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Abstract

The recently identified phylogenetic subgroup B5 of fungal glycoside hydrolase family 18 genes encodes enzymes with
mannosyl glycoprotein endo-N-acetyl-b-D-glucosaminidase (ENGase)-type activity. Intracellular ENGase activity is associated
with the endoplasmic reticulum associated protein degradation pathway (ERAD) of misfolded glycoproteins, although the
biological relevance in filamentous fungi is not known. Trichoderma atroviride is a mycoparasitic fungus that is used for
biological control of plant pathogenic fungi. The present work is a functional study of the T. atroviride B5-group gene
Eng18B, with emphasis on its role in fungal growth and antagonism. A homology model of T. atroviride Eng18B structure
predicts a typical glycoside hydrolase family 18 (ab)8 barrel architecture. Gene expression analysis shows that Eng18B is
induced in dual cultures with the fungal plant pathogens Botrytis cinerea and Rhizoctonia solani, although a basal expression
is observed in all growth conditions tested. Eng18B disruption strains had significantly reduced growth rates but higher
conidiation rates compared to the wild-type strain. However, growth rates on abiotic stress media were significantly higher
in Eng18B disruption strains compared to the wild-type strain. No difference in spore germination, germ-tube morphology
or in hyphal branching was detected. Disruption strains produced less biomass in liquid cultures than the wild-type strain
when grown with chitin as the sole carbon source. In addition, we determined that Eng18B is required for the antagonistic
ability of T. atroviride against the grey mould fungus B. cinerea in dual cultures and that this reduction in antagonistic ability
is partly connected to a secreted factor. The phenotypes were recovered by re-introduction of an intact Eng18B gene
fragment in mutant strains. A putative role of Eng18B ENGase activity in the endoplasmic reticulum associated protein
degradation pathway of endogenous glycoproteins in T. atroviride is discussed in relation to the observed phenotypes.
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Introduction

Enzymes with mannosyl glycoprotein endo-N-acetyl-b-D-gluco-

saminidase (ENGase)-type activity (EC.3.2.1.96) are found in

glycoside hydrolase (GH) families 18, 73 and 85 [1]. ENGases are

deglycosylation enzymes, which act on the di-N-acetylchitobiosyl

part of N-glycosidically linked oligosaccharides [2]. Biochemically

characterized fungal ENGase sequences are reported from the GH

family 85 Endo M from Mucor hiemalis [3], and recently from the

GH family 18 members Trichoderma reesei Eng18A, (also referred to

as Endo T, [4]), and Flammulina velutipes Endo FV [5]. Both T. reesei

Eng18A and F. velutipes Endo FV belongs phylogenetically to the

fungal GH family 18 subgroup B5 [6]. Phylogenetic relationships

with other fungal GH family 18 subgroups that contain

biochemically characterized chitinases (EC.3.2.1.14) suggest a sin-

gle neofunctionalization event that resulted in evolution of

enzymes with ENGase activity from a chitinase ancestor [7].

There are two GH family 18 subgroup B5 ENGase members in

T. reesei, Eng18A and Eng18B [4], with orthologs in T. atroviride

and T. virens [8]. T. reesei Eng18A contains a signal peptide for

secretion, and is purified from T. reesei extracellular growth

medium [4]. T. reesei Eng18A may thus be responsible for

postsecretorial modifications of glycan structures on endogenous

T. reesei glycoproteins such as cellulases, or participate in hydrolysis

of the oligosaccharide-protective coat of foreign glycoproteins to

generate nutrients.

The second T. reesei B5 ENGase member, Eng18B, is devoid of

a signal peptide and is therefore predicted to have an intracellular

localization. Intracellular ENGase activity is reported from both

animals and plants where it is an integrated part of the

endoplasmic reticulum (ER) associated protein degradation

pathway (ERAD) [9,10]. Misfolded glycoproteins are identified

inside the ER, and prevented to enter the Golgi for further

secretion. Misfolded glycoproteins are eventually degraded by the

ERAD-pathway, which involves translocation from the ER to the

cytosol and subsequent degradation by the 26S proteasome. Prior

to proteolysis, N-glycan carbohydrate chains are removed by

peptide:N-glycanases (PNGases, EC.3.5.1.52) to generate free

PLoS ONE | www.plosone.org 1 May 2012 | Volume 7 | Issue 5 | e36152



oligosaccharides with an intact di-N-acetylchitobiose moiety at

their reducing termini (fOS-GN2), followed by further cleavage of

the di-N-acetylchitobiose moiety by ENGases that results in free

oligosaccharides with a single N-acetylglucosamine (GlcNAc) at

their reducing termini (fOS-GN1). Finally, a-mannosidases

(EC.3.2.1.24) acts on the fOS before transport into the lysosome

for final degradation [9,10].

Saccharomyces cerevisiae yeast strains that are deficient in fOS

production [11] and degradation [12] do not display any growth

phenotypes. However, the situation is more complicated in

filamentous fungi. Disruption of the cytosolic PNGase gene png-1

in the filamentous fungus Neurospora crassa manifests in a swollen-tip

phenotype and reduced cell wall integrity [13,14]. However, the N.

crassa PNG-1 protein contain several amino acid substitutions that

results in lack of enzymatic activity, implying an unknown function

of PNG-1 independent from the PNGase enzymatic activity [14].

These substitutions are present in several PNG-1 orthologs in the

fungal kingdom, raising questions concerning the mechanisms of

ERAD-pathway dependent glycoprotein deglycosylation in fila-

mentous fungi. In addition, no studies are available on the

importance of the recently discovered fungal GH family 18

ENGases for fungal growth and development. Therefore we

generated a disruption mutant of T. atroviride Eng18B, orthologous

to T. reesei Eng18B, and analysed resulting defects in growth and

development. T. atroviride is a mycoparasitic species that attack and

kill other fungi, and it is therefore commercially used as a biological

control agent against plant pathogenic fungi in agricultural and

horticultural production systems [15].

