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Abstract 

Knecht Billberger, M. F. Plant growth – stoichiometry and competition. Doctor’s 
dissertation. 
ISSN 1652-6880, ISBN 91-576-7073-0. 
 

In four different studies, this thesis addresses issues concerning plant nutrition and growth 
from a theoretical perspective. Terrestrial plants require nutrients, water, light and space for 
their existence. All of these resources may be limiting for growth, however in this thesis the 
main focus is on the nutrients. 
 The first paper is part of an environmental impact assessment on introducing logdepole 
pine (pinus contorta) as a replacement for the domestic Scots pine (pinus sylvestris) in 
Swedish forests. The long-term development of carbon and nutrient pools was simulated in 
a mathematical model. Higher yield of P. contorta meant higher acidification of the soil. 
Lower decomposability of P. contorta litter had minor impact on the  soil carbon pool after 
one rotation, but lead to significantly larger storage at steady state.  
 The subject of paper II was plant nutrient ratios. Lab experiments have suggested that 
nutrients are required in similar proportions for a number of species. We wanted to know if 
the same proportions could be detected also in the field. We first made the assumption that 
nitrogen is either limiting growth or when available in larger amounts, only taken up 
moderately in excess of requirements for growth. Then we found that nutrient ratios 
determined from field data corresponded well to the optimum ratios determined in the lab. 
 In paper III we addressed the competitive exclusion principle, which predicts that for 
plants occupying the same niche and competing for a single limiting nutrient, the stronger 
competitor will outcompete all the others. The competitive exclusion relies on the 
assumption that growth is proportional to biomass. However, growth is commonly assumed 
proportional to the concentration of the limiting nutrient. We showed that it is highly 
unlikely that potential nutrient uptake increases proportionally to plant biomass, but rather 
at a slower rate. When this scaling relation is included in a competition model, plants are 
allowed to coexist without niche separation. 
 Finally, in paper IV, feedback of carbon was added to plant nitrogen and phosphorus 
relations in an ecosystem model. For nutrient acquirement, plant carbon can be invested in 
roots, be exchanged for nutrients in the symbiotic relation with myccorhiza or exudated, 
where the exudates stimulate nutrient availability in different ways. We suggest that the 
plant partly can direct this carbon investment to the nutrient most limiting growth. We also 
suggest that a smaller fraction of available carbon is invested as nutrient availabilities 
increase. The model then predicts 1) The plant nutrient ratio partly reflects availabilities and 
partly plant requirements. 2) When co-limited by N and P, plant growth will increase at 
increased availability of either of these, because a larger fraction of carbon can be directed 
for uptake of the more limiting nutrient.  
 

Keywords: nutrient ratios, optimum nutrition, ecosystem ecology, competition, coexistence, 
ecosystem modelling. 
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Appendix 

Papers I-IV 

The present thesis is based on the following papers, which will be referred to by 
their Roman numerals: 
 
I.  Ågren G I, Knecht M F. 2001. Simulation of soil carbon and nutrient 

development under Pinus sylvestris and Pinus contorta. Forest Ecology 

and Management 141, 117-129.  
 
II.  Knecht M F, Göransson A. 2004. Terrestrial plants require nutrients in 

similar proportions. Tree Physiology 24. 447-460. 
 
III.  Billberger M F K, Ågren G I. 2005. Allometric constraints on nutrient 

uptake in an ecosystem model allow plants to coexist without niche 
separation. (Submitted to Oikos) 

 
IV.  Billberger M F K, Wetterstedt J Å M, Ågren G I. 2006. Coupling 

limitations from energy and nutrients on plant growth. (Manuscript). 
 
 
Paper I is reprinted with kind permission from Elsevier. 
Paper II is reprinted with kind permission from Heron Publishing. 
 
 
 
 

Foreword  

How did Magnus find his way into ecology? 

I must honestly declare that until I started my studies at SLU as a PhD student I 
had no intent of pursuing a carrier within science and in particular in the field of 
biology. I started my higher education in mathematics and physics, moving on to 
hydrology as a means to combine my interest on one hand in mathematics and on 
the other hand environmental issues and nature in general. Whether it was faith or 
coincidence I don’t know, but as the opportunity arose to obtain a PhD in ecology I 
decided to take the chance.  
 
