2 ch
n,
F = " .
czz£1+ i cf]
n,

When n, < 4, the expected value is infinitely large for F as well as for W, / W,.
The expected value of F approximately equals the expected value of an F
distribution with #n; - 1 and n, - 1 degrees of freedom, even if the sample sizes are
small. In case of large sample sizes, F' is a quotient between two accurate
approximations of x> random variables divided by their degrees of freedom. We
can thus anticipate F' to work well as a test statistic for the null hypothesis. As
mentioned earlier the conformity with the F distribution is studied theoretically in
Chapter 5 and by simulation in Chapter 6.

N (4.4)

4.3. A generalized approximate F-test

To generalize the ideas of Section 4.1 and 4.2 assume that y;; = ; + e;, where
e; are independently distributed N(O,(y ,u,-j)z) with0 < ;and 0< 3, <1/3,i=1, 2,
j=12,..,r;k=1,2,..., n; Thus we now assume that we have r; independent
estimates c; of y instead of only one. The estimates are independent, because the
distribution of ¢; does not depend on ;. Then, with 6, = (n; — 1) / ny,

> (n; =Dy /(1+6,¢;
j=1

vl [y

is approximately y* distributed with Zn; — r; degrees of freedom. If Hy: 1 = p is
true,
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2 d (nu _l)clj
2”2/ -hn z 2
a1

m 1+0,c

(4.5)
14 - 2

- = (n2j _l)czj
2 m; = ap 2
=

2
= 140,05,

is approximately F distributed with Zn,; — r, and Zno; — 7, degrees of freedom.
This motivates the following definition.

Definition 4.2. Let there be two sets of samples. Let y; denote the k:th
observation in the j:th sample in set i. Let 7; denote the number of samples in the
i:th set. Let n; denote the number of observations, m; the average and c; the
coefficient of variation in the j:th sample in the i:th set:

I G )
o G =T 2. W —my), i=1,2
Zy/k - nl_j_lg yjk ij

M k=1 ij

The statistic G is defined as

"2 n(n,, — 1)}
Ny g
E Ny, =1,

1+6, clj

G=>" A . (4.6)
rzln —r - (n2] 1)02]
;N
= = 1+ szczj

4.4. An immunoassay example

Brunnée et al. (1996) compares two methods for measuring concentration of
specific IgE antibodies in blood samples. A new system, ELItest, is compared with
the established Pharmacia CAP system (PCS). Among other things the variations
between and within assays are studied. The specific IgE for the allergens mite, cat
and birch is measured for 3 sera with very different levels of concentration. The
inter assay coefficients of variation are calculated on 10 measurements made on
different days, and the intra assay coefficients of variation are calculated on
8 measurements performed on the same day. Brunnée et al. (1996) perform no
hypothesis tests of the coefficients of variation. This is very representative for
studies of precision in diagnostic measuring instruments. Usually no tests are
performed, since there is no well-known method for doing it.

The reported intra assay coefficients of variation are given in Table 5.1 together
with calculated approximate F-tests (4.4). No differences are significant at
level 5%. Observe that this is also true for the third sample of allergen mite,
although the estimate of the coefficients of variation for ELItest (18.6 %) is more
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than twice as large as the estimate of the coefficient of variation for Pharmacia
CAP System (8.3%). The result is however close to the border of being significant
(p-value = 0.052), and it is notable that all other samples show smaller coefficients
of variation in ELItest than in Pharmacia CAP System.

Table 5.1. The approximate F-test based on (4.4) applied to intra assay coefficients of
variation (CV) reported by Brunnée et al. (1996)

ELItest PCS

CV (%) CV (%) Probability
Allergen (n=8) (n=28) F value
Mite 6.6 9.5 0.485 0.360
Mite 3.3 4.8 0.473 0.345
Mite 18.6 8.3 4.904 0.052
Cat 6.9 10.0  0.478 0.352
Cat 4.5 5.5 0.670 0.610
Cat 42 4.6 0.834 0.817
Birch 4.7 9.2 0.262 0.099
Birch 3.8 5.4 0.496 0.375
Birch 4.8 8.2 0.344 0.182

If we assume that each method has constant intra assay coefficients of variation
we can apply the generalized test statistic given in (4.6). The hypothesis of equal
intra assay coefficients of variation is not rejected, because G = 1.046 with 63
degrees of freedom in the numerator and 63 degrees of freedom in the
denominator (probability value 0.8597). However, this result is to large extent
dependent on the third sample of allergen mite. If the estimate of the coefficient of
variation for ELItest (18.6%) is considered to be an outlier, maybe because of
suspected errors in the performance of the assay, and accordingly excluded from
the calculation of the hypothesis test the result is clearly significant. Then G =
2.285 with 63 degrees of freedom in the numerator and 56 degrees of freedom in
the denominator (probability value 0.0020).

Table 5.2. The approximate F-test based on (4.4) applied to inter assay coefficients of
variation (CV) reported by Brunnée et al. (1996)

ELItest PCS

CV (%) CV (%) Probability
Allergen (n=10) (n=10) F value
Mite 20.1 11.7  2.883 0.131
Mite 16.5 10.1  2.629 0.166
Mite
Cat 26.9 10.3  6.465 0.010
Cat 13.9
Cat
Birch 32.6 15.6  4.073 0.048
Birch 16.5 127 1.671 0.456
Birch 17.4 8.0 4.632 0.032

Table 5.2 includes the infer assay coefficients of variation as reported by
Brunnée et al. (1996) and the corresponding results of the proposed approximate
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F-test given in (4.4). Due to missing values, only 6 comparisons can be made.
Differences are significant at level 5% in 3 cases, all of advantage to the
established system.