In this study we show that expression of T. atroviride Eng18B is

induced in dual cultures with the fungal plant pathogens Botrytis

cinerea and Rhizoctonia solani, although a basal expression is observed

in all growth conditions tested. By generating DEng18B disruption

mutants we show that Eng18B is involved in vegetative growth,

tolerance to abiotic stress and conidiation. In addition, disruption

of T. atroviride Eng18B results in a reduced ability to utilize chitin in

liquid cultures and in reduced antagonistic ability towards B. cinerea

but not towards other fungi or oomycetes.

Materials and Methods

Sequence Analysis
The T. atroviride genome sequence v.2 (http://genome.jgi-psf.

org/Triat2/Triat2.home.html) was used for gene sequence re-

trieval. Analyses for conserved domains were performed using the

SMART protein analysis tool [16], InterProScan [17] and

Conserved Domain Search [18]. Signal P version 3.0 [19] was

used to search for signal peptide cleavage sites, TMHMM version

2.0 [20] was used to search for transmembrane helices, and the

big-PI Fungal Predictor program [21] was used to search for GPI-

anchor sequences.

Partial Eng18B sequences from seven Trichoderma species

(Table 1) were generated by PCR amplification and sequencing

using primers P21–P26 listed in Table S1. Sequences were

submitted to GenBank [22] with accession numbers JF300121-

JF300127. Regions of low amino acid conservation between

Eng18B Trichoderma orthologs was identified by Reverse Conser-

vation Analysis (RCA) as described previously [23].

Homology Modelling
To date the only available fungal GH family 18 ENGase

structure deposited in the Protein Data Bank (PDB) [24] is for

Eng18A from T. reesei. The amino acid sequences of T. atroviride

Eng18B (protein ID 302173) and T. reesei Eng18A (Uniprot protein

ID C4RA89) were aligned using Clustal W [25]. The homology

model of the catalytic module of T. atroviride Eng18B was built

based on the structure of Eng18A from T. reesei (PDB entry 4AC1;

which has a sequence identity of 44% to T. atroviride) using the

program Modeller version 9.10 [26]. The T. atroviride Eng18B

structure homology model will be available upon request to the

authors. The structure model figure was prepared using the

program PyMol [27].

Fungal Strains and Culture Conditions
T. atroviride strain IMI206040 (WT) and mutants derived from it,

Aspergillus nidulans strain A4, B. cinerea strain B05.10, Fusarium

graminearum strain PH1, Heterobasidion occidentale strain 122-12,

Phanerochaete chrysosporium strain RB75, Phytophthora niederhauseri

strain P1017 and R. solani strain SA1 were maintained on potato

dextrose agar (PDA) (Oxoid, Cambridge, UK) medium at 25uC in

darkness, while N. crassa strain 2489 was maintained on Vogels

media [28]. SMS medium supplemented with 1% glucose was

used for gene expression and phenotypic screening unless other-

wise specified. The composition of SMS medium was (in g/L):

KH2PO4, 2; (NH4)2SO4, 1.4; Mg2SO467H2O, 0.3;

CaCl262H2O, 0.3; FeSO467H2O, 0.005; ZnSO467H2O,

0.002; MnSO46H2O, 0.002. Culture medium for different carbon

sources were prepared by substituting 1% glucose in SMS medium

with colloidal chitin (1%), R. solani cell walls (RsCW) (1%),

glucose (5%) or GlcNAc (1 mM). Starvation for carbon (C lim),

nitrogen (N lim) and carbon + nitrogen (C+N lim) was induced by

replacing 1% glucose with 0.1%, 1.4 g/L (NH4)2SO4 with 0.14 g/

L and 1% glucose +1.4 g/L (NH4)2SO4 with 0.1%+0.14 g/L,

respectively. The agar surface in agar plates was covered with

cellophane to facilitate harvesting of mycelium. T. atroviride mycelia

for submerged liquid cultures were pre-cultivated in 100 ml of

SMS on rotary shaker (200 rpm) at 25uC in darkness for 48 h,

followed by harvesting by filtering through Miracloth, washed with

sterile distilled water and transferred to new flasks containing

50 ml of fresh SMS medium containing different nutrient regimes

as described above. Colloidal chitin was prepared from crab-shell

colloidal chitin (Sigma-Aldrich, St. Louis, MO) as described

previously [29]. R. solani cell wall material was prepared using the

method described by Inglis and Kawchuk [30] with minor

modifications.

Gene Expression Analysis
For T. atroviride Eng18B expression analysis, shake flask cultures

were prepared as described above and mycelia were harvested

24 h post inoculation using vacuum filtration, washed three times

in distilled sterile water, frozen in liquid nitrogen and stored at -

80uC. For plate confrontation assays, T. atroviride and B. cinerea or

R. solani were inoculated on opposite sides of a 9 cm PDA plate

covered with cellophane. Mycelia from the growing front (7–

10 mm) of T. atroviride 24 h after contact were harvested and

immediately frozen in liquid nitrogen and stored at 280uC. T.
atroviride confronted with itself was used as control treatment. After

grinding mycelia in liquid nitrogen, total RNA was extracted using

3% hexadecyl-tri-methyl-ammonium bromide (CTAB) detergent

and phenol-chloroform purification, followed by NaOAc/ethanol

purification and selective precipitation of RNA with 8 M LiCl.

RNA was treated with RNAse free DNaseI (Fermentas, St. Leon-

Rot, Germany) and concentrations were determined spectropho-

tometrically using NanoDrop (Thermo Scientific, Wilmington,

DE).

RevertAid premium reverse transcriptase (Fermentas, St. Leon-

Rot, Germany) was used for cDNA-synthesis, while transcript

levels were quantified by quantitative PCR (qPCR) using the

SYBR Green PCR Master Mix (Applied Biosystems, Foster City,

Disruption of T. atroviride ENGase
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CA). Each 20 ml qPCR reaction contained cDNA template,

150 nM of each primer (P17/P18 or P19/P20, Table S1), 16
SYBR green fluorescent dye and other components according to

the SYBR Green PCR Master Mix protocol and performed in an

iQ5 qPCR System (Bio-Rad, Hercules, CA) including melt curve

analysis. Relative expression levels for T. atroviride Eng18B in

relation to actin (protein ID 297070) expression were calculated

from the Ct values and the primer amplification efficiencies by

using the formula described by Pfaffl [31]. QPCR reactions were

performed in three biological replicates, each based on two

technical replicates.

