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Abstract 

Forkman, F.J. 2005. Coefficients of Variation – an Approximate F-Test. 
Licentiate thesis. 
ISSN 1652-3261. ISBN 91-576-6886-8. 
 
Basic inferential methods for analysing coefficients of variation in normally distributed data 
are studied. The assumptions of normally distributed observations and a constant coefficient 
of variation are discussed and motivated especially for immunoassay data. An approximate 
F-test for comparing two coefficients of variation is introduced. All moments of the 
proposed test statistic are shown to be approximately equal to the moments of an 
F distribution. It is proved that the distribution of the logarithm of the test statistic equals 
the distribution of the logarithm of an F distribution plus some error variables that are in 
probability of small orders. The approximate F-test is compared with eight other tests in a 
simulation study. The new test turns out to perform well, also in case of small sample sizes. 
A generalized version of the approximate F-test is defined for the case that there are several 
estimates of each coefficient of variation, calculated with different averages. The test is 
based on a χ2 approximation given 1932 by A. T. McKay. It is proved that McKay’s 
approximation is noncentral beta distributed. 
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Sammanfattning 

Variationskoefficienten är standardavvikelsen dividerad med medelvärdet. Detta 
spridningsmått används på många håll i praktiken när man är intresserad av hur 
stor variationen är i relation till nivån på observationerna. Ändå analyseras 
variationskoefficienter sällan statistiskt. Syftet med denna avhandling är att 
redogöra för metoder för analys av variationskoefficienter i normalfördelade 
material, särskilt metoder för att beräkna konfidensintervall och för att pröva 
hypotesen att två variationskoefficienter är lika, samt att introducera några nya 
idéer. 
 
 När standardavvikelsen är proportionell mot medelvärdet är det vanligt att 
logaritmera observationerna och anta att de logaritmerade observationerna är 
normalfördelade. I denna avhandling argumenteras för alternativet att istället anta 
normalfördelning i ursprunglig skala och analysera observationerna utan att först 
logaritmera dem. Speciellt visas för immunokemiska metoder att det kan vara 
rimligt att anta att mätvärdena är normalfördelade i ursprunglig skala och att 
variationskoefficienten är konstant. 
 

Ett nytt test för att pröva hypotesen att två variationskoefficienter är lika 
föreslås. Teststatistikan jämförs med F-fördelningen. Alla teststatistikans moment 
är approximativt lika momenten för en F-fördelad variabel. Logaritmen av 
teststatistikan är i fördelning är lika med logaritmen av en F-fördelad variabel plus 
några feltermer som i sannolikhet är av små ordningar. 
 
 Teststatistikan är baserad på A. T. McKays χ2-approximation från 1932. Många 
har visat numeriskt och analytiskt att McKays approximation verkligen är 
approximativt χ2-fördelad. I denna avhandling visas att McKays approximation är 
ickecentralt betafördelad. 
 

Det nya testet jämförs med åtta andra test i en simuleringsstudie. I studien är det 
nya F-testet det enda som ger nästan korrekt typ I-fel när antalet observationer är 
litet. Alternativet att logaritmera observationerna före analys fungerar i studien 
dåligt när variationskoefficienten är stor. 
 
 Det nya testet går, till skillnad från många andra test, att generalisera till fallet 
att det finns många oberoende skattningar av variationskoefficienterna. Testet 
generaliseras och tillämpas på ett verkligt exempel från diagnostisk forskning. 
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1. Introduction 

The coefficient of variation is the standard deviation divided by the mean. 
Pearson (1896) defined the term and applied it when comparing various 
measurements on females with corresponding measurements on males. Ever since 
then it has been used as a measure of dispersion in many biological applications. 
Schimmerl-Metz et al. (1999) provide a modern example from morphology. They 
calculate coefficients of variation on measurements of the scapholunate joint 
intercortical width of wrists. 
 

When laboratory analytical procedures are employed the standard deviation of 
repeated measurements are often proportional to the concentration being 
measured. The precision of an analytical method is usually described by 
coefficients of variation between and within assays. DeSilva et al. (2003) 
accordingly recommend that precision shall be expressed by coefficients of 
variation. Comparing the performance of e.g. two laboratories or two instruments 
thus involves the problem of comparing two coefficients of variation. 
 

When clinical trials are studied not only the average effect of a treatment but 
also the variation in the effect is considered. It is not always appropriate to assume 
independence between effect size and variance. Often data indicate a constant 
coefficient of variation. In crossover trials treatments are compared within 
individuals. An individual is first given one treatment, and then a second treatment 
and so on. Sometimes each individual receives each treatment several times. The 
individuals may respond very differently on the treatments, and the standard 
deviation in the replicated measurements is often proportional to the response. In 
this case the coefficient of variation is a natural measure of dispersion. The Food 
and Drug Administration (2001) establish that coefficients of variation shall be 
reported in bioequivalence studies. 
 

The reaction time of a task may differ much between a group of patients and a 
control group. The coefficients of variation may however, according to Schafer & 
Sullivan (1986), be similar or equal in the two groups. 
 

Despite the large number of applications the properties of the coefficient of 
variation is seldom discussed in statistical textbooks. As a consequence there is 
among practitioners often an inadequate knowledge on how to make basic 
statistical inference concerning the measure. We shall in this thesis investigate 
different solutions and recommend statistical methods. We are motivated by the 
gap between theory and practice. In theory the variance is the primary measure of 
dispersion, but in practice it is, in some fields of interest, the coefficient of 
variation. The objective is to collect and report existing information about how to 
construct confidence intervals and hypothesis tests for the coefficient of variation 
and add some new ideas. This investigation shall be a basis for future research. 
 

A popular technique when the standard deviation is proportional to the average 
is to apply the logarithmic transformation and perform the analysis on log values. 
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The assumption of lognormally distributed data thus introduced is however not 
always reasonable. We discuss this in Chapter 2 and provide especially for 
immunoassay applications a rational for assuming a constant coefficient of 
variation in combination with normally distributed data. In Chapter 3 we give an 
overview of basic inference for the coefficient of variation when the distribution is 
normal with positive expected value. We explain how to make exact confidence 
intervals for coefficients of variation, based on the noncentral t distribution, or 
how to calculate approximate confidence intervals with readily used formulas. We 
engage especially in the comparison of two coefficients of variation and describe 
several tests that could be of interest to the practitioner. In Chapter 4 we introduce 
a new hypothesis test, which is an approximate F-test that we develop specifically 
for the hypothesis of equal coefficients of variation. The test is easily generalized 
to the case that there are several estimates per coefficient of variation. We show by 
a real data example from diagnostic research how the approximate F-test and its 
generalized version can be applied. In Chapter 5 we study the properties of the 
approximate F-test theoretically. We show that all moments of the test statistic is 
close to the moments of an F distributed random variable if the coefficient of 
variation is sufficiently small. We also prove that the distribution of the logarithm 
of the test statistic approximately equals the distribution of the logarithm of an F 
distributed random variable. In Chapter 6 we compare the new test with other tests 
by a simulation study. The new test turns out to perform well in comparison with 
other tests. Since the new test is built on a χ2 approximation given by 
McKay (1932) we study in Chapter 7 the distribution of this approximation and 
prove that it is actually noncentral beta distributed. Finally the thesis ends with a 
discussion in Chapter 8. 

 

2. The statistical model 

We intend to model positive observations by assuming that the observations are 
normally distributed and the coefficient of variation is constant. Before continuing 
with issues about how to analyse data from such a model we shall discuss the 
relevance of the model itself. 
 

2.1. Assumptions 
At first it may seem contradictory to assume normally distributed observations 
when the data are genuinely positive. Nevertheless this assumption is often made 
in practice. Introductory textbooks such as Kleinbaum, Kupper & Muller (1988), 
explain how positive variables, e.g. blood pressure, waiting time or wavelength, 
can be modelled with assumptions of normal distributions. Such analyses are very 
informative despite the fact that the model admits negative measurements when 
only positive values can be obtained. Of course it is assumed that the probability 
of negative values is very small and negligible. In our setting it is reasonable to 
require that the coefficient of variation is smaller than 1/3, because the probability 



of values deviating from the expected value more than 3 standard deviations is 
small when the data is normally distributed. With this requirement it is also 
unlikely that the average by chance is negative or close to zero. We can thus be 
confident that the sample coefficient of variation, i.e. the estimated standard 
deviation divided by the sample mean, is positive and that it does not explode 
because of division by zero. In conclusion we can assume a normal distribution 
provided that the coefficient of variation is smaller than 1/3. The assumption of 
normal distribution is appropriate if we believe that the data are approximately 
normally distributed. There is however no need to believe that the model is the 
actual truth. 
 

There is a strong tradition among statisticians to use the logarithmic 
transformation when the standard deviation is proportional to the mean. The 
standard deviation in log values is approximately equal to the coefficient of 
variation. A Taylor series expansion of log y about y = µ gives  
 

)(1loglog µ
µ

µ −+≈ yy , 

 
so that Var(log y) ≈ Var(y) / µ 2. Thus the standard deviation in log scale roughly 
equals the coefficient of variation in the original scale. In terms of changes in µ 
the logarithmic transformation is variance stabilising when the coefficient of 
variation in the original scale is constant. 
 

After having transformed all data into log values the statistical analyst often 
proceeds by modelling an expected value under assumption of a normally 
distributed error term. This additive error is normally distributed in log scale. In 
original scale the error is multiplicative with a lognormal distribution. The 
lognormal distribution is however not symmetric, but positively skewed. The final 
analysis does for this reason not conform to an initial assumption of a symmetric 
distribution with approximately normally distributed errors. There may be many 
ways to deal with this problem. In this thesis we investigate the possibility to stick 
to the assumption of normally distributed additive error and not transform the data 
into log scale. For comparison we will however include the log method in the 
example in Section 3.2 and in the simulation study in Chapter 6. 
 

