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Abstract 

Burger J. 2006. Hyperspectral NIR Image Analysis: Data Exploration, Correction, and 
Regression.   Doctoral Dissertation. 
ISSN 1652-6880, ISBN 91-576-7109-5. 
 

Hyperspectral images add a new dimension to the field of spectroscopy, specifically 
spatial resolution.  In addition to the identification and quantification of bulk constituents 
provided by integrating spectrometers, hyperspectral images provide a means of accurately 
quantifying and locating constituent variation within the field of view of the camera. 

Hyperspectral images provide a massive quantity of data, and as with NIR spectroscopy, 
multivariate chemometrics tools must be utilized to appropriately extract accurate 
information. This thesis looked at techniques to clean and modify or condition the raw 
spectral data to improve the prediction results of regression techniques such as PLS.  It was 
found that extra diagnostic tools for regression models could be based on image data.  A 
new metric based on a combination of prediction bias and variance was proposed for 
determining the number of latent variables. 

Data set conditioning was based on several approaches. Sets of standard reference 
materials were used to improve conversion of data counts into percent reflectance units and 
to provide instrument standardization.  A multi-step approach to outlier detection was 
formulated that incorporated thresholding tests for excessive data values, combined with 
tests based on Euclidean distance measurements and angle cosines between spectra.  
Finally, various spectral pretreatments or filters were considered to complete the spectral 
cleaning and modification process. 

Results from the application of multivariate analysis techniques to this optimally 
conditioned data were presented.  Data visualization tools included histograms and spatial 
mapping of constituent concentration predictions, colorization of score plots, and false 
color image presentations of combinations of score images or prediction maps. 

The use of these data exploration, correction, and regression tools was demonstrated by 
the systematic analysis of increasingly complex data samples.  Carefully designed 
laboratory samples were used to examine the theoretical limitations of prediction of 
chemical content and correction for physical properties including the dependencies of 
diffuse light scattering effects on particle size.  Sample sets of cheese and wood pellets 
were used to demonstrate the overall utility of proper data conditioning in the application of 
hyperspectral NIR imaging to more difficult real-world problems. 
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1.0 Introduction 

1.1 Hyperspectral images 
Chemical analysis is often undertaken to identify or quantify individual chemical 
constituents contained within a sample mixture, for example the quantity of sugar 
or fat in food, or caffeine in coffee.  Since laboratory instrumentation provides 
only signals based on measurable physical properties, a transformation process 
must be used to convert instrument signals into the primary properties of interest.  
Spectrometry is often used for this purpose based on the fundamental principle 
known as the Beer-Lambert law that permits the determination of constituent 
concentrations based on the absorbance of light.  In this case a calibration model 
based on measurements acquired from a set of training samples containing known 
constituent concentrations is determined and used for the transformation process. 
 

Spectroscopic detectors have historically been based on an integrating principle 
to improve signal to noise ratios.  That is, a small spot or sample area is measured, 
sometimes multiple times, and the spectral intensities throughout the sample area 
are added together.  This provides a bulk sample measurement which is applicable 
to homogenous materials.  But if the sample is inhomogeneous different measured 
values will be obtained depending on the sampling location.  Unless the sample 
measurement is repeated many times in a systematic way, this inhomogeneity will 
never be known.  Worse yet, a single measurement may be erroneously used to 
represent the bulk value of the entire sample. 
 

Recent advances in spectroscopic detector technologies have enabled spectral as 
well as spatial information to be recorded simultaneously. This results in creation 
of three dimensional spectroscopic images where two dimensions provide spatial 
information and one dimension provides spectral information. This three 
dimensional dataset of spectral intensities is termed a hyperspectral image, or 
hypercube, and adds an important aspect to chemical analysis.  In addition to the 
identification and quantification of chemical constituents, their location or spatial 
distribution can be examined as well.  
 