Construction of T. atroviride Eng18B Disruption and
Complementation Vectors
Genomic DNA was isolated using a CTAB-based method [32].

T. atroviride Eng18B flanking regions were PCR amplified using

Phusion DNA polymerase (Finnzymes, Vantaa, Finland) and

primers P1/P2 and P5/P6 (Table S1, Fig. S1A), while primers P3/

P4 was used to PCR amplify the hygromycin resistance gene (hph)

cassette from the pCT74 vector [33]. GatewayH cloning

technology (Invitrogen, Carlsbad, CA) and destination vector

pPm43GW [34] was used to generate the disruption vector

pPm43GW-Eng18B-ko. The Eng18B full-length sequence was

PCR amplified with primers P29/P30, while primers P31/P32

was used to PCR amplify the nourseothricin resistance gene (nat1)

cassette from the pD-NAT1 vector [35]. For technical reasons

a 311 bp, non-coding fragment (contig 15, position 293545 to

293855) was amplified with primers P15/P16, and used together

with the Eng18B and nat1 DNA fragments to generate the

complementation vector pPm43GW-Eng18B-comp by GatewayH
cloning technology (Invitrogen, Carlsbad, CA).

Agrobacterium Tumefaciens Mediated Transformation
The disruption (pPm43GW-Eng18B-ko) and complementation

(pPm43GW-Eng18B-comp) vectors were transformed into Agro-

bacterium tumefaciens strain AGL-1 following a freeze thaw pro-

cedure [36] and positive clones were selected on YEP (for 1 L;

10 g yeast extract, 10 g bacto peptone, 5 g NaCl; pH adjusted to

7.0) plates containing 35 mg/mL rifampicin (Sigma-Aldrich,

St. Louis, MO) and 100 mg/mL spectinomycin (Sigma-Aldrich,

St. Louis, MO). A. tumefaciens-mediated transformation (ATMT) of

T. atroviride was performed based on a previous protocol for

T. harzianum [37]. Mitotically stable Eng18B disruption (DEng18B)
and DEng18B-Eng18B-complemented (DEng18B+) transformants

were purified by two rounds of single spore isolation.

Validation of Transformants
Homologous integration of the disruption cassette was evaluated

by PCR using primers specific to the hph gene in combination with

primers specific to sequences flanking the deletion construct (P3/

P12, P4/P11). Reverse transcriptase (RT)-PCR was conducted on

WT, DEng18B and DEng18B+ strains using primers specific for

hph, nat1, Eng18B and translation elongation factor tef1 (P13/P14,

P33/P34, P19/P20 and P7/P8, Table S1). A mitotically stable

DEng18B+ complementation strain was included in all phenotype

analyses to exclude the possibility of phenotypes that derive from

ectopic insertions.

Analyses of Morphology, Growth Rate, Conidiation and
Biomass Production
Colony morphology and growth diameter were recorded in

triplicates daily. Conidiation was determined in triplicates as

described before [38] using a Bright-Line haemocytometer

(Sigma-Aldrich, St. Louis, MO). Biomass production in 25 ml

liquid cultures was analysed in triplicates by determining mycelial

dry weight after incubation at 25uC in darkness for 3 days under

constant shaking condition (100 rpm). For liquid cultures contain-

ing colloidal chitin and R. solani cell wall material, spectrophoto-

metrically determined protein content was used as a measure of

biomass production as described previously for T. atroviride [38].

Abiotic stress tolerance was evaluated in triplicates by measuring

colony diameter after 7 days of growth on PDA plates containing

1 M NaCl or 0.025% SDS.

Enzyme Activity Assays
b-N-acetylhexosaminidase (NAGase, EC.3.2.1.52) and endochi-

tinase activity was measured in triplicates using (GlcNAc)1&3
conjugated to 4-methylumbelliferyl (4-MU) as substrates (Sigma-

Aldrich, St. Louis, MO), respectively. An 85 ml sample was mixed

with 15 ml of substrate (35 mM) in a 96-well micro-plate and

incubated at room temperature for 20 min, followed by addition

of 100 ml of 1 M glycine buffer, pH 10.6. Fluorescence of released

Table 1. Trichoderma species used for Eng18B sequencing, and translated amino acid positions used for Reverse Conservation
Analysis.

Speciesa CBS strain number Amino acid positionsb Sequence length (aa)

T. atroviridec - 11R337 327

T. reeseic - 7R329 323

T. virensc - 8R327 320

T. asperellum 433.97 11R265 255

T. citrinoviride 258.85 11R259 249

T. harzianum 102174 87R270 184

T. piluliferum 224.84 87R269 183

T. brevicompactum 109720 94R266 173

T. tomentosum 349.93 11R181 171

T. croceum 337.93 89R265 177

aSpecies identification based on internal transcribed spacer (ITS) sequencing and TrichOKey identification as described previously [8], bTranslated amino acid sequence
positions used for Reverse Conservation Analysis is given using T. atroviride Eng18B as reference, cSequences retrieved from genome sequences; T. atroviride protein ID
302173, T. reesei protein ID 121335, T. virens protein ID 92008.
doi:10.1371/journal.pone.0036152.t001
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4-MU was determined by using a luminescence spectrometer,

model LS50B (Perkin Elmer, Waltham, MA) at Ex360/Em455.

For extracellular activity, culture filtrates from 5 days of fungal

growth in SMS supplemented with 1% colloidal chitin or 1%

R. solani cell walls was used. In addition, harvested mycelia were

ground in liquid nitrogen and suspended in 1 ml of TE buffer

(100 mM Tris pH 8.0, 1 mM EDTA pH 8.0), centrifuged at

13000 rpm, 4uC for 10 min and the supernatant was used to assay

intracellular enzyme activity.

