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Abstract: This study compares methods to estimate stem volume, stem number and basal 
area from Airborne Laser Scanning (ALS) data for 68 field plots in a hemi-boreal, spruce 
dominated forest (Lat. 58°N, Long. 13°E). The stem volume was estimated with five 
different regression models: one model based on height and density metrics from the ALS 
data derived from the whole field plot, two models based on similar combinations derived 
from 0.5 m raster cells, and two models based on canopy volumes from the ALS data. The 
best result was achieved with a model based on height and density metrics derived from 
0.5 m raster cells (Root Mean Square Error or RMSE 37.3%) and the worst with a model 
based on height and density metrics derived from the whole field plot (RMSE 41.9%). The 
stem number and the basal area were estimated with: (i) area-based regression models 
using height and density metrics from the ALS data; and (ii) single tree-based information 
derived from local maxima in a normalized digital surface model (nDSM) mean filtered 
with different conditions. The estimates from the regression model were more accurate 
(RMSE 52.7% for stem number and 21.5% for basal area) than those derived from the 
nDSM (RMSE 63.4%–91.9% and 57.0%–175.5%, respectively). The accuracy of the 
estimates from the nDSM varied depending on the filter size and the conditions of the 
applied filter. This suggests that conditional filtering is useful but sensitive to 
the conditions. 
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1. Introduction 

During the last decade, airborne laser scanning (ALS) data have been established as a standard data 
source for high precision topographic data acquisition and have also been used for estimation of forest 
variables [1]. For forestry applications, the most commonly used method is to derive measures from 
the ALS data in raster cells approximately the size of a field plot, 100–200 m2, and use the measures as 
independent variables in regression models to estimate forest variables such as mean tree height and 
stem volume [2–4]. 

The measures derived from the ALS data may be height percentiles and measures of the density of 
the vegetation as the fraction of ALS reflections from vegetation relative to the total amount of ALS 
reflections [5]. In that case the regression models are based on an assumption that the stem volume is 
proportional to one or several height measures (e.g., percentiles of the height above the ground) 
multiplied by a density measure (e.g., the fraction of ALS data above a threshold height above the 
ground). Usually a log-log regression model is used. The regression model is often selected with best 
subset regression that selects the set of independent variables that result in the highest correlation with 
the dependent variable or with stepwise regression where independent variables are included or 
excluded in the regression model depending on their significance. The estimation of the regression 
model parameters is based on reference data from one study area [6]. Another approach for stem 
volume or biomass estimation is to use a model based on the structure of the forest by calculating the 
canopy volumes for different height layers and using those measures as independent variables in a 
linear regression model [7]. As defined in [7], the canopy volume is the entire volume between the 
canopy and the terrain surface. Furthermore, the different canopy height layers account for  
height-dependent differences in canopy structure. The forest canopy can either be described by the first 
echoes directly or by a rasterized digital surface model (DSM) calculated from the first echoes. As the 
input for the canopy volume estimation, the canopy height normalization with respect to the digital 
terrain model (DTM) of the first echoes and the DSM, respectively, is required. For the calibration of 
the linear regression model, reference data is needed, for example, from a forest inventory. Depending 
on its sampling design (e.g., angle count sampling, fully callipered sample plot area, stand-based), the 
spatial unit used to extract the ALS-based measures can vary.  

If the ALS data are dense enough, individual tree crowns may be identified from the data [8–12]. 
The identification is usually done by deriving a normalized digital surface model (nDSM) from the 
ALS data and defining local maxima in the nDSM as treetops. The nDSM is calculated by subtracting 
the DTM from the DSM and commonly has a pixel size of 0.5 m to 1.0 m. As a second step, 
segmentation of the nDSM around the local maxima can be done to derive more information about the 
tree crowns. Commonly used raster-based segmentation methods are, for example, the watershed 
segmentation [13], the multi resolution segmentation [14] or an edge-based segmentation [15].  
A common problem with identification of individual trees is that there is an underestimation in the 
result, especially for smaller trees below the dominant tree layer [16]. 
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The analyses based on nDSMs are faster and more robust than those based directly on ALS returns. 
However, the nDSMs still provide information about local variations in the forest that are related to 
individual trees. As demonstrated in [17], the canopy volume regression model can also be applied to 
the rasterized ALS data. Derivation of measures from ALS data in smaller raster cells (e.g., 0.5 m to 
1.0 m) could also be a way to compensate for the varying density of the ALS data [18]. The density 
may vary, for example, due to the pattern of the laser scanner or overlapping strips. If measures are 
derived from the ALS from a 100–200 m2 raster cell, these measures are largely influenced by the 
parts of the raster cell with the highest pulse density. 