The following thesis is based on a collection of four papers on different, but related 
subjects. The summarising overview is intended to explain the work and place it in 
the context of humans making use of what nature can provide. Details of 
background, methods and results will be found in the accompanying papers. 
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Introduction 

How can we be able to build houses and produce food to such extents that we can 
live in comfort in a country like Sweden where snow and ice cover the land up to 
five or even six moths per year? Indeed, there is no simple answer to such a 
question, but one of the more fundamental requirements for us being able to live 
here is our ability to make good use of what nature can provide. I strongly feel that 
this where the original motivations and reasons that successively have led me to the 
issues that I address in this thesis. 
 
Mankind’s harvest of nature’s good 

For our mere existence we must rely on what nature provides us in terms of food 
and shelter. However, as a species we have been quite successful in satisfying these 
basic needs and moved further to provide ourselves with more than just that. In a 
very condensed description we could say that we have went from survival to 
welfare through increasingly effective ways of harvesting nature’s goods. But we 
should of course not forget the tremendous boost our development has received 
from our utilisation of fossil energy resources. Among the more important areas we 
have managed to control is how to cultivate plants to provide food, fuel and 
building material. Here we have always focussed on increasing and maximizing 
yield; and rather at an as low cost as possible. 
 
How to maximize the return from our efforts 

Harvest of nature’s goods requires efforts in cultivation, maintenance and it lies 
naturally in our interest to maximize the return from our efforts. Considering 
terrestrial plants, we know that they are limited in growth basically by availabilities 
of light, water and nutrients. Further aspects are competition for these resources 
and also competition for space. Constraining our efforts is the fact that we are quite 
specific about which species we like to cultivate. We are aware that different 
species have different potential of productivity. This leaves us with a quite 
complex task of maximizing the productivity of certain species in given climatic 
and environmental conditions. Essential for maximizing plant production is to 
identify the factors that limit growth and how such limitations can be overcome.  
 
Understanding ecology 

Already in man’s early days of cultivation it must have become obvious that 
supplying crops with water could be essential for survival and that appropriate 
irrigation would increase yield, but also that too much water could in the worst 
cases drown the crop. Another early observation must have been that manure could 
stimulate growth. During the first half of the 19th century German the agricultural 
chemists Carl Sprengel and Justus von Liebig were part of the pioneering work that 
lead to the development of the theory of mineral nutrition of plants; Liebig has 
given name to the law of the minimum, although this principle probably first was 
formulated by Sprengel (van der Ploeg & Kirkham, 1999). The science of ecology 
successively developed over the years from roots in agriculture but also from basic 
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sciences as botany and zoology. Tansley (1935) thoroughly reviewed concepts and 
terms of ecology and with Hutchinson (1959) the ideas of competition and niches 
had become central concepts as well as the idea of ecosystems (e. g. Odum, 1969). 
Of course ecology has continued to develop as a science with new concepts and 
ideas being introduced (Odum, 1990).  
 
Mass balance approach - biogeochemistry 

Investigating nature and specifically how plants function can be done from several 
different approaches. Scientist may address individuals, communities or entire 
ecosystems, with emphasis on for example interaction between individuals and 
species or as is the case of this thesis – mass balance. The mass balance approach 
is based on the fact that matter cannot be created neither can it be destroyed. A 
carbon atom that enters a plant through photosynthesis will remain in the plant until 
it is released in for example litterfall or respiration (Schlesinger, 1997). I have in 
this thesis mainly focused on the mass balances of carbon, nitrogen and phosphorus 
of terrestrial plants and investigated issues concerning the competition for mineral 
nutrients. In this context I have not considered carbon, hydrogen and oxygen as 
mineral nutrients.  
 