ENGase deglycosylation activity was measured in triplicates in

culture filtrate and mycelial fractions using an RNase B SDS

polyacrylamide gel mobility shift assay [4]. T. atroviride was grown

in dextrose broth (D-glucose 20 g/L, Tryptone 5 g/L and peptone

5 g/L) medium for 48 h at 25uC. The mycelial fraction was

prepared by grinding harvested and washed mycelia in 1 ml of

100 mM sodium acetate buffer, pH 5.0, followed by centrifuga-

tion for 10 min at 13000 rpm at 4uC, and collection of the

supernatant. To monitor ENGase activity, a 40 ml sample was

incubated with 10 ml of the highly glycolylated RNAse B (Sigma-

Aldrich, St. Louis, MO) at a concentration of 10 mg/ml dissolved

in 100 mM sodium acetate buffer, pH 5.0, [4] for 24 h at room

temperature. Deglycosylation of RNAse B was monitored by

mobility shift of bands on 4–20% SDS-PAGE gel (Bio-Rad,

Hercules, CA) after staining with Coomassie Brilliant Blue. RNase

B incubated with dextrose broth medium was used as control.

Antagonism Test
Antagonistic behaviour of T. atroviride towards other fungi was

tested in triplicates using an in vitro plate confrontation assay on

SMS agar plates. Secreted factors were assayed by growing

T. atroviride on SMS agar plates covered with cellophane at 25uC
in darkness. The cellophane was removed when T. atroviride

covered the plates, followed by inoculation with B. cinerea and

growth was measured daily in three replicates. In addition, B.

cinerea was grown on SMS agar plates covered with cellophane at

25uC in darkness, followed by removal of the cellophane and

inoculation with T. atroviride. Linear growth was recorded daily in

three replicates.

Microscopy Analysis
Conidial germination in PDB medium was observed after 20 h

using a Zeiss Axioplan microscope (Thornwood, NY) equipped

with Leica application suite version 3.6.0 and images were taken

using a Leica DFC295 digital camera (Wetzlar, Germany). Fungal

material was stained with 0.1% calcofluor-white stain (Sigma-

Aldrich, St. Louis, MO) diluted in PBS. Stained material was

examined using a Leica DM5500B microscope (Wetzlar, Ger-

many) with DAPI filters.

Statistical Analysis
Analysis of variance (ANOVA) was performed on gene

expression and phenotype data using a General Linear Model

approach implemented in Statistica version 10 (StatSoft, Tulsa,

OK). Pairwise comparisons were made using the Tukey-Kramer

method at the 95% significance level. In addition, gene expression

data were analysed by Student’s t-test implemented in Statistica.

Results

Bioinformatic Analysis and Homology Modelling of
T. atroviride Eng18B
Protein ID 302173 was retrieved from the T. atroviride genome

sequence v.2 and named Eng18B. In addition, the second B5-

group T. atroviride member, protein ID 217415, was retrieved and

named Eng18A. The Eng18B transcript was 1377 bp long and

contained a coding region of 1014 bp without any introns. The

translated Eng18B 337 amino acid (aa) sequence was analysed for

conserved domains using SMART which identified a single GH

family 18 module between aa positions 12–269 (Pfam00704),

including a putative catalytic motif DGLDLDVE (aa pos. 127–

134) and a putative substrate binding site SLGG (aa pos. 138–

141). This structure was also confirmed by InterProScan and

Conserved Domain Search analyses. No N-terminal secretion

signal peptide, transmembrane domains, or C-terminal GPI-

anchor signal were found from analyses using SignalP, TMHMM,

and big-PI Fungal Predictor respectively. Manual inspection

identified one putative glycosylation site NLS (aa pos. 174–176)

that conformed to the conserved N-X-S/T sequence where N is

the acceptor for the oligosaccharide structure [39]. The GH family

18 module of T. atroviride Eng18B displayed 86% identical residues

to the T. reesei ortholog (Eng18B) and 50% identity to T. atroviride

Eng18A (orthologous to T. reesei Eng18A (also known as Endo T)).

Homology modelling of T. atroviride Eng18B revealed that the

catalytic module of the enzyme has a (ab)8 barrel architecture,

which is indicative of a GH family 18 enzyme. The residues in the

enzyme that are considered to be important for the catalytic

activity of the enzyme (Asp132, Glu134 and Tyr194) were

completely conserved between the two fungal ENGase enzymes,

and most the amino acids considered to be important for substrate

recognition were highly conserved between the two enzymes

(Fig. 1). According to the RCA analysis, high amino acid diversity

between Eng18B orthologs was distributed amongst twelve regions

(I-XII, Fig. 1) in the protein. Region X corresponded to a putative

linker region, while regions III and IX bordered the catalytic cleft

and may influence the structure of the substrate-binding cleft of

the enzyme (Fig. 1). All other eight regions were predicted to be

distant from the catalytic cleft.

Expression of T. atroviride Eng18B is Induced in
Antagonistic Interactions
Quantitative PCR was used to analyse gene expression patterns

of T. atroviride Eng18B under conditions relevant for ENGase

induction and mycoparasitism. Experiment A was performed in

liquid SMS cultures supplemented with either glucose, GlcNAc,

chitin, R. solani cell walls, or representing carbon limitation,

nitrogen limitation or the combination of the two. Expression of

T. atroviride Eng18B was measured after 24 h of growth and

showed a significant (P=0.023) 2.6-fold repression in SMS

medium containing GlcNAc as a sole carbon source compared

to the glucose control (Fig. 2A). Experiment B was performed as

dual cultures between T. atroviride and R. solani or B. cinerea on PDA

agar plates, with a T. atroviride self-self interaction as control. The

transcription of T. atroviride Eng18B was found to be significantly

(P#0.043) induced 24 h after contact with either species (1.2 and

1.6-fold, respectively. Fig. 2B). Interaction with B. cinerea induced

a 1.3 fold stronger response (P,0.001) compared with R. solani. An

additional observation was that a basal expression of the Eng18B

gene was observed in all tested culture conditions.

Disruption of Eng18B in T. atroviride
A disruption vector pPm43GW-Eng18B-ko was constructed

and introduced in A. tumefaciens to replace the Eng18B gene in

T. atroviride using ATMT. Gene replacement in 10 randomly

selected, hygromycin-resistant transformants were confirmed by

PCR using primer pair P3/P4 for hph cassette, P11/P4 for

upstream and P3/P12 for downstream amplification. Expected

size of PCR fragment was amplified in all 10 mutants, while no

amplification was observed in WT (Fig. S1B, C and D,

Disruption of T. atroviride ENGase
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respectively). To verify the complete replacement of the Eng18B

gene, PCR amplification using primer pair P11/P12 flanking the

deletion construct, was performed and generated the expected

3.8 kb and 4.3 kb PCR products from WT and mutant strains,

respectively (Fig. S1E).