Figure 1 and Figure 2 present the historical development of hyperspectral 
images from an imaging perspective.  Black and white photography was first used 
to create two dimensional images by compressing a range of colors measured 
throughout the image area into a set of gray values representing the average 
spectral intensity at each location in the image. By adding specific color filters to 
the camera or film, images could be acquired which represented narrow bands of 
the color spectrum. This is exemplified today in the typical color digital 
photograph, comprised of a set of three separate grayscale images representing 
red, green, and blue color bands as indicated in Figure 1.  Such an image is said to 
have three channels of information. 
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Additional channels can be added by using additional sets of color filters 
depicted in Figure 2a.  This technique was first popularized in the field of remote 
sensing where images of the earth’s surface were acquired from spacecraft, 

 
 
 
 
 
 
 
 
 

 
Figure 1  A typical digital color picture is a composite of three image channels representing 
red, green, and blue intensities. 
 
 
satellites or airplanes.  The Apollo 9 mission (1968) included four Hasselblad 
cameras aimed at the same target, while the Skylab missions (1973 - 1974) 
included a six camera multi-spectral system.  The Landsat I satellite launched in 
1972 contained a multispectral scanner which permitted the acquisition of red, 
green, and two infrared channels. (NASA, 2006)  Similar multi-channel images 
have been used in microscopy where a filter wheel or similar device is used to 
acquire sets of images representing different color bands (Schotton, 1993).  
Images with four or more channels are called multi-spectral images. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2  (a) Multi-spectral images contain channels from additional color bands obtained 
by use of 4 or more color filters. (b) A typical hyperspectral image containing 118 image 
channels and over 80,000 spectra. 
 
 

When many different wavelength channels or bands are obtained, these images 
are termed hyperspectral images.  There is no clearly defined number of channels 

256 x 320 pixels x 118 wavelengths

(a) (b) 
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that differentiates multi-spectral from hyperspectral, but hyperspectral images 
typically contain over 100 wavelength channels.  Figure 2b represents a typical 
hyperspectral image acquired from a commercial NIR imaging system used in this 
thesis. Hyperspectral images typically contain tens of thousands of spectra (one 
spectrum at each pixel location) and hundreds of channels or wavelength bands.  
This abundance of data within a hyperspectral image provides both challenges and 
opportunities for analysis. Which spectra are important to look at?  If a spatial 
image is desired, which channel should be selected?  Data mining tools must be 
used to efficiently extract meaningful information from this massive amount of 
data, and they must be used correctly. 
 
 
1.2 Multivariate Image Analysis  (MIA) 
The theoretical aspect of extracting chemical information from hyperspectral 
images was first presented by Geladi, Wold, & Esbensen (1986).  Although a 
hyperspectral image is a three dimensional data structure, it can be unfolded to 
produce a very large matrix of spectra.  Such a matrix is amenable to the ordinary 
chemometric tools used in the analysis of spectral data. Fundamental work in the 
application of chemometric tools began with Multivariate Image Analysis (MIA) 
discussions on the application of Principal Component Analysis (PCA) (Geladi et 
al., 1988) and the presentation of an analysis strategy (Esbensen & Geladi, 1989).  
Additional essential theoretical work in Multivariate Image Regression (MIR) 
included the application of Principal Component Regression (PCR) (Geladi & 
Esbensen, 1991; Esbensen, Geladi, & Grahn, 1992) and Partial Least Squares 
(PLS) (Van den Broek et al., 1996; Lied, Geladi, & Esbensen, 2000; Lied & 
Esbensen, 2001)   Geladi (1995) also introduced the concept of image sampling 
and local modeling specific to hyperspectral images.  The image analysis toolbox 
has grown to include the application of Independent Component Analysis (ICP)  
(Chiang, Chang, & Ginsberg, 2000), wavelet based classification (Antonelli et al., 
2004; Vogt, Banerji & Booksh, 2004) and support vector machines (Pierna et al., 
2004). 
 