Nutrient requirements of terrestrial plants 

It has been known for a long time that plants require certain elements for their 
existence; these are referred to as essential nutrients (e. g. Mengel & Krikby 2001). 
The availability of essential nutrients sets constraints for plant well-being, growth 
and even survival. For growth a simple relationship between plant relative growth 
rate and the concentration of the nutrient limiting growth exists (Ågren 1985, 
1988): 
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where RG is the relative growth rate, Pn is a proportionality constant (the nutrient 
productivity) relating relative growth rate to nutrient concentration, cn,min is the 
minimum concentration required for growth, and at cn,opt the relative growth rate 
has reached its maximum. When experiments with Betula pendula were analysed, 
this relation could be clearly verified for nitrogen (Ingestad 1979) and phosphorus 
(Ericsson & Ingestad 1988). Deficiency symptoms developed initially when the 
seedling growth was limited by potassium, but once growth had stabilised these 
symptoms rarely reappeared and again growth followed Eqn (1) (Ericsson & Kähr 
1993). Deficiency symptoms were similar or even more pronounced for zinc 
(Göransson 1997), iron (Göransson 1993) and manganese (Göransson 1994) 
suggesting that the growth relationship might be more complicate than suggested 
by Eqn (1), see also Ågren (2004). 
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Exponential growth and nutrient supply 

When setting up an experiment where plants are supposed to grow at a constant 
relative growth rate RG, it is necessary to appreciate that as plants grow larger, they 
will require continuously increasing amounts of nutrients in order to be able to 
maintain constant nutrient concentrations and thereby constant RG. Plants growing 
at constant relative growth rate will increase in size according to an exponential 
function and need nutrients accordingly supplied at an exponential increasing rate 
(Ingestad & Lund 1986, Ingestad & Ågren 1988). The requirements for 
maintaining a constant RG are relatively easy to satisfy in the laboratory, but are 
equally important under field conditions (Ingestad & Ågren 1988).  
 
Nutrient relations in terrestrial plants 

Redfield (1958) concluded that ratios of carbon, nitrogen and phosphorus in 
phytoplankton were in a statistical sense uniform and about 106:16:1 (on molar 
basis), generally referred to at “the Redfield ratio”. Geider & La Roche (2001) 
investigated this relation further and argued that the Redfield ratio should not be 
understood as the critical N:P ratio (the ratio when N and P are limiting growth 
simultaneously), which they indicate is in the range 20-50. However, they 
confirmed patterns of constrained N:P ratios in both overall observations and in 
estimated critical ratios. Can similar patterns be found in terrestrial plants? Based 
on the law of the minimum (Liebig 1840, 1855) we can conclude that it should be 
possible for plants to be limited in growth by several mineral nutrients 
simultaneously. In this situation nutrient are present in the plant in certain ratios, 
which I define as optimum nutrient ratios.  
 

The nitrogen to phosphorus ratio in particular has been suggested as a tool for 
analysing nutrient limitations and determining fertiliser requirements in agriculture 
and forestry (Güsewell et al. 2003, Koerselman & Meuleman 1996, Tessier & 
Raynal 2003). More extensive analyses, including additional nutrients have also 
been made (Bailey et al. 1997, Montañés et al. 1993, Sinclair et al. 1997, 
Walworth & Sumner 1987). Optimum nutrient ratios at maximum relative growth 
rate have been determined for a number of species in laboratory experiments, 
where it has been found that the nutrient proportions required at maximized RG are 
similar for a range of species (Ericsson 1995). A plant physiological approach 
suggests the possibility for similar optimum nutrient ratios for most plant species, 
carbon excluded. (Sterner & Elser, 2002, Elser et al. 1996). In contrast to animals, 
plants are much less sensitive to nutrient imbalances allowing nutrient 
concentrations to sometimes vastly exceed the levels required for growth. This 
needs to be taken into account when plant nutrient ratios are analyzed. 
 
