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Abstract In this paper we present a mathematical anal-

ysis of the basic model for target mediated drug disposition

(TMDD). Assuming high affinity of ligand to target, we

give a qualitative characterisation of ligand versus time

graphs for different dosing regimes and derive accurate

analytic approximations of different phases in the temporal

behaviour of the system. These approximations are used to

estimate model parameters, give analytical approximations

of such quantities as area under the ligand curve and

clearance. We formulate conditions under which a suitably

chosen Michaelis–Menten model provides a good approx-

imation of the full TMDD-model over a specified time

interval.

Keywords Target � Receptor � Antibodies � Drug-

disposition � Michaelis–Menten � Quasi-steady-state �
Quasi-equilibrium � Singular perturbation

Introduction

The interaction of ligand and target in the process of

drug-disposition offers interesting examples of complex

dynamics when target is synthesised and degrades and

when both ligand and ligand–target complex are elimi-

nated. In recent years such dynamics has received con-

siderable attention because it is important in the context of

data analysis, but also, more generally, in the context of

system biology because this model serves as a module in

more complex systems [1].

Based on conceptual ideas developed by Levy [2], the

basic model for target mediated drug disposition (TMDD)

was formulated by Mager and Jusko [3]. Earlier studies of

ligand–target interactions go back to Michaelis and Menten

[4]. We also mention ideas about receptor turnover

developed by Sugiyama and Hanano [5]. Mager and

Krzyzanski [6] showed how rapid binding of ligand to

target leads to a simpler model, Gibiansky et al. [7] studied

the related quasi-steady-state approximation to the model

and Marathe et al. [8] conducted a numerical validation of

the rapid binding approximation. Gibiansky et al. [9] also

pointed out a relation with the classical indirect response

model. For further background we refer to the books by

Meibohm [10] and Crommelin et al. [11], and to the

reviews by Lobo et al. [12] and Mager [13].

In practice, the Michaelis–Menten model is often used

when ligand curves exhibit TMDD characteristics (see e.g.

Bauer et al. [14]). Recently, Yan et al. [15] analysed the

relationship between TMDD- and Michaelis–Menten type

dynamics. We also mention the work by Krippendorff

et al. [16] which studies an extended TMDD system which

includes receptor trafficking in the cell.

The characteristic features of TMDD dynamics were

first studied in [3] under the condition of a constant target

pool, i.e., the total amount of target: free and bound, was

assumed to be constant in time. Under the same assump-

tion, a mathematical analysis of this model was offered by

Peletier and Gabrielsson [17]. This assumption was made,

in part for educational reasons, because it makes a
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transparent geometric description possible, in which qual-

itative and quantitative properties of the dynamics can be

identified and illustrated. In a recent paper Ma [18] com-

pared different approximate models under the same

assumption of a constant target pool.

In the present paper we extend this analysis to the full

TMDD model and do not make the assumption that the

target pool is constant. This means, in particular, that we

shall now also be enquiring as to how the target pool

changes over time and how it is affected by the dynamics

of its zeroth order synthesis and first order degeneration.

The analysis in this paper consists of a combination of

numerical simulations based on a specific case study, and a

detailed mathematical analysis of the set of three differ-

ential equations that constitute the full TMDD model. Our

main objective will be to gain insight in such issues as:

1. Properties of concentration profiles When the initial

ligand concentration is larger than the endogenous receptor

concentration, the dynamics of target-mediated drug

disposition results in a characteristic ligand versus time

profile. In Fig. 1 we show such a profile schematically.

One can distinguish four different phases in the dynamics

of the system in which different processes are dominant:

(A) a brief initial phase, (B) an apparent linear phase, (C) a

transition phase and (D) a linear terminal phase. We obtain

precise estimates for the duration of each of these phases

and for each of them we obtain accurate analytical

estimates for the concentration versus time graphs of the

ligand, the receptor and the ligand–receptor complex.

On the basis of ligand concentration versus time curves we

will develop instruments for extracting information about

the target and the ligand–target complex versus time

curves.

2. Parameter identifiability We shed light on what we can

predict when we have only measured (a) the ligand,

(b) ligand and target, (c) ligand and complex, and

(d) all of the above.

3. Systems analysis Whilst focussing on concentration

versus time curves we gain considerable qualitative

understanding and quantitative estimates about the

impact of the different parameters in the model and on

quantities such as the area under the curve and time to

steady state of the different compounds.

4. Model comparison An important issue is the question

as to how the full TMDD model compares with the

simpler Michaelis–Menten model [7, 8, 15]. In this

paper we point out how the full model and the reduced

Michaelis–Menten model differ significantly in the

initial second order phase and in the linear terminal

phase, in that the terminal rate (kz) of ligand in the full

model is much smaller than that in the Michaelis–

Menten model.

In this paper we focus on the classical TMDD model, as

presented in for instance [3] and shown schematically in

Fig. 2. However, since we will focus on the typical features of

the interaction between the ligand L, the receptor R and their

complex RL, we drop the peripheral compartment (Vt, Cld) of

the ligand. In mathematical terms, the model then results in the

following system of ordinary differential equations:

dL

dt
¼ kf � konL � Rþ koffRL� keðLÞL

dR
dt ¼ kin � koutR� konL � Rþ koffRL

dRL

dt
¼ konL � R� ðkoff þ keðRLÞÞRL
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Fig. 1 Characteristic ligand versus time graph in target-mediated

drug disposition. The concentration of the ligand is measured on a

logarithmic scale. In the first phase (A) drug and target rapidly

equilibrate, in the second phase (B) the target is saturated and drug is

mainly eliminated directly by a first order process, in the third phase

(C) the target is no longer saturated and drug is eliminated directly, as

well as in the form of a drug–target complex, and in the final, fourth

phase (D) the drug concentration is so low that elimination is a linear

first order process with direct as well as indirect elimination (as a

drug–target complex)

L = Ligand

R = receptor 

RL = Receptor-Ligand 
complex 

RVc, L + RL

kin

kout

kon

koff
ke(RL)

InL 

Cl(L) 

Cld 

Vt

Fig. 2 Schematic description of target-mediated drug (or ligand)

disposition. The ligand L binds reversibly (kon/koff) to the target R to

form the ligand–target complex RL, which is irreversibly removed via

a first order rate process (ke(RL)), and in addition is eliminated via a

first order process (ke(L) = Cl(L)/Vc)
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The quantities L, R and RL are assumed to be concentra-

tions, kf = InL/Vc denotes the infusion rate of the ligand

(here InL denotes the infusion of ligand and Vc the volume

of the central compartment), and kon and koff denote the

second-order on- and first-order off rate of the ligand.

Ligand is eliminated according to a first order process

involving the rate constant ke(L) = Cl(L)/Vc, where Cl(L)

denotes the clearance of ligand from the central compart-

ment. Ligand–target complex leaves the system according

to a first order process with a rate constant ke(RL). Finally,

receptor synthesis and degeneration are, respectively, a

zeroth order (kin) process and a first order (kout) process.

In the absence of a zeroth-order infusion of ligand, i.e.,

when kf = 0, the steady state of the system (1) is given by

L ¼ 0; R ¼ R0 ¼
def kin

kout

; RL ¼ 0 ð2Þ

Thus, this is the situation when there is no free or bound

ligand. The receptor concentration then satisfies a simple

turnover equation involving zeroth order synthesis and first

order degeneration:

dR

dt
¼ kin � kout � R

with steady state R0 = kin/kout.

The TMDD system can be viewed as one in which two

constituents, the ligand and the target, or receptor, are inter-

acting with one another whilst each of them is supplied and

removed, either in their free form, or in combination in the

form of a complex. We shall find that the total quantities of

ligand and receptor will play a central role. Therefore, we put

Ltot ¼ Lþ RL and Rtot ¼ Rþ RL ð3Þ

We deduce from the system (1) that their behaviour with

time is given by the following pair of conservation laws:

dLtot

dt
¼ kf � keðLÞL� keðRLÞRL for the ligand L

dRtot
dt ¼ kin � koutR� keðRLÞRL for the receptor R

8
><

>:
ð4Þ

Note that in this system the on- and off rates of ligand to

receptor no longer appear.

We investigate the dynamics of the system (1) that is

generated by two types of administration of the ligand:

(i) Through a bolus dose. Then kf = 0. We denote the

initial ligand concentration by L(0) = L0 = D/Vc, where

D is the dose and Vc the volume of the central

compartment.

(ii) Through a constant rate infusion InL. Then kf = InL/

Vc [ 0 and L(0) = 0.

When we assume that prior to administration the system is

at baseline, the initial values of ligand, receptor and

ligand–receptor complex will be

Lð0Þ ¼ L0(bolus) or Lð0Þ ¼ 0 (infusion);
Rð0Þ ¼ R0; RLð0Þ ¼ 0

ð5Þ

In this paper we focus on the situation when ke(RL), koff and

ke(RL) are small compared to konR0.

Whereas in our earlier investigation [17], the total

amount of receptor was constant, because it was assumed

that ke(RL) = kout, here this assumption is no longer made

and, generally, Rtot will vary with time. However, we show

that there exists an upper bound for the total amount of

receptor in the system, free and bound, which is indepen-

dent of the amount of ligand supplied and holds for both

types of administration. Specifically, we prove that, starting

from baseline,

RtotðtÞ�maxfR0;R�g for all t� 0 where R� ¼
kin

keðRLÞ

ð6Þ

For the proof of this bound we refer to Appendix 3.

Anchoring our investigation in a case study in which

ligand is administered through a series of bolus doses, we

dissect the resulting time courses of the three compounds,

L, R and RL and identify characteristic phases, Phases A–D

shown in Fig. 1. We associate these phases with specific

processes and show, using singular perturbation theory

[19, 20, 21], that individual phases may be analysed

through appropriately chosen simplified models, yielding

accurate closed-form approximations. They offer tools

which may be used to compute critical quantities such as

residence time, and to verify whether different approxi-

mations to the full TMDD model, such as the rapid binding

approximation [6] and the quasi-steady-state approxima-

tion [7, 18] are valid in the different phases. These issues

are discussed at the conclusion of this paper.