Under assumption that each method has a constant inter coefficient of variation
the generalized test statistic G given in (4.6) equals 3.265. It shall be compared
with an F distribution with 63 degrees of freedom in the numerator and 54 degrees
of freedom in the denominator. In conclusion the inter coefficient of variation is
significantly larger in ELItest than in Pharmacia CAP System (probability
value 0.00002).

5. Properties of the approximate F-test

In this chapter we shall theoretically study the properties of the statistic F* given
in (4.4). We shall compare the distribution of F with the distribution of an F
distributed random variable X with n; — 1 and n, — 1 degrees of freedom. The
comparison shall be made under the assumptions that the measurements are
normally distributed and that the null hypothesis of equal coefficients of variation
is correct. We shall see that all moments of F" are close to the moments of X if only
the coefficient of variation is sufficiently small. We shall also express the random
variable log F as a sum of log X and some error variables that are in probability of
small orders.

To begin with we give a lemma that is useful when comparing the moments of '
and X. We already know the lemma from the development of the approximate
F-test in the beginning of Section 4.2, but state it here in a complete formulation
with regard to the statistic ' defined not until the end of the same section, in
Definition 4.1.

Lemma 5.1. Let y; = 1; + e;, where e; are independently distributed N(0,(y ),
i=1,2;7=1,2,... n, with positive population coefficient of variation y and
positive expected values z;. Let W; and W, denote independent y* distributed
random variables divided by their degrees of freedom, and let Z; and Z, denote
independent standardized normal random variables. Then the distribution of F, as
defined in Definition 4.1, equals the distribution of

2
Ll_i_Zz?/ +nz_17/2
w, \/Z n,

2

1 Zy +nl—1y2

—| 1+

i \/Z n
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Proof. The averages m;,, given in Definition 4.1, equals
G[

L

in distribution, and the standard deviation ¢; m; equals

W, i=1,2,

in distribution. Thus the distribution of ¢;* equals the distribution of

u+Z 1= 1,2,

i=1,2, (5.1)

which inserted in (4.4) makes the lemma. ¢

The following theorem provides approximate differences between the moments
of the statistic F, as defined by Definition 4.1, and the moments of an F distributed
random variable. We conclude that the moments are similar when the coefficient
of variation is small, especially if the sample sizes are equal or large.

Theorem 5.1. Let y; = g + e; where e; are independently distributed
N, (7)), i=1,2andj=1, 2, ..., n, with positive population coefficient of
variation y and positive expected values z;. Let X be distributed F(n; — 1, n, — 1).
Then the 7:th moment of F'is

2—r_r] 21007, 62

n n,

E(F ) =EX")+2r E(X") (

provided that n, > 2r + 1.

Proof. According to Lemma 5.1

2 r

1 Zyy 2
— |1+ 2= | +0,y
a| W, NIA ?
F'= - . r=1,2,3,...
1 Zy 2
—|1+==| +6y
Wi n
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where d denotes equality in distribution, and 6. = (n;— 1) / n;, i = 1, 2. By a Taylor
series expansion about y= 0,

E(F7) = E[(Z” +;E[2r (r—1) [:VVJ [ jnf - j;?]

w\(.z> zz, Zz2
+2r(1] [31—412+2—91Wl +¢92W2j]y/2 +0(r%).

2 n A, N,

The r:th moment of an F distribution with n; - 1 and n, - 1 degrees of freedom is
(Kotz & Johnson, 1983)

,n, >2r+1.

E[(W” i (n —1j" F[nlz_l ”] F(nzz_i _rj

It is noted that the (+ — 1):th moment can be written

r—l1 r
-1 -2r—1 /4
E L _ (m =D, =2r )E |, >2r+1.
w, (n, =D)(n, +2r-3) w,
The r:th moment of a y* distribution with n - 1 degrees of freedom is (Kotz &
Johnson, 1982)

F(n_l + rj
E(n-vmyl=2 ~ 2 /. (5.3)
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and

As a result, the :th moment of F' can be written

o el (7Y
E(F )—E[Wj

2

2r—1 ~2r-1 '
+r i+i_91 M +0, e Bl | 7:
n, n, n, —1 n, —1 w,

+0(), n, >2r+1,
in a neighbourhood of y = 0. Finally 6, = (n;— 1) / n;, i = 1, 2, produces (5.2). ¢

We do not only want to compare the moments of F' with the moments of an F
distributed random variable X. We also want to compare F with X in a more
straightforward way. Since F is a ratio of two independent > approximations it is
more convenient to compare the logarithm of F with the logarithm of X. This
means that we shall compare the distribution of the logarithm of F' with Fisher’s
z distribution, since originally Fisher (1924) did not define the F distribution but
the z distribution, which is the distribution of (log X) / 2.

Before comparing the distributions we need to make clear the concept

‘probability of order’. Recall that if {r,} and {s,} are sequences of real numbers,
then r, is said to be of order O(s,,) if
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The order in probability is an extension of this concept. It can be defined in the
following way (see Azzalini, 1996).

Definition 5.1. Let {X,} be a sequence of random variables and let {r,} be a
sequence of positive real numbers. Then we say that X, is in probability of order
O(r,), written X, = O,(r,), if for all £> 0 there exists a real number M, such that

n

v,

n

Pr

>M, |<¢

for all n greater than N,. ¢

We will also use two theorems from the book by Azzalini (1996). We state them
here for a quick reference, but refer to Azzalini (1996) for the proofs. According
to the first theorem it suffices to check the second moments to determine the order
in probability of a sequence of random variables.