The purpose of this study is to compare methods to estimate stem volume, stem number and basal 
area. The first comparison is between measures derived from ALS data in 0.5 m raster cells and 
variables derived from larger raster cells corresponding to the size of the field plots for estimation of 
forest variables. The second comparison is between the canopy volume model [7] and a model based 
on height percentiles and density of ALS data [3] for estimation of stem volume in hemi-boreal forest. 
The third comparison is between area-based regression models and individual tree-based models for 
estimation of stem number and basal area. 

2. Material 

2.1. Study Area 

The study area is located in the southwest of Sweden (Lat. 58°N, Long. 13°E). The most common 
tree species are Norway spruce (Picea abies) (38.5% of basal area), Scots pine (Pinus sylvestris) 
(28.0% of basal area), birch (Betula pendula and Betula pubescens) (18.0% of basal area), oak 
(Quercus robur) (6.0% of basal area), and other broadleaved trees (9.5% of basal area). 

2.2. Field Data 

In total sixty-eight circular field plots with 12 m radius were allocated during July and August 2009 
(Figure 1). The positions of the center of the field plots were measured using a DGPS with a few dm 
accuracy after post-processing. Within the field plots, the diameter at breast height (DBH) of all trees 
with DBH ≥ 40 mm were measured using a caliper and the tree species were recorded. For a 
sub-sample of trees, the heights were also measured using a hypsometer. The sub-sample was 
randomly selected with inclusion probability proportional to the basal area of the trees. 

The stem number  in each field plot was calculated as the number of trees divided by the area  
of the field plot. The stem volume of each tree in the sub-sample, where the height was measured, was 
calculated with specific functions for pine, spruce [19] and oak [20]. For other species, the function for 
birch was used [19]. To estimate the stem volume of all trees, species specific log-linear regression 
models were created for pine, spruce, oak, and other species based on the subsample of trees where the 
height was measured in all field plots simultaneously (Equation (1)).  

 (1)

The root mean square error (RMSE) at tree level of the regression models was 137 dm3 (19.1%) for 
pine, 102 dm3 (15.9%) for spruce, 389 dm3 (7.7%) for oak, and 90 dm3 (25.9%) for other species. The 
stem volume of all trees was estimated with the respective regression models. 
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Figure 1. Map of Sweden showing the location of the study area (left) and the study area 
(Lat. 58°N, Long. 13°E) with the extent of the airborne laser scanning (ALS) data and the 
location of the field plots (right). 
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The stem volume V in each field plot was calculated as the sum of the stem volume of all trees in 
the field plot divided by the area A of the field plot. The basal area BA was calculated in each field plot 
using Equation (2): 

  (2) 

2.3. ALS Data 

The ALS data were acquired on 4 September 2008 using a TopEye MKII ALS system with a 
wavelength of 1064 nm carried by a helicopter. The flying altitude was 250 m above ground and the 
average emitted pulse density was 7 m−2. The first and last returns were saved for each laser pulse and 
the average return density was 11 m−2 (Figure 2). 



Remote Sens. 2012, 4 1008 
 

 

Figure 2. Side view of ALS data in a 10 m wide and 40 m long north-south transect in one 
field plot. 

 

3. Methods 

3.1. Derivation of DTM from ALS Data 

ALS returns were classified as ground or non-ground using the progressive Triangular Irregular 
Network (TIN) densification method [21] in the TerraScan software [22]. A DTM was derived as the 
mean value of the ground returns in 0.5 m raster cells. TIN interpolation was used for raster cells with 
no data. 

3.2. Statistical ALS Measures 

The z-values of the ALS returns were normalized with respect to the DTM (Equation (3)). 

  (3) 

The following measures were derived from the ALS returns in each circular field plot with 12 m 
radius. 

• The 10th, 20th, …, 100th percentiles of the normalized z-values from the ALS returns ≥ 2 m 
above the DTM in each field plot: p10, p20, …, p100.  

• The total number of ALS returns: Ntot. 
• The number of ALS returns in intervals I1, I2, I3, and I4: N1, N2, N3, and N4. 
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• The number of ALS returns ≥ 2 m and < 34 m above the DTM: Nveg. 
• The total number of first ALS returns: Nf,tot. 
• The number of first ALS returns in intervals I1, I2, I3, and I4: Nf,1, Nf,2, Nf,3, and Nf,4. 

where I1 was 2 ≤ z < 10, I2 was 10 ≤ z < 18, I3 was 18 ≤ z < 26, and I4 was 26 ≤ z < 34 m above the 
DTM. 

The vegetation ratio in each field plot was calculated as rveg = Nveg/Ntot. The fractions of ALS 
returns in intervals Ij were calculated as rhj=Nj/Ntot. 

The following measures were derived from the ALS returns in raster cells of 0.5 m. 

• The mean normalized z-value of all ALS returns ≥ 2 m and < 34 m above the DTM: zmean. The 
mean of this value in all raster cells inside each field plot: hmean. 

