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Abstract. Long term data series (1996 through 2009) for
trace metals were analyzed from a large number of streams
and rivers across Sweden varying in tributary watershed size
from 0.05 to 48 193 km2. The final data set included 139
stream sites with data for arsenic (As), cobalt (Co), copper
(Cu), chromium (Cr), nickel (Ni), lead (Pb), zinc (Zn), and
vanadium (V). Between 7% and 46% of the sites analyzed
showed significant trends according to the seasonal Kendall
test. However, in contrast to previous studies and deposi-
tional patterns, a substantial portion of the trends were pos-
itive, especially for V (100%), As (95%), and Pb (68%).
Other metals (Zn and Cr) generally decreased, were mixed
(Ni and Zn), or had very few trends (Co) over the study pe-
riod. Trends by region were also analyzed and some showed
significant variation between the north and south of Swe-
den. Regional trends for both Cu and Pb were positive (60%
and 93%, respectively) in the southern region but strongly
negative (93% and 75%, respectively) in the northern re-
gion. Kendall’s τ coefficients were used to determine depen-
dence between metals and potential in-stream drivers includ-
ing total organic carbon (TOC), iron (Fe), pH, and sulphate
(SO2−4 ). TOC and Fe correlated positively and strongly with
As, V, Pb, and Co while pH and SO2−4 generally correlated
weakly, or not at all with the metals studied.

1 Introduction

Because of the potential toxicity to biota, even at low con-
centrations, trace metals are of interest in surface waters.
Temporal trends for metals in surface waters have emerged
as an important topic in Europe in connection with the Eu-
ropean Union Water Framework Directive (EUWFD, 2000),
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for determination of background levels, and in relation to
how changes in climate, anthropogenic inputs, and land use
may play in driving metal concentrations over time. How-
ever, long term trends of metal concentrations in streams
and rivers are generally lacking, especially on broader spa-
tial scales.
Trace metals are naturally present in atmospheric, terres-

trial and aquatic environments and anthropogenic releases of
metals occur due to human activities. Cycling of metals is
complex because many factors influence metal behavior in-
cluding biotic and abiotic chemical processes, hydrology, cli-
mate, land use and the properties of the metals themselves.
A general regulator of mobility, pH affects the solubility of
many metal ions. However, other factors can affect the mo-
bility and transport of metals to and within surface water sys-
tems. Organic matter mineralization and chemical processes
(e.g. changes in sulphate concentration and ionic strength)
can alter metal solubility and mobility (Landre et al., 2009;
Porcal et al., 2009). Metal ions can also be adsorbed to
oxides or clays and precipitate; or they may occur in sus-
pended forms as colloids and (or) particles that contain these
compounds (Lofts and Tipping, 2000). Large scale changes,
such as climate change (e.g. changes in extreme precipitation
events, temperature, snow cover, etc.) can either directly or
indirectly affect metal dynamics (Olivie-Lauquet et al., 2001;
Adkinson et al., 2008; Porcal et al., 2009).
Natural organic matter (NOM) can affect the solubility of

trace metals by forming strong bonds and complexes. The
majority of NOM in aquatic systems is of terrestrial ori-
gin (McKnight and Aitken, 1998) and allochtonous NOM
is mostly comprised of humic and fulvic compounds that
can complex with metals (Leenheer et al., 1998). A number
of studies show the importance of colloid associated trans-
port of some trace metals (Sholkovitz, 1976; Elderfield et
al., 1990; Martin et al., 1995; Wen et al., 1997; Warnken et
al., 2009; Pokrovsky et al., 2010) and link elevated iron (Fe)
and total organic carbon (TOC) concentrations to increased
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transport of some trace metals (Wällstedt et al., 2010). Tem-
poral changes in dissolved organic carbon (DOC) in surface
waters have been increasing in many areas over the past three
decades (Freeman et al., 2001; Worrall et al., 2004; Evans et
al., 2005; Skjelkvale et al., 2005; Burns et al., 2006; Mon-
teith et al., 2007) although the changes are not always mono-
tone (Erlandsson et al., 2008). These changes in DOC are
likely to affect trace metal concentrations and fluxes in sur-
face waters.
The form of metal (e.g. dissolved, colloidal, or particulate)