Theorem 5.2. Let {X,} be a sequence of random variables with E(X;%) = r,> < oo,
and {s,} a sequence of positive reals. Then, if rlis O(s,,z),

X, =Op(sn). .

The second theorem from Azzalini (1996) states that a product of random
variables is in probability of the same order as the product of the order in
probabilities of the random variables. Furthermore, a sum of random variables is
in probability of the same order as the largest order in probability of the random
variables.

Theorem 5.3. Let {r,} and {s,} be two sequences of positive real numbers and
{X,}, {Y,} be two sequences of random variables. Then, if X, = O,(r,) and
Y= Oy(s0),

h XY, =0,@s,)

i) X,+7Y,=0,(max(r,,s,)). ¢
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We are now ready to compare the distribution of the logarithm of F' with the
distribution of the logarithm of an F distributed random variable X.

Theorem 5.4. Let y; = 1 + e; where e; are independently distributed
NQO, (yu)), i=1,2andj= 1,2, ..., n, with positive population coefficient of
variation y and positive expected values ;. Let X be F(n; — 1, n, — 1) distributed,
let Z be N(0, 1) distributed, and let U; be ;{2 distributed with n; — 1 degrees of
freedom, i = 1, 2. Let X, Z, U, and U, be independent. Then

d
log F=log X +2 /1+127+(1U1 —IUZJ)/Z +R(n,,n,,7),
n.on n, n,

where R(ny , n, , y) = 0,7(m21x(i11'l 7/2 R nz'l 7/2 s )/4)). ¢

Note that the theorem implies that the distribution of log F' equals the distribution

of log X + 0,7(m21x(111'”2 v, ny"? Vs 72))-

Proof. Write log F as

—1 -1
-1 -1
10gF:10gcf[1+ " cf] —logc§(1+ "2 czz] . (54
n n

1 2

The first term is by (5.1)

- 4 2 2
logcf[l + 4 cfj =log—— _log 1+ I_Wry -
n n
l 1+ﬂ 1 1+ﬂ
i, Jn
2
=logW,y* —log 1+ﬂ M llez

N n,

Zy +Z1272 +n1_lW

2
VARE
N n,

where W, denotes a 7’ distributed random variable divided by its degrees of
freedom, and Z; denotes a standardized normal random variable. Expansion of the
last term yields

=logW, +logy* —logl 1+2
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3
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3 n n, n,

which consists of terms of the form

Zlk?/k
» k=1,2,... (5.6)
ni’?
and
1 k
n J—
(l—j Wy, k=1,2,... (5.7)
n

and of terms that are a product of the two forms. Now use Theorem 5.2. For the
terms on the form (5.6), since

ZZk E ZZk
E( lkJ: ( 1 ):O(nl—k

k
n n

it is concluded that

zZ!
/2
n

—k/2
=0, ("), k=1,2,...

For the terms on the form (5.7)
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by (5.3), and consequently

(”l _lj wh=0,().

n,

After collecting terms it is, by Theorem 5.3, possible to write (5.5) as

Zy Zl 7 -1

NS n, n,

2
=227 1W}/ +0,| max }/_’7/4 .
\/”_1 ”1 n

The corresponding calculations can of course be made also for the second term
in (5.4). Then log F can be written

log| 1+2 Wy’

d —
log F =logW, —logW, +2 27 -2 27 1W 2—n2—1W2y2

Vo 3
2 2
+Op(max[y—,y—y4jj
non,
a 1 | 1 )
=logX+2 | —+—Zy+|—U,——U, [y +R(n,,n,,y),
n,n, n, n,

where R(n, , ny , y) = OP(max(nl'lyz, nz'l;/z, ;/4)). .

6. A simulation study

In this chapter we investigate, by Monte Carlo technique, the significance levels
and powers of the tests described in Chapter 3 and the approximate F-test
proposed in Chapter 4.
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6.1. Methods

In each simulation two samples with n; and n, observations respectively were
randomly generated 20 000 times in Release 13 of MATLAB (The Mathworks
Inc., Natick, MA, USA). The observations belonged to normal distributions with
expected values 100 and 1000, and with coefficients of variation » and
respectively. The tests were performed with significance level 5% against the
alternative hypothesis of unequal coefficients of variation, i.e. the tests were two-
sided. With the various y’-tests the null hypothesis was rejected when the test
statistic was larger than the 95th percentile of the x> distribution. When using
F-tests the null hypothesis was rejected when the test statistic was smaller than the
2.5th percentile or larger than the 97.5th percentile of the F distribution. With
Miller’s test the null hypothesis was rejected when the test statistic was smaller
than the 2.5th percentile or larger than the 97.5th percentile of the standard normal
distribution.

Five cases were studied, as summarized in Table 6.0. The type I errors of the
tests were investigated in Case 1-3, and the powers of the tests were investigated
in Case 4 and 5. The first case had a small coefficient of variation (5%) and equal
sample sizes. The second case had instead a large coefficient of variation (25%),
but still equal sample sizes. The third case had large coefficients of variation but
unequal sample sizes (n; was fixed to 4). In the fourth case one coefficient of
variation was 5% and the other 10%, and the sample sizes were equal. In the fifth
case the sample sizes were unequal (7, was fixed to 4), and a larger discrepancy
between the coefficients of variation was studied, 5% vs. 15%, since it is hard to
obtain a good power when one of the sample sizes is small.