• The mean normalized z-value of all first ALS returns in intervals I1, I2, I3, and I4: zf,mn,1, zf,mn,2, 
zf,mn,3, and zf,mn,4. The mean of this value in all raster cells inside each field plot: hf,mn,1, hf,mn,2, 
hf,mn,3, and hf,mn,4. 

• The maximum normalized z-value of all first ALS returns < 34 m above the DTM (i.e., a first 
return nDSM): zf,max. 

• The maximum normalized z-value of all ALS returns < 34 m above the DTM (i.e., an nDSM): 
zmax. The 99th percentile of this value in all raster cells inside each field plot: h99. 

To calculate the canopy volume for each interval Ij, the relative proportion (between 0 and 1) of first 
return DSM raster cells, whose heights fell within the interval, was used: Nf,j,raster/Nf,tot,raster. The 
maximum height of 34 m was chosen based on the maximum tree height in the field data and on the 
observation that ALS returns ≥ 34 m above the DTM were all erroneous returns high above the tree 
tops, found in a few field plots. Raster cells without ALS returns were excluded when calculating 
mean values and percentiles. 

3.3. Canopy Volume Estimation 

The canopy volume was calculated for four different height classes j = 1, 2, 3 and 4 using 
Equation (4) [7]. 

  (4) 

where aj=A × Nf,j/Nf,tot and A is the total area of each field plot. For the calculation of the canopy 
volume, it is assumed that A is represented by the total number of first echoes Nf,tot. The canopy 
volume was also calculated for rasterized ALS data with aj,raster=A × Nf,j,raster/Nf,tot,raster. 

3.4. Local Maxima Detection 

Local maxima detection was used to find individual tree tops in the raster of zmax. Raster cells without 
ALS data were iteratively filled with the mean value of the eight surrounding raster cells. Before the 
local maxima detection was done, different filtering approaches were applied to the raster of zmax to 
remove small variations in the surface model. Three different approaches were tested: in the first case, an 
m × m mean filter was applied to all raster cells, in the second case, the filter was applied only if  
h99 ≥ hlim, and in the third case, the filter was applied only for local zmax ≥ hlim, otherwise zmax was used 
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without mean filtering. This was done for hlim = 15 and 20 m and for filter sizes m × m = 3 × 3, 5 × 5, 
and 7 × 7 (Figure 3). For the local maxima detection, a 3 × 3 max filter was applied to the original and 
the filtered raster, respectively. Local maxima were defined where the raster values were equal in the 
raster before and after max filtering. Those raster cells represent the local maxima in the 3 × 3 
windows. If several adjacent raster cells fulfilled the criterion, only the midmost raster cell was used as 
a local maximum. For each detected local maximum, the height of the corresponding raster cell was 
extracted: hloc. 

Figure 3. (a) Raster of zmax in one field plot, (b) 5 × 5 mean filter applied for hlim = 20 m, 
(c) 5 × 5 mean filter applied for hlim = 15 m, (d) 3 × 3 mean filter applied to all raster cells, 
(e) 5 × 5 mean filter applied to all raster cells, and (f) 7 × 7 mean filter applied to all 
raster cells. 

 

3.5. Stem Volume Estimation 

The stem volume was estimated with five different regression models. The independent variables of 
the regression models were derived from the ALS returns in each circular field plot with 12 m radius in 
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two cases (Equations (5) and (8)) and from the ALS returns in raster cells of 0.5 m in the other cases 
(Equations (6), (7) and (9)). 

 (5) 

 (6) 

 (7) 

  (8) 

  (9) 

The models in Equations (5–7) were selected with best subset regression. For the models in 
Equations (5–7), the stem volume was calculated as the exponential function of the estimated values. 
This introduces a bias (e.g., [23,24]). Due to this, the estimates were corrected for logarithmic bias by 
multiplying the result with the mean value of the stem volumes from the dataset on which the 
regression models were based, divided by the mean value of the stem volume estimates using the 
dataset on which the regression models were based [25]. 

3.6. Stem Number and Basal Area Estimation 

The stem number and the basal area were estimated with two methods: (i) an area-based approach 
and (ii) an individual tree-based approach. 

In the area-based approach, the stem number (Equations (10) and (11)) and the basal area 
(Equations (12) and (13)) were estimated with different regression models. The independent variables 
of the regression models were derived from the ALS returns in each circular field plot with 12 m 
radius in two cases (Equations (10) and (12)) and from the ALS returns in raster cells of 0.5 m in two 
cases (Equations (11) and (13)). 

  (10) 

  (11) 

  (12) 

  (13) 

The models were selected with best subset regression. The models in Equations (12) and (13) were 
corrected for logarithmic bias [25]. 