2.2. Application to immunoassays 
The model we shall discuss is widely used for analysing immunoassay data. In 
diagnostic research the coefficient of variation is the predominant measure of 
dispersion. The data is often approximately normally distributed and the 
coefficient of variation is often approximately constant over the measuring range. 
This reality can be explained in the following way. 
 
 In immunoassays the amount of some particular substance is measured in a 
blood sample. Let C denote the concentration of the particular molecules in the 
sample, and let V denote the volume of the sample. The number N of molecules in 
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the sample equals VC. The response obtained in an immunoassay could be 
fluorescence or radioactivity, but if the immunoassay has good performance we 
can assume that the response is proportional to N and without loss of generality 
assume that the response equals N. This holds if the calibration curve, i.e. the 
relationship between response and concentration, is linear. 
 
 There are many sources of errors in immunoassays. One important source of 
error is the random variation in the pipetted volume of the sample. It is reasonable 
to assume that the pipetted volume is not constantly equal to V, but perhaps 
normally distributed with expected value µV and standard deviation σV. Then, 
since we still have N = VC, 
 

22)( VCNVar σ= . 
 

However, the result of an immunoassay is not an estimate of the number of the 
particular molecules in the sample but an estimate of the concentration. This 
estimate is obtained by division of the response N by the expected volume µV 
(since the true volume V is unknown). As a result the expected value of the 
estimate of the concentration is 
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and the variance in the estimate of the concentration is 
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Consequently the coefficient of variation in N / µV, i.e. the coefficient of variation 
in the estimate of the concentration, is constant and equals γV = σV / µV. Therefore 
a model with normally distributed measurement errors and constant coefficient of 
variation could be adequate for analysing immunoassay data. 
 
 As already indicated, in reality immunoassays are not as simple as suggested by 
the arguments above. There are many sources of errors, not only the variation in 
the pipetted volume of the sample, but also for example pipetted volumes of 
reagents, temperature variations, variations in the solid phase on which the 
specific antibody is attached etc. The resulting variance is thus a sum of many 
variance components, many of which reasonably can be assumed to be 
approximately normal. Therefore it is not surprising that in immunoassays the 
final response is often approximately normally distributed. 
 
 Many authors have pointed out that the response of an immunoassay can be 
regarded as a mixture of a Poisson distribution and other variance components. 
Rodbard et al. (1976) writes ‘If there were no experimental errors in the pipetting 
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of any of the reagents, nor in the separation of the bound and free fractions, such 
that the response variable was subject only to the counting error caused by the 
random radioactive decay process for the isotope, than one should have a true 
Poisson variance for the observed (raw) counts.’ Raab (1981) states ‘The variation 
of the response includes the Poisson error of the radioactive counts (usually less 
than 50 per cent of the total), as well as random errors for each of a series of steps 
which consist of the addition of reagents, incubation and separation of the bound 
radioactivity.’ They both discuss the radioimmunoassay, in which the response is 
radioactive counts. However, also if the response is fluorescence we may argue 
that the response, i.e. essentially the number N of particular molecules in the 
sample, is Poisson distributed. Even if the volume V was always pipetted without 
variation the number of molecules in the sample would vary between samples. 
Since each molecule has a small probability to be included in the sample, it is 
reasonable to assume that the total number N included in the sample is Poisson 
distributed. Still there is no contradiction between this assumption and the 
assumption of normally distributed data, because N is usually very large and the 
Poisson distribution is then well approximated by the normal distribution. 
 
 To study this argument a little bit more carefully, assume that N is Poisson 
distributed with expected value VC. Assume also, as before, that V is normally 
distributed with expected value µV and standard deviation σV. Since N is large, N is 
approximately normally distributed with expected value VC and variance VC. We 
can write 
 

VCZVCN
d

+≈  
 
where Z is a standardized normal variable independent on V, and d denotes 
equality in distribution. The expected value of N is 
 

VCVCN µ=≈ )()( EE , 
 
and the variance is 
 

( ) 22 ))(())(( VCZVCVCZVCNVar +−+≈ EE  
 

2222 ))()(()2( VCZVCVCZVCZVCCV EEE +−++=  
 

222 ))(()()( VCVCCV EEE −+=  
 

)()(2 VCVVarC E+= . 
 

The coefficient of variation in the estimate N / µV of the concentration is equal to 
the coefficient of variation in N. This is because the coefficient of variation is not 
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affected if the observations are multiplied or divided by a constant. In conclusion, 
the coefficient of variation in the estimate N / µV of the concentration is 
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where γV = σV / µV, is the coefficient of variation in the sample volume. Note that 
the squared coefficient of variation in the Poisson error is 1/E(N). The total 
coefficient of variation is thus the square root of the sum of two variance 
components. When N is large the coefficient of variation in the estimate of the 
concentration is approximately constant and equal to the coefficient of variation in 
the sample volume. Thus once again we conclude that a model with constant 
coefficient of variation may be appropriate for analysing immunoassay data. 

 

3. Review of inference for coefficients of 
variation 

We shall survey basic statistical methods for inference on the coefficient of 
variation when the data is normally distributed. Several methods have been 
proposed for calculating approximate confidence intervals for the coefficient of 
variation. Usually it is however possible to calculate an exact confidence interval 
that is finite. A small example will indicate that some of the approximate 
confidence intervals are better than others. Also various test statistics have been 
proposed for the hypothesis that two coefficients of variation are equal. The most 
well known are included in this chapter. Their performances are later investigated 
in a simulation study in Chapter 6. 
 

3.1. Point estimator 
Let yj = µ + ej, where ej are independently distributed N(0,(γµ)2), j = 1, 2, . . ., n, 
with positive population coefficient of variation γ and positive expected value µ. 
Let m denote the average, and c denote the sample coefficient of variation: 
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Usually c is used as a point estimate of γ. Since the density of m is positive in a 

neighbourhood of zero the expected value of c does not exist. In applications this 
is seldom a problem. In many situations, e.g. when measuring length or 
concentration, the measurements can only take positive values, but they may 
nevertheless be approximately normally distributed. If the probability of a 
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negative sample coefficient of variation is negligible the expected value of c is, 
according to Reh & Scheffler (1996), 
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where the second approximate equality (≈) holds if γ is small, which is usually the 
case. We note that the expected value of s = cm is (Lynch & Walsh, 1997) 
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The bias of the coefficient of variation is thus of the same magnitude as the bias of 
the standard deviation. 
 

3.2. Confidence intervals 
In the well-known t-test of the hypothesis that the expected value of a normally 
distributed random variable equals zero the test statistic 
 

c
n

ns
mt ==  

 
is t distributed with n – 1 degrees of freedom under assumption that the hypothesis 
is true. Generally t follows a noncentral t distribution with n – 1 degrees of 
freedom and noncentrality parameter τ = n1/2/γ. Owen (1968) discusses this and 
other applications of the noncentral t distribution. A confidence set for τ can be 
constructed by inverting the acceptance region of a test of the hypothesis about τ 
(Shao, 2003). Thus, if Pr(t < n1/2/c | τ  = τ1) = α /2 and Pr(t > n1/2/c | τ  = τ2) = α /2 
then [τ2 , τ1] is a 100(1 - α)% confidence interval for τ. An exact finite confidence 
interval for γ is easily obtained from the confidence interval for τ provided that the 
latter does not include zero, which is commonly the case in practice. The exact 
finite confidence interval is 
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If the percentiles of the noncentral t distribution are not available there are 

several ways to calculate approximate confidence intervals. When the sample size 
is not too small asymptotic normality can be used. Miller (1991) shows that c is 
asymptotically normally distributed with expected value γ and variance 
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Miller & Feltz (1997) suggest that γ 2 in (3.3) are estimated by c2, and that an 
approximate 100(1 - α)% confidence interval for γ is calculated as 
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where z is the 100(1 – α /2):th percentile of the standard normal distribution. This 
confidence interval is symmetric around c. An unsymmetrical interval, more likely 
to perform well also for smaller sample sizes, is obtained if only the second γ 2 
in (3.3) is estimated by c2. Hence 
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is approximately distributed as a standard normal distribution. The corresponding 
100(1 - α)% confidence interval for γ is 
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Graf et al. (1987) suggest, according to Reh & Scheffler (1996), this approximate 
confidence interval. Hald (1952) gives another approximate confidence interval 
based on asymptotic normality. 
 

McKay (1932) shows that if γ is small, i.e. less than 1/3, and if 
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is approximately χ2 distributed with n - 1 degrees of freedom. As explained in 
Chapter 2 the condition γ < 1/3 is in practice often reasonable since it makes 
negative observations unlikely. Since (3.6) is an approximate pivotal quantity it 

 18



can be used for calculating an approximate confidence interval (Shao, 2003). This 
interval can be written 
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where u1 = χ 2n-1,1-α/2 denote the (100(1 - α/2)):th percentile of a χ2 distribution 
with n - 1 degrees of freedom, and where u2 = χ 2n-1,α/2 denote the (100(α/2)):th 
percentile of a χ2 distribution with n - 1 degrees of freedom Of course, as 
David (1949) points out, we might expect (3.6) to be approximately χ2 distributed 
with n - 1 degrees of freedom also if θ  = 1. Vangel (1996) derives an optimal 
choice of θ for calculating quantiles. He finds that 
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is suitable for calculating the (100α):th percentile of the sample coefficient of 
variation. The confidence interval based on this approximation can be written 
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This interval is accurate even for small sample sizes. 
 