Table 6.0. The cases investigated in the simulation study

Case Objective Y1 Y2 Sample sizes Table Figure
1 Type I error 0.05 0.05 ny =n 6.1 6.1
2 Type I error 0.25 0.25 ny =n 6.2 6.2
3 Type I error 0.25 0.25 n =4 6.3 6.3
4 Power 0.05 0.10 n =ny 6.4 6.4
5 Power 0.05 0.15 n =4

0.15 0.05 ny =4 6.5 6.5

The size, n,, of the second sample varied from 2 to 20. Thus 19 simulations
were made per case. In Case 5, however, 2 simulations were made per value of n,
i.e. in total 38 simulations. This was because the tests had one power when the
smaller coefficient of variation was measured with the smaller sample size, and
another power when the smaller coefficient of variation was measured with the
larger sample size. For this reason, per value of 7, 20 000 samples were simulated
according to the first situation, and 20 000 samples were simulated according to
the second situation. The average powers were calculated and reported.

The following tests were included in the study: the approximate F-test (4.4), the
likelihood ratio test (3.12), Miller’s test (3.14), Bennett’s test (3.13), Doornbos
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and Dijkstra’s test (3.17), the Wald test (3.15), the score test (3.16), the naive test
(3.19) and the log test (3.18).

6.2. Results

We look at one case at a time.

6.2.1. Case 1:y;=v,=5%and n; =n,

The results of the simulations according to Case 1 is reported in Table 6.1 and
illustrated in Figure 6.1. The figure shows that three tests performed well with
regards to type I error: the approximate F-test, the naive test and the log test all
showed relative frequencies of rejections close to the significance level 5%.
Miller’s test, Bennett’s test and the Wald test worked well when the sample sizes
were not very small. The likelihood ratio test, Doornbos and Dijkstra’s test and the
score test required large sample sizes.

Table 6.1. Case 1. Pr(Type I error) in percentages when y;=vy,=0.05 Significance
level: 5%. F = F-test (4.4), R = Likelihood ratio test (3.12), M = Miller’s test (3.14),
B = Bennett’s test (3.13), D = Doornbos & Dijkstra’s test (3.17), W = Wald test (3.15), S =
Score test (3.16), N = Naive test (3.19), L = Log test (3.18)

m m» F R M B D W S N L
2 2 456 2428 1.00 885 000 197 000 456 457
3 3 512 1530 635 765 - 655 000 514 5.17
4 4 492 1117 617 672 000 634 031 493 501
5 5 515 983 623 651 002 631 219 519 523
6 6 466 846 571 584 043 576 273 469 4.73
7 7 505 815 58 598 105 590 3.64 513 5.8
8 8 502 769 572 58 161 577 377 504 5.12
9 9 483 712 538 542 178 539 3.84 486 5.00
10 10 478 680 528 535 210 531 394 481 495
11 11 495 685 553 559 245 556 432 499 5.18
12 12 504 665 553 556 260 553 440 507 525
13 13 491 651 542 549 288 546 439 497 501
14 14 511 660 557 560 321 559 461 517 529
15 15 498 627 530 533 323 533 453 503 5.13
16 16 493 599 518 521 331 520 455 498 5.09
17 17 487 592 521 521 324 521 447 490 507
18 18 523 630 555 558 3.56 558 486 528 537
19 19 494 599 529 530 361 529 461 500 531
20 20 516 597 542 542 396 542 487 520 534
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6.2.2. Case 2:y;=v,=25% and n; = n,

The results of the simulations according to Case 2 is reported in Table 6.2 and
illustrated in Figure 6.2. In this case the coefficient of variation was large (25%).
The approximate F-test showed nevertheless almost correct probability of type I
error (5%). The naive test rejected the null hypothesis with a probability somewhat
larger than 5%. The log test, interestingly, did not work in a proper way. Miller’s
test, Bennett’s test and the Wald test behaved well when the sample sizes were not
very small. The likelihood ratio test, Doornbos and Dijkstra’s test and the score
test required large sample sizes.

Table 6.2. Case 2. Pr(Type I error) in percentages when y;=v,=0.25. Significance
level: 5%. F = F-test (4.4), R = Likelihood ratio test (3.12), M = Miller’s test (3.14),
B = Bennett’s test (3.13), D = Doornbos & Dijkstra’s test (3.17), W = Wald test (3.15), S =
Score test (3.16), N = Naive test (3.19), L = Log test (3.18)

F R M B D w S N L

S
S
¥)

502 2469 032 9.18 000 037 0.00 520 534
491 1478 550 7.57 - 359 0.00 538 6.01
516 11.64 589 7.02 000 431 037 575 713
521 10.02 577 653 007 462 231 59 795
5.07 9.00 566 621 053 4.65 3.17 6.01 876
496 829 546 597 096 458 354 595 925
487 749 521 563 143 443 370 584 9.66
505 746 548 584 214 466 4.07 621 1042

O 0 N N W kAW
O 0 N N kW

10 10 504 7.15 537 572 233 471 420 6.15 1092
11 11 548 7.19 582 6.03 287 523 476 6.61 1133
12 12 496 637 522 542 273 475 440 597 1130
13 13 493 652 522 548 292 469 437 617 11.53
14 14 496 638 517 531 314 474 450 6.18 11.79
15 15 524 670 548 569 341 503 475 6.63 12.69
16 16 481 6.13 503 515 330 464 446 6.11 12.58
17 17 535 639 556 564 364 514 494 651 1320
18 18 503 626 529 551 352 486 470 647 13.39
19 19 484 574 499 509 354 470 452 6.06 13.08
20 20 499 588 515 524 387 485 473 623 13.55
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6.2.3. Case 3:y;=vy-=25%andn; = 4