may also be an important factor when describing temporal
variation of metal concentrations (e.g. copper (Cu), lead (Pb)
and zinc (Zn)) in surface waters. Sherrell and Ross (1999)
showed that dissolved trace metal concentrations were gen-
erally correlated to stream flow and, to a lesser extent, pH
but in some cases in-stream process (pH and solution parti-
cle partitioning) were not able to explain temporal variations
due to low particulate to dissolved metal ratios. Colloidal and
particulate size fractions of trace metals (e.g. Fe, Cu, Zn, and
Pb) have been shown to vary independently temporally (Ross
and Sherrell, 1999) and metals such as vanadium (V) and ar-
senic (As) are generally associated with colloidal or partic-
ulate Fe fractions (Wällstedt et al., 2010). A recent study
on the partitioning between filtered and particulate metals in
a large number of the same Swedish running waters studied
herein indicates that the median values of the form of some
metals (Cu, Zn, cadmium (Cd), chromium (Cr), cobalt (Co),
nickel (Ni), As, V) in the particulate fraction were all close
to or less than 25% of the total metal concentration (Köhler
2010). Higher fractions occurred for Pb (39%), Fe (38%),
and Manganese (34%) and there were strong indications that
particulate Pb was co-transported with particulate Fe.
Atmospheric deposition of most metals has been decreas-

ing in Europe (Azimi et al., 2005; Harmens et al., 2008) and,
more specifically in Sweden (Rühling and Tyler, 2001, 2004)
since the 1970s. Gradients of deposition exist across the
country of Sweden, however, with a significant decreasing
spatial trend towards the northern portion of the country most
likely due to the prevalence of emissions from central Europe
and from main population centers within Sweden mainly lo-
cated in the lower third of the country (Rühling and Tyler,
1971).
Very few detailed studies exist for long term (> 5 years)

metal trends in streams or rivers of varying scale and the ones
that do exist primarily include monitoring sites affected by
point sources. This study presents a first look at long term
trends for trace metal concentrations in streams and rivers
across Sweden from 1996 through 2009. The results are
compared with other in-stream parameters that may affect
the transport of metals in streams to determine if in-stream
chemical interactions can be linked to any of the trends de-
tected for metal concentrations, both for the country as a
whole, and spatially by region.

2 Materials and methods

2.1 General description

The streams included in this study are situated through-
out Sweden (Fig. 1) and the data time series ranged from
1996 through 2009. All data were gathered from the
Department of Aquatic Sciences and Assessment at the
Swedish University of Agricultural Sciences (http://www.
slu.se/vatten-miljo). All metals were analyzed using ICP-
MS and the same analytical methods, all accredited by the
Swedish Board for Accreditation and Conformity Assess-
ment (SWEDAC), were used during the time period of the
study (1996–2009). Details on methods, detection limits,
quality control and other information can be found at the
website referenced above. Data analyzed include total con-
centrations of trace metals arsenic As, Cu, Co, Cr, Ni, Pb, Zn,
and V. Other parameters analyzed included Fe, pH, sulphate
(SO2−4 ), and TOC. Only monitoring sites that were not di-
rectly influenced by point sources (e.g. wastewater treatment
plants, mining facilities, industrial plants, etc.) were included
in the analysis. This initial group of monitoring sites totaled
351 streams that were included in a study to estimate poten-
tial background loading of metals in Sweden (Herbert, 2009).
From these sites, streams that had a minimum of 8 years of
data (with sampling occurring monthly) were selected and
included in the final group, resulting in a final data set in-
cluding 139 streams (Fig. 1). Collection of metals data varied
within these streams so the total number of streams included
for analysis of each metal varied (Table 1). To further analyze
data spatially, the country was divided into two regions based
on the “limes norrlandicus” ecotone which divides Sweden
into a southern nemoral and boreo-nemoral zone and a north-
ern boreal and alpine zone. Climate also varies between the
regions with the major difference, outside of ecosystem type,
being the southern region is warmer than the north. Thus,
the limes norrlandicus represents the approximate boundary
separating areas where flow is low during winter with pro-
nounced snowmelt in spring (the north) and flow is more or
less continuous during the year with little to no accumulation
of snow during winter (south). Regional areas, watershed
size, and land use are summarized in Table 2.

2.2 Data handling and statistics

Outliers were considered in the analysis (on an individual
stream basis) and data were excluded if the measurement
was at least two times higher than any other measurement
in the data set and the filtered versus unfiltered absorbance
(at 420 nm) for the sample did not indicate elevated partic-
ulates, meaning the sample was likely contaminated. Less
than detection limit values were treated by dividing the de-
tection limit by two. The number of values that were lower
than the detection limit in the chemistry data set was low
(between 0% and 2.3%) for all parameters included in this
study.
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Fig. 1. All stream monitoring locations included in this study with
the limes norrlandicus boundary separating the southern and north-
ern regions.