Another approximate method, developed by Wong & Wu (2002), for calculating 
confidence intervals is based on the modified signed log likelihood ratio statistic 
defined by Barndorff-Nielsen (1986, 1991). This method is also claimed to give 
accurate results in case of small sample sizes. 
 
 It is also possible to use the logarithmic approach discussed in Chapter 2. 
According to this approach the logarithmic transformation is applied to all 
measurements and the coefficient of variation in original scale is estimated by the 
standard deviation in log scale. The usual confidence interval for a standard 
deviation calculated on log values is thus an approximate confidence interval for 
the coefficient of variation in the original values. This confidence interval is 
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where slogy is the standard deviation calculated on log values. 
 
 In the following example we also include the ‘naive’ interval 
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This interval is obtained if the coefficient of variation is treated as if it was a 
proper standard deviation, i.e. if the limits of the usual confidence interval for σ2 
are divided by the average m. Vangel (1996) compares analytically the errors in 
this naive approximation with the error in the McKay approximation and conclude 
that the naive approximation is ‘substantially less accurate.’ 
 

As an example we calculate the presented confidence intervals on the tensile 
strength data given by Vangel (1996). We obtain the exact confidence interval 
using the function tnonct in Release 9.1 of the SAS System (SAS Institute Inc., 
Cary, NC, USA). The data, presented in Table 3.1, consists of measurements on 
five specimens of a composite material. 
 
Table 3.1. Tensile strength data 
 

Specimen Tensile strength (1000 psi) 
1 326 
2 302 
3 307 
4 299 
5 329 
Mean (1000 psi) 312.6 
Coefficient of variation 0.0446 
 

 
The calculated confidence intervals are given in Table 3.2. 

 
Table 3.2. 95% confidence intervals for the coefficient of variation in the tensile strength 
data 
 

Method (Formula) Confidence interval 
Exact (3.2) [0.0267 , 0.1287] 
Miller & Feltz (3.4) [0.0136 , 0.0756] 
Graaf et al. (3.5) [0.0263 , 0.1459] 
McKay (3.7) [0.0267 , 0.1291] 
Vangel (3.8) [0.0267 , 0.1287] 
Log (3.9) [0.0266 , 0.1274] 
Naive (3.10) [0.0267 , 0.1281] 
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In this dataset the estimated coefficient of variation is not very large (4.46%). 
Most of the approximate confidence intervals are similar to the exact confidence 
interval. The symmetric Miller & Feltz confidence interval does however not 
perform well. The confidence interval suggested by Graf et al. (1987), based on 
the same normal approximation, is much better. The McKay approximation seems 
to be very accurate, and the modification due to Vangel (1996) is successful. The 
method of logarithmic transformation works fine in this example but is not as 
good as the McKay approximation. The naive method, finally, performs well, but 
the interval is a little bit too narrow since it ignores the variation in the estimate of 
the average. 
 

3.3. Tests for equality of two coefficients of variation 
Let yij = µi + eij, where eij are independently distributed N(0,(γi µi)2), i = 1, 2 and 
j = 1, 2, . . ., ni, with positive population coefficients of variation γi and positive 
expected values µi. We shall study tests of the null hypothesis H0: γ1 = γ2 of equal 
population coefficients of variation. 
 
3.3.1. Likelihood ratio test 
Several authors explore the likelihood ratio test of the hypothesis. Miller & Karson 
(1977) and Bhoj & Ahsanullah (1993) deal with the special case of equal sample 
sizes. Lohrding (1975), Bennett (1977) and Doornbos & Dijkstra (1983) consider 
the general case of unequal sample sizes. According to Gerig & Sen (1980), the 
maximum likelihood estimates of µ1, µ2 and γ are 
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respectively, where mi denotes the average response in sample i, and where 
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The likelihood ratio test statistic can be written 
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where λ is the likelihood ratio. Asymptotically R is χ2 distributed with 1 degree of 
freedom. 
 
3.3.2 Bennett’s test 
Bennett (1976) utilise the approximation (3.6) given by McKay (1932) and applies 
a test according to Pitman (1939) of the hypothesis of equal scale parameters of 
gamma variables. Shafer & Sullivan (1986) note that Bennett by mistake uses a 
variance with devisor n - 1 where McKay in his article uses a variance with 
devisor n. For this reason they modify Bennett’s test correspondingly. The 
modified Bennett’s test statistic is 
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where θ i = (ni – 1) / ni, i = 1, 2. The value of the test statistic shall be compared 
with a χ2 distribution with 1 degree of freedom.  
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3.3.3. Miller’s test 
When there are many observations, the sample coefficient of variation has an 
approximate normal distribution. Miller (1991) gives a test based on this 
asymptotic normality. The population coefficient of variation γ is estimated by a 
weighted average, γW, of the sample coefficients of variation: 
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This estimate is employed in the calculation of a test statistic 
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which is compared with a standard normal distribution. 
 
3.3.4. Wald test 
The Wald statistic given by Rao & Vidya (1992) for the case of equal sample sizes 
is modified to the general case of unequal sample sizes by Gupta & Ma (1996). 
The statistic 
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is approximately χ2 distributed with 1 degree of freedom. This test statistic is 
obviously closely related to Miller’s statistic (3.14). Bhoj & Ahsanullah (1993) 
give a third statistic on the same theme, but only for the case of equal sample 
sizes. 
 
3.3.5. Score test 
Gupta & Ma (1996) derive the score test, based on the maximum likelihood 
estimate (3.11). Its explicit value is given by 
 









+
















+






=

∧∧

2

2
2

1

2
1

42

2
1

n
a

n
a

S γγ ,            (3.16) 

 
where 
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The test statistic (3.16) shall be compared with a χ2 distribution with 1 degree of 
freedom. 
 
3.3.6. Doornbos & Dijkstra’s test 
Doornbos & Dijkstra (1983) develop a test based on the distribution of the inverse 
of the sample coefficient of variation. Let bi = 1 / ci, and let bW denote a weighted 
average of b1 and b2: 
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is sensitive to deviations from the null hypothesis. Doornbos & Dijkstra estimate 
the expectation of T by 
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where cp is an estimate of the common population coefficient of variation γ : 
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The test statistic 
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is approximately χ2 distributed with 1 degree of freedom. 
 
3.3.7 Log test 
A test based on the logarithmic approach discussed in Chapter 2 can be made in 
the following way. Take the logarithm of all observations and calculate the 
standard deviation s1 (log y) in sample 1 and the standard deviation s2 (log y) in 
sample 2. Then compare 
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with an F distribution with n1 – 1 and n2 – 1 degrees of freedom. 
 
3.3.8. Naive test 
With the ‘naive’ test we mean comparing the sample coefficients of variation by 
an F-test in the same way as proper standard deviations are compared. Thus 
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is compared with an F distribution with n1 – 1 and n2 – 1 degrees of freedom. 

 

4. An approximate F-test 

We shall now develop an approximate F-test for the hypothesis of equality of two 
coefficients of variation. In our search for a constructive statistical method it is 
natural to look for an F-test, since such tests are used for comparing variances. 
The ordinary test statistic for comparing two variances is the ratio between the two 
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variances. If we, for the comparison of two coefficients of variation, analogously 
take the ratio between the two coefficients of variation we get the naive test (3.19). 
This test does not take into account the variation in the estimated averages in the 
denominators of the coefficients of variation. Therefore it is natural to suppose 
that it is better to use the ratio between two McKay transformations. 
 

4.1. The idea of the approximate F-test 
Let again yij = µi + eij, where eij are independently distributed N(0,(γi µi)2), i = 1, 2 
and j = 1, 2, . . ., ni, with positive population coefficients of variation γi and 
positive expected values µi. Assume also that γi < 1/3. Then we know from (3.6) 
that 
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is approximately χ2 distributed with ni - 1 degrees of freedom when θ 
= (ni - 1) / ni. Consequently we can, if H0: γ1 = γ2 is true, anticipate 
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to be approximately F distributed with n1 - 1  and n2 - 1 degrees of freedom. 
In (4.1) θ is a function of ni, which not necessarily equals (ni - 1) / ni. Since 
c2/(1 + θ c2) is an increasing function of c, the statistic F is an increasing function 
of c1 and a decreasing function of c2. Large deviations between c1 and c2 result in 
large deviations of F from one. Thus F is a plausible test statistic for the 
hypothesis of equal coefficients of variation. 
 
 For inference it is essential that F is approximately F distributed. We assume 
that this is the case because F is a quotient between two χ2 approximations divided 
by their degrees of freedom. We can however not take it for granted, and will 
therefore investigate the properties of F analytically (Chapter 5). We shall also 
perform a simulation study (Chapter 6). 
 
 At first we shall investigate the possibility that (ni – 1) / ni is not the best choice 
of θ (ni) for the F-test. This issue is motivated because David (1949) noted 
that (3.6) is approximately χ2 distributed also if θ = 1, and Vangel (1996) showed 
that 
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is an optimal choice for calculating confidence intervals (see Section 3.2). Note 
also that θ (ni) = 0 in (4.1) gives the ‘naive’ F-test (3.19). According to this test the 
coefficients of variation are analysed as if they were standard deviations. No 
account is made for the variation in the averages. 
 