In the individual tree-based approach, values of DBH were calculated using a relationship between 
DBH and tree height based on a regression model for the subsample of trees where the heights were 
measured (Equation (14)): 

 (14) 

where DBHj is the DBH of tree j and hj is the height of tree j and assuming that the heights of the local 
maxima hloc were the tree heights. The regression model was based on all tree species since the tree 
species was not determined from the ALS data. The stem number was derived as the number of local 
maxima in a field plot divided by the area, and the basal area was calculated from the estimated DBH 
values. 
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3.7. Validation 

The accuracy of the estimates from ALS data was validated using leave-one-out cross-validation for 
one field plot at a time: one field plot was excluded; the parameters of the models were estimated 
based on the remaining field plots and then applied to the excluded field plot to estimate forest 
variables. The accuracy was validated with the field-measured values using the RMSE and the bias 
(Equations (15) and (16)).  

  (15) 

  (16) 

where Yi is the stem volume, stem number or basal area in plot i, and n is the number of field plots. 
Furthermore, scatter plots were generated. The validation was done by both including all field plots as 
well as excluding field plots with > 80% basal area from oak, which were five field plots out of 68. 

4. Results 

The RMSE of the estimated stem volume was largest for the regression model in Equation (5) and 
smallest for the regression model in Equation (7) (Table 1). The bias was less than 2% for all 
regression models. For larger field-measured values, the deviation between estimated and  
field-measured values was larger and a few outliers were observed (Figure 4). 

Table 1. RMSE and bias for stem volume from regression models in Equations (5–9), 
using all field plots. 

 RMSE Bias 
 m3·ha−1 % of mean m3·ha−1 % of mean 

Regression model in Equation (5) 75.1 41.9% 0.3 0.2% 
Regression model in Equation (6) 68.6 38.2% −0.3 −0.2% 
Regression model in Equation (7) 66.9 37.3% −0.4 −0.2% 
Regression model in Equation (8) 71.5 39.8% 0.7 0.4% 
Regression model in Equation (9) 68.2 38.0% 0.2 0.1% 

Figure 4. Estimates of stem volume from regression models in (a) Equation (5), 
(b) Equation (7), (c) Equation (8), and (d) Equation (9), using all field plots. 
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Figure 4. Cont. 

 

The RMSE of the estimated stem volume was smaller when excluding field plots with > 80% basal 
area from oak (Table 2). The regression model in Equation (7) had the smallest RMSE also in this 
case. The bias was still less than 2%. The estimated values showed fewer obvious outliers (Figure 5). 

Table 2. RMSE and bias for stem volume from regression models in Equations (5–9), 
excluding field plots with > 80% basal area from oak. 

 RMSE Bias 
 m3·ha−1 % of mean m3·ha−1 % of mean 

Regression model in Equation (5) 65.0 36.8% 0.2 0.1% 
Regression model in Equation (6) 57.1 32.3% −0.1 0.0% 
Regression model in Equation (7) 55.7 31.5% −0.3 −0.2% 
Regression model in Equation (8) 60.1 34.0% 1.0 0.5% 
Regression model in Equation (9) 58.0 32.8% 0.3 0.2% 

Figure 5. Estimates of stem volume from regression models in (a) Equation (5), 
(b) Equation (7), (c) Equation (8), and (d) Equation (9), excluding field plots with > 80% 
basal area from oak. 
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Figure 5. Cont. 

 

The RMSE of the estimated stem number was smallest for the regression model in Equation (11) 
and second smallest for the regression model in Equation (10). The bias was close to zero in both cases 
(Table 3). When tree tops were identified from local maxima in the nDSM, the RMSE of the estimated 
stem number was in general larger for larger filter sizes and smaller for conditions when zmax was 
filtered more often (i.e., always filtered or lower hlim). The bias was in general lower the more zmax was 
filtered (i.e., larger filter sizes or filtered more often). All cases showed outliers for large  
field-measured values and low estimated values (Figure 6). 

Table 3. RMSE and bias for stem number from regression models in Equations (10) and 
(11) and derived from local maxima, using all field plots. 