RT-PCR on cDNA from four randomly selected positive

disruption mutants along with the WT using the Eng18B-specific

primer pair P19/P20 demonstrated the lack of Eng18B transcripts

in any of the mutant strains (Fig. S1F). An RT-PCR product of

170 bp from the hph gene was obtained from the four mutants

using primers P13/P14, whereas no amplification product was

found in the WT strain (Fig. S1F). Amplification of a tef1 fragment

from both WT and mutant T. atroviride strains demonstrated that

the cDNA was of sufficient quality (Fig. S1F).

Successful integration of the pPm43GW-Eng18B-comp Eng18B

complementation cassette in six independent, mitotically stable

DEng18B strains was confirmed by PCR amplification of the nat1

selection marker using primers P33/P34 from genomic DNA (Fig.

S1G). RT-PCR on cDNA from three randomly selected nat1

positive DEng18B+ strains using the Eng18B-specific primer pair

P19/P20 demonstrated restored Eng18B transcription, while no

transcripts were detected in the parental DEng18B deletion strains

(Fig. S1H).

Disruption of T. atroviride Eng18B Results in Colony
Morphology Change and High Rates of Conidiation
Differences in colony morphology between DEng18B mutants

and WT/DEng18B+ strains were observed when they were grown

on solid SMS medium supplemented with different nutritional

sources (Fig. 3), especially with regard to patterns of conidiation.

The DEng18B mutants showed significantly increased conidiation

in PDA, SMS, C lim, N lim and C+N lim medium (P#0.018)

compared to the WT and DEng18B+ strains (Fig. 4). Microscopic

investigation revealed no difference in the morphology of conidia,

conidial germination rates or germ tube morphology between WT

and DEng18B mutants, neither in liquid PDB nor on PDA or SMS

medium (Fig. S2).

Disruption of T. atroviride Eng18B Results in Decreased
Growth Rates
A significant reduction (P,0.001) in growth rates of DEng18B

strains was recorded when compared to the WT and DEng18B+
strains under all culture conditions (Fig. 5). The maximum

reduction was recorded in C+N lim medium (55%) followed by

GlcNAc (49%) and colloidal chitin (49%). Furthermore, fungal

biomass production was measured in liquid shake flask cultures,

with equivalent composition to the previous experiment, but

including RsCW. In contrast to growth on solid media, no

Figure 1. Trichoderma atroviride Eng18B homology model.
Ribbon diagrams of the catalytic module of Eng18B, based on the
structure of T. reesei Eng18A (PDB entry 4AC1) showing the conserved
catalytically important residues in red; variable regions from reverse
conservation analysis (Wmeans) in green; and highly variable amino
acid positions with Sscore $3 in blue. Variable regions are marked in
Roman numerals from N- to C- termini.
doi:10.1371/journal.pone.0036152.g001

Figure 2. Expression analysis of the T. atroviride Eng18B gene. Total RNA was extracted from T. atroviride mycelia after 24 h of incubation in
submerged shake flask cultures at 25uC in darkness representing different nutritional/stress and mycoparasitic conditions. (A) T. atroviride Eng18B
expression in glucose, C limitation, N limitation, C+N limitation, N-acetylglucosamine (GlcNAc), R. solani cell wall material (RsCW) and colloidal chitin
mediums. (B) Eng18B expression 24 h after contact with R. solani (Ta-Rs24h) or B. cinerea (Ta-Bc24h). T. atroviride confronted with itself was used as
control (Ta-Ta24h). Relative expression levels for Eng18B in relation to actin expression were calculated from the Ct values and the primer
amplification efficiencies by using the formula described by Pfaffl [42]. Error bars represent standard deviation based on three biological replicates.
Experiments in panel A and B were analysed separately, different letters indicate statistically significant differences (P#0.05) within experiments.
doi:10.1371/journal.pone.0036152.g002
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significant differences were found in biomass production between

DEng18B strains and WT in liquid PDB, SMS, GlcNAc, RsCW, or

C lim and N lim (P$0.768). However, there was a significant

(P=0.004) reduction in biomass (42% of WT) in liquid SMS with

colloidal chitin as sole carbon source. Microscopic investigation

revealed no difference in hyphal morphology, including tip growth

and hyphal branching patterns, between WT and DEng18B
T. atroviride strains either on PDA or solid SMS plates (data not

shown).

Figure 3. Colony morphology of WT, DEng18B and DEng18B+ T. atroviride strains in different nutrient regimes. T. atroviride strains were
inoculated on solid PDA, SMS, C limitation, N limitation, C+N limitation, N-acetylglucosamine (GlcNAc), chitin and glucose medium. Photographs of
representative plates were taken 7 days post inoculation after incubation at 25uC. The experiments were carried out in three biological replicates.
doi:10.1371/journal.pone.0036152.g003
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Disruption of T. atroviride Eng18B Results in Increased
Resistance to Abiotic Stress
The potential role of T. atroviride Eng18B in influencing cell wall

integrity was tested by growing WT, DEng18B and DEng18B+
T. atroviride strains on PDA plates supplemented with NaCl or SDS

to induce cell wall stress. Growth rate of DEng18B strains was

found to be significantly increased by 25% on NaCl (P,0.001) and

by 37% on SDS medium (P,0.001) compared with either WT or

DEng18B+ T. atroviride strains (Fig. 6). Fluorescence microscopy

indicated no difference in cell wall chitin content between WT and

DEng18B strains (data not shown).

Chitinase, NAGase and ENGase Enzyme Activities Remain
Unaffected by T. atroviride Eng18B Disruption
T. atroviride WT and DEng18B strains were grown in liquid SMS

cultures supplemented with colloidal chitin or RsCW. Culture

filtrates and mycelial homogenates were analyzed for NAGase or

endochitinase activity, using 4MU-conjugated GlcNAc and tri-

GlcNAc as substrates, respectively. No statistical difference

(P$0.721) in either enzyme activity was recorded between WT

and Eng18B disruption T. atroviride strains, either in colloidal chitin

or RsCW culture filtrates or mycelial homogenates.