 We shall look for a function θ i = θ (ni) such that F is approximately F 
distributed when the null hypothesis is true. This search will be made by 
comparing the moments of F with the moments of an F distributed random 
variable. Primarily we want the first moments to be as similar as possible when the 
sample sizes, i.e. n1 and n2, are equal. It is a difficulty that the moments depend on 
the unknown coefficients of variation γ1 and γ2, which under the null hypothesis 
are equal to the unknown common coefficient of variation γ. We shall make a 
Taylor series expansion of F about γ = 0, because in applications γ is often small 
(see Chapter 2 for a discussion of the assumption that γ  < 1/3). 
 
 Finally we require that θ in the numerator of (4.1) is the same function as θ in 
the denominator of (4.1). Different functions would result in different inferential 
conclusions depending on which sample was considered as sample 1 and which 
sample was considered as sample 2. When the functions are the same, however, 
the inference is not influenced, because the 100(1 - α /2):th percentile of the 
F distribution with v1 and v2 degrees of freedom is equal to the inverse of the 
100(α /2):th percentile of the F distribution with v2 and v1 degrees of freedom. 
 

4.2. Development of the approximate F-test 
Let W denote a χ2 distributed random variable divided by its degrees of freedom, 
and let Z denote a standardized normal random variable. Then, for the average m 
given in (3.1), 
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where σ = γ µ and d denotes equality in distribution. With this notation we can 
write the squared sample coefficient of variation 
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which turns (4.1) into 
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where we have written θ1 and θ2 instead of θ (n1) and θ (n2) respectively. Note that 
W1, W2, Z1 and Z2 are independent. Also recall that W1 / W2 is F distributed with 
n1 – 1 and n2 - 1 degrees of freedom. 
 

Since γ is often small in applications it makes sense to expand F in a Taylor 
series about γ = 0. Thus, in a neighbourhood of γ = 0, 
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Since E(Z1) = E(Z2) = E(Z1Z2) = E(Z1

3) = 0 and E(Z1
2) = E(Z2

2) = 1, the 
expectation of F, in a neighbourhood of γ = 0 , can be written 
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where E(F | W1, W2) denotes the conditional expectation of F given W1 and W2. 
 

Furthermore, since the expectation of an F distribution is E(W1 / W2) = (n2 - 1) / 
(n2 – 3) when n2 > 3, and since E(W1

2) = (n1 + 1) (n1 – 1) we have 
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when n2 > 3. If we now let 
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the expectation of F is, in a neighbourhood of γ = 0, 
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Obviously the expectation of F is then close to the expectation of an 

F distribution. This is true especially in the balanced case, i.e. when n1 = n2 = n, 
but also otherwise since γ is small. In the balanced case we get from (4.2), since 
E(Z1

4) = 3 and E(W1
3) = (n1 + 1) (n1 + 3) / (n1 – 1)2, that 
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It is proved in Chapter 5 that the r:th moment of F is 
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provided that n2 > 2r + 1. We conclude that the original choice of θ, suggested by 
McKay (1932), is indeed appropriate also for the F statistic. Thus we introduce the 
following test statistic for testing equality of two coefficients of variation. 
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Definition 4.1. Let there be two samples. Let yij denote the j:th observation in 
sample i. Let ni denote the number of observations, mi the average and ci the 
coefficient of variation in the i:th sample: 
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The statistic F is defined as 
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When n2 < 4, the expected value is infinitely large for F as well as for W1 / W2. 

The expected value of F approximately equals the expected value of an F 
distribution with n1 - 1 and n2 - 1 degrees of freedom, even if the sample sizes are 
small. In case of large sample sizes, F is a quotient between two accurate 
approximations of χ2 random variables divided by their degrees of freedom. We 
can thus anticipate F to work well as a test statistic for the null hypothesis. As 
mentioned earlier the conformity with the F distribution is studied theoretically in 
Chapter 5 and by simulation in Chapter 6. 
 

4.3. A generalized approximate F-test 
To generalize the ideas of Section 4.1 and 4.2 assume that yijk = µij + eijk, where 

eijk are independently distributed N(0,(γi µij)2) with 0 < µij and 0 < γi < 1/3, i = 1, 2, 
j = 1, 2, . . ., ri; k = 1, 2, . . ., nij. Thus we now assume that we have ri independent 
estimates cij of γi instead of only one. The estimates are independent, because the 
distribution of cij does not depend on µij. Then, with θij = (nij – 1) / nij, 
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is approximately χ2 distributed with Σjnij – ri degrees of freedom. If H0: γ1 = γ2 is 
true, 
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is approximately F distributed with Σjn1j – r1 and Σjn2j – r2 degrees of freedom. 
This motivates the following definition. 
 
Definition 4.2. Let there be two sets of samples. Let yijk denote the k:th 
observation in the j:th sample in set i. Let ri denote the number of samples in the 
i:th set. Let nij denote the number of observations, mij the average and cij the 
coefficient of variation in the j:th sample in the i:th set: 
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The statistic G is defined as 
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4.4. An immunoassay example 
Brunnée et al. (1996) compares two methods for measuring concentration of 
specific IgE antibodies in blood samples. A new system, ELItest, is compared with 
the established Pharmacia CAP system (PCS). Among other things the variations 
between and within assays are studied. The specific IgE for the allergens mite, cat 
and birch is measured for 3 sera with very different levels of concentration. The 
inter assay coefficients of variation are calculated on 10 measurements made on 
different days, and the intra assay coefficients of variation are calculated on 
8 measurements performed on the same day. Brunnée et al. (1996) perform no 
hypothesis tests of the coefficients of variation. This is very representative for 
studies of precision in diagnostic measuring instruments. Usually no tests are 
performed, since there is no well-known method for doing it. 
 

The reported intra assay coefficients of variation are given in Table 5.1 together 
with calculated approximate F-tests (4.4). No differences are significant at 
level 5%. Observe that this is also true for the third sample of allergen mite, 
although the estimate of the coefficients of variation for ELItest (18.6 %) is more 
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than twice as large as the estimate of the coefficient of variation for Pharmacia 
CAP System (8.3%). The result is however close to the border of being significant 
(p-value = 0.052), and it is notable that all other samples show smaller coefficients 
of variation in ELItest than in Pharmacia CAP System. 
 
Table 5.1. The approximate F-test based on (4.4) applied to intra assay coefficients of 
variation (CV) reported by Brunnée et al. (1996) 
 

 
 
Allergen 

ELItest 
CV (%) 
(n = 8) 

PCS 
CV (%)
(n = 8) 

 
 

F 

 
Probability 

value 
Mite 6.6 9.5 0.485 0.360 
Mite 3.3 4.8 0.473 0.345 
Mite 18.6 8.3 4.904 0.052 
Cat 6.9 10.0 0.478 0.352 
Cat 4.5 5.5 0.670 0.610 
Cat 4.2 4.6 0.834 0.817 
Birch 4.7 9.2 0.262 0.099 
Birch 3.8 5.4 0.496 0.375 
Birch 4.8 8.2 0.344 0.182 
 

 
If we assume that each method has constant intra assay coefficients of variation 

we can apply the generalized test statistic given in (4.6). The hypothesis of equal 
intra assay coefficients of variation is not rejected, because G = 1.046 with 63 
degrees of freedom in the numerator and 63 degrees of freedom in the 
denominator (probability value 0.8597). However, this result is to large extent 
dependent on the third sample of allergen mite. If the estimate of the coefficient of 
variation for ELItest (18.6%) is considered to be an outlier, maybe because of 
suspected errors in the performance of the assay, and accordingly excluded from 
the calculation of the hypothesis test the result is clearly significant. Then G  = 
2.285 with 63 degrees of freedom in the numerator and 56 degrees of freedom in 
the denominator (probability value 0.0020). 
 
 
Table 5.2. The approximate F-test based on (4.4) applied to inter assay coefficients of 
variation (CV) reported by Brunnée et al. (1996) 
 

 
 
Allergen 

ELItest 
CV (%) 
(n = 10) 

PCS 
CV (%)
(n = 10)

 
 

F 

 
Probability 

value 
Mite 20.1 11.7 2.883 0.131 
Mite 16.5 10.1 2.629 0.166 
Mite     
Cat 26.9 10.3 6.465 0.010 
Cat 13.9    
Cat     
Birch 32.6 15.6 4.073 0.048 
Birch 16.5 12.7 1.671 0.456 
Birch 17.4 8.0 4.632 0.032 
 

 
Table 5.2 includes the inter assay coefficients of variation as reported by 

Brunnée et al. (1996) and the corresponding results of the proposed approximate 



F-test given in (4.4). Due to missing values, only 6 comparisons can be made. 
Differences are significant at level 5% in 3 cases, all of advantage to the 
established system. 
 

Under assumption that each method has a constant inter coefficient of variation 
the generalized test statistic G given in (4.6) equals 3.265. It shall be compared 
with an F distribution with 63 degrees of freedom in the numerator and 54 degrees 
of freedom in the denominator. In conclusion the inter coefficient of variation is 
significantly larger in ELItest than in Pharmacia CAP System (probability 
value 0.00002). 

 

5. Properties of the approximate F-test 

In this chapter we shall theoretically study the properties of the statistic F given 
in (4.4). We shall compare the distribution of F with the distribution of an F 
distributed random variable X with n1 – 1 and n2 – 1 degrees of freedom. The 
comparison shall be made under the assumptions that the measurements are 
normally distributed and that the null hypothesis of equal coefficients of variation 
is correct. We shall see that all moments of F are close to the moments of X if only 
the coefficient of variation is sufficiently small. We shall also express the random 
variable log F as a sum of log X and some error variables that are in probability of 
small orders. 
 