 RMSE Bias 
 ha−1 % of mean ha−1 % of mean 
Regression model in Equation (10) 410.8 55.8% −13.0 −1.8% 
Regression model in Equation (11) 387.4 52.7% −4.3 −0.6% 
Mean filtered 3 × 3 507.8 69.0% −252.9 −34.4% 
Mean filtered 3 × 3 if h99 ≥ 15 m 506.3 68.8% −241.2 −32.8% 
Mean filtered 3 × 3 for local zmax ≥ 15 m 466.4 63.4% 65.7 8.9% 
Mean filtered 3 × 3 if h99 ≥ 20 m 593.0 80.6% −3.6 −0.5% 
Mean filtered 3 × 3 for local zmax ≥ 20 m 675.7 91.9% 460.0 62.5% 
Mean filtered 5 × 5 584.4 79.4% −372.2 −50.6% 
Mean filtered 5 × 5 if h99 ≥ 15 m 582.3 79.2% −359.5 −48.9% 
Mean filtered 5 × 5 for local zmax ≥ 15 m 476.2 64.7% −17.6 −2.4% 
Mean filtered 5 × 5 if h99 ≥ 20 m 634.1 86.2% −92.0 −12.5% 
Mean filtered 5 × 5 for local zmax ≥ 20 m 662.4 90.0% 426.2 57.9% 
Mean filtered 7 × 7 633.2 86.1% −432.0 −58.7% 
Mean filtered 7 × 7 if h99 ≥ 15 m 631.5 85.8% −419.7 −57.0% 
Mean filtered 7 × 7 for local zmax ≥ 15 m 496.7 67.5% −71.5 −9.7% 
Mean filtered 7 × 7 if h99 ≥ 20 m 653.2 88.8% −127.8 −17.4% 
Mean filtered 7 × 7 for local zmax ≥ 20 m 651.0 88.5% 388.8 52.9% 
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Figure 6. Estimates of stem number from (a) regression model in Equation (10), 
(b) derived from local maxima mean filtered 3 × 3 if h99 ≥ 15 m, (c) mean filtered 3 × 3 for 
local zmax ≥ 15 m, (d) from regression model in Equation (11), (e) mean filtered 3 × 3 if h99 
≥ 20 m, and (f) mean filtered 3 × 3 for local zmax ≥ 20 m, using all field plots. 

 

 

Table 4. RMSE and bias for stem number from regression models in Equations (10) and 
(11) and derived from local maxima, excluding field plots with > 80% basal area from oak. 

 RMSE Bias 
 ha−1 % of mean ha−1 % of mean 
Regression model in Equation (10) 420.2 53.4% −14.4 −1.8% 
Regression model in Equation (11) 393.9 50.0% −4.5 −0.6% 
Mean filtered 3 × 3 518.2 65.8% −293.3 −37.3% 
Mean filtered 3 × 3 if h99 ≥ 15 m 516.6 65.6% −280.7 −35.7% 
Mean filtered 3 × 3 for local zmax ≥ 15 m 447.3 56.8% 26.7 3.4% 
Mean filtered 3 × 3 if h99 ≥ 20 m 580.8 73.8% −49.5 −6.3% 
Mean filtered 3 × 3 for local zmax ≥ 20 m 649.0 82.4% 431.9 54.9% 
Mean filtered 5 × 5 604.6 76.8% −411.6 −52.3% 
Mean filtered 5 × 5 if h99 ≥ 15 m 602.4 76.5% −397.9 −50.5% 
Mean filtered 5 × 5 for local zmax ≥ 15 m 464.4 59.0% −58.6 −7.4% 
Mean filtered 5 × 5 if h99 ≥ 20 m 630.1 80.0% −138.6 −17.6% 
Mean filtered 5 × 5 for local zmax ≥ 20 m 635.4 80.7% 396.1 50.3% 
Mean filtered 7 × 7 656.3 83.4% −468.8 −59.5% 
Mean filtered 7 × 7 if h99 ≥ 15 m 654.5 83.1% −455.4 −57.8% 
Mean filtered 7 × 7 for local zmax ≥ 15 m 491.5 62.4% −113.3 −14.4% 
Mean filtered 7 × 7 if h99 ≥ 20 m 652.0 82.8% −173.7 −22.1% 
Mean filtered 7 × 7 for local zmax ≥ 20 m 622.7 79.1% 356.1 45.2% 
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The RMSE of the estimated stem number was slightly larger for the regression model when 
excluding field plots with > 80% basal area from oak (Table 4 and Figure 7). When tree tops  
were identified from local maxima in the nDSM, the RMSE was larger when zmax was always mean 
filtered or mean filtered if h99 ≥ 15 m, and smaller for the other cases. The bias changed in a negative 
direction for all cases. The relative order of the RMSE and bias was the same as when all field plots 
were included. 

Figure 7. Estimates of stem number from (a) regression model in Equation (10), 
(b) derived from local maxima mean filtered 3 × 3 if h99 ≥ 15 m, (c) mean filtered 3 × 3 for 
local zmax ≥ 15 m, (d) from regression model in Equation (11), (e) mean filtered 3 × 3 if h99 
≥ 20 m, and (f) mean filtered 3 × 3 for local zmax ≥ 20 m, excluding field plots with > 80% 
basal area from oak. 

 

 

The RMSE and bias of the estimated basal area was smallest for the regression model in  
Equation (13) and Equation (12) (Table 5). When the basal area was calculated from the DBH derived 
from the local maxima, the RMSE of the estimated basal area was in general smaller for larger filter 
sizes and for conditions when zmax was filtered more often (i.e., always filtered or lower hlim). The bias 
was in general lower the more zmax was filtered (i.e., larger filter sizes or filtered more often). The 
estimated values deviated more from the field-measured values for the basal area calculated from the 
DBH derived from the local maxima than for the regression model (Figure 8). In the first case, the 
basal area was overestimated for larger field-measured values. 
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Table 5. RMSE and bias for basal area from regression models in Equations (12) and (13) 
and diameter at breast height (DBH) derived from local maxima, using all field plots. 