T. atroviride WT and DEng18B strains were grown in dextrose

broth and ENGase deglycosylation activity was measured in

culture filtrates and mycelial homogenates using an RNase B SDS

polyacrylamide gel mobility shift assay. ENGase activity was

detected by SDS-PAGE as a new band with lower molecular mass

as compared to untreated RNase B in both culture filtrates and

mycelial homogenates of WT and Eng18B disruption T. atroviride

strains (Fig. S3). However, no difference in the ENGase activity in

between WT and DEng18B strains was detected.

Disruption of Eng18B Reduces Antagonistic Ability
Towards B. Cinerea
No difference in the ability of T. atroviride WT, DEng18B and

DEng18B+ strains to overgrow and conidiate on H. occidentale,

P. chrysosporium, R. solani, A. nidulans, F. graminearum, N. crassa, or

P. niederhauseri was observed (data not shown). In contrast,

DEng18B T. atroviride strains failed to overgrow B. cinerea even

after 30 days after contact while WT and DEng18B+ T. atroviride

Figure 4. Conidiation of WT, DEng18B and DEng18B+ T. atroviride strains in different nutrient regimes. T. atroviride strains were inoculated
on solid PDA, SMS, C limitation, N limitation, C+N limitation, N-acetylglucosamine (GlcNAc), chitin and glucose medium and incubated at 25uC in
darkness for 7 days, with daily light exposures to induce conidiation. Conidial numbers were determined using a Bright-Line haemocytometer as per
instruction of manufacturer. Error bars represent standard deviation based on three biological replicates. Different letters indicate statistical
significance (P#0.05) for strain differences within a single medium.
doi:10.1371/journal.pone.0036152.g004

Figure 5. Growth rate of WT, DEng18B and DEng18B+ T. atroviride strains in different nutrient regimes. T. atroviride strains were
inoculated on solid PDA, SMS, C limitation, N limitation, C+N limitation, N-acetylglucosamine (GlcNAc), chitin and glucose medium and incubated at
25uC in darkness. Growth rate was calculated from data recorded 3 days post inoculation. Error bars represent standard deviation based on three
biological replicates. Different letters indicate statistical significance (P#0.05) for strain differences within a single medium.
doi:10.1371/journal.pone.0036152.g005
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strains overgrew B. cinerea in two days, completely lysing the B.

cinerea mycelium (Fig. 7A). A secretion assay was used to further

investigate the mechanism behind the reduced antagonistic ability.

T. atroviride WT, DEng18B and DEng18B+ strains were grown on

agar plates previously colonized by B. cinerea in order to test for

sensitivity towards B. cinerea secreted factors. The growth rate of

DEng18B T. atroviride strains were 17% lower (P,0.001) than WT/

DEng18B+ after 5 days (Fig. 7B and D), which should be compared

with the 26% growth rate reduction on PDA plates without

B. cinerea pretreatment (Fig. 5). Furthermore, B. cinerea growth rate

was significantly (P,0.001) higher on agar plates previously

colonized by DEng18B T. atroviride strains than on plates previously

colonized by T. atroviride WT/DEng18B+ strains (Fig. 7C and E).

Discussion

The lack of signal peptide or GPI-anchor signal suggests

a cytosolic localization of T. atroviride Eng18B, in contrast to the

secreted ENGase Eng18A (homologous to T. reesei Eng18A (Endo

T) [4]). The high sequence similarity between the catalytic

modules of T. atroviride Eng18A and Eng18B (50% identical aa)

indicates ENGase activity for Eng18B. As a comparison, the

catalytic modules of the three T. reesei B1/B2-group endochitinases

Chi18–13, Chi18–16 and Chi18–17 [40], display 35–42% aa

identity while the catalytic modules of the T. reesei endochitinase

Chi18–13 and the A5-group exochitinase Chi18–5 [40] display

only 20% sequence identity. However, deletion of T. atroviride

Eng18B does not reduce measurable ENGase enzyme activity,

which is probably due to high ENGase activity of the fungal

ENGase Eng18A that is still intact in the T. atroviride Eng18B

deletion mutants. Compensatory effects from paralogous proteins

are a common problem when trying to deduce functional

contributions of individual isozymes. Homology modelling studies

of T. atroviride Eng18B (based on the structure of T. reesei Eng18A)

indicate that T. atroviride Eng18B has an active site architecture

that is consistent with ENGase cleavage of the bond between the

two b-1,4-linked GlcNAc units that connect glycoproteins to their

linked oligosaccharide chains. The active site of T. atroviride

Eng18B is highly conserved compared with the active site of

T. reesei Eng18A. Regions that display high amino-acid variation

between Trichoderma Eng18B orthologs are found to be located

distal from the catalytic cleft, which suggests conserved substrate

specificity between the orthologs.

Bacterial ENGases are shown to remove the oligosaccharide-

protective coat from foreign glycoproteins in order to provide

peptides for nutritional purposes [41]. Although this function may

be possible for the secreted T. atroviride Eng18A orthologs [4], it is

less likely for the putatively intracellular T. atroviride Eng18B.

Instead, intracellular ENGase activity is shown to be part of

ERAD-degradation of misfolded glycoproteins [9,10]. More

specifically, N-glycan carbohydrate chains are removed from

glycoproteins by PNGases to generate fOS-GN2, followed by

further degradation by ENGases to fOS-GN1 and a-mannosidases

before transport into the lysosome. The situation is further

complicated in filamentous fungi where the intracellular PNGase

apparently carries amino acid substitutions that abolish PNGase

activity [14]. We may speculate that disruption of the ERAD

ENGase activity interferes with N-glycan-dependent aspects of

glycoprotein maturation and secretion such as clogging of the

secretory pathway or secretion of misfolded and/or erroneously

glycosylated proteins.

We started the functional characterization of T. atroviride

Eng18B by investigating the regulatory patterns of Eng18B. The

gene is expressed in all tested conditions, which is expected for

a function in ERAD-degradation of misfolded glycoproteins. Gene

transcription is induced during interactions with R. solani and

B. cinerea, which can be explained by increased secretion of cell

wall degrading enzymes during the mycoparasitic attack, accom-

panied by an increase in the amount of misfolded glycoproteins.