The spatial scaling represented in hyperspectral images ranges from satellite 
images with a field of view of square miles, to the millimeter x millimeter images 
acquired through a microscope.  This range in scaling can be found in 
hyperspectral imaging applications ranging from the discrimination of crops and 
weeds (Borregaard et al., 2000) to pharmaceutical tablets (Zhang, Henson, & 
Sekulic, 2005). 
 

The range in sample types is equally broad. Research topics range from the 
analysis of painted chinaware (Geladi, Swerts, & Lindgren, 1994), works of art 
(Baronti et al., 1997; Attas et al., 2003; Bacci et al., 2005) and archaeology 
(Marengo et al., 2005), to process monitoring of plastic types (Van den Broek et 
al., 1996), snack foods (Yu & MacGregor, 2003), poultry carcass contamination 
(Park et al., 2004), or industrial boiler flames (Yu & MacGregor, 2004). 
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A complete overview of  near infrared imaging principles and instrumentation is 
provided by Tran (2003). While the majority of reported research is based on 
visible or near infrared hyperspectral images, other sources of radiation have been 
utilized: Nuclear Magnetic Resonance (NMR) (Grahn et al., 1989a; Grahn et al., 
1989b; Grahn & Saaf, 1992)  X-ray Photoemission Spectroscopy (XPS) 
(Artyushkova & Fulghum, 2001, 2002), FT-IR (Winson et al., 1997) and Raman 
spectroscopy (Zhang, Henson, & Sekulic, 2005). 
 
1.3 Terminology 
Acquisition, exploration, and analysis of hyperspectral images are complex and 
multi-disciplinary tasks.  It is important to clarify terminology used in this thesis to 
avoid miss-use and confusion.  The terms hyperspectral image and hypercube are 
used interchangeably and denote a three dimensional data structure containing two 
spatial axes and one wavelength axis.  A single scalar data element in a hypercube 
is a voxel, but within the context of a two dimensional image from a single 
wavelength channel it is termed a pixel.  The set of pixels at the same location in 
all wavelength channels is a vector, traditionally called a spectrum. 
 

This thesis deals extensively with the manipulations of numerical data.  It is 
important to distinguish between the actions of transformation, standardization, 
and calibration.  Data transformation involves the conversion of data from one set 
of units to another:  e.g. raw instrument data may be transformed to reflectance; 
reflectance data may be transformed to absorbance.  Standardization is a 
correction process used to move data towards a targeted value:  e.g. internal 
standards may be used for instrument standardization; multiplicative scatter 
correction (MSC) moves data towards a targeted spectrum.  Calibration is used in 
the context of chemometrics: calibration data and calibration models are used to 
predict values of dependent variables from related independent variables. 
 

The use of these terms is not always clear.  Some processes may cross these 
boundaries:  the derivative of a spectrum may be considered either a 
transformation process changing units, or a correction or standardization process 
removing a baseline offset.  Regression modeling which is considered a calibration 
technique, may be used to compute reflectance transformations or instrument 
standardizations.  Some terms have multiple meanings: for example a sample or 
sample point may refer to a laboratory sample, a spectrum from a hypercube, or a 
reflectance value at one wavelength in a spectrum.  Hopefully the intended 
meanings will be clear from their contextual use. 
 
1.4 Research objectives 
One of the general questions addressed in this thesis is: How can existing 
chemometric analysis tools can be used or enhanced to effectively and efficiently 
explore both the qualitative and quantitative information contained within a 
hyperspectral image? The reported use of chemometric tools on hyperspectral 
images has been limited primarily to tasks of exploratory data analysis and data 
compression using PCA, or discriminant analysis of pixels, the latter being 
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achieved with PLS calibration models based on masks of image pixels with known 
classifications.  PLS is routinely used to quantify chemical constituents in samples 
based on spectroscopic data.  A slightly more specific research question in this 
thesis is: What are the implications of applying PLS to hyperspectral images for 
quantitative purposes? Various aspects of the application and development of 
univariate and multivariate chemometric tools and their specific extension to 
hyperspectral images is discussed further in section 3 of this thesis, Chemometrics. 
 