To begin with we give a lemma that is useful when comparing the moments of F 
and X. We already know the lemma from the development of the approximate 
F-test in the beginning of Section 4.2, but state it here in a complete formulation 
with regard to the statistic F defined not until the end of the same section, in 
Definition 4.1. 
 
Lemma 5.1. Let yij = µi + eij, where eij are independently distributed N(0,(γ µi)2), 
i = 1, 2; j = 1, 2, . . ., ni, with positive population coefficient of variation γ and 
positive expected values µi. Let W1 and W2 denote independent χ2 distributed 
random variables divided by their degrees of freedom, and let Z1 and Z2 denote 
independent standardized normal random variables. Then the distribution of F, as 
defined in Definition 4.1, equals the distribution of 
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Proof. The averages mi, given in Definition 4.1, equals 
 

i

i
ii n

Z σµ + , i = 1, 2, 

 
in distribution, and the standard deviation ci mi equals 
 

ii Wγµ , i = 1, 2, 

 
in distribution. Thus the distribution of ci

2 equals the distribution of 
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,  i = 1, 2,          (5.1) 

 
which inserted in (4.4) makes the lemma.    ♦ 
 

The following theorem provides approximate differences between the moments 
of the statistic F, as defined by Definition 4.1, and the moments of an F distributed 
random variable. We conclude that the moments are similar when the coefficient 
of variation is small, especially if the sample sizes are equal or large. 
 
Theorem 5.1. Let yij = µi + eij, where eij are independently distributed 
N(0 , (γ µi)2), i = 1, 2 and j = 1, 2, . . ., ni, with positive population coefficient of 
variation γ and positive expected values µi. Let X be distributed F(n1 – 1, n2  – 1). 
Then the r:th moment of F is 
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provided that n2 > 2r + 1. 
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where d denotes equality in distribution, and θi = (ni – 1) / ni, i = 1, 2. By a Taylor 
series expansion about γ = 0, 
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The r:th moment of an F distribution with n1 - 1  and n2 - 1 degrees of freedom is 
(Kotz & Johnson, 1983) 
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It is noted that the (r – 1):th moment can be written 
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The r:th moment of a χ2 distribution with n - 1 degrees of freedom is (Kotz & 
Johnson, 1982) 
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Moreover, because W1 and W2 are independent, 
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As a result, the r:th moment of F can be written 
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in a neighbourhood of γ = 0. Finally θi = (ni – 1) / ni, i = 1, 2, produces (5.2).    ♦ 
 

We do not only want to compare the moments of F with the moments of an F 
distributed random variable X. We also want to compare F with X in a more 
straightforward way. Since F is a ratio of two independent χ2 approximations it is 
more convenient to compare the logarithm of F with the logarithm of X. This 
means that we shall compare the distribution of the logarithm of F with Fisher’s 
z distribution, since originally Fisher (1924) did not define the F distribution but 
the z distribution, which is the distribution of (log X) / 2. 
 

Before comparing the distributions we need to make clear the concept 
‘probability of order’. Recall that if {rn} and {sn} are sequences of real numbers, 
then rn is said to be of order O(sn) if  
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The order in probability is an extension of this concept. It can be defined in the 
following way (see Azzalini, 1996). 
 
Definition 5.1. Let {Xn} be a sequence of random variables and let {rn} be a 
sequence of positive real numbers. Then we say that Xn is in probability of order 
O(rn), written Xn = Op(rn), if for all ε > 0 there exists a real number Mε such that 
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for all n greater than Nε .    ♦ 
 
 We will also use two theorems from the book by Azzalini (1996). We state them 
here for a quick reference, but refer to Azzalini (1996) for the proofs. According 
to the first theorem it suffices to check the second moments to determine the order 
in probability of a sequence of random variables. 
 
Theorem 5.2. Let {Xn} be a sequence of random variables with E(Xn

2) = rn
2 < ∞, 

and {sn} a sequence of positive reals. Then, if rn
2 is O(sn

2), 
 

)( npn sOX = .    ♦ 

 
The second theorem from Azzalini (1996) states that a product of random 

variables is in probability of the same order as the product of the order in 
probabilities of the random variables. Furthermore, a sum of random variables is 
in probability of the same order as the largest order in probability of the random 
variables. 
 
Theorem 5.3. Let {rn} and {sn} be two sequences of positive real numbers and 
{Xn}, {Yn} be two sequences of random variables. Then, if Xn = Op(rn) and 
Yn = Op(sn), 
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We are now ready to compare the distribution of the logarithm of F with the 
distribution of the logarithm of an F distributed random variable X. 
 
Theorem 5.4. Let yij = µi + eij, where eij are independently distributed 
N(0 , (γ µi)2), i = 1, 2 and j = 1, 2, . . ., ni, with positive population coefficient of 
variation γ and positive expected values µi. Let X be F(n1 – 1, n2  – 1) distributed, 
let Z be N(0, 1) distributed, and let Ui be χ2 distributed with ni – 1 degrees of 
freedom, i = 1, 2. Let X, Z, U1 and U2 be independent. Then 
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where R(n1 , n2 , γ) = Οp(max(n1

-1 γ 2 , n2
-1 γ 2 , γ 4)).    ♦ 

 
Note that the theorem implies that the distribution of log F equals the distribution 
of log X + Οp(max(n1

-1/2 γ , n2
-1/2 γ , γ 2)). 

 
Proof. Write log F as 
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The first term is by (5.1) 
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where W1 denotes a χ2 distributed random variable divided by its degrees of 
freedom, and Z1 denotes a standardized normal random variable. Expansion of the 
last term yields 
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which consists of terms of the form 
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and of terms that are a product of the two forms. Now use Theorem 5.2. For the 
terms on the form (5.6), since 
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For the terms on the form (5.7) 
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by (5.3), and consequently 
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After collecting terms it is, by Theorem 5.3, possible to write (5.5) as 
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The corresponding calculations can of course be made also for the second term 

in (5.4). Then log F can be written 
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where R(n1 , n2 , γ) = Οp(max(n1

-1γ 2, n2
-1γ 2, γ 4)).    ♦ 

 

6. A simulation study 

In this chapter we investigate, by Monte Carlo technique, the significance levels 
and powers of the tests described in Chapter 3 and the approximate F-test 
proposed in Chapter 4. 
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6.1. Methods 
In each simulation two samples with n1 and n2 observations respectively were 
randomly generated 20 000 times in Release 13 of MATLAB (The Mathworks 
Inc., Natick, MA, USA). The observations belonged to normal distributions with 
expected values 100 and 1000, and with coefficients of variation γ1 and γ2 
respectively. The tests were performed with significance level 5% against the 
alternative hypothesis of unequal coefficients of variation, i.e. the tests were two-
sided. With the various χ2-tests the null hypothesis was rejected when the test 
statistic was larger than the 95th percentile of the χ2 distribution. When using 
F-tests the null hypothesis was rejected when the test statistic was smaller than the 
2.5th percentile or larger than the 97.5th percentile of the F distribution. With 
Miller’s test the null hypothesis was rejected when the test statistic was smaller 
than the 2.5th percentile or larger than the 97.5th percentile of the standard normal 
distribution. 
 
 Five cases were studied, as summarized in Table 6.0. The type I errors of the 
tests were investigated in Case 1–3, and the powers of the tests were investigated 
in Case 4 and 5. The first case had a small coefficient of variation (5%) and equal 
sample sizes. The second case had instead a large coefficient of variation (25%), 
but still equal sample sizes. The third case had large coefficients of variation but 
unequal sample sizes (n1 was fixed to 4). In the fourth case one coefficient of 
variation was 5% and the other 10%, and the sample sizes were equal. In the fifth 
case the sample sizes were unequal (n1 was fixed to 4), and a larger discrepancy 
between the coefficients of variation was studied, 5% vs. 15%, since it is hard to 
obtain a good power when one of the sample sizes is small. 
 
Table 6.0. The cases investigated in the simulation study 
 

Case Objective γ1 γ2 Sample sizes Table Figure 
1 Type I error 0.05 0.05 n1 = n2 6.1 6.1 
2 Type I error 0.25 0.25 n1 = n2 6.2 6.2 
3 Type I error 0.25 0.25 n1 = 4 6.3 6.3 
4 Power 0.05 0.10 n1 = n2 6.4 6.4 
5 Power 0.05 

0.15 
0.15 
0.05 

n1 = 4 
n1 = 4 

 
6.5 

 
6.5 

 

 
The size, n2, of the second sample varied from 2 to 20. Thus 19 simulations 

were made per case. In Case 5, however, 2 simulations were made per value of n2, 
i.e. in total 38 simulations. This was because the tests had one power when the 
smaller coefficient of variation was measured with the smaller sample size, and 
another power when the smaller coefficient of variation was measured with the 
larger sample size. For this reason, per value of n2, 20 000 samples were simulated 
according to the first situation, and 20 000 samples were simulated according to 
the second situation. The average powers were calculated and reported. 

 
The following tests were included in the study: the approximate F-test (4.4), the 

likelihood ratio test (3.12), Miller’s test (3.14), Bennett’s test (3.13), Doornbos 
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and Dijkstra’s test (3.17), the Wald test (3.15), the score test (3.16), the naive test 
(3.19) and the log test (3.18). 
 
6.2. Results 
We look at one case at a time. 
 
6.2.1. Case 1: γ1 = γ2 = 5% and n1 = n2 
The results of the simulations according to Case 1 is reported in Table 6.1 and 
illustrated in Figure 6.1. The figure shows that three tests performed well with 
regards to type I error: the approximate F-test, the naive test and the log test all 
showed relative frequencies of rejections close to the significance level 5%. 
Miller’s test, Bennett’s test and the Wald test worked well when the sample sizes 
were not very small. The likelihood ratio test, Doornbos and Dijkstra’s test and the 
score test required large sample sizes. 
 