 RMSE Bias 
 m2 ha−1 % of mean m2 ha−1 % of mean 
Regression model in Equation (12) 6.7 23.2% 0.0 0.0% 
Regression model in Equation (13) 6.2 21.5% 0.0 −0.1% 
DBH local maxima, mean filtered 3 × 3 37.6 130.1% 14.5 50.3% 
DBH local maxima, mean filtered 3 × 3 if h99 ≥ 15 m 37.6 130.0% 14.7 50.7% 
DBH local maxima, mean filtered 3 × 3 for local zmax ≥ 15 m 40.7 140.7% 19.9 68.7% 
DBH local maxima, mean filtered 3 × 3 if h99 ≥ 20 m 39.1 135.0% 21.0 72.8% 
DBH local maxima, mean filtered 3 × 3 for local zmax ≥ 20 m 50.8 175.5% 38.7 133.9% 
DBH local maxima, mean filtered 5 × 5 21.6 74.8% 0.4 1.3% 
DBH local maxima, mean filtered 5 × 5 if h99 ≥ 15 m  21.6 74.6% 0.5 1.8% 
DBH local maxima, mean filtered 5 × 5 for local zmax ≥ 15 m  23.8 82.1% 6.4 22.0% 
DBH local maxima, mean filtered 5 × 5 if h99 ≥ 20 m 23.5 81.3% 8.1 27.9% 
DBH local maxima, mean filtered 5 × 5 for local zmax ≥ 20 m 34.4 119.1% 27.9 96.5% 
DBH local maxima, mean filtered 7 × 7 16.6 57.2% −7.8 −27.1% 
DBH local maxima, mean filtered 7 × 7 if h99 ≥ 15 m  16.5 57.0% −7.7 −26.5% 
DBH local maxima, mean filtered 7 × 7 for local zmax ≥ 15 m  17.4 60.0% −1.7 −5.8% 
DBH local maxima, mean filtered 7 × 7 if h99 ≥ 20 m  18.3 63.3% 0.7 2.4% 
DBH local maxima, mean filtered 7 × 7 for local zmax ≥ 20 m  26.2 90.7% 20.7 71.5% 

Figure 8. Estimates of basal area (a) from regression model in Equation (12), (b) DBH 
derived from local maxima mean filtered 5 × 5 if h99 ≥ 15 m, (c) mean filtered 5 × 5 for 
local zmax ≥ 15 m, (d) from regression model in Equation (13), (e) mean filtered 5 × 5 if 
h99 ≥ 20 m, and (f) mean filtered 5 × 5 for local zmax ≥ 20 m, using all field plots. 
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The RMSE of the estimated basal area was smaller for the regression model in Equations (12) and 
(13) when excluding field plots with > 80% basal area from oak (Table 6). When the basal area was 
calculated from the DBH derived from the local maxima, the RMSE was larger and the bias was 
higher. The relative order of the RMSE and bias was the same as when all field plots were included. 
The estimated values showed a similar pattern as when all field plots were included (Figure 9). 

Table 6. RMSE and bias for basal area from regression model in Equations (12) and (13) 
and DBH derived from local maxima, excluding field plots with > 80% basal area from oak. 

 RMSE Bias 
 m2 ha−1 % of mean m2 ha−1 % of mean 
Regression model in Equation (12) 6.5 22.1% 0.0 0.1% 
Regression model in Equation (13) 6.1 20.8% 0.0 −0.1% 
DBH local maxima, mean filtered 3 × 3 39.0 132.0% 16.1 54.4% 
DBH local maxima, mean filtered 3 × 3 if h99 ≥ 15 m 39.0 131.9% 16.2 54.8% 
DBH local maxima, mean filtered 3 × 3 for local zmax ≥ 15 m 42.2 142.9% 21.6 73.1% 
DBH local maxima, mean filtered 3 × 3 if h99 ≥ 20 m 40.6 137.2% 22.6 76.3% 
DBH local maxima, mean filtered 3 × 3 for local zmax ≥ 20 m 52.6 177.8% 41.1 138.9% 
DBH local maxima, mean filtered 5 × 5 22.3 75.3% 1.2 4.0% 
DBH local maxima, mean filtered 5 × 5 if h99 ≥ 15 m 22.2 75.2% 1.3 4.5% 
DBH local maxima, mean filtered 5 × 5 for local zmax ≥ 15 m 24.6 83.2% 7.4 24.9% 
DBH local maxima, mean filtered 5 × 5 if h99 ≥ 20 m 24.3 82.3% 8.9 30.1% 
DBH local maxima, mean filtered 5 × 5 for local zmax ≥ 20 m 35.6 120.5% 29.5 99.9% 
DBH local maxima, mean filtered 7 × 7 16.8 56.7% −7.4 −25.1% 
DBH local maxima, mean filtered 7 × 7 if h99 ≥ 15 m 16.7 56.4% −7.3 −24.6% 
DBH local maxima, mean filtered 7 × 7 for local zmax ≥ 15 m 17.8 60.4% −1.2 −4.0% 
DBH local maxima, mean filtered 7 × 7 if h99 ≥ 20 m 18.8 63.6% 1.1 3.7% 
DBH local maxima, mean filtered 7 × 7 for local zmax ≥ 20 m 27.0 91.5% 21.7 73.5% 