Monthly data were available for all study sites; however,
some stations had multiple data points available during some
months, generally during the spring to autumn period. To re-
duce any bias from these periods, a monthly center analysis
was conducted. Using this method, only data from one mon-
itoring event, occurring closest to the middle of each month,
was used in the analysis. Mean or median values for months
with multiple sampling events were not used because this
could influence the variance (Helsel and Hirsch, 1992).
Trends for time series data were determined by the Theil

(Sen’s) slope (Helsel and Hirsch, 1992). Statistical signifi-
cance (p ≤ 0.05) of the trends was tested (both by site and by
region) using the Seasonal Kendall test with Covariance In-
version (Loftis et al., 1991). These non-parametric methods
were used because the data were not normally distributed and
generally showed strong seasonal variation, introducing au-

Table 1. List of variables and associated medians with 10th and
90th percentiles (Pctls) by region.

North South

Variable Sites Median 10, 90 Pctls Median 10, 90 Pctls

As (µg L−1) 72 0.18 0.06, 0.59 0.41 0.25, 0.70
Co (µg L−1) 70 0.057 0.021, 0.23 0.24 0.064, 0.65
Cr (µg L−1) 73 0.18 0.08, 0.49 0.51 0.27, 1.1
Cu (µg L−1) 90 0.51 0.20, 1.0 1.2 0.37, 2.7
Ni (µg L−1) 70 0.36 0.14, 0.95 0.79 0.42, 1.9
Pb (µg L−1) 83 0.13 0.03, 0.44 0.44 0.15, 1.1
V (µgL−1) 71 0.14 0.04, 0.48 0.59 0.29, 1.2
Zn (µg L−1) 88 1.8 0.60, 5.0 4.5 1.9, 10
Fe (µg L−1) 106 320 66, 1440 550 125, 1700
pH 119 6.76 5.12, 7.21 6.93 4.80, 7.84
SO2−4 (meqL−1) 121 0.046 0.025, 0.10 0.19 0.073, 0.58
TOC (mgL−1) 119 6.5 2.4, 14.8 11.1 5.5, 18.6

Table 2. Watershed area distribution (number of sites) and land use
(%) for study sites by region in Sweden.

Category North South

Agricultural 1.2 15.5
Forest 53.4 55.3
Open Field 13.0 0.8
Water 22.1 21.7
Urban 0.3 1.2
Other 10.0 5.5

Total Area (km2) 287 138 159 855

Watershed Area Distribution

(0–5 km2) 9 10
(5–25 km2) 14 11
(25–250 km2) 24 19
(> 250 km2) 28 24

Total Sites 75 64

tocorrelation. By using the seasonal Kendall test, within sea-
son variability is taken into account so that only inter-annual
variations within the data are assessed. These types of tests
are also robust for extreme values and outliers. Individual
Theil slopes were analyzed between regions for statistically
significant differences using the Wilcoxon test (p ≤ 0.01).
Kendall’s τ coefficient was used to determine relation-

ships between general chemical stream parameters (TOC,
pH, SO2−4 , and Fe) and trace metal concentrations. Kendall’s
τ is a non-parametric rank test that determines whether the
analyzed parameters move in the same direction (concordant)
or move in opposite directions (discordant). The coefficient
score ranges from −1 to 1 with values of 1 or −1 meaning
that all paired values are concordant or discordant, respec-
tively. Statistical significance was determined at a level of
p ≤ 0.001.
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Table 3. Number of sites with statistically significant (p < 0.05)
negative or positive Theil slope trends or no significant trend de-
tected.

North South

Variable Negative Positive No Trend Negative Positive No Trend

As 1 9 27 0 11 24
Co 0 3 34 1 1 31
Cr 4 3 28 6 1 31
Cu 13 1 32 6 9 29
Ni 6 5 23 5 3 28
Pb 6 2 32 1 13 29
V 0 15 22 0 18 16
Zn 7 2 35 5 4 35
Fe 1 19 35 1 23 27
pH 1 12 54 0 13 39
SO2−4 40 1 27 44 0 9
TOC 1 14 52 0 22 30

3 Results

Median values and 10th and 90th percentiles for study pa-
rameters are shown in Table 1 and values were lower for
all parameters when comparing northern to southern Swe-
den. Trace metal and potential in-stream chemical driver
concentrations showed either positive, negative, or a mixture
of trends across the country (Table 3). Examples of monthly
data from 1996–2009 for some significantly trending sites are
shown for Pb, Cu, and TOC (Fig. 2a, b, c). While temporal
trends showed patterns across the country as a whole, exam-
ination of trends spatially (by region) revealed both similar
and diverging patterns, depending on the trace metal.