Much of the mathematical analysis underpinning the

results presented throughout the text is presented in a series

of Appendices at the end of the paper.

Case study

The ligand, target and complex concentration–time courses

used throughout this analysis, were simulated to mimic real

experimental observations obtained on a monoclonal anti-

body dosed to marmoset monkeys. Simulated data were

generated with a constant coefficient of variation (2 %) of

the error added to the data. Synthetic data were used for

pedagogic and proprietary reasons in order to answer the

question: ’’To what extent is the parameter precision

affected by including/not including target (R) and complex

(RL) data. The model used for generating the data is shown

in Fig. 2 and the actual parameters are stored in Table 1.

WinNonlin 5.2, with a Runge–Kutta–Fehlberg differential
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equation solver, was used for both simulating and

regressing data. A constant CV (proportional error) model

was used as weighting function. All dose levels (Concen-

tration–time courses) were simultaneously regressed for the

ligand (L), ligand and target (L, R) and ligand, target and

complex (L, R and RL) data analyses, respectively. Kinetic

data of high quality—as regards spacing in time and con-

centration and very low error level—were used intention-

ally to demonstrate (a) improved precision when using two

or more sources of chemical entities; (b) as a check that

one gets back approximately the same parameter estimates

as used for generating the original dataset(s).

Data analysis

The case study is based on three sets of simulated con-

centration versus time data (I, II and III), each set of data

obtained after following four rapid intravenous injections

of the ligand or antibody (L). These datasets are shown in

Figs. 3 and 4. They are increasing in richness: the first set

(I) contains ligand profiles only, the second set (II) contains

ligand as well as target or receptor profiles and the third set

(III) contains profiles of all three compounds: the ligand,

the receptor and the ligand–receptor complex.

The purpose of this study is to demonstrate the possi-

bility of fitting the eight-parameter model shown in Fig. 2,

to three different sets of high quality data with increasing

richness, and show how precision of the estimates of the

model parameters increases when successively information

about target (II) and target and complex (III) is added. We

use this data set for two purposes: (i) for data analysis and

(ii) for highlighting critical features of the temporal

behaviour of the three compounds.

Simulated data from three sources (ligand, target and

complex) were intentionally used. We have experienced

that data of less quality gave biased and imprecise esti-

mates as well as biased and imprecise predictions of ligand,

target and complex.

The central volume Vc was assumed to be equal to 0.05

L/kg and fixed. The other parameters are then re-estimated

Table 1 Pre-selected parameter values

Symbol Unit Value

Vt L/kg 0.1

Cld (L/kg)/h 0.003

Cl(L) (L/kg)/h 0.001

kon (mg/L)-1/h 0.091

koff 1/h 0.001

kin (mg/L)/h 0.11

kout 1/h 0.0089

ke(RL) 1/h 0.003

R0 mg/L 12
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Fig. 3 Semi-logarithmic graphs of the ligand plasma concentration

versus time after the administration of four rapid intravenous

injections D of 1.5, 5, 15 and 45 mg/kg, respectively (Data set (I)).

The volume of the central compartment Vc for these doses was fixed

at 0.05 L/kg. The dots are simulated data and the solid curves are

obtained by fitting the model sketched in Fig. 2 to the data. Estimates

are given in Table 2

0.001

0.01

0.1

1

10

100

1000

0 100 200 300 400 500 600

Time (h)

C
on

ce
nt

ra
tio

n 
(m

g/
L)

0.001

0.01

0.1

1

10

100

1000

0 100 200 300 400 500 600

Time (h)

C
on

ce
nt

ra
tio

n 
(.

.)

Fig. 4 Left semi-logarithmic graphs of simulated plasma concentra-

tions of L (red discs) and R (blue squares) versus time (Data set (II))

and on the right the same, but also semi-logarithmic graphs of RL
(green triangles) (Data set (III)), taken after administration of four

rapid intravenous injections D of 1.5, 5, 15 and 45 mg/kg, respec-

tively. Vc for these doses was fixed at 0.05 L/kg. The dots are

simulated data and the solid curves are obtained by fitting the model

sketched in Fig. 2 to the data. Estimates are given in Table 2
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for datasets I–III (Table 2). Thus, we know a priori what

values they should have.

Dataset I is made up from simulated concentration–time

profiles covering five orders of magnitude in concentration

range and from 0 to 500 h. Dataset II contains the same

simulated ligand (L) profiles as in dataset I as well as target

(R) concentration–time profiles obtained at each dose level.

Dataset III includes dataset II but is enriched by four

simulated time-courses of the ligand–target complex (LR)

as well.

The four doses are D = 1.5, 5, 15 and 45 mg/kg. The

volume Vc of the central compartment being 0.05 L/kg, this

yields the following initial ligand concentrations L0 = D/

Vc = 30, 100, 300 and 900 mg/L.

The parameter values given in Table 1 yield the fol-

lowing values for the dissociation constant Kd and the

constant Km related to Kd:

Kd ¼
koff

kon

¼ 0:011 mg/L ð7Þ

and

Km ¼
koff þ keðRLÞ

kon

¼ 0:044 mg/L ð8Þ

Here, Kd is a measure of affinity between drug (ligand) and

target, whereas Km is more of a conglomerate of affinity

(Kd) and irreversible elimination of the ligand–target

complex (ke(RL)) and used for comparisons to the Michae-

lis–Menten parameter KM of regression model Eq. (45).

Unless the removal of the ligand–target complex is fully

understood, one should be careful about the interpretation

of an apparent Km-value. Km can be very different from the

affinity Kd. Here, solid biomarker (physiological or disease

markers) data on effective plasma concentrations may be a

practical guidance.

Summarizing we may conclude that:

• Dataset I—which involves L—allows the prediction of

robust ligand concentration–time profiles within the

suggested concentration and time frame. We see that if

only ligand data are available, the majority of param-

eters except for kon, koff and ke(RL) are estimated with

high precision. The latter three parameters are still

highly dependent on information about the time courses

of either target and/or complex. Since kkon, koff and

ke(RL) have low precision (high CV%) we would

discourage the use of these parameters for the predic-

tion of tentative target and complex concentrations.

• Dataset II—which involves L and R—still gives good

precision in all parameters except koff and ke(RL), which

will also be highly correlated. Since we also have

experimental data of the target we encourage the use of

this model for interpolation of target concentration–

time courses, but not for concentration–time courses of

the complex.

• Dataset III—which includes L and R, as well as RL—

gives high precision in all parameters. Since we also have

measured the complex concentration–time course with

high precision we obtained koff and ke(RL) values with high

precision. We doubt that the practical experimental

situation can get very much better than this latter case

where we have simultaneous concentration–time courses

of L, R and RL with little experimental error due to biology

and bio-analytical methods. Dataset III is an ideal case; the

true experimental situation seldom gets better.

We also doubt the practical value of regressing too

elaborate models to data. Models that capture the overall

trend nicely but result in parameters with low precision and

biased estimates may be of little value.

The volume of the central compartment Vc ought to fall

somewhere in the neighbourhood of the plasma water volume

(0.05 L/kg) for large molecules in general and antibodies in

particular. In our own experience of antibody projects this has

been the case when data contained an acceptable granularity

within the first couple of hours after the injection of the test

compound. Therefore we assumed Vc to be a constant term

(0.05 L/kg) in this analysis and not part of the list of parameters

to be estimated. We think this increases the robustness of the

estimation procedure and is biologically viable.

Critical features of the graphs

The graphs in Figs. 3 and 4 exhibit certain characteristic

features and so reveal typical properties of the dynamics of

the TMDD system.

(a) Initially all the ligand graphs in Fig. 3 exhibit a rapid

drop which increases in relative sense as the ligand

dose decreases. Over this initial period, which we

refer to as Phase A, (cf. Fig. 1), R(t) exhibits a steep

drop that becomes deeper as the drug dose increases.

(b) After the brief initial adjustment period, the graphs

for large doses reveal linear first order kinetics over a

Table 2 Final parameter estimates and their relative standard devi-

ation (CV%) on the basis of the three datasets

Symbol Unit I (L) II (L & R) III (L & R & RL)

Vt L/kg 0.101 (2) 0.100 (2) 0.100 (1)

Cld (L/kg)/h 0.003 (4) 0.003 (3) 0.003 (3)

Cl(L) (L/kg)/h 0.001 (1) 0.001 (1) 0.001 (1)

kon (mg/L)-1/h 0.099 (17) 0.092 (2) 0.096 (1)

koff 1/h 0.001 (27) 0.001 (13) 0.001 (3)

kout 1/h 0.009 (6) 0.009 (2) 0.009 (2)

ke(RL) 1/h 0.002 (27) 0.002 (23) 0.002 (2)

R0 mg/L 12 (4) 12 (1) 12 (1)
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period of time (Phase B) that shrinks as the drug dose

decreases. At the lowest dose the linear period has

vanished and the graph exhibits nonlinear kinetics.

(c) For the larger doses, there is an upward shift of the

linear phase that appears to be linearly related to the

ligand dose; the slope of this linear phase appears to

be dose-independent.

(d) The point of inflection in the log(L) versus time curve—

the middle of Phase C—which we observe in the

graphs for L0 = 100 and 300, moves to the right as the

initial dose increases, but stays at the same level. This is

clearly seen in Fig. 3 in which the baseline value R0 and

the value of Kd and Km are also shown.

(e) For the lower doses we see that the log(L) versus time

curve eventually becomes linear again, with a slope

that is markedly smaller than it was in the nonlinear

Phase C that preceded it. This part of the graph

corresponds to Phase D in Fig. 1.

Summarising, in the ligand graphs of Fig. 3 we see for

the higher drug doses the different phases A–D that were

pointed out in Fig. 1. In the following analysis we explain

these features and quantify them in that, for instance, we

present estimates for the upward shift referred to in (c) and

the right-ward shift of the inflection point alluded to in (d).