The results of the simulations according to Case 3 is reported in Table 6.3 and
illustrated in Figure 6.3. In this case, with unequal sample sizes and at least one
small sample size (n; = 4) in combination with a large coefficient of variation, the
approximate F-test was the only test that showed nearly correct probability of
type I error (5%). The Wald test, which showed good performance in Case 1 and
Case 2, did not perform well in this case. Neither did the likelihood ratio test nor
Doornbos and Dijkstra’s test. The log test had too large relative frequency of
rejected hypotheses, and the score test had too small. Miller’s test, Bennett’s test
and the naive test worked better, but not as good as the approximate F-test.

Table 6.3. Case 3. Pr(Type I error) in percentages when y;=v,=0.25. Significance
level: 5%. F = F-test (4.4), R = Likelihood ratio test (3.12), M = Miller’s test (3.14),
B = Bennett’s test (3.13), D = Doornbos & Dijkstra’s test (3.17), W = Wald test (3.15), S =
Score test (3.16), N = Naive test (3.19), L = Log test (3.18)

F R M B D w S N L

S
S
[¥)

517 2156 349 836 0.00 2045 224 555 6.00
529 1395 548 7.59 - 649 135 585 6.84
511 1155 577 692 000 422 047 569 7.10
531 11.02 590 698 000 550 182 6.09 7.64
515 1038 538 653 000 691 254 595 7.77
520 1068 5.18 6.71 001 922 262 6.13 8.19
487 1002 479 633 0.05 10.50 250 567 7.78
503 1048 4.67 627 0.14 1212 274 585 8.09
486 10.60 443 6.19 021 1351 281 581 8.18
519 11.00 453 629 027 1477 297 6.12 8.10
518 1058 4.56 6.46 044 1534 286 624 838
527 1084 437 656 048 1638 3.08 6.26 8.75
505 1084 420 629 043 17.10 292 6.15 846
5.04 1058 4.08 6.06 061 1775 275 6.02 840
491 11.09 393 6.12 0.63 1882 269 594 8.3
498 11.08 4.00 6.15 0.68 19.11 290 6.11 8.18
479 1072 373 588 0.78 19.18 262 571 7.92
524 1123 4.01 634 087 1987 289 624 843
510 1138 386 630 1.07 2028 2.68 6.12 835
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6.2.4. Case 4:y,=5%, y>=10% andn; =n,

The results of the simulations according to Case 4 is reported in Table 6.4 and
illustrated in Figure 6.4. For all tests the powers increased with the number of
observations and reached a level of app. 80% when the sample sizes were 20. The
likelihood ratio test showed large power for small sample sizes, but it also rejected
the null hypothesis when it was true, cf. Figure 6.1. The score test and Doornbos
and Dijkstra’s test never rejected the hypothesis of equal coefficients of variation
when the sample sizes were small. Miller’s test and the Wald test had very small
powers when n; = n, = 2, otherwise they worked similar as the approximate F-test,
Bennett’s test, the naive test and the log test.

Table 6.4. Case 4. Power in percentages when y;=0.05and y,=0.10. Significance
level: 5%. F = F-test (4.4), R = Likelihood ratio test (3.12), M = Miller’s test (3.14),
B = Bennett’s test (3.13), D = Doornbos & Dijkstra’s test (3.17), W = Wald test (3.15), S =
Score test (3.16), N = Naive test (3.19), L = Log test (3.18)

m m, F R M B D W S N L
2 2 615 3044 125 11.77 000 191 000 617 6.8
3 3 972 2619 1203 1456 - 1199 000 982 995
4 4 1509 29.05 18.04 1934 000 17.92 143 1530 15.68
5 5 2052 3227 2338 2431 028 2332 11.32 20.84 21.22
6 6 2665 3740 29.71 3038 4.72 29.63 19.42 2698 27.68
7 7 3251 41.86 35.14 3559 1230 3503 26.77 32.88 33.43
8 8 3876 47.13 4121 4156 2038 41.14 34.15 39.15 39.82
9 9 4407 5127 46.19 46.62 28.07 46.14 40.14 44.40 45.04
10 10 4947 5597 51.51 51.76 34.83 5147 46.07 49.85 50.47
11 11 5416 59.92 5596 56.13 41.80 55.94 5136 5454 55.12
12 12 5796 63.13 59.54 59.73 47.12 59.50 55.50 5837 58.77
13 13 6340 68.02 64.93 65.05 53.97 6490 61.58 63.74 64.44
14 14 6723 7128 68.53 68.65 58.74 68.51 6552 67.57 68.29
15 15 69.55 73.20 70.73 70.81 62.58 70.70 68.18 69.89 70.47
16 16 7344 7636 7430 7439 67.03 7427 7215 73.69 74.10
17 17 76.04 7892 76.94 77.06 70.64 76.94 7490 7637 76.90
18 18 78.72 81.13 79.43 79.49 74.03 79.41 77.58 78.96 79.48
19 19 81.09 83.26 81.82 81.88 77.13 81.80 80.19 8139 81.79
20 20 83.68 85.59 8437 84.42 80.02 84.33 82.98 8395 8426
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6.2.5. Case 5: one vy is 5% and the othery is 15%, n; = 4

The results of the simulations according to Case 5 is reported in Table 6.5 and
illustrated in Figure 6.5. The likelihood ratio test showed the largest power, but it
should be clear from the studies of type I error (Case 1-3) that this test does not
behave in a proper way when the sample sizes are small. The approximate F-test,
Miller’s test, Bennett’s test, the Wald test, the naive test and the log test all gave
similar power patterns, but Miller’s test reached a smaller power and Bennett’s test
reached a larger. Doornbos and Dijkstra’s test was not successful at all, and the
power of the score test was comparatively small.