Nutrient availabilities 

It is of course unlikely that nutrients in nature are available in the optimal 
proportions of plants. Although highly available in earth’s atmosphere, nitrogen is 
the nutrient most commonly limiting growth in terrestrial ecosystems. Phosphorus 
limitation is also quite common and limitation by other elements also occurs 
(Vitousek & Howarth 1991). Hedin (2004) and Reich & Oleksyn (2004) reported 
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global patterns with nitrogen limitation at high latitudes and phosphorus limitation 
more common close to the equator. Nutrients, apart from nitrogen, which also may 
be acquired through fixation from the atmosphere (e. g. Pastor & Binkley 1998, 
Rastetter et al. 2001) and lost through denitrification, are mainly cycled within the 
ecosystem (e. g. Schlesinger 1997). In addition the soil community has an 
important impact on nutrient availabilities (Bever et al. 1997). To satisfy their 
nutritional needs plants have developed various properties that enhance their 
ability to acquire nutrients from the soil. Symbiotic relationship with mycorrhizas 
can drastically increase the amount of soil that can be explored (Cornelissen et al. 
2001, Read 1991). Root exudates can constitute a significant part of plant carbon 
flows and are assumed to enhance weathering and mineralisation (Bertin et al. 
2003, Grayston et al. 1996, Nardi et al. 2002). Plants generally show high 
plasticity in root-shoot allocation, increasing the amount of carbon invested for 
roots at low nutrient availabilities. (Ågren & Franklin 2003). Further, a significant 
part of plants nutrient requirement can be supplied through resorption from 
senescing leaves (Aerts 1996, 1997, Killingbeck 1996). 
 
Plants competing for nutrients 

When resources are limited plants will have to compete for them to satisfy their 
needs. When Lotka (1925) and Volterra (1926) investigated the dynamics of 
competition using mathematical models they came to the conclusion that species 
competing for a single limiting resource cannot coexist. Gause (1932) confirmed 
their statement in experiments with yeast thereby establishing the competitive 
exclusion principle (Hardin 1960). However, when applying this principle to 
terrestrial plants competing for nutrients, the principle seems difficult to reconcile 
with the high diversity of species often observed in a given area. Species, which 
seem to compete for the same nutrient resources, coexist and efforts to understand 
and explain this have been extensive (Palmer, 1994). Spatial heterogeneity (Huston 
& DeAngelis 1994, Grace 1995) and niche separation (Hutchinson 1959) are two 
well-established examples. Tilman (1990) presented models, which specifically 
address plants competing for nutrients, and predicted that the species that could 
lower the limiting resource to its lowest value would outcompete the others. 
However when extended to incorporate spatial heterogeneity the models predict 
coexistence instead (Pacala & Tilman 1994). 
 

More recently Rastetter & Ågren (2002) suggested that some of the assumptions 
in models describing plant competition need to be revised. They argue that the 
growth function should be a nonlinear, downward concave function of biomass. 
This change allows species to coexist even if there is only one limiting resource. 
The nonlinearity between growth and biomass can be explained by the allometric 
scaling of plants as they increase in size (Niklas & Enquist 2001, 2002). Niklas’ & 
Enquist’s results also indicate that the amount of soil exploited by plant roots does 
not increase proportionally with total plant biomass, but rather as the power 3/4.  
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Modelling an ecosystem 

During my years as a PhD student in ecology I have often encountered scepticism 
about the use of models in ecology. Typically, people argue that systems of 
mathematical equations are unable to describe an ecosystem satisfactory. A 
discussion initiated by Aber (1997, 1998) shows that my experiences are by no 
means unique (see also Dale and Van Winkle, 1997 and Van Winkle and Dale, 
1998). My general perception of the critique has led to two conclusions: (i) the 
critics find it difficult to understand the mathematical expressions and (ii) to a great 
extent they use models themselves. The use of models is one of the cornerstones of 
science in order to understand the consequences of, and reasons for observed 
relationships. In this thesis the modelling is mainly focused on plant growth and 
forest productivity. 
 

The most powerful use of models is obtained when observations or theory can be 
translated into mathematical expressions. These expressions can then be rewritten 
and processed to produce new logical consequences - results. These results in turn 
need to be interpreted and translated back to understandable formulations. A 
translation to a model is of course a matter of approximation and there is also 
plenty of room for mistakes for example in the method used (e. g. Hoffman & 
Poorter, 2002) or in numerical evaluation (Seppelt & Richter, 2005). I consider it a 
modeller’s duty to realise such limitations and to keep them in mind when 
presenting results. 
 