Dynamics after a bolus administration

Here we assume that ligand is supplied through an intra-

venous bolus administration and that there is no infusion,

i.e., kf = 0. Thus, we focus on the system

dL
dt ¼ �konL � Rþ koffRL� keðLÞL

dR
dt ¼ kin � koutR� konL � Rþ koffRL

dRL
dt ¼ konL � R� ðkoff þ keðRLÞÞRL

8
>>>><

>>>>:

ð9Þ

In order to obtain a first impression of typical concentration

versus time courses for the three compounds, we carry out

a few simulations of the system (9). We then present a

mathematical analysis in which we delineate and discuss

the four phases A, B, C and D in the characteristic ligand

versus time graph shown in Fig. 1.

Simulations

We use the same initial doses as in the case study, i.e., the

initial ligand concentrations are L0 = 30, 100, 300 and

900 mg/L. The parameter values are given in Table 3,

which is the same as Table 1, except that (i) the parameters

VT and Cld are absent because the tissue compartment has

been taken out and (ii) the elimination rate has been

reduced to ke(L) = 0.0015 h-1 so that the different phases

in the ligand versus time graphs can be distinguished more

clearly.

In Fig. 5 we show three ligand versus time graphs. In the

figure on the left, L is given on a logarithmic scale and in

the two figures on the right L is given on a linear scale, with

the one on the right a blow-up of the initial behaviour when

L0 = 900 mg/L.

Table 3 Parameter estimates used for demonstrating the dynamics of

L, R and RL after bolus and constant-rate infusion regimens of L

Symbol Unit Value

ke(L) 1/h 0.0015

kon (mg/L)-1/h 0.091

koff 1/h 0.001

kin (mg/L)/h 0.11

kout 1/h 0.0089

ke(RL) 1/h 0.003

R0 mg/L 12
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Fig. 5 Graphs of L versus time on semi-logarithmic scale (left), on a

linear scale (middle) and a close up (right), for doses resulting in

initial ligand concentrations L0 = 30, 100, 300, 900 mg/L and

parameters listed in Table 3. In addition, R(0) = R0 and RL(0) = 0.

The dashed lines indicate the target baseline level R0, and the

dissociation constant Kd
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The ligand concentration curves shown in the left panel

of Fig. 5 exhibit the characteristic shape shown in Fig. 1.

They consist of the following segments:

(a) A rapid initial adjustment (see the blow-up on the

right).

(b) A first linear phase with a slope which is independent

of the dose, and which shifts upwards as the drug dose

increases.

(c) A transition phase which shifts to the right as the drug

dose increases, but maintains its level.

(d) A final linear terminal phase with a slope kz that is

again independent of the drug dose. For the parameter

values of Table 3 we find that kz & ke(RL) = 0.003.

Since in Figs. 3 and 4 the time was restricted to 500 h, the

terminal phase (D) has only just begun for the lowest dose,

and not even started for the higher doses.

In Fig. 6 we present the receptor dynamics: concen-

tration versus time profiles for, respectively, R, RL and Rtot

when L0 [ R0. Whereas in [17] it was assumed that

kout = ke(RL), and hence the receptor pool was constant

(Rtot : R0), for the parameters in Table 3 we have

kout [ ke(RL), so that Rtot is no longer constant.

We make the following observations:

(i) The total amount of target Rtot(t)—free and bound to

ligand—increases from its initial value R0 = 12 to a maxi-

mum value R*, and then drops off again towards its baseline

value R0. A similar observation was made in [15, 22].

We shall prove that

R� ¼
kin

keðRLÞ
ð10Þ

Thus, if ke(RL) \ kout, as is the case with the parameter

values of Table 3, then R* [ R0 and the total target pool

increases before it returns to the baseline value R0.

Alternatively, if ke(RL) [ kout, then R* \ R0 and we

show that the total target pool first decreases before it

returns to the baseline value R0.

Finally, if ke(RL) = kout, then Rtot(t) = R0 for all t C 0

[3, 17].

(ii) As the drug dose increases, R(t) & 0 for an

increasing time interval and the graphs of RL(t) and

Rtot(t) trace—for the same increasing time interval—a

common curve C in the (t, Rtot)-plane (cf. Fig. 9). This

curve C is monotonically increasing and tends to the

limit R* as t!1: If ke(RL) [ kout, we show that an

analogous phenomenon occurs along a curve C; which

still tends to R*, but is now decreasing.

In Fig. 7 we present graphs of R - R0, RL and Rtot - R0

on a logarithmic scale. We note two conspicuous features:

(i) The three graphs exhibit a kink (a sharp angle) which

shifts to the right (increasing time) as the drug dose

increases.

(ii) R(t) - R0 tends to zero as t!1 in a bi-exponential

manner, whilst RL(t) and Rtot(t) - R0 converge to zero

in a mono-exponential way.

Low dose graphs

We conclude these simulations with a comparison of high-

dose and low-dose graphs. We do this by adding simula-

tions for initial ligand concentrations which are smaller

than R0. Specifically, we add the values L0 = 0.3, 1, 3 and

10 mg/L to the graphs shown in Figs. 5 and 6.

Figure 8 shows simulations of the ligand, target and

complex concentration–time courses after eight different

intravenous bolus doses. The initial drop will be difficult to

capture unless that is taken care of experimentally within

the very first minutes or so when the second-order process

occurs. We see that in the low-dose graphs (L0 \ R0) the

signature shape of Fig. 1 is no longer present. Instead, as L0

decreases, the ligand curves become increasingly

bi-exponential, and condensed into an apparent mono-

exponential decline. Still the terminal slope after the

highest and the lowest dose are the same.
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Fig. 6 Graphs of R (left), RL (middle) and Rtot (right) versus time for L0 = 30, 100, 300, 900 mg/L and parameters given in Table 3, whilst

R(0) = R0 and RL(0) = 0. The dashed line indicates the target baseline level R0 and the dotted line the level R*
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As the ligand doses decrease, the target profile becomes

less affected in terms of intensity (depth) and duration

below the baseline concentration. In fact, one can show that

if R(0) = R0 and RL(0) = 0, then

R0

1þ kon

kin

L0

R0

\RðtÞ\R0 1þ koff

kout

L0

R0

� �

for 0\t\1 ð11Þ

The proof of this upper and lower bound is given in

Appendix 3. It is immediately clear that when L0 ? 0 the

upper as well as the lower bound converges to R0.

Therefore, we may conclude that for every t [ 0,

RðtÞ ! R0 as L0 ! 0 ð12Þ

When we replace R(t) by R0 in the system (9) the resulting

system is linear, involving only L and RL. This explains the bi-

linear character of the log(L) versus time graphs (see also [17]).

Mathematical analysis

We successively describe the dynamics in the four phases:

A–D. Throughout we assume that the ligand has large

affinity for the receptor, that the elimination rates are

comparable, and that the bolus dose is not too small.

Specifically we assume:

A : edef
=

Kd

R0

� 1; B :
keðLÞ
koff

;
keðRLÞ
koff

;
kout

koff

\M;

C : L0 [ R0 ð13Þ

where M is a constant which is not too large, i.e., eM � 1:

These three assumptions were inspired by the parameter val-

ues given in Table 3 and the initial values of L and R. We also

mention a similar model used for the study of Interferon-b 1a

in humans [23] fitted with comparable parameter values.

Phase A Ligand, receptor and receptor–ligand complex

quickly reach Plateau values (L;R;RL) (see the right graph

of Fig. 5). Since L0 [ R0 by Assumption B, the supply of

free receptor is quickly exhausted, so that these plateau

values are approximately given by

L ¼ L0 � R0; R ¼ 0; RL ¼ R0 ð14Þ

Note that this is confirmed by the initial portion of the

graph of L(t) shown in Fig. 5: we see that L drops by

Fig. 7 Graphs of R0 - R (left), RL (middle) and Rtot - R0 (right)
versus time on a semi-logarithmic scale for L(0) = 30, 100, 300,

900 mg/L and R(0) = R0 and RL(0) = 0 mg/L. The parameters are

listed in Table 3. In the middle figure, the dashed line indicates the

baseline R0 and the dotted line the level R*. In the right figure the

dotted line indicates R* - R0
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Fig. 8 Graphs of L on a semi-logarithmic scale (left) and R (middle)

and RL (right) on a linear scale versus time for L(0) = 0.3, 1, 3, 10, 30,

100, 300, 900 mg/L and R(0) = R0 and RL(0) = 0. The parameters

are listed in Table 3. The dashed lines indicate the baseline R0 and

Kd, and the dotted line the level R*
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approximately R0 over a time span of about 0.04 h. In

Appendix 2 we give details of the dynamics in this initial

phase and the approach to the plateau values. We show that

it takes place over a time interval (0, T1), where1

T1 ¼ O
1

konðL0 � R0Þ

� �

as kon !1 ð15Þ

When L0 = 900 mg/L this yields a half-life t1/2 of about

0.01 h, in agreement with what is shown in Fig. 5. For a

detailed study of Phase A we refer to [17] and to Aston

et al. [24].

Phase B Over the subsequent time span when L(t) �
Kd, say over the interval T1 \ t \ T2, the three compounds

are in quasi-equilibrium. This means that R, RL and

Rtot = R ? RL are—approximately—related to L through

the expressions:

RL ¼ Rtot

L

Lþ Kd
and R ¼ Rtot

Kd

Lþ Kd
for t [ T1

ð16Þ

Since in this phase L(t) � Kd, they may actually be

approximated by the simpler expressions

RL ¼ Rtot and R ¼ 0 for T1\t\T2 ð17Þ

With these equalities, the system (4) can be reduced to the

simpler form

dLtot
dt ¼ �keðLÞL� keðRLÞRtot

dRtot
dt ¼ kin � keðRLÞRtot

8
<

:
T1\t\T2 ð18Þ

Note that for Rtot we have obtained a simple indirect

response equation (see also [9]).

Phase C When L(t) = O(Kd), say over the interval

T2 \ t \ T3, the approximation (17) is no longer valid.

Applying a scaling argument appropriate for this regime,

we show in Appendix 5 that to good approximation

RL ¼ Rtot

L

Lþ Kd
and R ¼ Rtot

Kd

Lþ Kd
for

T2\t\T3

ð19Þ

so that in this phase the rapid binding assumption is

approximately satisfied [18].

Phase D When L(t) � Kd, i.e., beyond T3, the ligand

concentration is so small that the dynamics is linear again.