Interestingly, T. atroviride Eng18B gene expression is repressed by

GlcNAc, which merit further discussion. Studies in rats show that

the cytosol to lysosome transport of fOS-GN1 is blocked by

GlcNAc and other chitooligosaccharides [42]. The repression of

T. atroviride Eng18B by GlcNAc may thus represent a mechanism to

adjust upstream steps in the ERAD-degradation pathway to the

block in fOS-GN1 lysosome import. Furthermore, T. atroviride

Eng18B is not regulated by glucose repression like many

Trichoderma carbohydrate-degrading enzymes such as cellulases

[43]. The absence of glucose repression is also observed for the

secreted T. reesei ENGase Eng18A, for which expression and

activity is not co-regulated with cellulolytic activities [4,44].

There is no difference in biomass production in liquid cultures

between DEng18B and WT strains of T. atroviride, with the

exception of cultures where colloidal chitin constitutes the only

source of carbon. Chitin was used in the current study as an

example substrate for secreted hydrolytic enzymes. The chitin

utilization defect establishes a link between T. atroviride Eng18B

function and chitin degradation, possibly by impaired secretion or

suboptimal activity of certain secreted chitinolytic enzymes due to

defective folding or glycosylation [45], or by other as yet

unidentified T. atroviride enzymes involved in chitin catabolism.

Reduced biomass production is not observed when R. solani cell

wall material is used as a carbon source for T. atroviride cultures,

which can be attributed to the presence of other components of the

cell wall such as b-glucans and proteins that can be utilized as

nutrients. Paradoxically, no reduction of total NAGase or

endochitinase activities is observed in the T. atroviride Eng18B

disruption strains that would explain the lower ability of the fungus

to utilize chitin as a nutrient source. However, chitin is a complex

substrate that requires the concerted action of several endo- and

exo-acting chitinolytic enzymes, while NAGase and endochitinase

activities in the current study were measured using 4MU-

Figure 6. Growth rate of WT, DEng18B and DEng18B+ T. atroviride
strains in abiotic stress medium. T. atroviride strains were
inoculated on solid PDA plates supplemented with 1 M NaCl or
0.025% (w/v) SDS and incubated at 25uC in darkness. Growth rate was
calculated from data recorded 7 days post inoculation. Error bars
represent standard deviation based on three biological replicates.
Different letters indicate statistical significance (P#0.05) for strain
differences within a single medium.
doi:10.1371/journal.pone.0036152.g006
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conjugated GlcNAc and tri-GlcNAc which are structurally more

simple substrates.

Disruption of the T. atroviride Eng18B gene results in several

phenotypic effects related to growth and development in T.

atroviride, including lower growth rates on normal media, higher

growth rates under conditions of cell wall stress, and increased or

alternatively earlier conidiation compared to the WT strain under

similar conditions. The common denominator for these pheno-

types may be impaired cell wall function. The fungal cell wall is

a highly dynamic structure that changes continuously during

different stages of the life cycle and in response to different

environmental conditions [39,46]. The model of cell wall synthesis

and remodelling include a balance between chitin synthesis for

adequate strength to protect cells under adverse environmental

conditions and chitin hydrolysis to provide sufficient plasticity to

the cell wall for growth and morphogenesis [47,48]. Although no

increase of cell wall chitin content is measured in T. atroviride

DEng18B strains, cell wall structure may still be different due to the

observed chitin degradation defect, consequently leading to

a reduced growth rate on solid media. A previous study showed

that disruption of the intracellular PNG-1 in N. crassa results in

a growth defect associated with the hyphal tip [13]. However, the

swollen-tip phenotype observed for N. crassa in that study is not

observed for the T. atroviride DEng18B strains in the current study,

Figure 7. In vitro plate confrontation assays of WT, DEng18B and DEng18B+ T. atroviride strains. (A) Plate confrontation against B. cinerea.
Agar plugs of T. atroviride (right side in the plate) and B. cinerea (left side in the plate) were inoculated on opposite sides in 9 cm SMS agar plates and
incubated at 25uC in darkness. The experiment was performed in three replicates and photographs of representative plates were taken 15 days post
inoculation. (B and D) Secretion assay of B. cinerea. Agar plugs of B. cinerea was inoculated on SMS agar plates covered with cellophane and
incubated at 25uC in darkness. After reaching the same diameter the colony was removed together with the cellophane disc and the plates re-
inoculated with a T. atrovirideWT, DEng18B or DEng18B+ agar plug and incubated at 25uC in darkness. Growth rate was calculated from data recorded
5 days post inoculation. The experiment was performed in three replicates and photographs of representative plates were taken 5 days post
inoculation. (C and E) Secretion assay of WT, DEng18B and DEng18B+ T. atroviride strains. Agar plugs of T. atroviride WT, DEng18B or DEng18B+ strains
were inoculated on SMS agar plates covered with cellophane and incubated at 25uC in darkness. After reaching the same diameter the colony was
removed together with the cellophane disc and the plates re-inoculated with a B. cinerea agar plug and incubated at 25uC in darkness. Growth rate
was calculated from data recorded 5 days post inoculation. The experiment was performed in three replicates and photographs of representative
plates were taken 5 days post inoculation. Different letters indicate statistically significant differences (P#0.05) within experiments.
doi:10.1371/journal.pone.0036152.g007
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but emphasizes the connection between ERAD protein degrada-

tion and hyphal tip growth.

According to this idea, DEng18B T. atroviride strains may have

a more rigid cell wall structure that consequently leads to better

resistance against cell wall stress. Therefore, DEng18B and WT/

DEng18B+ T. atroviride strains were exposed to chemicals used to

test cell wall integrity on solid media. Our data confirm that

DEng18B strains grow faster than the WT/DEng18B+ strains

under conditions of cell wall stress, which is in line with the idea of

a more rigid cell wall structure. S. cerevisiae cells under

environmental stress can change the relative amount of their cell

wall polymers, where increased levels of chitin results in

a reinforced cell wall [46].