A second general focus of research for this thesis was on how to objectively 
determine the quality of data within hyperspectral images, as well as to explore 
methodologies for improving the quality of such data.  Sometimes experimental 
data must be screened for faulty values or pretreated to remove undesirable 
contributions of signal noise or offset due to instrumentation or environmental 
effects.  This thesis examines the causes, effects, and possible corrections of such 
deviations in hyperspectral images. Specifically, what can be done to promote 
instrument standardization in hyperspectral imaging systems?  How can 
instrumentation failures be detected, and can they be corrected?  These questions 
are addressed in two sections. Section 4, Hyperspectral Image Transformation and 
Standardization, describes the use of external and internal calibration reference 
materials to standardize each hyperspectral image.  This permits the direct 
comparison of images taken sequentially in a given day, or perhaps months apart, 
and facilitates correct matching of spectra to spectral libraries.  Hyperspectral 
imaging systems additionally employ camera devices which may include pixels 
that routinely or randomly produce faulty data.  How should these outlier points be 
detected?  Several approaches to this are described in section 5, Outlier Detection. 
 

Physical properties of the samples or sample delivery system may produce 
additional perturbations to the spectra measured.  The effect of spectral 
pretreatment techniques used in other forms of spectroscopy and how they can be 
extended to hyperspectral images is discussed in section 6, Spectral Preprocessing. 
 

Visual examination of objects involves not only spectroscopic or color analysis, 
but also spatial information such as texture, object shape, or even contextual 
information defining the object’s environment.  An interactive exploratory 
analysis tool was developed to enable simultaneous examination of both spectral 
and spatial properties of hyperspectral images.  This tool is explained in section 7, 
Java Implementation of Multivariate Image Analysis (JIMIA). 
 

The success of all of these topics is considered in the final sections.  Concluding 
results for the application of these various analysis techniques are summarized in 
section 8, Applications.  Concluding thoughts and extensions beyond the scope of 
this thesis are described in section 9, Conclusions, and section 10, Future 
Directions. 
 

Much of the discussions provided in this thesis can be applied in general to all 
hyperspectral images.  However, the research experimentation performed in 
support of this thesis utilized exclusively near infrared (NIR) spectroscopy on 
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samples within a laboratory environment.  Consequently, discussions will at times 
remain focused on these environs. 
 
 
 

2.0 NIR Instrumentation 

2.1 NIR Spectroscopy 
The near infrared region of the spectrum is usually defined as the range 780 – 
2500 nm.  This region is located between the infrared region above 2500 nm, and 
the visible region below 780 nm.  The first recorded NIR measurements were 
made by Herschel (1800) while exploring the heat energy from the sun.  NIR 
spectra of several organic liquids were measured photographically and reported by 
Abney & Festing (1881).  Functional group peak assignments began when 
Coblenz (1905) measured compounds between 800 and 2800 nm, and attributed 
the bands observed to C-H bonds.  Additional peak assignments were made at the 
University of California at Los Angeles and Johns Hopkins University 1922 – 
1929 (Ellis 1929), by the US Bureau of Standards between 1930 and 1945, 
Murray in the UK during the 1980’s and Barton at the USDA in the 1980’s 
(Barton 2004).  Norris & Butler (1961) and Norris (1962) were also instrumental 
in promoting NIR as an acceptable analytical technique while working at the U.S. 
Department of Agriculture, Agricultural Research Service.  In general the peaks 
observed in the NIR region are due to overtone vibrations between hydrogen and 
carbon, oxygen, or nitrogen.  These peaks are very broad and overlapped, and lack 
fine structure. Spectra from different constituents can appear very similar and 
difficult to resolve.  For this reason the NIR region of the spectrum was generally 
ignored until the advent of the personal computer and the application of 
multivariate statistics and chemometrics that allowed mathematical rather than 
physical resolution of the overlapping spectra.  The general philosophy and 
practice of NIR spectroscopy is well described by Murray (2004) and Osborn, 
Fearn, & Hindle (1993). 
 