The critical times T1, T2 and T3 provide a natural divi-

sion of the dynamics in four phases: A, B, C and D, as was

done in Fig. 1. In Phase A (0 \ t \ T1), ligand, receptor

and complex reach quasi-equilibrium, in Phase B

(T1 \ t \ T2), the bulk of the ligand is eliminated from the

system while most of the receptor is bound to ligand and in

quasi-equilibrium. Phase C (T2 \ t \ T3) is a nonlinear

transitional phase in which L exhibits a steep drop, and

finally, in Phase D (T3\t\1) the three compounds

converge linearly towards their baseline values.

Receptor graphs: Phase B

In Phase B, which extends over the interval T1 \ t \ T2,

the system (18) holds. Since the second equation only

involves Rtot as a dependent variable, it can be solved

explicitly to yield

RtotðtÞ ¼ R� þ RtotðT1Þ � R�f ge�keðRLÞðt�T1Þ for T1\t\T2

Because T1 is small by the estimate (15), it follows from the

system (4) and the initial conditions that Rtot(T1) & R0. Thus,

to good approximation, we may put T1 = 0 and Rtot(0) = R0,

and so simplify the above expression for Rtot(t) to

RtotðtÞ ¼ R� þ R0 � R�ð Þe�keðRLÞt for 0\t\T2 ð20Þ

where we recall from Eq. (10) that R* = kin/ke(RL). Plainly,

if T2 were infinite, then

RtotðtÞ ! R� as t!1 ð21Þ

We denote the graph of the function Rtot(t) by C:
In Fig. 9 we see how for the different drug doses, the

simulations of Rtot(t) follow the graph C up till some time,

when they suddenly depart from C:

Remark We recall from the approximation (17) that R(t)

& 0 for T1 \ t \ T2 and hence that RL(t) & Rtot in this

phase of the dynamics, as we see confirmed in Fig. 6.

We conclude with a bound of the target pool. It is evi-

dent from the receptor graphs in Figs. 6, 7, 8 and 9 that for

the data of the case study, the total receptor concentration
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Fig. 9 Simulated graphs of Rtot(t) for the initial ligand concentrations

L0 = 30, 100, 300, 900 mg/L and data from Table 3, together with the

curve C (dashed) given by the analytic expression (20). Notice how,

as L0 increases, the graph of Rtot(t) follows C over a longer period of

time1 For the definition of the O-symbol, see Appendix 1.
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Rtot is not constant. However, it remains bounded for all

time and does not keep on growing. In fact it is possible to

prove the boundedness of Rtot under very general condi-

tions on the data, and actually obtain a sharp value for the

upper bound. Specifically, we have

RtotðtÞ�
R0 if keðRLÞ � kout

R� if keðRLÞ � kout

�

for t� 0: ð22Þ

The proof is given in Appendix 3.

Ligand graphs: Phase B

Over the interval (T1,T2) in which it is assumed that L �
Kd, we can use (17) to simplify the first equation from the

system (18) as follows:

d

dt
Lþ Rtotð Þ ¼ �keðLÞL� keðRLÞRtot for T1\t\T2 ð23Þ

Subtracting the second equation of (18) from (23) we obtain

dL

dt
¼ �keðLÞL� kin for T1\t\T2 ð24Þ

Equation (24), together with the initial value LðT1Þ ¼ L;

can be solved explicitly. In Appendix 4 we show that the

solution is given by

LapproxðtÞ ¼ Lþ kin

keðLÞ

� �

e�keðLÞt � kin

keðLÞ
for 0\t\T2

ð25Þ

where T1, being small, has been put equal to zero. We

recall from Eq. (14) that L 	 L0 � R0:

In Fig. 10 we compare the numerically computed ligand

versus time graphs L(t) with the analytic approximation

Lapprox(t) given by the expression (25). It is evident that the

two curves are very close until L has become so small that

it is comparable to Kd, i.e., until the end of Phase B, where

the nonlinearity pitches in.

Since the function Lapprox(t) is decreasing, Lapprox(0) [ 0

and Lapprox(t) ? - kin/ke(L) \ 0 as t!1; it follows that

there exists a unique time T* [ 0 at which Lapprox(t) van-

ishes. We readily conclude from the definition of Lapprox(t)

that T* is given by

T� ¼ 1

keðLÞ
log

keðLÞ
kin

ðL0 � R0Þ þ 1

� �

ð26Þ

Remark It is clear from Eq. (24) that for larger values of

L0, we may estimate ke(L) from the slope of log(L) and in

Fig. 10 we see that T* yields a good estimate for T2, the end

of Phase B. Information about ke(L) and T* combined yields

an estimate for kin from the expression

kin ¼
keðLÞ

ekeðLÞT� � 1
ðL0 � R0Þ ð27Þ

which can be derived from (26).

When Kd is very small, as is the case for the parameter

values of Table 1, the approximation Lapprox(t) given by

(25) is valid for most of the range of L and can therefore be

used to obtain an estimate for the area under the ligand

curve AULC. An elementary computation yields

AULCðDÞ ¼
Z1

0

Lðt; L0Þdt

	
ZT
�

0

Lapproxðt; L0Þdt

¼ D

keðLÞVc
1� l� jl log

1þ ðj� 1Þl
jl

� �� �

;

l ¼ R0

L0

; j ¼ kout

keðLÞ
ð28Þ

Details are given in Appendix 4. This expression for AUCL

yields for the clearance

CLðDÞ ¼ D

AULCðDÞ

	 keðLÞVc 1� l� jl log
1þ ðj� 1Þl

jl

� �� ��1

ð29Þ

It is interesting to compare these approximate

expressions for AUCL and CL with the corresponding

expressions for mono-exponential ligand elimination. They

are, respectively, D/(ke(L)Vc) and ke(L)Vc. Thus we see that

they are related by a factor which only depends on two

dimensionless critical numbers:

(i) the ratio l of R0 and L0 and

(ii) the ratio j of the direct elimination rates of receptor,

kout, and ligand, ke(L).

Fig. 10 Graphs of L versus time on a semi-logarithmic scale for data

as in Fig. 5. The dashed curves are the analytic approximations for

the different drug doses, given by Eq. (25). Recall from Eq. (7) that

Kd = 0.011 mg/L
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Since l? 0 as L0 !1; we conclude from (28) and (29)

that

AULCðDÞ
 D

keðLÞVc
and CLðDÞ ! keðLÞVc

as D!1

Ligand and receptor graphs: Phases C and D

In Phase C the ligand concentration L has become com-

parable to Kd and, as is shown in Appendix 5, we have to

good approximation

L � R ¼ Kd � RL and RL ¼ Rtot

L

Lþ Kd
ð30Þ

This suggests using a different scaling of L. For definite-

ness we assume that Phase C comprises the time interval in

which L drops from 10 9 Kd to 0.1 9 Kd, and denote the

times that L(t) reaches 10 9 Kd and 0.1 9 Kd by, respec-

tively, T2 and T3. Thus, L(T2) = 10 9 Kd and L(T3) =

0.1 9 Kd.

In Phase C we use the approximation (30) in the ligand

conservation law in (4):

d

dt
Lþ Rtot

L

Lþ Kd

� �

¼ �keðLÞL� keðRLÞRtot

L

Lþ Kd
ð31Þ

We now introduce Kd, which—like L, R and RL, has the

dimension of a concentration—as a reference variable for

L, and introduce the dimensionless variables

uðtÞ ¼ LðtÞ
Kd

and vðtÞ ¼ RtotðtÞ
R0

ð32Þ

Using these variables in Eq. (31) we obtain

d

dt
euþ v

u

uþ 1

� �

¼ �keðLÞeu� keðRLÞv
u

uþ 1
; e ¼ Kd

R0

Since e� 1; and v = O(1) (cf. Fig. 6), we may neglect the

term eu in the left- and the right-hand side of this equation

and so obtain

d

dt
v

u

uþ 1

� �

¼ �keðRLÞv
u

uþ 1
ð33Þ

In the simulations shown in Figs. 5 and 6 we see that in

Phase C, L drops rapidly from O(10 9 Kd) to O(0.1 9 Kd),

i.e., by a factor 100, whilst Rtot stays relatively close to R*

and changes by no more than a factor 1/7 & 0.15. This

suggests making the following assumption:

Assumption Rtot(t) & R* or v(t) & R*/R0 in Phase C.

Thanks to this assumption we may view v as a constant,

which we may divide out and thus eliminate from the

equation. We end up with a simple nonlinear equation for

u, which is valid in Phase C:

du

dt
¼ �keðRLÞuðuþ 1Þ for T2\t\T3 ð34Þ

Since LðT2Þ ¼ 10 � Kd; it follows that u(T2) = 10. Equation

(34) can be solved explicitly and we find for its solution:

uðtÞ ¼ Ae�keðRLÞðt�T2Þ

1� Ae�keðRLÞðt�T2Þ
for t� T2;

A ¼ uðT2Þ
1þ uðT2Þ

¼ 10

11
¼ 0:91

ð35Þ

Returning to the original variables we obtain for the large

time behaviour

logfLðtÞg
 logðKdÞ þ logðAÞ � keðRLÞðt � T2Þ as t!1
ð36Þ

The asymptotic expression (36) yields estimates for

(i) the terminal slope kz
TMDD (ke(RL));

(ii) the intercept of the asymptote of log{L(t)} of the

ligand graph in the terminal Phase D with the vertical

line {t = T2}.

The approximate identities in (30) imply that in Phases

C and D, when L = O(Kd), we have to good approximation

dRL

dt
¼ �keðRLÞRL ð37Þ

so that

RLðtÞ 	 R�e
�keðRLÞt ð38Þ

This is consistent with the value of kz found for L(t).
We also find that to good approximation

dR

dt
¼ kin � koutR ð39Þ

so that

RðtÞ 	 R0ð1� e�kouttÞ ð40Þ

This confirms what we see in Fig. 7: that for t [ T2 the

receptor concentration R(t) tends to R0 in a bi-exponential

manner, in contrast to the way RL(t) tends to zero, which is

mono-exponential.