Several studies in N. crassa and A. nidulans illustrate a trade-off

between hyphal growth and conidiation; deletion of genes involved

in cAMP dependent G-protein signalling reduces filamentous

growth but causes premature conidiation [49,50]. In the current

study, the reduced growth rate of DEng18B T. atroviride strains are

accompanied by enhanced or premature conidiation. A connec-

tion between chitin ring deposition and temporal and spatial bud

emergence for conidiation is reported in S. cerevisiae [46]. However,

loss of T. atroviride Eng18B function in the fungus does not affect

conidial morphology or germination, germ-tube development,

hyphal morphology or branching.

Our study shows that Eng18B is necessary for the antagonistic

ability of T. atroviride against B. cinerea in plate confrontation assays,

but not against any of the other tested fungi or oomycete. In

addition, the fact that B. cinerea grow less well on plates previously

colonized by WT/DEng18B+ T. atroviride strains than by the

DEng18B T. atroviride strains establish that the reduced antagonistic

ability can at least partly be attributed to a secreted factor. This

may be due to impaired secretion or defective folding or

glycosylation of certain secreted hydrolytic enzymes that are

specifically important for the mycoparasitic attack on B. cinerea.

Another component in the reduced antagonistic ability of DEng18B
T. atroviride strains may involve a greater sensitivity towards secreted

B. cinerea toxins or enzymes due to impaired cell wall function.

However, our data show that this is not the case; the growth rate

reduction of Eng18B disruption strains on PDA plates previously

colonized by B. cinerea is smaller than the reduction on normal

PDA. This can be explained by the higher resistance to abiotic

stress that is attributed to the DEng18B strains and that B. cinerea

secretes hydrolytic enzymes and toxins into the PDA plates.

The present study constitutes the first study of the biological role

of a fungal member from the novel GH family 18 B5 ENGase

subgroup, T. atroviride Eng18B, with focus on its role in fungal

growth and development. We show that T. atroviride Eng18B is

involved in hyphal growth, tolerance to abiotic stress, conidiation,

chitin utilization and the antagonistic ability of T. atroviride towards

B. cinerea. The exact mechanistic relationships between T. atroviride

Eng18B function and the observed phenotypic effects require

further investigation. The T. atroviride DEng18B strains generated in

the current study will be a valuable tool to further dissect the

ERAD-pathway dependent protein degradation in filamentous

fungi.

Supporting Information

Figure S1 Schematic representation of disruption cas-
sette and characterization of DEng18B mutant T. atro-
viride strains using PCR and RT-PCR. (A) Organisation of

Eng18B locus in WT and mutant strain of T. atroviride. The Eng18B

coding region was replaced by hph cassette by homologous

recombination resulting in generation of DEng18B mutants. The

small arrowheads indicate the location of primers used to construct

the disruption cassette and analysis of mutants using PCR. The

large arrowheads indicate the size of amplified PCR products.

Abbreviations: LB, left boarder; RB, right boarder. Characteriza-

tion of DEng18B mutant T. atroviride strains using PCR and RT-

PCR. (B) PCR verification of hph cassette (1.5 kb) from genomic

DNA of putative transformants and WT strains using specific

primer pair (P3/P4). M, gene ruler DNA ladder mix; 1–9, nine

independent DEng18B mutants; 10, disruption vector (pPm43GW-

Eng18B-ko) as positive control; and 11–12, WT. (C & D) PCR

verification using primers located in the hph gene (P3/P4) in

combination with primers located upstream and downstream from

the disruption cassette (P11/P12). PCR products of 2.8 kb and

3.1 kb using primers P4/P11 and P3/P12 were expected from

a correct gene replacement. M, gene ruler DNA ladder mix; 1–10,

independent DEng18Bmutants; 11, WT; and 12, water control. (E)

PCR verification of DEng18B mutants using primer pair (P11/P12)

flanking the disruption cassette. PCR products of 4.3 kb and

3.8 kb were expected from the mutant and WT strains,

respectively. M, gene ruler DNA ladder mix; 1–10, independent

DEng18B mutants; 11, WT; and 12 water control. (F) RT-PCR

analysis of gene expression in mutant and WT strains, using

Eng18B and hph specific primers P19/P20 and P13/P14, re-

spectively. Housekeeping gene tef1 was used as internal control of

cDNA quality and amplified by P7/P8 primers. M, gene ruler

DNA ladder mix; 1–4, independent DEng18B mutant strains; and

5, WT. Primer combinations used for PCR and RT-PCR are

given above the images. (G) PCR verification of nat1 cassette from

genomic DNA of putative transformants and WT strains using

specific primer pair (P33/P34). M, gene ruler DNA ladder mix; 1–

6, six independent DEng18B+ complemented strains; and 7, WT.

(H) RT-PCR analysis of Eng18B expression in WT, DEng18B
knock-out and DEng18B+ complemented strains, using Eng18B

specific primers P19/P20. M, gene ruler DNA ladder mix; 1, WT;

2–3, independent DEng18B knock-out strains; and 4–6, indepen-

dent DEng18B+ complemented strains.

(PDF)

Figure S2 Germ tube morphology of WT and DEng18B
T. atroviride strains. Conidia were inoculated in PDB medium

and monitored using a Zeiss Axioplan microscope equipped with

Leica application suite version 3.6.0. Images were taken 20 h post

inoculation using a Leica DFC295 digital camera at the same

magnification.

(PDF)

Figure S3 SDS-PAGE analysis of ENGase-type activity in
T. atroviride using (A) culture filtrate or (B) cytosolic
fraction. T. atroviride WT and DEng18B mutants were grown in

dextrose broth for 48 h at 25uC. Forty ml culture filtrate or

cytosolic fraction was mixed with 100 mg of RNase B and

incubated at room temperature for 24 h for deglycosylation.

Twenty ml of the reactions were mixed with 5 ml of loading dye

and heat denatured at 100uC for 10 min before loading. L, protein

ladder; 1, RNAse B incubated with dextrose broth; 2, fresh RNAse

B; 3, WT culture filtrate or cytosolic fraction incubated with

RNAse B; 4 and 5, DEng18B mutants culture filtrate or cytosolic

fraction incubated with RNAse B; 6, WT culture filtrate or

cytosolic fraction without RNAse B; 7 and 8, DEng18B mutants

culture filtrate or cytosolic fractions without RNAse B.

(PDF)

Table S1 Primers used in the current study. aattB and

attBr sequences for multisite gateway BP recombination are

underlined.

(DOCX)
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