A second reason for the growth in popularity of NIR has been the development 
of new detector systems.  Communication research led to the initial development 
of photoelectric detectors during the Second World War.  These devices were first 
used commercially for NIR detection with the release of the Cary 14 NIR 
spectrometer (Kaye 1954).  Development of Si, PbS, and InGaAs detectors has 
progressed to allow operation at room temperature, extended wavelength response, 
and fabrication into one and two dimensional arrays.  The current state of the art 
detectors used for hyperspectral NIR imaging employ two dimensional InGaAs 
detectors with 512 x 640 elements and provide a usable wavelength response 
range of 900 – 1700 nm or an extended range of 1100 – 2500 nm.  These focal 
plane cameras are thermoelectrically cooled and provide full images at up to 90 
frames per second. (XenICs NV, Leuven, Belgium). 
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2.2 Hyperspectral NIR camera configurations 
An NIR spectrophotometer instrument consists of a light source, a monochrometer 
or filter system to disperse the light into wavelength bands, and a detection system 
including both a detector and any necessary controlling software (Stark & Luchter, 
2004). Tungsten halogen filament or xenon gas plasma lamps are the most 
common sources used for broad spectral NIR illumination.  Light emitting diodes 
and tunable lasers may also be used for illumination with specific wavelength 
bands. For broad spectral sources, selection of wavelength bands can be based on 
specific bandpass filters based on simple interference filters, liquid crystal tunable 
filters (LCTF), or acousto-optic tunable filters (AOTF), or the spectral energy may 
be dispersed by a grating device or a prism-grating-prism (PGP) filter (Aikio, 
2001; SpecIm, 2006).  Scanning interferometers can also be used to acquire NIR 
spectra from a single spot. 
 

A spectrometer camera designed for acquisition of hyperspectral images has all 
the hardware components listed above for acquisition of spectral information plus 
any additional hardware or modifications necessary to allow acquisition of 
reproducible spatial information. The spatial information is acquired by 
measurement directly through the spectrometer optics, by controlled positioning of 
the sample, or both. Three basic camera configurations are used which differ in 
their need for positioning or movement of the sample and their geometry or 
detector orientation relative to the sample.  The configuration names are based on 
the type of spatial information acquired: point scan, line scan, or plane scan. 
 
2.2.1 Point scan 
The interferometer camera configuration shown in Figure 3 is perhaps the simplest 
approach.  A complete spectrum is measured from the diffuse reflectance or 
transmitted light at a single spot on the sample.  The sample is then repositioned 
before obtaining a new spectrum.  By rastering the sample in two spatial 
dimensions normal to the sample transmission or reflectance radiation beam, a 
complete hyperspectral image can be acquired.  Instrument calibration for 
wavelength and reflectance needs to be done only once before beginning the 
image acquisition.  However, any drift during the total acquisition period is 
difficult to detect without recalibration.  This system provides very stable high 
resolution spectra; however, the sample positioning is very time consuming and 
places high demands on repositioning hardware to ensure repeatability.  Image 
registration of the different image wavelength channels is only an issue if 
something in the sample moves within the spectral scanning period.  The spatial 
size dimensions of the hyperspectral image are limited only by the sample 
positioning hardware.  Continuous operation permits extended sample sizes or 
resampling at specific spatial locations.  This configuration was first patented by 
Potter in 1972 working at NASA and implemented for atmospheric and 
astronomical application in 1979 by Potter & Huppi at the Stewart Radiance 
Laboratory. (Miseo & Wright, 2003) It is primarily used in the chemical 
laboratory at the microscopic level (Sahlin & Peppas, 1997) and is commercially 
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available from Digilab (Randolph, MA, USA), Bruker Optics (Billerica, MA, 
USA), Varian (Palo Alto, CA, USA), and Thermo Nicolet (Madison, WI, USA) 
 