Table 6.5. Case 5. Average power in percentages when one y is 0.05 and the other y is 0.15.
Significance level: 5%. F = F-test (4.4), R = Likelihood ratio test (3.12), M = Miller’s
test (3.14), B = Bennett’s test (3.13), D = Doornbos & Dijkstra’s test (3.17), W = Wald
test (3.15), S = Score test (3.16), N = Naive test (3.19), L = Log test (3.18)

F R M B D w S N L

S
S
¥)

17.21 4276 1551 2227 0.00 32.64 11.82 17.41 17.57
25.00 46.68 27.27 31.83 - 2897 9.75 2541 2597
32.78 51.98 3730 3939 0.00 36.44 399 3342 34.06
39.65 57.05 43.46 45.74 0.00 43.25 18.31 40.25 40.87
43.81 60.27 46.19 49.68 0.02 47.57 25.16 44.36 45.23
46.31 62.25 47.27 52.01 030 4997 2832 46.80 47.63
49.23 64.84 49.10 5498 0.78 52.46 3090 49.78 50.59
49.76 65.80 48.71 55.65 135 5331 3195 50.29 51.23
51.04 67.15 4893 57.02 2.09 54.52 3279 51.60 52.34
5249 68.67 49.58 58.83 2.83 5546 33.86 53.03 53.97
53.12 69.41 49.79 59.62 3.96 5593 3439 53.63 54.50
53.64 70.19 49.79 60.04 447 56.02 35.06 54.11 54.97
5435 70.79 4991 60.69 539 56.82 3551 54.84 55.71
5493 7140 4998 61.17 6.23 56.84 3571 5539 56.27
54.85 71.82 49.64 61.61 692 5699 3589 5538 56.41
5544 7247 4987 62.06 7.777 5742 36.17 5593 56.84
55.23 72.55 49.27 62.01 8.17 57.17 36.47 55.72 56.74
55.74 73.12 49.49 62.84 9.10 57.66 36.45 56.23 57.30
5597 7342 4958 63.03 9.72 57.53 36.77 56.45 57.40
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6.3. Conclusions

The likelihood ratio test, the Wald test, Doornbos and Dijkstra’s test and the
log test all showed poor performance with regard to type I error in at least one of
Case 1-3. For this reason they are not recommended for use. The results of the
score test was not as good as the results of the other tests, neither considering
type I error nor considering power. The naive test worked similar as the
approximate F-test, but had too large probability of type I error when the
coefficient of variation was large. Three tests performed well: the approximate
F-test, Miller’s test and Bennett’s test. Miller’s test did however not work properly
when the sample sizes were very small and it also reached a smaller power.
Bennett’s test was more powerful than the approximate F-test, but it also rejected
the true null hypotheses too often. The approximate F-test was the only test that
showed almost correct probability of type I error when the sample sizes were
small. Based on the given simulations we conclude that the approximate F-test is
recommendable.

7. The distribution of McKay’s approximation

As indicated by the example in Section 3.2 McKay’s approximation works well
for constructing confidence intervals for the coefficient of variation. The proposed
statistic F' given in (4.4) is a quotient between two McKay approximations. We
have seen that F is approximately F distributed when the null hypothesis of equal
coefficients of variation is true (Chapter 5), and that the F-test works well in
comparison with other tests (Chapter 6). These results make us interested in
McKay’s approximation. We define it in the following way.

Definition 7.1. Let y;, j =1, 2, . . ., n be n independent observations from a normal
distribution with expected value x and variance o’. Let y denote the population
coefficient of variation, i.e. y= o/, and let ¢ denote the sample coefficient of
variation, i.e.

1 [1 ¢ ) 1
c=— |— —m), m=— .
m\/n_ljz_:,(y, ) n;‘,y,

McKay’s approximation K is defined as

(=D & (pY)

(1+n_lczj 7/2
n
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McKay (1932) obtains the result that K is approximately > distributed with 7 - 1
degrees of freedom by transforming the sample coefficient of variation c to ¢ by

B (n-1) ¢*

(1+n_lczj }/2
n

and then expressing the density of ¢ as a contour integral in the complex plane.
McKay deforms the path of the counter integral to the path of steepest descent,
which passes through the saddle point z = # of the integral (cf. de Bruijn, 1970). In
the next step McKay makes an approximation in order to solve the integral. This
makes it possible to study the approximate density of K = ¢ (1 + y?). Finally
McKay notes that K is approximately x> distributed with n — 1 degrees of freedom
if p is small.