3.1 Positive trending trace metals

Both V and As had the most positive trends (all significantly
trending sites were positive except for one As site) of the
trace metals analyzed (Table 3, Fig. 3) and mean trends for
each region followed this pattern as well (Table 4). Within re-
gion trends were significant for each metal within the north-
ern region (p = 0.002 and 0.004, respectively) but not in the
southern region. One of the sites for V in the southern re-
gion (Nossan Sal) heavily influenced the trend analysis with
a median value near the 90th percentile. However, this site
did not have data for the final two years of the study period,
essentially elevating the regional trend except in the final two
years (2008–2009). If this site was removed, the regional
analysis was significant (p = 0.02). Two sites with low As
median concentrations (0.28 and 0.29 µgL−1) near the 10th
percentile, also in the southern region, did not have moni-
toring data until the beginning of 1998 and 2000, basically
lowering the overall regional trend in later years. Without
these two sites, the regional trend for As was also positive
(p = 0.03). Comparison of trends between regions using the
Wilcoxon test were not significant for trend slopes in percent-
age per year (% yr−1) but the test for slope in concentration
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Fig. 2. Selected monitoring locations showing long-term raw-data
series for Pb, Cu, and TOC. P values indicating trend significance
are shown under the name of each site.

per year (conc. yr−1) for V did show a significant difference
(P = 0.0001). However, this difference was due to the large
difference in concentration between the sites in the northern
and southern regions, not a difference in trend direction.

3.2 Mixed positive and negative trending metals

While Theil slope trends for Pb were predominantly posi-
tive on a country-wide basis, there was a diverging trend be-
tween regions (Table 3, Fig. 3). Mean trend change in %yr−1
was −2.4 in the northern portion of the country while the
southern portion showed a mean positive trend of 4.5%yr−1.
Mean trends in concentration showed the same directional
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Fig. 3. Metal trends indicated by shaded (negative) or crossed, open (positive) circles. The size of the circle represents the magnitude of the
trend slope in %yr−1.
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Table 4. Mean of statistically significant (p ≤ 0.05) Theil slope values and standard deviations (in parentheses) by concentration and
percentage change per year for each variable.

Variable North South

Unit yr−1 %yr−1 Unit yr−1 %yr−1

As (µg L−1) 0.010 (± 0.018) 1.4 (± 0.96) 0.007 (± 0.003) 1.7 (± 0.77)
Co (µg L−1) 0.004 (± 0.002) 2.8 (± 0.34) 0.001 (± 0.013) 0.16 (± 4.0)
Cr (µg L−1) 0.004 (± 0.011) −1.5 (± 3.5) −0.009 (± 0.032) −2.1 (± 3.1)
Cu (µg L−1) −0.013 (± 0.013) −2.3 (± 2.1) 0.026 (± 0.062) 0.59 (± 3.3)
Ni (µg L−1) 0.003 (± 0.016) 0.42 (± 4.8) −0.018 (± 0.061) −1.6 (± 5.0)
Pb (µg L−1) −0.0004 (± 0.008) −2.4 (± 3.5) 0.023 (± 0.024) 4.5 (± 4.2)
V (µgL−1) 0.006 (± 0.006) 2.2 (± 0.65) 0.020 (± 0.012) 3.1 (± 1.3)
Zn (µg L−1) −0.054 (± 0.168) −0.50 (± 4.4) −0.027 (± 0.172) −0.099 (± 3.1)
Fe (µg L−1) −2.73 (± 118.02) 1.6 (± 8.7) 12.9 (± 46.00) 2.4 (± 4.7)
pH 0.013 (± 0.011) 0.21 (± 0.20) 0.015 (± 0.007) 0.25 (± 0.14)
SO2−4 (meqL−1) −0.001 (± 0.002) −2.7 (± 2.0) −0.008 (± 0.005) −4.3 (± 1.4)
TOC (mgL−1) 0.223 (± 0.230) 3.0 (± 2.2) 0.249 (± 0.130) 2.1 (± 0.73)

trends (Table 4). Regional trends were not significant but
there was a significant difference between regions both by
concentration and percentage change per year (p = 0.005
and p = 0.003, respectively).
Although temporal trends across the country were pre-

dominantly negative, Cu is another metal that had divergent
regional trends. Mean percentage trends were negative in
the north (−2.3%yr−1) and positive in south (0.59%yr−1)
of Sweden (Table 4). Neither region showed an overall sig-
nificant trend but comparisons between regions for trends in
concentration and percentage change were both significant
(p = 0.01 and p = 0.0017, respectively).
Mean trend slopes for both Zn and Cr were negative in