2.2.2 Line scan 
The second camera configuration approach indicated in Figure 4 is termed a 
linescan or pushbroom configuration that uses a two dimensional detector 
perpendicular to the surface of the sample.  The diffuse reflectance from the 
sample is passed through a narrow slit and spectrally dispersed across the detector.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3  An interferometer measures a complete spectrum at a single spot.  A hyperspectral 
image is created by rastering across the surface in two spatial dimensions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4  The linescan configuration uses a two dimensional detector perpendicular to the 
surface of the sample to capture the complete spectra from a set of points across the surface 
of the sample.  Hyperspectral images are created from collecting sets of these matrices 
while repositioning the sample in a direction perpendicular to the sample scan line. 

Sample 

Interferometer 

White Light Diffuse Reflectance 

Optics 

Lamp 

Hyperspectral 
Image 

Sample 

Dispersing Filter 

Focal Plane 
Detector 

Dispersed Light 

Diffuse Reflectance 

Slit

Hyperspectral 
Image

White Light 

Lamp 
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Hyperspectral images are created by collecting sets of these matrices while 
repositioning the sample in a direction perpendicular to the sample scan line.  As 
with the rastering technique, the camera can be operated in a continuous mode 
permitting measurement of samples with an unlimited size in one axis. A two 
dimensional calibration is necessary to account for variations in lighting intensities 
across the spatial scanning line and wavelength dependent response variations. 
Without recalibration any instrumental variation across the scanning line or 
spectral axis is difficult to distinguish from sample variation. General instrument 
variations can be monitored by including reference standards at the edge of the 
field of view. Since no filter change is necessary, the speed of image acquisition is 
limited only by camera read out speeds.  Commercial instruments produced by 
SpecIm (Oulu, FI) and Norsk Elektro Optikk AS, (Lørenskog, NO) are available 
with frame rates of 90 Hz or higher with 256 x 320 pixel resolution InGaAs 
detectors.  This speed allows images to be acquired in a matter of seconds.  This 
configuration is also amenable to continuous operation for online monitoring of 
process streams. 
 
2.2.3 Plane scan 
The third configuration displayed in Figure 5 positions the detector in a plane 
parallel to the surface of the sample.  All spectrometer components including the 
sample remain fixed in position relative to the detector, with the possible 
exception of the filter assembly.  Interference filters must be rotated into position 
for each image slice.  For LCTF or AOTF filters this filter change is done 
electronically.  The lack of moving parts can lead to a lower background noise 
level; however, because of significant instrument settling times due to filter 
changes any movement within the sample itself will cause image registration 
problems.  Lengthy image acquisition times can also be an issue for biological 
samples which may be sensitive to heating caused by the continuous illumination 
from NIR source lamps.  The LCTF based instrument used in this thesis had image 
acquisition times ranging between three and six minutes that initially caused 
sample separation and melting problems.  A small box fan positioned to blow cool 
air across the sample reduced the severity of this problem. 
 

Since light illumination intensities may vary across both spatial axes of the 
sample area, instrument calibration must be performed at all pixel (spatial) 
locations and at all wavelengths.  Additional standardization to account for 
instrumentation instabilities may be performed by including standard reference 
materials within the sample field of view.  These calibration and standardization 
techniques are discussed in section 4 of the thesis. 
 

Although detector materials such as InGaAs have been extended to cover 
broader ranges of the NIR spectrum, the quantum efficiency varies considerably.  
To account for this variation, it would be possible to vary the signal acquisition or 
integration time as a function of wavelength with the configuration depicted in 
Figure 5, thereby increasing the signal to noise ratio in the areas with lower 
efficiency.  At present this is not done.  The commercial instrument used in this 
thesis requires the same integration time for all wavelengths. 
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Figure 5  A bandpass camera captures a complete image scene slice one wavelength band at 
a time.  Sets of these image slices are used to create a complete hyperspectral image.  The 
sample remains fixed in position relative to the camera. 
 