 
Table 6.1. Case 1. Pr(Type I error) in percentages when γ1 = γ2 = 0.05. Significance 
level: 5%. F = F-test (4.4), R = Likelihood ratio test (3.12), M = Miller’s test (3.14), 
B = Bennett’s test (3.13), D = Doornbos & Dijkstra’s test (3.17), W = Wald test (3.15), S = 
Score test (3.16), N = Naive test (3.19), L = Log test (3.18) 
 

n1 n2 F R M B D W S N L 

2 2 4.56 24.28 1.00 8.85 0.00 1.97 0.00 4.56 4.57 
3 3 5.12 15.30 6.35 7.65 - 6.55 0.00 5.14 5.17 
4 4 4.92 11.17 6.17 6.72 0.00 6.34 0.31 4.93 5.01 
5 5 5.15 9.83 6.23 6.51 0.02 6.31 2.19 5.19 5.23 
6 6 4.66 8.46 5.71 5.84 0.43 5.76 2.73 4.69 4.73 
7 7 5.05 8.15 5.84 5.98 1.05 5.90 3.64 5.13 5.18 
8 8 5.02 7.69 5.72 5.82 1.61 5.77 3.77 5.04 5.12 
9 9 4.83 7.12 5.38 5.42 1.78 5.39 3.84 4.86 5.00 
10 10 4.78 6.80 5.28 5.35 2.10 5.31 3.94 4.81 4.95 
11 11 4.95 6.85 5.53 5.59 2.45 5.56 4.32 4.99 5.18 
12 12 5.04 6.65 5.53 5.56 2.60 5.53 4.40 5.07 5.25 
13 13 4.91 6.51 5.42 5.49 2.88 5.46 4.39 4.97 5.01 
14 14 5.11 6.60 5.57 5.60 3.21 5.59 4.61 5.17 5.29 
15 15 4.98 6.27 5.30 5.33 3.23 5.33 4.53 5.03 5.13 
16 16 4.93 5.99 5.18 5.21 3.31 5.20 4.55 4.98 5.09 
17 17 4.87 5.92 5.21 5.21 3.24 5.21 4.47 4.90 5.07 
18 18 5.23 6.30 5.55 5.58 3.56 5.58 4.86 5.28 5.37 
19 19 4.94 5.99 5.29 5.30 3.61 5.29 4.61 5.00 5.31 
20 20 5.16 5.97 5.42 5.42 3.96 5.42 4.87 5.20 5.34 



 

 

 
 
Fig 6.1. Case 1. Probability of type I error when γ1 = γ2 = 5% and n1 = n2. Significance 
level 5%. 
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6.2.2. Case 2: γ1 = γ2 = 25% and n1 = n2 
The results of the simulations according to Case 2 is reported in Table 6.2 and 
illustrated in Figure 6.2. In this case the coefficient of variation was large (25%). 
The approximate F-test showed nevertheless almost correct probability of type I 
error (5%). The naive test rejected the null hypothesis with a probability somewhat 
larger than 5%. The log test, interestingly, did not work in a proper way. Miller’s 
test, Bennett’s test and the Wald test behaved well when the sample sizes were not 
very small. The likelihood ratio test, Doornbos and Dijkstra’s test and the score 
test required large sample sizes. 
 
 
Table 6.2. Case 2. Pr(Type I error) in percentages when γ1 = γ2 = 0.25. Significance 
level: 5%. F = F-test (4.4), R = Likelihood ratio test (3.12), M = Miller’s test (3.14), 
B = Bennett’s test (3.13), D = Doornbos & Dijkstra’s test (3.17), W = Wald test (3.15), S = 
Score test (3.16), N = Naive test (3.19), L = Log test (3.18) 
 

n1 n2 F R M B D W S N L 

2 2 5.02 24.69 0.32 9.18 0.00 0.37 0.00 5.20 5.34 
3 3 4.91 14.78 5.50 7.57 - 3.59 0.00 5.38 6.01 
4 4 5.16 11.64 5.89 7.02 0.00 4.31 0.37 5.75 7.13 
5 5 5.21 10.02 5.77 6.53 0.07 4.62 2.31 5.96 7.95 
6 6 5.07 9.00 5.66 6.21 0.53 4.65 3.17 6.01 8.76 
7 7 4.96 8.29 5.46 5.97 0.96 4.58 3.54 5.95 9.25 
8 8 4.87 7.49 5.21 5.63 1.43 4.43 3.70 5.84 9.66 
9 9 5.05 7.46 5.48 5.84 2.14 4.66 4.07 6.21 10.42 
10 10 5.04 7.15 5.37 5.72 2.33 4.71 4.20 6.15 10.92 
11 11 5.48 7.19 5.82 6.03 2.87 5.23 4.76 6.61 11.33 
12 12 4.96 6.37 5.22 5.42 2.73 4.75 4.40 5.97 11.30 
13 13 4.93 6.52 5.22 5.48 2.92 4.69 4.37 6.17 11.53 
14 14 4.96 6.38 5.17 5.31 3.14 4.74 4.50 6.18 11.79 
15 15 5.24 6.70 5.48 5.69 3.41 5.03 4.75 6.63 12.69 
16 16 4.81 6.13 5.03 5.15 3.30 4.64 4.46 6.11 12.58 
17 17 5.35 6.39 5.56 5.64 3.64 5.14 4.94 6.51 13.20 
18 18 5.03 6.26 5.29 5.51 3.52 4.86 4.70 6.47 13.39 
19 19 4.84 5.74 4.99 5.09 3.54 4.70 4.52 6.06 13.08 
20 20 4.99 5.88 5.15 5.24 3.87 4.85 4.73 6.23 13.55 
 

 



 
 
Fig 6.2. Case 2. Probability of type I error when γ1 = γ2 = 25% and n1 = n2. Significance 
level 5%. 
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6.2.3. Case 3: γ1 = γ2 = 25% and n1 = 4 
The results of the simulations according to Case 3 is reported in Table 6.3 and 
illustrated in Figure 6.3. In this case, with unequal sample sizes and at least one 
small sample size (n1 = 4) in combination with a large coefficient of variation, the 
approximate F-test was the only test that showed nearly correct probability of 
type I error (5%). The Wald test, which showed good performance in Case 1 and 
Case 2, did not perform well in this case. Neither did the likelihood ratio test nor 
Doornbos and Dijkstra’s test. The log test had too large relative frequency of 
rejected hypotheses, and the score test had too small. Miller’s test, Bennett’s test 
and the naive test worked better, but not as good as the approximate F-test. 
 
 
Table 6.3. Case 3. Pr(Type I error) in percentages when γ1 = γ2 = 0.25. Significance 
level: 5%. F = F-test (4.4), R = Likelihood ratio test (3.12), M = Miller’s test (3.14), 
B = Bennett’s test (3.13), D = Doornbos & Dijkstra’s test (3.17), W = Wald test (3.15), S = 
Score test (3.16), N = Naive test (3.19), L = Log test (3.18) 
 

n1 n2 F R M B D W S N L 

4 2 5.17 21.56 3.49 8.36 0.00 20.45 2.24 5.55 6.00 
4 3 5.29 13.95 5.48 7.59 - 6.49 1.35 5.85 6.84 
4 4 5.11 11.55 5.77 6.92 0.00 4.22 0.47 5.69 7.10 
4 5 5.31 11.02 5.90 6.98 0.00 5.50 1.82 6.09 7.64 
4 6 5.15 10.38 5.38 6.53 0.00 6.91 2.54 5.95 7.77 
4 7 5.20 10.68 5.18 6.71 0.01 9.22 2.62 6.13 8.19 
4 8 4.87 10.02 4.79 6.33 0.05 10.50 2.50 5.67 7.78 
4 9 5.03 10.48 4.67 6.27 0.14 12.12 2.74 5.85 8.09 
4 10 4.86 10.60 4.43 6.19 0.21 13.51 2.81 5.81 8.18 
4 11 5.19 11.00 4.53 6.29 0.27 14.77 2.97 6.12 8.10 
4 12 5.18 10.58 4.56 6.46 0.44 15.34 2.86 6.24 8.38 
4 13 5.27 10.84 4.37 6.56 0.48 16.38 3.08 6.26 8.75 
4 14 5.05 10.84 4.20 6.29 0.43 17.10 2.92 6.15 8.46 
4 15 5.04 10.58 4.08 6.06 0.61 17.75 2.75 6.02 8.40 
4 16 4.91 11.09 3.93 6.12 0.63 18.82 2.69 5.94 8.13 
4 17 4.98 11.08 4.00 6.15 0.68 19.11 2.90 6.11 8.18 
4 18 4.79 10.72 3.73 5.88 0.78 19.18 2.62 5.71 7.92 
4 19 5.24 11.23 4.01 6.34 0.87 19.87 2.89 6.24 8.43 
4 20 5.10 11.38 3.86 6.30 1.07 20.28 2.68 6.12 8.35 
 

 



 
 
Fig 6.3. Case 3. Probability of type I error when γ1 = γ2 = 25% and n1 = 4. Significance 
level 5%. 

 47



 48

 
6.2.4. Case 4: γ1 = 5%, γ2 = 10% and n1 = n2 
The results of the simulations according to Case 4 is reported in Table 6.4 and 
illustrated in Figure 6.4. For all tests the powers increased with the number of 
observations and reached a level of app. 80% when the sample sizes were 20. The 
likelihood ratio test showed large power for small sample sizes, but it also rejected 
the null hypothesis when it was true, cf. Figure 6.1. The score test and Doornbos 
and Dijkstra’s test never rejected the hypothesis of equal coefficients of variation 
when the sample sizes were small. Miller’s test and the Wald test had very small 
powers when n1 = n2 = 2, otherwise they worked similar as the approximate F-test, 
Bennett’s test, the naive test and the log test. 
 