the north (−0.5%yr−1 and −1.5%yr−1, respectively) and
the south (−0.099%yr−1 and −2.1%yr−1, respectively) of
Sweden (Table 4). Regional seasonal Kendall tests for Cr
showed statistically significant negative trends in both the
north (p = 0.05) and south (p = 0.04) and the comparison
between regions showed no statistical difference in trends
for concentration or percentage change. However, regional
tests for Zn initially showed statistically significant positive
trends in both the north and south even though the aver-
age trend slopes were negative for each region. The reason
for this is that single sites in both the northern and south-
ern regions substantially affected the regional trend analyses.
Sävjaån Kuggebro, one of the positive trending sites in the
south, had a median (8.0 µg L−1) near at the 90th percentile
and generally had values substantially higher than other sites
in the southern region. Annual median values for Ume älv
Stornorrfors (a positive tending site in the north) were near
the 10 percentile from 1996 to 2000 (1.4 to 2.8 µgL−1)
but increased to greater than the 90th percentile by 2009
(7.8 µgL−1). Thus, both of these sites positively skewed

the regional analyses even though the majority of statisti-
cally significant trending sites were negative. Without these
sites, regional trends for both northern and southern Swe-
den were negative and statistically significant (p = 0.0006
and p = 0.004, respectively). No significant differences were
found when comparing Zn trends between regions, both with
and without the two sites listed above included in the analy-
sis.
Ni showed opposite mean regional trends compared

to Cu and Pb, with a positive mean percentage trend
(0.42%yr−1) in the north and a negative mean percentage
trend (−1.6%yr−1) in the south (Table 4). However, there
were more statistically significant negative (6) than positive
(5) sites in northern Sweden. The regional test also showed a
statistically significant negative trend in the north (p = 0.02).
No significant regional trend was detected in the south. Com-
parison between regions for concentration and percentage
trends showed no statistical difference for either trend slope
measure.

3.3 Low number trending sites

Co showed overall positive trends but the total number of
statistically significant sites was low, with only 3 sites in the
northern area and 2 sites in the southern area. Because of
the low number of significant sites, regional tests although
positive, are not included.

3.4 General water chemistry trends

Trends for the potential water chemistry drivers were either
predominantly positive (TOC, Fe, pH) or negative (SO2−4 )

showing similar trends in both regions of the country (Ta-
ble 3). TOC and pH mean increases were 3.0%yr−1 and
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0.21%yr−1 in the north and 2.1%yr−1 and 0.25%yr−1 in
the south, respectively. Mean percentage trends for Fe were
both positive at 1.6%yr−1 in the north and 2.4%yr−1 in the
south. SO2−4 trends were negative in northern and southern
areas (−2.7%yr−1 and −4.3%yr−1, respectively) and were
significant on a regional basis. Both pH and Fe showed no
significant difference between regions for either concentra-
tion or percentage trends. TOC trends showed no significant
difference between regions while SO2−4 trends between re-
gions resulted in significant differences for both concentra-
tion and percentage trends (P < 0.0001 for both).

3.5 Correlations between potential drivers and trace
metals concentrations

To assess relationships between in-stream chemical param-
eters and trace metals analyzed in this study, the non-
parametric Kendall’s τ coefficient test was used (Table 5).
Most coefficients were low (i.e. < 0.4) however some inter-
dependence was shown. Pb, As, and V were concordantly
related with TOC both in the northern and southern regions
of Sweden. Surprisingly, Cu was not well correlated with
TOC and the relationship was either not significant (south)
or showed a weak relationship (north). Cr showed a some-
what weak relationship with TOC in the north and a very
weak relationship in the south of Sweden. Pb, Zn, As, V and
Cr showed strong relationships with Fe concentration with
both Pb and V showing this trend in northern and southern
Sweden. Pb and Cr correlated (discordantly) well with pH in
northern Sweden and this trend was similar, although weaker,
in southern Sweden. Zn also showed weak, discordant rela-
tionships with pH in both regions. Most metals did not show
a strong relationship with SO2−4 .