Getting on to the papers of this thesis 

Which are the specific questions addressed in this thesis? Initially I was presented 
with Redfield ratios and the question arose whether these might have their 
counterpart in terrestrial ecosystem. But until I could give this matter its fair 
attention I had to unravel some of the mysteries of ecosystem ecology. What do we 
know about plants and ecosystems? How can we synthesise our understanding of 
specific issues to make up the whole? And what do we need in order to be able to 
make predictions of what will happen if we interfere with the ecosystem in one way 
or the other? I started out by learning a lot about ecology and especially about the 
concept of the ecosystem. The complexity of nature easily becomes too difficult for 
us to handle in terms of simple cause and effect as many parts are interlinked. A 
disturbance may cause chain reactions such that we cannot reasonably foresee all 
the effects. Instead we need to bring out our little toolbox and pick up one of the 
scientists’ most useful tools – mathematics (Ågren & Bosatta 1998). We translate 
our ecological understanding from English, Swedish or whatever natural language 
we prefer and form mathematical expressions. Mathematical expressions can be 
analysed, specific questions asked and answers be given. A more difficult part of 
our work can be to interpret these results and to translate them back to the original 
language. 
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Paper I: Simulation of soil carbon and nutrient development 

under Pinus sylvestris and Pinus contorta 

As a part of an extensive environmental impact assessment I contributed with a 
modelling exercise to estimate long term consequences of the introduction of Pinus 

contorta (lodgepole pine) in Swedish forestry.  
 

The introduction of foreign species to Swedish ecosystems has become a matter 
of increasing interest over the last 30 or so years. Several examples have shown 
how vulnerable an ecosystem may be to the introduction or invasion of foreign 
species. This has lead to an increased awareness and a legal framework that calls 
for carefulness in this matter. Plantations of P. contorta in Sweden have indicated 
that this species has the potential to increase yield compared to P. sylvestris. Much 
less is clear about possible impacts on for example other species in the ecosystem 
and on the carbon and nutrient pools and dynamics, especially over longer time 
periods. To estimate the possibilities of long term effects, the impact on carbon and 
nutrient pools was simulated in a mathematical model. The model was based on 
conventional yield models for the two species from which litter production was 
calculated. The decomposition of litter and accumulation of soil organic matter for 
the two species was then compared. Data about the two species were derived from 
the literature and when not available, roughly estimated. We evaluated the 
sensitivity of the model to uncertainties in parameters by using the Monte Carlo 
method. The higher productivity of P. contorta resulted in higher yield and thereby 
also larger removal of base cations acidifying the soil. For a single rotation the soil 
carbon stores differed little for the two species, but lower decomposability of P. 

contorta litter lead to significantly higher carbon storage at steady state. 
 
Paper II: Terrestrial plants require nutrients in similar 

proportions 

When cultivating plants we perform various activities to enhance the quality and 
the yield from our efforts. Some effective ways of increasing yield are irrigation 
and fertilisation. Of course, too much water or too much fertiliser is detrimental to 
the plant or to downstream sites from runoff water. To avoid excessive fertilisation 
nutrients should be applied in amounts required to maximize growth but without 
causing leaching of nutrients from the ecosystem (Linder 1995). Economic aspects 
may also be invoked in terms of maximizing the payoff from fertilisation. 
 

Extensive laboratory experiments with carefully controlled nutrient supplies have 
indicated similar nutrient proportions of a wide number of species; care has 
however to be exercised in such experiment or the plants might take up nutrients in 
larger amounts than required for growth. We define nutrition as optimal when plant 
growth is maximal and no nutrient has been taken up in excess. Optimum nutrient 
ratios can also be considered a logic consequence of the law of the minimum (or 
Liebig’s law). The law of the minimum states that growth is limited by the nutrient 
in least supply in relation to plant requirements. If different nutrients may be 
limiting in different cases, then it comes logically that several nutrients under the 
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right conditions can be limiting growth simultaneously. In this case the limiting 
nutrients are in optimum ratios according to our definition.  
 