2

McKay (1932) does not theoretically express the size of the error in the
approximation. For this reason Fieller (1932), in immediate connection to
McKay’s article, investigates the approximation numerically and concludes that it
is ‘quite adequate for any practical purpose.” Also Pearson (1932) examines the
new approximation and finds it ‘very satisfactory.” Later Iglewicz & Myers (1970)
study the usefulness of McKay’s approximation for calculating quantiles of the
distribution of the sample coefficient of variation ¢ when the underlying
distribution is normal. They compare results according to the approximation with
exact results and find that the approximation is accurate. Umphrey (1983) corrects
a similar study made by Warren (1982) and concludes that McKay’s
approximation is adequate. Vangel (1996) analytically shows that the error in the
approximation is small when the population coefficient of variation yis small.

It is thus well documented that McKay’s approximation K, as defined by
Definition 7.1, is indeed approximately y* distributed with n — 1 degrees of
freedom. However we shall soon see that K is actually noncentral beta distributed.
We shall prove it in two ways. The first utilises the following lemma.

Lemma 7.1. Let s denote the standard deviation, i.e. s = cm. Then

c’ _ons’
n-1, & ,°

1+ ¢ ny
n =
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Proof.

s
c’ _ m? _ ns’
n—1 - Va2 2 1\ 2
1+ 14 (n 125 nm”+(n-1)s
n nm
ns’ ns’
= = ..
n n 1 5
nm2+[Zyj2.—2mZyj+nm2] ZJ";
j=l J=1 JA

Lemma 7.1. is of special interest to us since it gives another representation of the
test statistic F given in (4.4):

L)

2 2

ns Zij
_ A

F=—"/"—.
n
2 2
n,s, ZJ’U
Jj=1

Recall that if U, and U, are independent Xz distributed variables with v, and v,
degrees of freedom respectively, then

:L (7.1)
U, +U,

is Beta(v/2 , v/2). When U, is instead a random variable with a noncentral
x* distribution with v, degrees of freedom and noncentrality parameter A the
distribution of the ratio (7.1) is according to Johnson & Kotz (1970) the noncentral
beta distribution with noncentrality parameter A.

The other side of the coin is the distribution of

I_V:L’
U +U,

which is sometimes also called noncentral beta, e.g. by Hodges (1955) and
Seber (1963). We shall use the following definition which include both cases and
which is also given by Johnson & Kotz (1970).
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Definition 7.2. Let U; and U, be independently y* distributed random variables
with v, and v, degrees of freedom respectively and with noncentrality parameters
Ay and 4, respectively. The doubly noncentral beta distribution with parameters
vi/2, vy/2, A1 and 4,, denoted Beta(vi/2 , vy/2 , 4, , A,) is defined as the distribution
of

— Ul
U +U,

We are now ready to state that McKay’s y*-approximation is doubly noncentral
beta distributed.

Theorem 7.1. The distribution of McKay’s approximation K, as defined by
Definition 7.1, is

2
m Beta(nTl s % , 0 12} . (7.2)
e

We shall prove the theorem in two ways. The first proof makes use of
Lemma 7.1.

Proof'1. By Lemma 7.1,

1Y (y, —m)y’ ni(yj —m)y’

(n—1)c’ _ A nU,

n-1 : R LU U,
D e/ ED Y CIE i V.
J=1 J= J=1

n

where U, = 2(y; - m)*/c* and U, = Em*/c*. Here U, is y* distributed with n — 1
degrees of freedom. The average m is normally distributed with expected value u
and variance o*/n. Consequently nm*/c?, i.e. U,, is %* distributed with 1 degree of
freedom and noncentrality parameter ni/o? = n/y* (see e.g. Shao, 2003). Since
the sums of squares X(y; — m)* and Zm?* are independent it follows from Definition
7.2 that McKay’s approximation KX is distributed as (7.2). ¢

The second proof utilise that n'*/c is t distributed with n — 1 degrees of freedom
and noncentrality parameter n"*/y. We show this fact in the beginning of the proof.
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Proof 2. The noncentral t distribution with n — 1 degrees of freedom and
noncentrality parameter A is the distribution of

T = , (7.3)

where ¥, is N(4, 1) and V5 is y* distributed with n — 1 degrees of freedom (see
e.g. Shao, 2003). Since m is distributed as

< R AN 2 S R AN U I
N(y,nj_ﬁN(J,1j_ﬁN(y,lJ—ﬁVl

with 1= n"%/y, and since s> = ¢’m? is distributed as o® V»/(n — 1) it follows that

ﬁmIIIVI

— = =T.
c S o V2 \/Vz
n—1 n—1

In conclusion n"%/c is t distributed with n — 1 degrees of freedom and
noncentrality parameter A = n"%/y. Thus we can write

(n—1)c* _ (n=Dn i(n—l)n

n-1 n T>+n-1
1+5—c* S +(n-1) "
n c
Thus, with T from (7.3),
(n—1)c? (n—1n _nV,  nU
PR MM_I WAV, Uy+U
n v,

where U = Vs is y” distributed with n — 1 degrees of freedom, and U, = V;? is
y? distributed with 1 degree of freedom and noncentrality parameter A* = n/y >
Then, by Definition 7.2, McKay’s approximation KX is distributed as (7.2). ¢
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8. Discussion

Warren (1982) writes: ‘“While workers in many fields recognize the imprecision in
a sample mean, and will now routinely compute a standard error, or a confidence
interval, for the mean, many of these same workers will treat the sample
coefficient of variation as if it were an absolute quantity. Inferences based on this
measure of variability may then be questionable. Nevertheless, it should be
possible to persuade such workers that, as with the sample mean, some measure of
precision should be attached to the sample coefficient of variation.” Though many
years have passed since Warren made this reflection the situation has not changed.
Researchers still lack standard methods for expressing the precision in estimated
coefficients of variation. The purpose of this thesis has been to explore confidence
intervals and tests that have been suggested but are seldom used, and to contribute
to the knowledge about how to make valid statistical inference. The present work
shall be the basis for future research and development of methods for analysing
normally distributed measurements with constant coefficient of variation.