4 Discussion

This study presents a first look at long term trends in trace
metal concentrations in streams across the country of Swe-
den. The results show a clear, spatial gradient for all stream
parameters with higher levels being detected in the south of
Sweden. Temporal trends in trace metal stream concentra-
tions showed both consistent and variable trends over the
study period (1996–2009).
Although data on long term tends for trace metals in

streams are very limited, it would be expected that metals
with a high affinity for organic matter or suspended organo-
metallic colloids (e.g. V, As, Cu, Pb, Cr) would increase
along with increasing trends in TOC or TOC and Fe, as-
suming no other substantial changes in chemical composition
within the water body or other outside influences. This was
the case with both V and As which showed a high percentage
of positive trends (100% and 95% of significant trends, re-
spectively) over the study period (1996–2009). Wällstedt et
al. (2010) also detected increasing concentration trends for

V and As in a number of streams in southern Sweden and
posited that these trends were due, in large extent, to in-
creasing concentrations of colloidal Fe which is stabilized
by increasing DOC. Our results support this reasoning with
strong, concordant relationships generally found between
TOC and Fe, and V and As (Table 5). In addition, As (as
arsenate) is less mobile at lower pH values, being bound to
iron hydroxide, and becomes more mobile as pH increases
(McBride, 1994). However, As was not well correlated with
pH in either the north or south of Sweden, probably due to
pH trends falling generally within the near neutral range. The
resulting strong increasing trends in both V and As are espe-
cially surprising given that deposition of V and As decreased
from 1975 through 2000 by factors of 5.5 and 5.3, respec-
tively (Rühling and Tyler, 2004) which should translate into
an approximate average 20%yr−1 decreasing slope.
In contrast to V and As, Cr showed predominantly neg-

ative trends across the country (71% of significant sites),
but with a higher percentage of negative trending sites in
the south compared to the north (86% and 57%, respec-
tively). Kendall’s τ coefficients were generally weak or not
significant for most in-stream water chemistry variables. Fe
showed a strong, concordant relationship in the northern re-
gion of Sweden, which could partially explain a higher per-
centage of positive trending sites in this area compared to the
southern region.
Similarly, a majority of the Cu trends were negative for

the country as a whole (66%) and 13 of 14 sites trended neg-
atively in the north (97%). However, trends were predomi-
nantly positive in southern Sweden (60%). Relationships be-
tween TOC and Cu were inconclusive, with no significant re-
lationship in the northern region and a weak, concordant rela-
tionship in the south. This is somewhat surprising given that
Cu binds with organic matter strongly (Sauve et al., 1997).
In fact, Cu was weakly correlated with all in-stream chemi-
cal parameters included in this study, showing the strongest
relationship with pH in the southern region (0.39) and SO2−4
in both regions (north = 0.36 and south = 0.33). Other studies
have shown difficulty in determining relative factors driving
Cu concentrations in surface waters as well, especially with
respect to DOM. Landre et al. (2009) showed that Cu was
not significantly related to DOC even though significant rela-
tionships were found for other metals that bind strongly with
DOC. Grybos et al. (2007) and Schut et al. (1986) found no
significant relationships between Cu and DOC or pH in dif-
ferent wetland systems.
It is likely that other factors are driving the patterns for

trends in Cu by region. Cu did correlate moderately with pH
in the southern region, tending to increase as pH increased.
Mobility of Cu can increase as pH increases in alkaline soils,
where Cu can form hydroxyl or carbonate complexes. Al-
though most soils in Sweden are not alkaline in nature, the
northeast area of the southern region is dominated by alkaline
soils. The majority of positive trends for Cu in the southern
region were found in this area with alkaline soils. Thus, it
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Table 5. Kendall’s τ coefficients for relationships between in-stream chemical parameters and trace metals, by region. Non-significant
(p ≤ 0.001) relationships are denoted by N.S. and strong relationships (> 0.4) are bold.

Metal pH SO2−4 TOC Fe

North South North South North South North South

As −0.23 0.33 N.S. 0.24 0.52 0.42 0.61 0.24
Co −0.34 −0.26 −0.48 −0.21 0.56 0.26 0.75 0.39
Cr −0.43 −0.12 −0.14 N.S. 0.38 0.09 0.41 0.38
Cu 0.13 0.39 0.36 0.33 N.S. 0.15 0.06 −0.06
Ni −0.12 0.38 0.15 0.48 0.16 N.S. −0.06 N.S.
Pb −0.53 −0.05 0.12 0.13 0.57 0.53 0.56 0.65
V −0.17 0.06 N.S. 0.13 0.49 0.44 0.42 0.52
Zn −0.40 −0.28 0.16 −0.09 0.21 0.31 0.11 0.41

appears that pH may drive increasing trends in this specific
area of Sweden. However, it appears that other factors, out-
side those included in this study, influence most of the sites
with significant trends.
Pb followed a similar pattern to Cu with mostly negative