 
 
Figure 1. Phosphorus, potassium, calcium and magnesium concentrations versus nitrogen in 
foliage of coniferous (filled circles), deciduous (open circles) and herbaceous (filled 
triangles) species as found in the literature. The dashed lines represent the optimum nutrient 
ratios. 
 

To determine if the similarities in nutrient ratios can be extended to terrestrial 
plant species in general, we investigated data sets from the literature for field 
grown plants. From these data sets we calculated nutrient ratios for different plant 
species not subjected to fertilisation or intensive management. The analysis was 
complicated by the fact that when available, plants take up nutrients in excess of 
their requirements. Standard statistical methods did therefore not exist for testing 
our hypothesis that terrestrial plants in general require nutrients in similar 
proportions. Instead we made the following assumptions: 1) Most terrestrial 
ecosystems are limited in growth by either nitrogen or phosphorus (Vitousek, 
1991). 2) Nitrogen is available in relatively sparse amounts even when not limiting 
growth such that the room for excessive uptake of nitrogen is limited. 3) Plants do 
not take up nitrogen in amounts considerably larger than required for the current 
relative growth rate. Based on these assumptions we hypothesised that the ratios of 
nutrients, excluding phosphorus, relative to nitrogen generally should be larger 
than predicted from the optimal ratios determined in the laboratory. 
 

We found that observed nutrient ratios corresponded well to our predictions, 
here illustrated by graphs with concentrations of phosphorus, potassium, calcium 
and magnesium plotted against nitrogen (figure 1). In these graphs we have added 
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the line representing optimum ratios determined under laboratory conditions. In 
agreement with our predictions most data points lie above the optimum line. For 
phosphorus versus nitrogen, the data points are scattered on both sides of the 
optimum line, which is in agreement with assumption 1) above. The scatter in the 
N-P relation is also considerably less than for other elements. Our investigation 
showed rather strong support for our hypothesis, but not sufficiently for invariable 
confirmation. A stronger test of our hypothesis would in addition to nutrient 
concentrations require determination of which nutrient that was limiting growth in 
each case. 
 
Paper III: Allometric constraints on nutrient uptake in an 

ecosystem model allow plants to coexist without niche separation 

We have in this paper addressed plants competing for mineral nutrients. The 
general concept taught in ecology textbooks is that plants competing for the same 
(growth-) limiting resource cannot coexist unless certain additional criteria are met, 
e.g. occupation of different niches or competition for light. This is generally 
referred to as the competitive exclusion principle, the Volterra principle or the 
Gause principle. An expected consequence of this principle is limited species 
diversity. However, the high diversity of plants often observed in nature seems to 
contradict the principle. Many different explanations have been proposed (for a 
review, se Palmer 1996). The continuous stream of papers still addressing this 
issue indicates that the currently available explanations for coexistence embraced 
by the competitive exclusion principle are not satisfactorily. 
 

Rastetter & Ågren (2002) suggested that the connections between plant growth 
and turnover rate and plant size had not been considered properly. Based on the 
model they presented we have further investigated the consequences of different 
models for nutrient uptake. We show that geometry sets constraints on how a plant 
may increase its potential nutrient uptake. We show also that it is highly unrealistic 
that the soil volume that a plant’s root system can exploit is proportional to plant 
biomass. It is much more likely that the soil volume accessed by roots increases 
slower than proportionally to plant biomass. Extensive allometric investigations by 
e. g. Enquist & Niklas (2002) indicate that root surface area might increase with 
the ¾ power of biomass. 
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Figure 2. Coexistence regions for two competing species. Parameter combinations above 
the lines lead to exclusion and below the lines to coexistence. In this example, species differ 
in their ability to resorb nutrients before litterfall, expressed by the parameter r0 (nutrient 
concentration in litter). 
 

We inserted a scaling relation between plant nutrient uptake potential and plant 
biomass in a simple plant competition model to investigate how sensitive the 
outcome of competition was to this modification. Figure 2 illustrates that as soon 
as we chose a scaling factor (σ) less than proportionality (=1) coexistence becomes 
possible. We found a relatively high sensitivity, indicating a strong negative 
feedback of plant size on potential for sustaining constant relative nutrient uptake 
rate. 
 