For completeness we also compute the terminal slope by

means of a standard analysis of the full TMDD system. This is

done in Appendix 7. It is found that for the parameter values in

Table 3, the terminal slope kz of all the compounds, is given—

to good approximation—by kz
TMDD = ke(RL). This confirms

the limit in (36) and the exponent in (38).

Comparison with Michaelis–Menten kinetics

In many studies involving TMDD, models are employed

that combine linear and saturable Michaelis–Menten type

elimination (e.g. see [14]) of the form
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dL

dt
¼ �kL� Vmax

L

Lþ KM
ð41Þ

in which k, Vmax and KM are empirical parameters. The

underlying assumption is that the MM-term can replace the

combined first and second order processes of buildup and

elimination via the complex in the TMDD model within a

certain ligand concentration range.

In light of (24), fitting the data for large values of the

ligand concentration would yield k = ke(L) and Vmax = kin.

Putting KM = Kd, Eq. (41) then becomes

dL

dt
¼ �keðLÞL� kin

L

Lþ Kd
ð42Þ

Alternatively, we can take (31) as point of departure.

Following [15] we assume that RtotKd � (Kd ? L)2. Then

the left hand side of (31) reduces to dL/dt. Assuming that

Rtot & R* and remembering that ke(RL)R* = kin, we may

replace the factor k(e(RL)Rtot in the right hand side of (31) by

kin and so arrive at (42).

Fitting to data of low ligand concentrations (L � Kd),

Eq. (42) reduces to the linear equation

dL

dt
¼ � keðLÞ þ

kin

Kd

� �

L ð43Þ

which yields a terminal slope kz
MM given by

kMM
z ¼ keðLÞ þ

kin

Kd
ð44Þ

This terminal slope is quite different from the value kz
TMDD

obtained in (36) and (38). For the parameter values of

Table 3, we find that kz
MM � kz

TMDD.

Thus, the TMDD-model and the Michaelis–Menten

(MM)-model exhibit very different terminal slopes, unless

one also includes a non-specific peripheral volume distri-

bution term in the MM-model.

Michaelis–Menten model with peripheral compart-

ment. Adding a peripheral compartment to the MM-model

makes it possible to capture the slow terminal elimination

that is typically seen in TMDD data. Figure 11 shows the

regression of a 2-compartment model with parallel linear

(Cl(L)) and Michaelis–Menten (Cl = Vmax/(Lp ? KM))

elimination:

Vc
dLp

dt ¼ �ClðLÞLp � CldðLp � LtÞ � Vmax
Lp

LpþKM

Vt
dLt
dt ¼ CldðLp � LtÞ

8
<

:
ð45Þ

Fitting this model to the data shown in Fig. 3 results in the

parameter estimates which, together with their precision

(CV%), are given in Table 4.

The reduced model mimics the concentration–time data

for the two highest doses reasonably well, whereas the two

lower doses display systematic deviations between

observed and predicted data.

Since the reduced model has two parallel elimination

pathways (linear and nonlinear) it has the intrinsic capacity

of exhibiting linear first-order kinetics at low and at high

concentrations. In the concentration-range in between it

behaves nonlinearly. For higher concentrations the MM-

Table 4 Parameter estimated from fitting the Michaelis–Menten

model (Eq. (45)) to the data shown in Fig. 11. As in the Case Study,

Vc is fixed

Symbol Unit Value CV%

Vc L/kg 0.05 –

Vt L/kg 0.1 10

Cld (L/kg)/h 0.00307 20

Cl(L) (L/kg)/h 0.00090 10

Vmax mg/h 0.0146 40

KM mg/L 3.68 50
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Fig. 11 Fitting the

2-compartment Michaelis–

Menten model (45) to the data

of Fig. 3 which are represented

by the dots. The drawn curves
are predictions of the

Michaelis–Menten model for

the parameter values listed in

Table 4. The dashed line in the

middle of the plot indicates the

estimated value of KM. Notice

how far away it is from the

original value of Km—marked

by the thin drawn line—which

was estimated by the TMDD

model
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route is saturated and the linear elimination pathway

dominates so that the system behaves linearly.

However, the typical concentration–time pattern for

ligand seen in a true TMDD system (cf. Figs. 5, 8, 10),

cannot be fully described by the parallel linear- and MM-

elimination model. The reduced model displays typical bi-

exponential decline (which is expected from a two-com-

partment model) at lower concentrations. That is generally

not the case with the full TMDD model.

A clear distinction of the two models occurs initially,

immediately after dosing (Phase A), when the second-order

reaction between ligand and circulating target forms the com-

plex. This process cannot be captured by the reduced model,

which may cause biased estimates (too large) of the central

volume.

In Table 5 we summarise these results. It shows that the

MM-models (41) and (45) may be fitted successfully to the

first part of the ligand versus time graph, although they

miss the initial drop in Phase A. They catch the first part of

Phase C, but the first model fails to catch the second part,

where the graph joins up with the terminal Phase D. The

second MM-model is an improvement, but still shows

significant deviations for lower ligand-concentrations.

In this table, a plus (?) means that the corresponding

phase can be adequately explained, whilst a minus (-)

means that it cannot.

Constant rate drug infusion

We assume that the drug is administered through a constant-

rate infusion over a finite period of time, and we are inter-

ested in elucidating which parameters are critical in deter-

mining the time to steady state, the extent of steady state

ligand, target and ligand–target complex concentrations and

the dynamics after washout. Assuming that the infusion rate

reaches its constant value kf in a negligible amount of time

and that washout at time twashout is also instantaneous, we

consider the following variant of the system (1) :

dL
dt ¼kf Hðtwashout� tÞ�konL �RþkoffRL�keðLÞL

dR
dt ¼kin�koutR�konL �RþkoffRL

dRL
dt ¼konL �R�ðkoffþkeðRLÞÞRL

8
>>><

>>>:

ð46Þ

in which H(t) denotes the Heaviside function: H(t) = 0 if

t \ 0 and H(t) = 1 if t [ 0. Thus, H(twashout - t) = 1 if

t \ twashout and H(twashout - t) = 0 if t [ twashout. We assume

that initially there is no ligand in the system, i.e., L0 = 0.

When the infusion lasts long enough, i.e., when twashout

is large enough, the concentrations will converge towards

their steady state values Lss, Rss and RLss. Then, at wash-

out, they will return to their pre-infusion values: L = 0,

R = R0 and RL = 0.

We first derive expressions for the steady state values.

Then we carry out a series of simulations subject to the

same assumptions as those made in (13), except that we

replace Assumption C by

C� : Lssðkf Þ[ R0 ð13�Þ

As we shall see, Lss is an increasing function of kf, so that

we require here that kf does not drop below a threshold

value for which Lss(kf) = R0. We discuss features of the

dynamics exhibited in these simulations, especially the

time to steady state after onset of infusion, and after

washout.

Steady state concentrations of L, R and RL

For the steady state concentrations Lss, Rss and RLss of the

system (46) we find the following expressions. For the

ligand–receptor concentration we obtain

RLss ¼
1

2keðRLÞ
kf þ kin þ q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðkf þ kin þ qÞ2 � 4kf kin

q� �

;

ð47Þ

in which q = (ke(L)/ke(RL))koutKm. In light of the

conservation laws for ligand and target, we then obtain

for the ligand

Lss ¼
1

keðLÞ
ðkf � keðRLÞRLssÞ ð48Þ

and for the target,

Rss ¼
1

kout

ðkin � keðRLÞRLssÞ ð49Þ

The expressions (47)–(49) are derived in Appendix 6.

The formula (48) for the ligand shows that Lss will be

smaller than expected from the ratio of ligand infusion rate-

to-clearance (InL/Cl(L) = kf/ke(L)), due to the removal of

ligand as part of the complex RLss. The same reasoning

may be used to explain why the circulating target con-

centration Rss given by (49) is smaller than the baseline

concentration R0 = kin/kout. Due to the removal of target by

means of the complex, the target concentration Rss will

drop further as the infusion rate increases and RLss

increases accordingly (cf. Eq. (49)).

Table 5 Phases that can be explained by the two MM-models and the

TMDD-model

Phase MM-model (41) MM-model (45) TMDD-model (9)

A - - ?

B ? ? ?

C ?/- ? ?

D - - ?
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Figure 12 shows graphs of Lss, Rss and RLss as functions

of the infusion rate kf for the parameter values of Table 3.

Note that at large infusion rates, Lss increases approxi-

mately linearly, except for a downward shift. Indeed, this is

confirmed analytically: by expanding the expression (48)

for large values of kf, we obtain

Lssðkf Þ

1

keðLÞ
ðkf � kinÞ as kf !1 ð50Þ

The reason is that for large infusions, elimination of ligand

occurs primarily via the extra-target elimination route

(ke(L)). For small infusion rates the removal of ligand is also

seen to be first order, but clearly at a much lower rate.

In Fig. 12 the receptor concentration Rss is seen to

decrease and the complex concentration RLss is seen

to increase as kf increases. However, it is interesting to

observe that RLss reaches an upper bound in spite of

increasing levels of kf. This is also confirmed analytically:

letting kf tend to infinity in (47) and (49) we obtain the

limits

Rssðkf Þ ! 0 and RLssðkf Þ ! R� as kf !1 ð51Þ

Thus, the upper bound is found to be R* = kin/ke(RL).

It is interesting to note that when plotted on a loga-

rithmic scale, the elimination of target mirrors the elimi-

nation of ligand for larger values of the infusion rate (cf.

Fig. 12 on the right). This can be understood from the

relation

konLss � Rss � ðkoff þ keðRLÞÞRLss ¼ 0 ð52Þ

obtained from (46). When we divide Eq. (52) by kon and

take the logarithm, we obtain

logðLssÞ þ logðRssÞ ¼ logðKmÞ þ logðRLssÞ

For larger values of kf we have RLss & R* (cf. (51)), and

hence

logðLssÞ þ logðRssÞ 	 logðKmÞ þ logðR�Þ ð53Þ

which establishes the symmetry which is evident in the

graphs for Lss and Rss shown on the right in Fig. 12.