trends in the north (75%) and nearly all positive trends in the
south (93%). This is in contrast to the depositional pattern
of Pb, which declined by a factor of 11.3 between 1975 and
2000 (Rühling and Tyler, 2004). While Pb correlated well
with TOC and Fe (Table 5) and has been shown by others
to correlate well with colloidal Fe (Pokrovsky and Schott,
2002), Pb is also linked to urban land use (Fitzpatrick et al.,
2007) and the southern region of Sweden contains most of
the population centers. In addition, historical depositional
patterns have been show to be as much as 8 times higher
in the south compared to the north of Sweden (Rühling and
Tyler, 1971). Thus, it seems likely that the difference in
trends between regions may be partially explained by the dif-
ference in historical catchment deposition, storage and the
related response time to changes in atmospheric deposition
which have been shown for metals that bind strongly with
organic matter (Tipping et al., 2010).
Other metals, such as Ni and Zn, do not bind as strongly

to solid surfaces in soils and could be expected to have a
faster transit time from watershed soils to rivers (Tipping et
al., 2010), provided deposition is the main source. Thus,
these metals may respond more directly with depositional
patterns, especially if the sites were generally undisturbed
by point sources or changes in land use. Both Zn and Ni
showed predominantly decreasing trends overall (67% and
71%, respectively). Neither metal showed much in the way
of correlation with in-stream chemical parameters except for
SO2−4 (Ni) and Fe (Zn), both in southern Sweden. Changes
in concentration are likely driven by other factors (e.g. de-
position, watershed characteristics, and (or) land use) rather
than changes in TOC or other general in-stream chemical pa-
rameters included in this study.
Co showed few, but overall positive trends in Sweden.

Kendall’s τ correlation analysis showed only weak effects

on Co concentrations by in-stream parameters in southern
Sweden but in the northern region, SO2−4 and TOC showed
fairly strong correlations (Kendall’s τ = −0.48 and 0.56, re-
spectively) while Fe showed a very strong correlation (0.75).
Co has been shown to be linked to Fe-oxyhydroxides (Gry-
bos et al., 2007), especially in wetland systems undergoing
redox reactions. The few sites showing positive trends in
this study are near wetlands that could be changing over time
(e.g. increased degradation of OM resulting in lower redox
conditions) due to climate or other changes affecting the area.
However, there are not enough data to confirm this.
The results for the trace metals presented herein, at least

in part, contradict strong, negative depositional patterns. The
most recent study of metal deposition trends over Sweden
showed that all 60 elements studied had decreased from 1975
to 2000 (Rühling and Tyler, 2004), including the eight trace
metals analyzed in this study. Although the time period for
our study ranges from 1996 through 2009, the results from
the deposition study show clear, statistically significantly de-
clining trends for the metals included in our study, ranging
from a factor of 1.7 (Cu) to 11.3 (Pb) between 1975 and
2000. Stores of trace metals in watershed soils can be signif-
icant and are likely higher in the southern region of Sweden
due to local activity and long range transport and deposition
(Rühling and Tyler, 1971). As others have shown, catchment
soils can accumulate trace metals such as Pb (Lindberg and
Turner, 1988), and may respond on the time scale of decades,
or even centuries, to changes in deposition (Lawlor and Tip-
ping, 2003). Transit times for different metals will vary based
on their affinity for watershed soils (Tipping et al., 2010).
Thus, metals with lower affinity for soil particles and/or or-
ganic matter (e.g. Ni and Zn) may respond more quickly
to changes in depositional patterns compared to those met-
als with higher affinity for NOM or organo-metallic colloids
(e.g. V, As, Pb, Cu, and Cr).
Of the available long term studies of metal concentrations

in rivers, decreasing trends are generally seen for some of
the trace metals included in this study. Cu, Ni, Pb, and Zn
steadily increased in four rivers in the Netherlands during
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the 20th century until the latter half of the 1970s when the
trends started to reverse (Salomons and Eysink, 1979; Sa-
lomons and Forstner, 1984). Foster and Charlesworth (1996)
showed declining concentrations between 1974 and 1993 for
Cu, Ni, Pb, and Zn for two rivers in the United Kingdom.
However, these studies included sites heavily affected by
point sources including direct inflows of metals, mainly from
wastewater treatment facilities. Given the implementation
of point source reduction practices across the industrialized
world in the mid to late 1970s, it is not surprising there would
be declines in the concentration of most trace metals in such
streams.
Lettenmaier et al. (1991) analyzed times series data (1978