Paper IV: Coupling limitations from energy and nutrients on 

plant growth.  

The law of the minimum (Liebig’s law) predicts that the relative growth rate of a 
plant is solely determined by the availability (or internal concentration) of the 
limiting nutrient. Considering nitrogen and phosphorus this relation can be 
illustrated as in figure 3A (sharp corners) where the iso-lines represent different 
levels of relative growth rates. In reality the iso-lines for relative growth rates look 
more like in figure 3B (soft corners), with soft transitions when limitation goes 
from one nutrient to the other. A possible interpretation of this observation is that 
one nutrient may, to a limited extent substitute for the other. A direct substitution 
of that kind is however not supported by current plant physiological knowledge. 
An alternative and probably more likely explanation for the observed relation is an 
ability of plants to increase allocation of resources for uptake of the nutrient that is 
limiting growth. The resources to consider here are the carbohydrates produced by 
photosynthesis that can be used to fuel plant metabolism, build plant structures, be 
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exchanged for nutrients in the symbiosis with mycorrhizas or for root exudates that 
may enhance nutrient availability. In a simple conceptual model we show that a 
feedback mechanism selecting for the most limiting nutrient produces the “soft 
corners” instead of “sharp corners” as in figures 3A and B.  
 

 
 
Figure 3. Illustration of iso-lines representing relative growth rates resulting from different 
nitrogen and phosphorus availabilities. A: strictly according to the law of the minimum only 
one nutrient limits growth at a time. B: Typical observed relation between nutrient 
availabilities and relative growth rate.  
 

To further investigate this idea we extended an established model that considers 
a chain of interactions between nitrogen and phosphorus to also include carbon 
dynamics. In this model we observed several, previously not easily explained traits 
of plant nutrient relations. 
 

In a stand of fertilized pine forest autotrophic respiration was reduced. Our 
model explains this as less carbon is allocated for nutrient uptake. A plant co-
limited in growth by N and P responds to increased availability of either of these 
two. Our model explains this as more carbon available for acquiring the nutrient 
that becomes the limiting one.  
 
Conclusions and possible implications 

For the first paper the application is quite obvious as that study was part of an 
extensive environmental impact assessment of the introduction of lodgepole pine to 
Swedish forests. Our estimates indicate higher yield, but also larger soil carbon 
pools and higher acidity as long-term effects. It may be possible to verify our 
conclusion of higher yield by investigating some of the stands of lodgepole pine 
that already exist in Sweden and of which some may be ready to harvest.  
 

Based on the logic of the law of the minimum (Liebig’s law) I have suggested the 
definition of “optimum nutrient ratios” as the case when all nutrients are limiting 
growth simultaneously. In the lab similar (but not identical) optimum nutrient 
ratios were determined for many different species. However, the lab results also 
showed that the optimum nutrient ratios could vary depending on the relative 
growth rate. The analysis of nutrient ratios calculated from literature data provided 
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support for the hypothesis of similar optimum nutrient ratios, but could not 
ultimately confirm it. 
 

Plants limited in growth by N or P and with an N:P ratio close to 10 are 
stimulated in growth by addition of either of these two nutrients. We explain this 
apparent substitution between the nutrients by invoking a feedback of internal 
nutrient relations on nutrient uptake. When the availability of one nutrient 
increases, the plant can invest a larger fraction of its available carbon for uptake of 
the other nutrient. Thereby an increased availability of e.g. N will lead to increased 
uptake of both N and P.  
 

Nutrient uptake is not only limited by the amount of nutrient available but also 
by the amount of soil that the plant is able to exploit. Especially when several 
plants are present they will have to compete for the available nutrients. Geometric 
constraints will in relative terms allow smaller plants to take up more nutrients than 
larger plants. This invokes a negative feedback on competition allowing plants 
competing for the same nutrient to coexist. This finding may explain the apparent 
contradiction between the competitive exclusion principle and the often observed 
high diversity of plant species in many terrestrial ecosystems.   
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