Using the parameter values in Table 3, we obtain 1/

ke(L) = 667, kin/ke(L) = 73, R* = kin/ke(RL) = 36.7 and

log(Km) ? log(R*) = 0.45. We see that these values are

confirmed by the numerically obtained graphs shown in

Fig. 12.

We note that the expressions (47)–(49) show that the

steady state concentrations do not depend on the on- and

off rates kon and koff individually, but only as part of the

constant Km.

Simulations

We show simulations of concentration versus time graphs of

the system (46) when drug is supplied through a constant-

rate infusion over a period of 5000 h. Four infusion rates are

considered: kf = 0.12, 0.18, 0.30 and 0.54 (mg/L)/h. In

Fig. 13 we show ligand graphs, on a linear and on a semi-

logarithmic scale, and in Figs. 14 and 15 we show graphs

of the concentration of R, RL and Rtot, first on a linear scale

and then also on a logarithmic scale. In each of these fig-

ures we include the build-up phase as well as the washout

phase.

In Fig. 13 we see that for larger values of kf the time-to-

steady state of the ligand L is more or less independent of

the infusion rate. The amounts of ligand are now so large

that the receptor is quickly saturated and ceases to play an

important role in the dynamics. What remains is the linear

clearance of ligand, so that the ligand dynamics is descri-

bed to good approximation by the equation

dL

dt
¼ kf � keðLÞL� kin ð54Þ

which can be solved explicitly. Evidently

LðtÞ ! 1

keðLÞ
ðkf � kinÞ as t!1 ð55Þ

which is consistent with (50) and

t1=2 ¼
logð2Þ
keðLÞ

ð56Þ
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Fig. 12 The steady state

concentrations Lss, Rss and RLss

graphed versus the infusion rate

kf, on a linear scale (left) and on

a log-log scale (right) for

parameter values taken from

Table 3
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This results in a time to steady-state of 3–4 9 t1/2 is

&1850 h for the parameter values given in Table 3.

The washout dynamics is very similar to the dynamics

after a bolus dose, as described before: Phase A (0,T1) now

covers the infusion period so that T1 coincides here with

the time of washout. Phases B–D are plainly evident in the

post-washout dynamics.

The dynamics of the receptor R and the receptor–ligand

complex RL are shown in Figs. 14 and 15. As in Phase A in the

bolus administration, the pre-dose receptor pool (R0) quickly

binds to the ligand. We see that the speed of receptor depletion

increases with increasing infusion rate kf, consistent with the

half-life estimate (15) after a bolus administration.

In due course, additional receptor is formed, albeit more

slowly—and binds immediately to the ligand—resulting in

an increase of RL as was observed after a bolus dose (see

also Fig. 6). The dynamics is very similar—compare Eq.

(20)—and
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Fig. 13 The ligand

concentration L graphed versus

time on a linear scale (left) and

on a semi-logarithmic scale

(right) for the infusion rates kf =

0.12, 0.18, 0.30 and 0.54 (mg/

L)/h and twashout = 5000 h. The

parameter values are taken from

Table 3
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Fig. 14 Concentration profiles of R, RL and Rtot versus time caused

by a constant rate infusion of 5000 h and infusion rates of kf = 0.12,

0.18, 0.30 and 0.54 (mg/L)/h. The parameter values are taken from

Table 3. Note that the time to full depletion of target R decreases as

the infusion rate kf of ligand increases

Fig. 15 Graphs of R0 - R, RL and Rtot - R0 versus time when kf=

0.12, 0.18, 0.30 and 0.54 (mg/L)/h. The parameter values are taken

from Table 3. Note that the convergence of target R to R0 is bi-

exponential and that the decline of complex RL to zero, and the

convergence of total target Rtot to R0 are mono-exponential
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t1=2 ¼
logð2Þ
keðRLÞ

ð57Þ

This results in a time-to-steady-state of 3–4 9 t1/2 is &924

h (cf. Table 3), which we see confirmed in Figs. 14 and 15.

Eventually RL(t) levels off at the steady state value

RLss, which is close to R* for the larger infusion rates (cf.

Eq. (51)).

After washout, when kf is large, R(t) & 0 and RL(t) &
R* for a while before they abruptly return to their baseline

values. It is evident from Fig. 15 that, as in Fig. 7, initially

the slope of log(R0 - R) is steeper than that of log(RL).

This is in agreement with the analysis presented in

Appendix 5, where it is shown that over that period

the half-lives of R(t) - R0 and RL(t) are, respectively,

O(1/kout) and O(1/ke(RL).

Discussion and conclusion

We have shown how the concentration profile of ligand,

receptor and ligand–receptor complex in the TMDD model

can be divided into four different phases and how for each

of these phases closed-form approximations can be

derived. Inspired by a specific case study, the following

assumptions were made about the parameter values (see

also (13) and (13*)):

e ¼ Kd

R0

� 1; a ¼
keðLÞ
koff

\M; b ¼ kout

koff

\M;

c ¼
keðRLÞ
koff

\M
ð58Þ

for some moderate constant M [ 0, and L0 [ R0.

When ligand is administered through a bolus dose,

L0 [ R0, and the conditions in (58) are satisfied, four

phases can be distinguished in the ligand elimination

graph: a brief initial Phase A, a slow linear Phase B, a

rapid nonlinear Phase C and then again a slow linear ter-

minal Phase D (cf. Fig. 1). Thanks to accurate analytical

approximations for these four phases as shown in the Eqs.

(14) for Phase A, (20), (25)–(27) for Phase B, (36) for

Phase C and (38) and (40) for Phase D, we may extract

information about the model parameters.

In Table 6 we list the parameter values which play a

central role in the different phases of TMDD graphs. In

Phase A : the drop (R0) and the duration (O(1/(konL0))), in

Phase B : the slope (ke(L)) and the receptor input (kin), in

Phase C : the depth (Kd) and in Phase D : the terminal

slope (ke(RL)). In brackets we have included the parameters

which can be estimated when results from earlier phases

are used. Thus, since Phase A yields an estimate for

R0 = kin/kout and Phase B an estimate for kin, an estimate

for kout follows.

It should be noted though that estimating R0 may be

difficult, since often there are no data for the first phase

because it is over very quickly.

In Fig. 16 we summarise these results and show in the

schematic ligand versus time graph (recall Fig. 1) the

parameters which may be estimated from the different phases.

The four phases identified in the ligand elimination

graph after a bolus administration are reflected in the

structure of the receptor versus time graphs (receptor,

receptor–ligand complex, and total amount of receptor).

During Phase A the receptor pool is quickly depleted, and

it remains so during Phase B. Then, during the Phases C

and D it climbs back to the terminal baseline level R0.

The analytic approximations obtained for L, R and Rtot

may be used to verify the validity of the assumptions which

underpin different approximations to the full TMDD model

when the Assumptions A, B and C (or C*) regarding the

parameters are satisfied.

1. The rapid binding model [6, 18], in which it is

assumed that

L � R ¼ KdRL ð59Þ

where Kd is defined in (7). In Phase B, which is

characterised by R(t) & 0, we have dR/dt & 0 so that,

according to the second equation of the system (9), we

have approximately

Table 6 Information contained in the four phases

Phase TMDD-model (9)

A R0 and kon

B ke(L), kin (kout)

C Kd (koff)

D ke(RL) (Km)

Li
ga

nd
 C

on
ce

nt
ra

tio
n 

Time 

Fig. 16 Schematic representation of how the parameters may be

derived from properties of the four phases. In Phase A ligand binds to

the receptor (kon), during Phase B ligand is primarily eliminated

directly (ke(L)); time of termination yields information about kin. In

Phase C the saturation term is important (Kd), and in Phase D ligand

elimination proceeds mainly though the receptor (ke(RL))
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D ¼def
L � R� KdRL ¼ kin

kon

ð60Þ

which disagrees with (59).

In contrast, in Phases C and D the identity (59) is satisfied

according to the results established in Appendix 5 (cf. (102)),

and Appendix 7 where it was shown that kz = ke(RL).

In Fig. 17 we show how the quantity D ¼ L � R� KdRL

varies with time and how D rapidly jumps from kin/kon down

to zero at the transition of Phases B and C.

2. The quasi-steady-state model [7, 18] in which it is

assumed that

L � R ¼ KmRL ð61Þ

where Km is defined in (8). Evidently, this assumption is

not valid during Phases C and D, but it is during that part

of Phase B in which RL(t) & R*. In that interval dRL/dt &
0 (cf. Fig. 6) and hence, by the third equation of the system

(1), condition (61) is approximately satisfied.

Anchored on the data of the Case Study, the analysis in

this paper is based on the Assumptions A, B and C (or C*).

The question arises whether the characteristic features of

the ligand elimination curves, such as shown in Fig. 1, are

still present when these assumptions are not met.

In general, the behaviour of nonlinear systems such as

(1) is very sensitive to the values of the parameters and

initial data involved. However, a number of features of the

ligand versus time graphs is quite robust in that they may

survive if e.g. Assumption A is not satisfied and Kd and R0

are comparable. Thus, the estimate (15) for T1 suggests that

the initial Phase A will remain short relative to typical

times over which the other processes develop when Kd/L0

is small. We refer to [17] and [18] for a detailed analysis of

this situation.

The approximate expressions for L and Rtot in Phase B

(Eqs. (25) and (20)) are still valid provided that R(t) & 0.

This will still be the case when Assumption A is replaced

by Kd � L0 [17, 18].

In contrast, the analysis of the dynamics in Phase C that

is carried out in Appendix 5 depends critically on

Assumption A. It will be interesting to study the dynamics

beyond Phase B when Assumption A does not hold, as it

will be interesting to see how the value of a, b and c affects

the dynamics.

We have selected a set of data (ligand and circulating

target and complex) with low experimental variability,

concentration–time courses at four ligand doses given as

bolus injections, and well-spaced data in time that captures

the necessary phases and shapes of a typical TMDD system.