to 1987) in rivers in the US for a suite of traces metals find-
ing significant trends ranging from 1% (Ag) to 25% (As)
of the study sites (N = 312 to 383), most of which trended
negatively (including Cu, Ni, Zn, As, Cr, Fe and Pb). Letten-
maier et al. (1991) also tested for association between trace
metals and varying land use factors and flow, however, the
results were largely inconclusive. Although some of the re-
sults from the US study tend to agree with this study with
mutual declines (Cu, Ni, Zn, and Cr), some differed with
overall increases found in this study (As, Fe, and Pb). This
is not unexpected however, given the different time frame,
geographical location, climate and land use patterns, and the
fact that some of the streams in the Lettenmaier et al. (1991)
study were likely affected by changes in point source inputs.
Although strong correlations were found between some

trace metals and TOC and Fe, we can not ignore the like-
lihood that other factors not analyzed in this study may
contribute to the trends detected in this analysis. Climatic
changes (including effects on ground water and soil temper-
ature) may affect both the mobility and transport of metals.
Higher temperatures can lead to elevated degradation rates
of OM, potentially leading to increases in DOC and trace
metals in soil pool water (Dalva and Moore, 1991). An in-
crease in extreme precipitation events can also affect trans-
port. Droughts allow for increased oxidation of NOM and
formation of DOC (Worrall and Burt, 2004) while extreme
precipitation events alter hydrologic pathways from water-
sheds to streams (Hongve et al., 2004), potentially increas-
ing the leaching of organic compounds from surficial soils.
Decreased ionic strength, due mainly to decreased loading of
SO2−4 over Sweden, is also likely to play a role in changing
DOC and associated trace metal concentrations in streams
and rivers, by controlling the precipitation and disassociation
of organic acids (Thurman, 1985).
Changes in climate have occurred over the study period

in Sweden, both across the country and by region. The UN
Intergovernmental Panel on Climate Change (IPCC), sum-
marized in a Swedish governmental report 2007:60 (SOU,
2007), shows that temperatures have been increasing in re-
cent years across Sweden. Precipitation has also been in-
creasing in all seasons except autumn. The report predicts
that Sweden, as a whole, will become warmer and wetter

due to the effects of climate change. Thus, changes in cli-
mate can, and will continue to exert influence on trace metal
mobility and transport, both directly and indirectly.
Some care should be taken when interpreting long term

trends for heavy metals in surface waters. Trends for trace
metals determined in this study are highly dependent on the
time frame used and the results should be used with caution
when attempting to infer trends during other periods. This
study also reveals that caution must be taken when analyzing
long term trends with large data sets. Single sites may have
an unusually large effect on regional trend analyses for trace
metals (as well as other parameters). Although cumbersome,
site by site inspection of data series (completed in this study)
should be conducted to determine if one, or a few sites may
skew the overall trend of a region or that other outside fac-
tors, such as a change in analytical method, change in moni-
toring frequency, or even a change in sampling technique or
personnel do not introduce factors that may artificially alter
the true nature of local or regional trends.
Future work will be conducted with this data set includ-

ing analysis of the effect of additional variables (e.g. climate
and deposition, land use, lake area, catchment size, runoff
and flow, etc.) which may reveal a more complete picture
of the factors driving trends, including diverging and unex-
pected trends, over time. These additional factors can affect
in-stream processes and metal dynamics on both local and
broader scales, and likely form a complex group of interact-
ing variables that can drive changes in in-stream chemistry
and metal concentrations over short and longer time periods
across Sweden.

5 Summary
The focus of this study was to determine if trends exist for
trace metal concentrations in Swedish streams and rivers and
how these trends vary spatially across the country. While
some trace metals showed generally consistent relationships
across northern and southern regions (As, V, Cr), other met-
als varied between regions (Cu and Pb), within regions (Ni
and Zn) or showed few trends in either region (Co). The be-
havior of trace metals can be highly complex due to the vari-
ety of biotic and abiotic processes in riverine systems and
their respective watersheds. In addition, depositional pat-
terns and climate variability will also exert effects on metals
entering and moving within streams and rivers, both directly
and indirectly. Although we show some potential in-stream
chemistry drivers correlate with trends for some metals, es-
pecially TOC and Fe, further exploration and analysis are
needed to adequately define the processes that drive changes
in metal concentrations in streams across Sweden. Nonethe-
less, this study shows that concentrations of trace metals in
Swedish streams vary temporally and in some cases, spa-
tially. These trends are likely affected by not only general
in-stream chemistry, but other, larger scale drivers which are
likely to include hydrology, climate variability, and changes
in land use.
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