A sceptic may claim that researchers do wrong when they calculate coefficients
of variation and at the same time assume normally distributed data. The sceptic
may think that models that are not easy to analyse should be avoided. For this
reason we have discussed the adequacy of the model. We have especially
discussed immunoassay data and derived a rational for assuming that the
measurements are approximately normally distributed and that the coefficient of
variation is approximately constant. This is central, because the coefficient of
variation is the predominant measure of dispersion in diagnostic research. Our
presumption has been that researchers do right, but are in need of statistical tools
for analysing their estimated coefficients of variation, exactly as Warren (1982)
pointed out.

8.1. Conclusions

With the advanced computer programs of today it is easy to calculate an exact
confidence interval for the coefficient of variation, based on the noncentral
t distribution. Otherwise we recommend the approximate confidence interval
suggested by Vangel (1996). This confidence interval is built on the
y*-approximation found by McKay (1932). We have, as we believe for the first
time, shown that McKay’s approximation is noncentral beta distributed.

For the hypothesis of equal coefficients of variation we have proposed a new
test statistic F, which is approximately F distributed. The test statistic F is simply a
quotient between two McKay approximations. It is thus easy to calculate. We have
shown that all moments of F are close to the moments of an F distributed random
variable if the unknown common coefficient of variation is sufficiently small. We
have also proved that the logarithm of F in distribution equals the logarithm of an
F distributed random variable plus some error variables that are in probability of
small orders.
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We have made a simulation study that is unique and important since many of the
tests have never been compared with each other. The study revealed that several
proposed tests have erroneous type I errors when the sample sizes are small. The
likelihood ratio test, the Wald test, the score test and Doornbos and Dijkstra’s test
shall not be used unless the sample sizes are large. One of the most interesting
results of the simulation study is that a variance test carried out on log values, i.e.
the ‘log test’, performs badly when the coefficient of variation is not small. This is
a key result since statisticians often use the logarithmic transformation when the
standard deviation is proportional to the average. The proposed approximate F-test
was the only test that showed almost correct probability of type I error when the
sample sizes were small. For this reason we recommend the approximate F-test for
comparing two sample coefficients of variation.

The proposed approximate F-test is, unlike several tests, easily generalized to a
situation with many independent estimates of the coefficients of variation. We
have made the appropriate extension and introduced the generalized approximate
F-test. In this test estimates based on many observations are more important than
estimates based on few observations. Each estimate is, after a transformation,
simply weighted by its degrees of freedom. This possibility of weighing results is
a valuable feature of the F-statistic.

8.2. Future research

This thesis is the starting point for further research on the analysis of coefficients
of variation. We have focused on two fundamental inferential problems: that of
constructing a confidence interval and that of comparing two coefficients of
variation. There are many other problems to study.

One basic question is how to make point estimates. Usually the unknown
coefficient of variation is estimated by the coefficient of variation in the sample,
but not much has been written about the properties of this estimator. Could there
be estimators that are better in some respect? In applications there are often many
estimates of a common coefficient of variation and a need for pooling the
estimates into one single estimate. How shall this calculation be made when the
estimates are based on different numbers of observations? It is possible to
calculate a weighted average with number of observations or with degrees of
freedom as weights. Another possibility, suggested by the generalized F-test
introduced in this thesis, is to weight the coefficients of variation after
transformation according to McKay’s approximation.

We have in Chapter 5 studied the properties of the approximate F-test. The
corresponding studies of the generalized F-test, as defined in Definition 4.2,
remain to be made. The agreement between the moments of the test statistic ' and
the moments of an F-distributed random variable could perhaps be utilised to
make an asymptotic expansion of the density of . The observation that McKay’s
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approximation is noncentral beta distributed make it possible to take advantage of
results for this distribution in the study of how McKay’s approximation can be
used for analysing coefficients of variation. The poor performance of the log test,
observed in the simulation study when the coefficient of variation was large, calls
for a theoretical explanation. The approximate F-test is limited to the case of
comparing two coefficients of variation. We would like to generalize to a test for
the comparison of several coefficients of variation.

In immunoassay data there are often many variance components. There could be
variation e.g. between batches of reagents, between days, between laboratories,
between instruments and between positions within instruments. How shall such
complex models be analysed when many blood samples with very different levels
of concentration are included and the researchers are interested in the coefficients
of variation?

We have argued for a model with the standard deviation proportional to the
expected value, but more sophisticated models are sometimes appropriate for
analysing immunoassay data. It is often assumed (see e.g. O’Connell, Belanger &
Haaland, 1993) that the standard deviation is linearly increasing not with the
expected value, but with the expected value to a power of an additional variance
parameter, i.e.

o=, 3.1)

where o is the standard deviation, x is the expected value and y and ¢ are variance
parameters. In this thesis we have only discussed the case that ¢= 1. A future
work could involve models in which both yand ¢ are estimated.

We have studied differences in coefficients of variation between two groups. In
the future we would like to model the coefficient of variation, or the variance
parameters in (8.1), by explanatory variables. A closely related problem of large
interest is the problem of modelling the expected values when the coefficient of
variation is assumed to be constant or when the standard deviation is assumed to
depend on the expected values according to (8.1).
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