Based on this approach and the mathematical/analytical

analysis, we can draw conclusions about the identifiability of

the model parameters and appropriate system. When data are

less precise and information rich, or, when target and/or

complex are less accessible, the a priori expectations of

parameter accuracy and precision will be lower.
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Appendix 1: Symbols and definitions

Concentrations and related quantities

L Ligand concentration (mg/L)

R Receptor concentration (mg/L)

RL Receptor–ligand concentration (mg/L)

Ltot Total ligand concentration (L ? RL) (mg/L)

Rtot Total receptor concentration (R ? RL) (mg/L)

L0 Initial ligand concentration (mg/L)

R0 Initial receptor concentration (mg/L)

R* Intermediate steady state receptor concentration

(mg/L)

L Plateau value of the ligand concentration (mg/L)

R Plateau value of the receptor concentration (mg/L)

RL Plateau value of the receptor–ligand

concentration (mg/L)

Lss Steady state ligand concentration (mg/L)

Rss Steady state receptor concentration (mg/L)

RLss Steady state receptor–ligand concentration (mg/L)

Lapprox Approximation of the ligand concentration (mg/L)

AULC Area Under the Ligand Concentration curve (mg/

h/L)

Fig. 17 Evolution of the quantity D ¼ L � R� KdRL with time for

two initial doses L0 = 300 and 900. Parameter values are taken from

Table 1. Note the agreement with the analytical predictions made

above for Phases B, C and D
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CL Apparent clearance of ligand (L/h)

kz terminal slope (h-1)

Parameters in the model

InL Infusion rate of ligand (mg/h)

Vc Volume of the central compartment (L)

Vt Volume of the peripheral compartment (L)

Cld Inter-compartmental distribution (L/h)

Cl(L) Direct ligand elimination (L/h)

kf InL/Vc (mg/L/h)

ke(L) First-order elimination rate constant of ligand

(h-1)

kin Turnover rate of receptor (mg/h)

kout Fractional turnover rate of receptor (h-1)

kon Second order association rate of ligand to

receptor ((mg/L)-1/h)

koff First-order dissociation rate of receptor–ligand

complex (h-1)

ke(RL) First-order elimination rate of receptor–ligand

complex (h-1)

Kd koff/kon (mg/L)

Km (koff ? ke(RL))/kon (mg/L)

KM Michaelis–Menten constant in Eq. (45) (mg/L)

Vmax Maximum elimination rate in Eq. (45) (mg/kg/h)

T1, T2, T3 Times where the ligand versus time curve

changes qualitatively (h)

T* Time when Lapprox(t) vanishes (cf. Eqs. (25)

and (26)) (h)

Dimensionless quantities

x, y, z L/L0, R/R0, RL/R0; dimensionless concentrations

x; y; z L=L0;R=R0;RL=R0; dimensionless

concentrations

u, v, w L/Kd, R/R0, RL/R0; dimensionless concentrations

s konR0 t; dimensionless time

e Kd/R0

j kout/ke(L)

l R0/L0 or R0/Lss

a ke(L)/koff

b kout/koff

c ke(RL)/koff

Mathematical definitions

A ¼def
B The symbol A is defined by the

expression B

f(x) * g(x) as x ? ? f(x)/g(x)?1 as x? ?
(x ? 0)

f(x) = O(x(x))

as x? ?(0)

There exist constants K [ 0 and

n[ 0 such that

|f (x)| \ K|x(x)| if x [ n (0 \
x \ n)

Appendix 2: Short time analysis

We present a mathematical analysis for Phase A and show

how ligand, receptor and ligand–receptor complex rapidly

converge to the new Plateau values L;R and RL given in

(14), where we assume that L0 [ R0.

In order to identify terms in the system (9) which

dominate the dynamics in this initial phase, we define the

dimensionless concentrations

x ¼ L

L0

; y ¼ R

R0

; z ¼ RL

R0

ð62Þ

and the dimensionless parameter l = R0/L0. Substituting

them into the system (1) we obtain

dx
dt ¼ �konR0x � yþ kofflz� keðLÞx

dy
dt ¼ koutð1� yÞ � konL0x � yþ koffz

dz
dt ¼ konL0x � y� ðkoff þ keðRLÞÞz

8
>>><

>>>:

ð63Þ

Introducing the dimensionless time s = konR0 t, then

results in the dimensionless system

dx
ds ¼ �x � yþ elz� eax

dy
ds ¼ ebð1� yÞ � l�1x � yþ ez

dz
ds ¼ l�1x � y� eð1þ cÞz

8
>>><

>>>:

ð64Þ

where we have introduced the following dimensionless

constants (see also (58)):

e ¼ Kd

R0

; a ¼
keðLÞ
koff

; b ¼ kout

koff

and c ¼
keðRLÞ
koff

ð65Þ

We multiply the third equation of (64) by l and add the

resulting equation to the first equation to obtain

d

ds
ðxþ lzÞ ¼ �e axþ lczð Þ ð66Þ

Similarly, we add the second and the third equation to

obtain

d

ds
ðyþ zÞ ¼ e bð1� yÞ � czf g ð67Þ

Since e� 1 and ea� 1; eb� 1 and ec� 1 by

Assumption B (cf. (13)), it follows that to good approximation,

xðsÞ þ lzðsÞ ¼ 1 and yðsÞ þ zðsÞ ¼ 1 if es� 1

ð68Þ
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where we have used the fact that x(0) = 1, y(0) = 1 and

z(0) = 0. Note that in light of the definition of s and e; the

assumption es� 1 is equivalent to kofft � 1.

Remark These approximate equalities state that the total

amount of ligand (L ? RL) and the total amount of

receptor (R ? RL) in the system remain more or less

constant during this initial phase.

Using the expressions from (68) to eliminate x and y

from the equation for z in (64), we obtain

dz

ds
¼ f ðzÞdef

=

1

l
ð1� lzÞð1� zÞ ð69Þ

where we have dropped the term elð1þ cÞz because

elc\ec� 1 so that its impact is negligible.

The right hand side of Eq. (69) has two zeros: z = 1 and

z = 1/l[ 1. Plainly f(z) [ 0 for 0 B z \ 1 and for z [ 1/l,

whereas f(z) \ 0 for 1 \ z \ 1/l. Since z(0) = 0 it follows

that z(s) increases and approaches the lower zero z ¼ 1 as time

tends to infinity:

zðsÞ ! z ¼ 1 as s!1 ð70Þ

When we linearise Eq. (69) at z = 1, write zðsÞ ¼ 1þ fðsÞ
and omit the terms involving fn for n [ 1 we obtain the

equation

df
ds

�
�
�
z¼1
¼ � 1� l

l
f ð71Þ

Therefore,

s1=2 ¼ lnð2Þ � l
1� l

¼) t1=2 ¼
lnð2Þ

konðL0 � R0Þ
ð72Þ

Thus, for es� 1; i.e., for kofft1/2 to be small, as required in

(68), the parameters and the initial ligand concentration need

to be such that koff/(kon(L0 - R0)� 1 or L0 - R0� Kd.

In light of (68), the limit for z(s) obtained in (70) implies

the following limits for x(s) and y(s):

xðsÞ ! x ¼def
1� lz ¼ 1� l and yðsÞ ! y ¼def

1� z ¼ 0

as s!1
ð73Þ

Returning to the original variables and writing L ¼ L0x;

R ¼ R0y and RL ¼ R0z; we conclude that over a time span

of O(1/(kon(L0 - R0)) we have

LðtÞ ! L ¼ L0 � R0; RðtÞ ! R ¼ 0 and

RLðtÞ ! RL ¼ R0 as t!1 ð74Þ

Appendix 3: Bounds of the receptor concentration

We establish two a-priori bounds: one for the total receptor

concentration by Rtot = R ? RL and one for the free

receptor concentration R. Both bounds are global in time,

i.e., they hold for all time.

Lemma 1 Suppose that Rtotð0Þ ¼ R0 ¼
def

kin=kout: Then we

have:

RtotðtÞ�max
kin

kout

;
kin

keðRLÞ

� �

for t� 0: ð75Þ

Proof Adding the last two equations of the system (1), we

obtain

dRtot

dt
¼ kin � koutR� keðRLÞRL ð76Þ

We now consider two cases: (I) ke(RL) C kout and (II)

ke(RL) \ kout

Case I (ke(RL) C kout). We write Eq. (76) as

dRtot

dt
¼ kin � koutRtot þ ðkout � keðRLÞÞRL ð77Þ

and conclude that since, by assumption, ke(RL) C kout, we have

dRtot

dt
� kin � koutRtot ð78Þ

Define the function q1ðtÞ ¼
def

RtotðtÞ � R0: Then, transforming

Eq. (78) and the initial value of Rtot to this new variable, we

obtain

dq1

dt
� � koutq1; q1ð0Þ ¼ 0 ð79Þ

This implies that

d

dt
ekouttq1ðtÞ
� 	

� 0 and hence q1ðtÞ� q1ð0Þ ¼ 0

Therefore,

RtotðtÞ�R0 ¼
kin

kout

ð80Þ

as asserted. This completes the proof of the first inequality.

h

Case II (ke(RL) \ kout). We now write Eq. (76) as

dRtot

dt
¼ kin � keðRLÞRtot þ ðkeðRLÞ � koutÞRL

\kin � keðRLÞRtot

ð81Þ

Put q2ðtÞ ¼
def

RtotðtÞ � R�; where R* = kin/ke(RL), and note

that by assumption, q2(0) = Rtot(0) - R* \ 0. Proceeding

as in the previous case we conclude that q2(t) \ 0 for t C 0

and hence that

RtotðtÞ\
kin

keðRLÞ
for all t� 0 ð82Þ

This completes the proof of the second inequality, and

hence of the lemma. h
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Remarks

(1) The upper bound in Lemma 1 is independent of the

amount of ligand that is supplied to the system and it is

valid whether drug is given through a bolus adminis-

tration or by means of a constant rate infusion.

(2) Lemma 1 generalises an observation made before in

[3, 15, 17], which states that

RtotðtÞ � R0 if and only if keðRLÞ ¼ kout ð83Þ

Next, we prove bounds for R.