Figure 9. Estimates of basal area (a) from regression model in Equation (12), (b) DBH 
derived from local maxima mean filtered 5 × 5 if h99 ≥ 15 m, (c) mean filtered 5 × 5 for 
local zmax ≥ 15 m, (d) from regression model in Equation (13), (e) mean filtered 5 × 5 if 
h99 ≥ 20 m, and (f) mean filtered 5 × 5 for local zmax ≥ 20 m, excluding field plots with 
> 80% basal area from oak. 
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Figure 9. Cont. 

 

5. Discussion 

The most accurate estimates of stem volume, stem number and basal area were achieved with 
regression models that used rasterized (0.5 m raster cells) ALS data as input instead of 3D point cloud 
data directly. This suggests that the raster cells can compensate for the varying density of the ALS data 
and the variability of the forest properties within the field plots. For the two stem volume models that 
used input measures calculated at plot level from the normalized 3D point cloud directly, the canopy 
volume regression model was more accurate than the log-log regression model including the 
vegetation ratio and measures of the height of the ALS returns. However, the most accurate estimate 
was achieved with a log-log regression model including the vegetation ratio and a measure of the 
maximum height of the ALS returns derived from 0.5 m raster cells. Apart from the canopy volume 
models, the final models were selected with best subset regression, which means that the selection of 
independent variables was based on the reference data. Since the parameters of the regression model 
are also estimated based on the reference data, the model can be fitted very well to the reference data. 
However, it requires that the local reference dataset is large enough to base the models on. The canopy 
volume model is stable in the sense that the independent variables are not selected based on the local 
reference data, which might have advantages for estimation of stem volume for large areas. The stem 
volume used as ground truth was estimated with regression models with a comparatively high RMSE, 
which was around 20% for most of the trees. This makes the validation more uncertain. Excluding 
field plots with > 80% basal area from oak resulted in fewer outliers since most of the outliers were 
oak dominated field plots. Previous studies have reported larger errors for estimation of stem volume 
and basal area in mixed forest than in coniferous dominated forest [2,17,26] since field plots with 
different properties are included in the same model. The stem volume of oak is generally higher than 
that of most other tree species having the same tree height. In this study, only five out of 68 field plots 
were oak dominated. This means that the models where all field plots were included were mainly 
based on forest with a smaller fraction of oak and resulted in large errors when they were applied to 
oak dominated forest.  

The estimation of the basal area showed fewer outliers for large field-measured values than the 
estimation of stem volume. The reason may be that the outliers for stem volume were mostly oak 
dominated field plots and that the relationship between DBH and tree height is more similar for oak 
and other tree species than the relationship between stem volume and tree height. The RMSE of the 
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regression estimates decreased slightly when excluding oak dominated field plots in the same way as 
for the estimation of stem volume. However, the RMSE and the bias of the basal area derived from 
local maxima increased when excluding oak dominated field plots. This may be because the regression 
model used for calculating DBH from the heights of the local maxima underestimated DBH for tall 
trees and the oaks were taller than the average tree. This negative contribution to the bias disappeared 
when excluding the oak dominated field plots and the result was a higher bias. 

The bias of the estimated stem number changed in the negative direction when excluding oak 
dominated field plots. The reason was that the excluded field plots were outliers with an overestimated 
stem number. This may be due to the canopy of oak having more small variations than other species, 
which gives rise to several local maxima within the same tree crown. A few other field plots were 
outliers with an underestimated stem number for large field-measured values. This is expected when 
identifying trees from local maxima since trees below the dominant tree layer are not visible in 
the nDSM. 

The estimates of stem number and basal area were more accurate for the regression models then 
when identifying tree tops from local maxima in the nDSM. The advantage of the latter is that a list of 
DBH estimates is produced at the same time. Distributions of DBH have previously been estimated 
from height and density measures from ALS data and theoretical diameter distribution models [27] and 
as percentiles of DBH [28]. The advantage of using local maxima in the nDSM is that they also 
describe the horizontal distribution of the ALS data that percentiles and density do not. 