 
Table 6.4. Case 4. Power in percentages when γ1 = 0.05 and γ2 = 0.10. Significance 
level: 5%. F = F-test (4.4), R = Likelihood ratio test (3.12), M = Miller’s test (3.14), 
B = Bennett’s test (3.13), D = Doornbos & Dijkstra’s test (3.17), W = Wald test (3.15), S = 
Score test (3.16), N = Naive test (3.19), L = Log test (3.18) 
 

n1 n2 F R M B D W S N L 

2 2 6.15 30.44 1.25 11.77 0.00 1.91 0.00 6.17 6.18 
3 3 9.72 26.19 12.03 14.56 - 11.99 0.00 9.82 9.95 
4 4 15.09 29.05 18.04 19.34 0.00 17.92 1.43 15.30 15.68 
5 5 20.52 32.27 23.38 24.31 0.28 23.32 11.32 20.84 21.22 
6 6 26.65 37.40 29.71 30.38 4.72 29.63 19.42 26.98 27.68 
7 7 32.51 41.86 35.14 35.59 12.30 35.03 26.77 32.88 33.43 
8 8 38.76 47.13 41.21 41.56 20.38 41.14 34.15 39.15 39.82 
9 9 44.07 51.27 46.19 46.62 28.07 46.14 40.14 44.40 45.04 
10 10 49.47 55.97 51.51 51.76 34.83 51.47 46.07 49.85 50.47 
11 11 54.16 59.92 55.96 56.13 41.80 55.94 51.36 54.54 55.12 
12 12 57.96 63.13 59.54 59.73 47.12 59.50 55.50 58.37 58.77 
13 13 63.40 68.02 64.93 65.05 53.97 64.90 61.58 63.74 64.44 
14 14 67.23 71.28 68.53 68.65 58.74 68.51 65.52 67.57 68.29 
15 15 69.55 73.20 70.73 70.81 62.58 70.70 68.18 69.89 70.47 
16 16 73.44 76.36 74.30 74.39 67.03 74.27 72.15 73.69 74.10 
17 17 76.04 78.92 76.94 77.06 70.64 76.94 74.90 76.37 76.90 
18 18 78.72 81.13 79.43 79.49 74.03 79.41 77.58 78.96 79.48 
19 19 81.09 83.26 81.82 81.88 77.13 81.80 80.19 81.39 81.79 
20 20 83.68 85.59 84.37 84.42 80.02 84.33 82.98 83.95 84.26 
 

 



 

 
 
Fig 6.4. Case 4. Power when γ1 = 5% and γ2 = 10% and n1 = n2. Significance level 5%. 
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6.2.5. Case 5: one γ is 5% and the other γ is 15%, n1 = 4 
The results of the simulations according to Case 5 is reported in Table 6.5 and 
illustrated in Figure 6.5. The likelihood ratio test showed the largest power, but it 
should be clear from the studies of type I error (Case 1–3) that this test does not 
behave in a proper way when the sample sizes are small. The approximate F-test, 
Miller’s test, Bennett’s test, the Wald test, the naive test and the log test all gave 
similar power patterns, but Miller’s test reached a smaller power and Bennett’s test 
reached a larger. Doornbos and Dijkstra’s test was not successful at all, and the 
power of the score test was comparatively small. 
 
 
Table 6.5. Case 5. Average power in percentages when one γ is 0.05 and the other γ is 0.15. 
Significance level: 5%. F = F-test (4.4), R = Likelihood ratio test (3.12), M = Miller’s 
test (3.14), B = Bennett’s test (3.13), D = Doornbos & Dijkstra’s test (3.17), W = Wald 
test (3.15), S = Score test (3.16), N = Naive test (3.19), L = Log test (3.18) 
 

n1 n2 F R M B D W S N L 

4 2 17.21 42.76 15.51 22.27 0.00 32.64 11.82 17.41 17.57 
4 3 25.00 46.68 27.27 31.83 - 28.97 9.75 25.41 25.97 
4 4 32.78 51.98 37.30 39.39 0.00 36.44 3.99 33.42 34.06 
4 5 39.65 57.05 43.46 45.74 0.00 43.25 18.31 40.25 40.87 
4 6 43.81 60.27 46.19 49.68 0.02 47.57 25.16 44.36 45.23 
4 7 46.31 62.25 47.27 52.01 0.30 49.97 28.32 46.80 47.63 
4 8 49.23 64.84 49.10 54.98 0.78 52.46 30.90 49.78 50.59 
4 9 49.76 65.80 48.71 55.65 1.35 53.31 31.95 50.29 51.23 
4 10 51.04 67.15 48.93 57.02 2.09 54.52 32.79 51.60 52.34 
4 11 52.49 68.67 49.58 58.83 2.83 55.46 33.86 53.03 53.97 
4 12 53.12 69.41 49.79 59.62 3.96 55.93 34.39 53.63 54.50 
4 13 53.64 70.19 49.79 60.04 4.47 56.02 35.06 54.11 54.97 
4 14 54.35 70.79 49.91 60.69 5.39 56.82 35.51 54.84 55.71 
4 15 54.93 71.40 49.98 61.17 6.23 56.84 35.71 55.39 56.27 
4 16 54.85 71.82 49.64 61.61 6.92 56.99 35.89 55.38 56.41 
4 17 55.44 72.47 49.87 62.06 7.77 57.42 36.17 55.93 56.84 
4 18 55.23 72.55 49.27 62.01 8.17 57.17 36.47 55.72 56.74 
4 19 55.74 73.12 49.49 62.84 9.10 57.66 36.45 56.23 57.30 
4 20 55.97 73.42 49.58 63.03 9.72 57.53 36.77 56.45 57.40 
 

 



 
 
Fig 6.5. Case 5. Average power when one γ is 5% and the other γ is 15%, n1 = 4. 
Significance level 5%. 
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6.3. Conclusions 
The likelihood ratio test, the Wald test, Doornbos and Dijkstra’s test and the 
log test all showed poor performance with regard to type I error in at least one of 
Case 1–3. For this reason they are not recommended for use. The results of the 
score test was not as good as the results of the other tests, neither considering 
type I error nor considering power. The naive test worked similar as the 
approximate F-test, but had too large probability of type I error when the 
coefficient of variation was large. Three tests performed well: the approximate 
F-test, Miller’s test and Bennett’s test. Miller’s test did however not work properly 
when the sample sizes were very small and it also reached a smaller power. 
Bennett’s test was more powerful than the approximate F-test, but it also rejected 
the true null hypotheses too often. The approximate F-test was the only test that 
showed almost correct probability of type I error when the sample sizes were 
small. Based on the given simulations we conclude that the approximate F-test is 
recommendable. 

 

7. The distribution of McKay’s approximation 

As indicated by the example in Section 3.2 McKay’s approximation works well 
for constructing confidence intervals for the coefficient of variation. The proposed 
statistic F given in (4.4) is a quotient between two McKay approximations. We 
have seen that F is approximately F distributed when the null hypothesis of equal 
coefficients of variation is true (Chapter 5), and that the F-test works well in 
comparison with other tests (Chapter 6). These results make us interested in 
McKay’s approximation. We define it in the following way. 
 
Definition 7.1. Let yj, j = 1, 2, . . ., n be n independent observations from a normal 
distribution with expected value µ and variance σ 2. Let γ denote the population 
coefficient of variation, i.e.  γ = σ / µ, and let c denote the sample coefficient of 
variation, i.e. 
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McKay (1932) obtains the result that K is approximately χ2 distributed with n - 1 
degrees of freedom by transforming the sample coefficient of variation c to t by 
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and then expressing the density of t as a contour integral in the complex plane. 
McKay deforms the path of the counter integral to the path of steepest descent, 
which passes through the saddle point z = n of the integral (cf. de Bruijn, 1970). In 
the next step McKay makes an approximation in order to solve the integral. This 
makes it possible to study the approximate density of K = t 2 (1 + γ 2). Finally 
McKay notes that K is approximately χ2 distributed with n – 1 degrees of freedom 
if γ  is small. 
 

McKay (1932) does not theoretically express the size of the error in the 
approximation. For this reason Fieller (1932), in immediate connection to 
McKay’s article, investigates the approximation numerically and concludes that it 
is ‘quite adequate for any practical purpose.’ Also Pearson (1932) examines the 
new approximation and finds it ‘very satisfactory.’ Later Iglewicz & Myers (1970) 
study the usefulness of McKay’s approximation for calculating quantiles of the 
distribution of the sample coefficient of variation c when the underlying 
distribution is normal. They compare results according to the approximation with 
exact results and find that the approximation is accurate. Umphrey (1983) corrects 
a similar study made by Warren (1982) and concludes that McKay’s 
approximation is adequate. Vangel (1996) analytically shows that the error in the 
approximation is small when the population coefficient of variation γ is small. 
 

It is thus well documented that McKay’s approximation K, as defined by 
Definition 7.1, is indeed approximately χ2 distributed with n – 1 degrees of 
freedom. However we shall soon see that K is actually noncentral beta distributed. 
We shall prove it in two ways. The first utilises the following lemma. 
 