Lemma 2 Suppose that L(0) = L0, R(0) = R0

and RL(0) = 0. Then

R0

1þ kon

kin

L0

R0

\RðtÞ\R0 1þ Kd
kon

kout

L0

R0

� �

for 0� t\1

ð84Þ

Proof From the conservation law (4) we deduce that

Ltot(t) is a decreasing function of t. Therefore,

LðtÞ þ RLðtÞ� L0 for all t� 0 ¼) RLðtÞ� L0 ð85Þ

In order to prove the upper bound, we write

dR

dt
¼ kin � koutR� konL � Rþ koffRL

\kin � koutRþ koffRL

\ðkin þ koffL0Þ � koutR ¼ koutðRþ � RÞ

ð86Þ

where

Rþ ¼
kin þ koffL0

kout

ð87Þ

Plainly R(0) = R0 \ R?, and we claim that R(t) \ R? for

all t C 0. Suppose to the contrary that there exists first a

time t0 [ 0 such that R(t0) = R?, i.e.,

RðtÞ\Rþ for 0\t\t0 and Rðt0Þ ¼ Rþ ð88Þ

We see that R(t) approached R? from below as t% t0; so

that dR/dt C 0 at t = t0. However, we deduce from (86)

that dR/dt(t0) \ 0. Therefore, we have a contradiction and

we may conclude that there exists no time t0 [ 0 for which

R(t) attains the value R?. This proves the claim and thereby

the upper bound. h

To prove the lower bound we write

dR

dt
¼ kin � koutR� konL � Rþ koffRL

[ kin � koutR� konL � R
[ kin � ðkout þ konR0ÞR ¼ ðkout þ konR0ÞðR� � RÞ

ð89Þ

where

R� ¼
kin

kout þ konL0

ð90Þ

Proceeding as with the upper bound, we establish the lower

bound.

Corollary 1 Since R?(L0) ? R0 and R-(L0) ? R0 as L0

? 0, it follows that for any time t C 0,

RðtÞ ! R0 as L0 ! 0 ð91Þ

Appendix 4: Derivation of the approximation Lapprox(t)

and expressions for AULC and CL

We wish to solve the initial value problem

dL

dt
¼ �keðLÞL� kin; Lð0Þ ¼ L ð92Þ

where L 	 L0 � R0 is the ligand concentration right after

Phase A. We multiply this equation by ekeðLÞt to obtain

d

dt
ðekeðLÞtLÞ ¼ ekeðLÞtkin

Integration over (0,t) yields the desired expression for the

solution Lapprox(t) of Eq. (92):

LapproxðtÞ ¼ ðLþ mÞe�keðLÞt � m; m ¼ kin

keðLÞ
ð93Þ

Plainly, L(t) ? - m\ 0 as t!1: Since Lapprox(t) is

decreasing and L(0) [ 0, it follows that there exists a unique

time T* [ 0 for which Lapprox(t) vanishes. An elementary

computation yields the following expression for T*:

T� ¼ 1

keðLÞ
ln

L

m
þ 1

� �

¼ 1

keðLÞ
ln

keðLÞ
kin

Lþ 1

� �

ð94Þ

For the three largest initial ligand concentrations used in

case study this formula yields, as L0 decreases, respec-

tively, T* & 2818 h, T* & 2042 h and T* & 1372 h. This

agrees well with the numerical results shown in Figs. 3, 4

and 5.

In order to derive the approximation for AULC(L0), we

write

ZT�

0

LapproxðtÞdt ¼ 1

keðLÞ

ZkeðLÞT
�

0

fðLþ mÞe�s � mgds

¼ 1

keðLÞ
fðLþ mÞð1� e�keðLÞT

� Þ � mkeðLÞT
�g

ð95Þ

When we now substitute the expression for T* from (94)

into (95), we obtain the desired formula:
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AULCðL0Þ ¼
1

keðLÞ
L0 � R0 � m log

L0 � R0 þ m
m

� �� �

ð96Þ

from which (28) follows. Applying the definition

CL(D) = D/AULC(D) we obtain an expression for CL(D).

Appendix 5: Small ligand asymptotics

When, as in Phases C and D, the ligand concentration

drops to levels that are comparable to Kd, a different

scaling from the one used in Appendix 2 yields information

about the relative importance of the different processes. For

this range we define the scaling

u ¼ L

Kd
; v ¼ R

R0

; w ¼ RL

R0

ð97Þ

which, after substitution into the system (9) yields

du
dt ¼ �konR0ðu � v� wÞ � keðLÞu

dv
dt ¼ koutð1� vÞ � koffðu � v� wÞ
dw
dt ¼ koffu � v� ðkoff þ keðRLÞÞw

8
>>><

>>>:

ð98Þ

In addition we need to introduce a new, more appropriate,

time scale for this phase. As we shall see, 1/koff will be the

right choice for this stage in the dynamics, and we define

the new dimensionless time

s ¼ koff t ð99Þ

When we introduce this time variable into the system

(98) we obtain

e du
ds ¼ �u � vþ w� eau

dv
ds ¼ bð1� vÞ � ðu � v� wÞ
dw
ds ¼ u � v� ð1þ cÞw

8
>>><

>>>:

ð100Þ

where e; a; b and c are been defined as in (58) and (65):

e ¼ Kd

R0

; a ¼
keðLÞ
koff

; b ¼ kout

koff

and c ¼
keðRLÞ
koff

ð101Þ

Note that for the parameter values listed in Table 1, we have

e ¼ 0:0009; a ¼ 1:5; b ¼ 9; c ¼ 3

Thus, e is very small so that we may conclude from a

standard singular perturbation argument [19, 20, 21] that

after a very short period

u � v� w ¼ 0 or L � R ¼ Kd � RL ð102Þ

The equality (102) enables us to simplify the second and

third equation of the system (100) to

dv

ds
¼ bð1� vÞ and

dw

ds
¼ �cw ð103Þ

or, in terms of the original variables,

dR

dt
¼ koutðR0 � RÞ and

dRL

dt
¼ �keðRLÞRL ð104Þ

Since at the start of Phase C we have R & 0 and RL &
R*, we conclude that

RðtÞ 	 R0ð1� e�kouttÞ and RLðtÞ 	 R�e
�keðRLÞt ð105Þ

Appendix 6: Derivation of the steady state relations (47)

and (48)

When we put the derivatives in the system (46) equal to zero and

put twashout ¼1; we obtain a nonlinear algebraic system of

three equations involving the three variables L, R, RL. We

eliminate L and R and derive the expression (47) for the steady

state value of RL. Adding the first and the third equation of (46)

yields a relation that involving only RL and L:

kf ¼ keðRLÞRLþ keðLÞL ð106Þ

Adding the second and the third equation of (46) yields a

relation involving only terms of R and RL:

kin ¼ keðRLÞRLþ koutR ð107Þ

Using these two relations to eliminate R and L from the first

equation, we obtain a quadratic equation for RL:

X2 þ ðkf þ kin þ qÞX þ kf kin ¼ 0; X ¼ keðRLÞRL ð108Þ

where q = (ke(L)/ke(RL))koutKm. Plainly, it has two distinct

roots, RL? and RL- and they are endowed with the property

keðRLÞðRLþ þ RL�Þ ¼ kf þ kin þ q ð109Þ

Adding (106) and (107) we deduce that the steady state

value of RL must satisfy the inequality

2keðRLÞRL\kf þ kin ð110Þ

This implies that the desired steady state value of RL must

be given by the smaller of the two roots: RL-. The two

expressions (106) and (107) then yield the corresponding

steady state values for L and R.

Appendix 7: Computation of the terminal slope

In order to compute the terminal slope kz for the ligand

concentration profile we linearise the system (9) about the

steady state (L, R, RL) = (0, R0, 0). Writing L = n,

R = R0 ? g and RL ¼ f; we obtain the linear system
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dn
dt ¼ �ðkonR0 þ keðLÞÞnþ kofff

dg
dt ¼ �konR0n� koutgþ kofff

df
dt ¼ konR0n� ðkoff þ keðRLÞÞf

8
>>>><

>>>>:

ð111Þ

when higher order terms are omitted. It is convenient to

write this system in vector- and matrix notation:

dY

dt
¼ AY where Y ¼

n
g
f

0

@

1

A ð112Þ

and A is the coefficient matrix of the linear system (111):

A ¼
�ðkonR0 þ keðLÞÞ 0 koff

�konR0 �kout koff

konR0 0 �ðkoff þ keðRLÞÞ

0

@

1

A

ð113Þ

We assume that the matrix -A has three distinct

eigenvalues k1, k2 and k3 and that Y1, Y2 and Y3 are the

corresponding eigenvectors. The General Solution of Eq.

(112) then takes the form

YðtÞ ¼ C1Y1e�k1t þ C2Y2e�k2t þ C3Y3e�k3t ð114Þ

where C1, C2 and C3 are arbitrary constants.

The eigenvalues ki (i = 1, 2, 3) are the roots of the

equation

detðAþ kIÞ ¼ 0

Thus, we find that

k1 ¼ kout

and k2 and k3 are the roots of the quadratic equation

k2 � akþ b ¼ 0 ð115Þ

where

a¼ konR0þ keðLÞ þ koff þ keðRLÞ ¼ konR0 1þ eaþ eð1þ cÞf g
b¼ konR0keðRLÞ þ keðLÞkoff þ keðLÞkeðRLÞ

¼ konR0keðRLÞ 1þ e
a
c
ð1þ cÞ

� �

ð116Þ

and e;a;b and c are defined in Eqs. (58) and (64). Since

e� 1 and a, b and c are of moderate size (cf. Assumptions

A and B in (13)), we have to good approximation,

a ¼ konR0 and b ¼ konR0keðRLÞ ð117Þ

This implies that b=a2 ¼ ec� 1; so that we conclude that

k1 ¼ kout ¼ 0:0089; k2 ¼ a ¼ konR0 ¼ 0:11 and

k3 ¼
b

a
¼ keðRLÞ ¼ 0:003

ð118Þ

i.e., the terminal slope kz is given by kz = ke(RL) = 0.003.

This agrees with the numerical value found in Figs. 5, 6, 7

and 8. For an earlier derivation we refer to [25].

Remark Naturally, when ke(RL) = 0 then ligand will still leak

out of the system, albeit more slowly, thanks to direct elimi-

nation of ligand. For this case we obtain the following terminal

slope:

kz ¼
b

a
¼ keðLÞ

Kd

R0

: ð119Þ
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