When tree tops were identified from local maxima in the nDSM, the RMSE of the estimated stem 
number was smallest when the nDSM was mean filtered for local zmax ≥ 15 m and largest when the 
nDSM was mean filtered for local zmax ≥ 20 m. The bias was large and positive when the nDSM was 
mean filtered for local zmax ≥ 20 m, and closer to zero when the nDSM was mean filtered for local 
zmax ≥ 15 m. The large positive bias in the first case was probably caused by small variations that gave 
rise to local maxima then identified as tree tops since the nDSM was filtered less often than for the 
other cases. The nDSM was filtered more often with the condition h99 ≥ 15 m than local zmax ≥ 15 m 
and the result was a lower bias in the first case. The same effect was visible for h99 ≥ 20 m and local 
zmax ≥ 20 m. The accuracy was similar when the nDSM was always mean filtered and when the nDSM 
was mean filtered if h99 ≥ 15 m. This is probably because h99 was rarely below 15 m, so in the second 
case the nDSM was almost always filtered.  

For the estimated basal area derived from local maxima, the RMSE was smallest when the nDSM 
was always mean filtered or mean filtered if h99 ≥ 15 m, and largest when the nDSM was mean filtered 
for local zmax ≥ 20 m. The bias was lowest in the first case and highest in the second case. An adaptive 
filtering may improve the identification of local maxima corresponding to tree tops but the method 
may also be very sensitive to parameter settings. Additionally, the filter sizes are limited to odd 
multiples of the size of the raster cells. This means that the conditions for setting different parameters 
must be chosen carefully. In future work, definition of the conditions that can be applied to different 
forest types will be needed. 

The RMSE of the estimated stem number was smallest when the nDSM was mean filtered with a  
3 × 3 filter and the bias was highest. The RMSE of the estimated stem number was larger when a 5 × 5 
and 7 × 7 filter was used and the bias was lower. This suggests that the larger filter sizes removed 
small variations in the nDSM that would otherwise have given rise to local maxima. However, the 
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RMSE of the estimated basal area was smallest when a 7 × 7 filter was used and the bias was lowest. 
The bias was large and positive for the filter size 3 × 3 (i.e., the basal area was overestimated) and the 
basal area was overestimated for larger field-measured values for all filter sizes. Since the basal area 
was calculated from the DBH and the DBH was derived from the heights of the local maxima in the 
nDSM, this suggests that the heights of the local maxima overestimated the tree heights. The reason 
may be that not all local maxima corresponded to tree tops. Tree tops below the dominant tree layer do 
not give rise to local maxima in the nDSM. This means that the stem number will be underestimated if 
the nDSM is filtered so that only tree tops give rise to local maxima. If the number of local maxima is 
equal to the stem number, some of the local maxima do not correspond to tree tops and the heights of 
the local maxima overestimate the heights of the trees below the dominant tree layer. This may explain 
why the basal area was overestimated with a 3 × 3 filter size even though the estimate of the stem 
number was most accurate. 

6. Conclusions 

This study has compared estimation of forest variables from regression models based on measures 
derived from ALS data in small (0.5 m) raster cells and based on variables derived from the 3D point 
cloud. The RMSE of the results achieved from regression models based on 0.5 m raster cells were 
approximately 2–5% lower than those achieved from the 3D point cloud, which suggests that the 
smaller raster cells can compensate for the varying density of the ALS data. Once the ALS data have 
been rasterized, the raster cells may be aggregated to any area unit suitable for the application, which 
means that the approach is easy to integrate in operational work flows and may have advantages in 
terms of computational issues. Only one raster cell size was used in the study. The size of the raster 
cells could be optimized or the varying density of the ALS data could be compensated for in other 
ways, for example, by weighting the ALS returns depending on local density. This study has also 
compared a canopy volume model for estimation of stem volume in hemi-boreal forest with a model 
based on height percentiles and density of ALS data selected with best subset regression. The most 
accurate estimate was achieved with a log-log regression model including the vegetation ratio and a 
measure of the maximum height of the ALS returns, although the RMSE was only 1% lower. Hence, 
both model types may be used for estimation of stem volume. However, the selection of model type 
can be based on many considerations, for example, if the local reference dataset is large enough for 
best subset regression. Finally, the study has compared area-based regression models and individual 
tree-based models with different filtering conditions for estimation of stem number and basal area. The 
most accurate results were achieved from the regression models (7–11% lower RMSE for stem 
number; 39–40% lower RMSE for basal area compared to the best filtering conditions). However, an 
advantage of the individual tree-based models is that a list of DBH is estimated at the same time. When 
individual trees are derived from local maxima in an nDSM, the filter sizes and the conditions for 
filtering the nDSM must be carefully selected. Criteria for selection of filter sizes and conditions still 
remain to be defined for different forest types. 
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