Lemma 7.1. Let s denote the standard deviation, i.e. s = cm. Then 
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Proof. 
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Lemma 7.1. is of special interest to us since it gives another representation of the 
test statistic F given in (4.4): 
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Recall that if U1 and U2 are independent χ2 distributed variables with v1 and v2 

degrees of freedom respectively, then 
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is Beta(v1/2 , v1/2). When U1 is instead a random variable with a noncentral 
χ2 distribution with v1 degrees of freedom and noncentrality parameter λ the 
distribution of the ratio (7.1) is according to Johnson & Kotz (1970) the noncentral 
beta distribution with noncentrality parameter λ. 
 

The other side of the coin is the distribution of 
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which is sometimes also called noncentral beta, e.g. by Hodges (1955) and 
Seber (1963). We shall use the following definition which include both cases and 
which is also given by Johnson & Kotz (1970). 
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Definition 7.2. Let U1 and U2 be independently χ2 distributed random variables 
with v1 and v2 degrees of freedom respectively and with noncentrality parameters 
λ1 and λ2 respectively. The doubly noncentral beta distribution with parameters 
v1/2, v2/2, λ1 and λ2, denoted Beta(v1/2 , v2/2 , λ1 , λ2) is defined as the distribution 
of 
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We are now ready to state that McKay’s χ2-approximation is doubly noncentral 

beta distributed. 
 
Theorem 7.1. The distribution of McKay’s approximation K, as defined by 
Definition 7.1, is 
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We shall prove the theorem in two ways. The first proof makes use of 

Lemma 7.1. 
 
Proof 1. By Lemma 7.1, 
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where U1 = Σ(yj – m)2/σ 2 and U2 = Σm2/σ 2. Here U1 is χ2 distributed with n – 1 
degrees of freedom. The average m is normally distributed with expected value µ 
and variance σ 2/n. Consequently nm2/σ 2, i.e. U2, is χ2 distributed with 1 degree of 
freedom and noncentrality parameter nµ2/σ 2 = n/γ 2 (see e.g. Shao, 2003). Since 
the sums of squares Σ(yj – m)2 and Σm2 are independent it follows from Definition 
7.2 that McKay’s approximation K is distributed as (7.2).    ♦ 
 

The second proof utilise that n1/2/c is t distributed with n – 1 degrees of freedom 
and noncentrality parameter n1/2/γ. We show this fact in the beginning of the proof. 
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Proof 2. The noncentral t distribution with n – 1 degrees of freedom and 
noncentrality parameter λ is the distribution of 
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where V1 is N(λ , 1) and V2 is χ2 distributed with n – 1 degrees of freedom (see 
e.g. Shao, 2003). Since m is distributed as 
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with λ = n1/2/γ, and since s2 = c2m2 is distributed as σ2 V2/(n – 1) it follows that 
 

T

n
V
V

n
V

nV
n

s
nm

c
n d

=

−

=

−

==

11
2

1

2
2

1

σ

σ

. 

In conclusion n1/2/c is t distributed with n – 1 degrees of freedom and 
noncentrality parameter λ = n1/2/γ. Thus we can write 
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Thus, with T from (7.3), 
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where U1 = V2 is χ2 distributed with n – 1 degrees of freedom, and U2 = V1

2 is 
χ2 distributed with 1 degree of freedom and noncentrality parameter λ2 = n/γ 2. 
Then, by Definition 7.2, McKay’s approximation K is distributed as (7.2).    ♦ 
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8. Discussion 

Warren (1982) writes: ‘While workers in many fields recognize the imprecision in 
a sample mean, and will now routinely compute a standard error, or a confidence 
interval, for the mean, many of these same workers will treat the sample 
coefficient of variation as if it were an absolute quantity. Inferences based on this 
measure of variability may then be questionable. Nevertheless, it should be 
possible to persuade such workers that, as with the sample mean, some measure of 
precision should be attached to the sample coefficient of variation.’ Though many 
years have passed since Warren made this reflection the situation has not changed. 
Researchers still lack standard methods for expressing the precision in estimated 
coefficients of variation. The purpose of this thesis has been to explore confidence 
intervals and tests that have been suggested but are seldom used, and to contribute 
to the knowledge about how to make valid statistical inference. The present work 
shall be the basis for future research and development of methods for analysing 
normally distributed measurements with constant coefficient of variation. 
 

A sceptic may claim that researchers do wrong when they calculate coefficients 
of variation and at the same time assume normally distributed data. The sceptic 
may think that models that are not easy to analyse should be avoided. For this 
reason we have discussed the adequacy of the model. We have especially 
discussed immunoassay data and derived a rational for assuming that the 
measurements are approximately normally distributed and that the coefficient of 
variation is approximately constant. This is central, because the coefficient of 
variation is the predominant measure of dispersion in diagnostic research. Our 
presumption has been that researchers do right, but are in need of statistical tools 
for analysing their estimated coefficients of variation, exactly as Warren (1982) 
pointed out. 
 

8.1. Conclusions 
With the advanced computer programs of today it is easy to calculate an exact 
confidence interval for the coefficient of variation, based on the noncentral 
t distribution. Otherwise we recommend the approximate confidence interval 
suggested by Vangel (1996). This confidence interval is built on the 
χ2-approximation found by McKay (1932). We have, as we believe for the first 
time, shown that McKay’s approximation is noncentral beta distributed. 
 
 For the hypothesis of equal coefficients of variation we have proposed a new 
test statistic F, which is approximately F distributed. The test statistic F is simply a 
quotient between two McKay approximations. It is thus easy to calculate. We have 
shown that all moments of F are close to the moments of an F distributed random 
variable if the unknown common coefficient of variation is sufficiently small. We 
have also proved that the logarithm of F in distribution equals the logarithm of an 
F distributed random variable plus some error variables that are in probability of 
small orders. 
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 We have made a simulation study that is unique and important since many of the 
tests have never been compared with each other. The study revealed that several 
proposed tests have erroneous type I errors when the sample sizes are small. The 
likelihood ratio test, the Wald test, the score test and Doornbos and Dijkstra’s test 
shall not be used unless the sample sizes are large. One of the most interesting 
results of the simulation study is that a variance test carried out on log values, i.e. 
the ‘log test’, performs badly when the coefficient of variation is not small. This is 
a key result since statisticians often use the logarithmic transformation when the 
standard deviation is proportional to the average. The proposed approximate F-test 
was the only test that showed almost correct probability of type I error when the 
sample sizes were small. For this reason we recommend the approximate F-test for 
comparing two sample coefficients of variation. 
 
 The proposed approximate F-test is, unlike several tests, easily generalized to a 
situation with many independent estimates of the coefficients of variation. We 
have made the appropriate extension and introduced the generalized approximate 
F-test. In this test estimates based on many observations are more important than 
estimates based on few observations. Each estimate is, after a transformation, 
simply weighted by its degrees of freedom. This possibility of weighing results is 
a valuable feature of the F-statistic. 
 

8.2. Future research 
 
This thesis is the starting point for further research on the analysis of coefficients 
of variation. We have focused on two fundamental inferential problems: that of 
constructing a confidence interval and that of comparing two coefficients of 
variation. There are many other problems to study. 
 

One basic question is how to make point estimates. Usually the unknown 
coefficient of variation is estimated by the coefficient of variation in the sample, 
but not much has been written about the properties of this estimator. Could there 
be estimators that are better in some respect? In applications there are often many 
estimates of a common coefficient of variation and a need for pooling the 
estimates into one single estimate. How shall this calculation be made when the 
estimates are based on different numbers of observations? It is possible to 
calculate a weighted average with number of observations or with degrees of 
freedom as weights. Another possibility, suggested by the generalized F-test 
introduced in this thesis, is to weight the coefficients of variation after 
transformation according to McKay’s approximation. 
 

We have in Chapter 5 studied the properties of the approximate F-test. The 
corresponding studies of the generalized F-test, as defined in Definition 4.2, 
remain to be made. The agreement between the moments of the test statistic F and 
the moments of an F-distributed random variable could perhaps be utilised to 
make an asymptotic expansion of the density of F. The observation that McKay’s 



approximation is noncentral beta distributed make it possible to take advantage of 
results for this distribution in the study of how McKay’s approximation can be 
used for analysing coefficients of variation. The poor performance of the log test, 
observed in the simulation study when the coefficient of variation was large, calls 
for a theoretical explanation. The approximate F-test is limited to the case of 
comparing two coefficients of variation. We would like to generalize to a test for 
the comparison of several coefficients of variation. 
 
 In immunoassay data there are often many variance components. There could be 
variation e.g. between batches of reagents, between days, between laboratories, 
between instruments and between positions within instruments. How shall such 
complex models be analysed when many blood samples with very different levels 
of concentration are included and the researchers are interested in the coefficients 
of variation? 
 

We have argued for a model with the standard deviation proportional to the 
expected value, but more sophisticated models are sometimes appropriate for 
analysing immunoassay data. It is often assumed (see e.g. O’Connell, Belanger & 
Haaland, 1993) that the standard deviation is linearly increasing not with the 
expected value, but with the expected value to a power of an additional variance 
parameter, i.e. 
 

φγµσ = ,                (8.1) 
 
where σ is the standard deviation, µ is the expected value and γ and φ are variance 
parameters. In this thesis we have only discussed the case that φ = 1. A future 
work could involve models in which both γ and φ are estimated. 
 
 We have studied differences in coefficients of variation between two groups. In 
the future we would like to model the coefficient of variation, or the variance 
parameters in (8.1), by explanatory variables. A closely related problem of large 
interest is the problem of modelling the expected values when the coefficient of 
variation is assumed to be constant or when the standard deviation is assumed to 
depend on the expected values according to (8.1). 
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