 
2.3 Research instrumentation 
The hyperspectral images used in Papers I – IV in this thesis were all acquired 
from a MatrixNIR imaging system from Spectral Dimensions, Inc. (Olney, MD, 
USA). Images acquired from this instrument have a fixed spatial resolution of 256 
x 320 pixels with up to 128 wavelength channels.  This instrument is capable of 
providing spectra ranging between 900 and 1700 nm; however, because of high 
relative noise levels at either end of the spectrum, a working range of 960 to 1662 
nm was typically used.  A six nm resolution provided images with 118 wavelength 
channels.  Images were generally measured with a 64ms signal integration time, 
averaged from 10 to 16 replicate scans. 
 

For comparative purposes, some of the samples in this thesis were also 
measured with integrating NIR spectrometers.  Two instruments were used for 
this.  A Foss NIRSytems 5000 (NIRSystems, Hillerød, DK) scanning grating 
monochromator with a PbS detector provided spectra with a wavelength range of 
1100-2498 nm with 2 nm resolution.  Each spectrum was averaged from 32 scans.  
Samples were contained in glass covered sample holders which spun during signal 
acquisition.  These same sample holders were also used for hyperspectral imaging 
 

Spectra were also acquired from a Bruker Matrix FT-NIR instrument, (Bruker 
Optics, Billerica, MA, USA) equipped with a fiber-optic sampling probe.  This 
instrument uses an InGaAs detector with a working range of 4000-12000 cm-1.  
Spectra were collected at 4 cm-1 resolution, but for instrument comparison 
purposes were displayed in wavelength units, 833 – 2500 nm.  Each spectrum was 
an average of 32 scans.  The probe was inserted directly into containers of 
powdered samples, or positioned directly perpendicular to the surface of solid 
samples. 
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3.0 Chemometrics 

Chemometrics is a relatively new branch of science with several official and 
unofficial definitions: 
 
Chemometrics is the chemical discipline that uses mathematical, 
statistical, and other methods employing formal logic to design or select 
optimal measurement procedures and experiments, and to provide 
maximum relevant chemical information by analyzing chemical data. 
(Massart et al., 1988) 
 
Chemometrics is the discipline concerned with the application of statistics 
and mathematical methods, as well as those methods based on 
mathematical logic, to chemistry. (Brown, 1990) 
 
Chemometrics is what chemometricians do. Chemometricians are people 
who drink beer and steal ideas from statisticians. (WSC-3, 2004) 
 

The term chemometrics was introduced in the early 1970’s by Bruce Kowalski 
and Svante Wold.  With the introduction and widespread use of computers in the 
chemistry laboratory for both instrumentation control and data acquisition, it 
became apparent that new tools needed to be invented (or stolen) to make sense of 
the growing mass of chemical data.  Statistical multivariate analysis had 
previously been applied in fields such as psychometrics, econometrics, and 
biometrics (Geladi & Esbensen, 1990; Geladi, 2003). Extending these techniques 
to chemistry was natural.  Hence, chemometrics was born. 
 

Borrowing a term from computer science, chemometrics might also be thought 
of as data mining.  Algorithms are needed to compress and model numerical data 
in a systematic yet meaningful way to extract usable information.  Presentation 
tools are also needed to help visualize this information buried within the 
tremendous amounts of data. 
 

One of the fundamental principles of chemometrics can be loosely termed get to 
know your data; before any attempts at modeling or prediction, experimental data 
sets should always be thoroughly examined.  Basic statistical descriptors and 
population estimates of data sets such as the minimum, maximum, mean, median, 
and standard deviation of the data values should be determined. A visual 
inspection of both tabular and plotted data can also help to identify outliers, 
clustering of values, data trends, and an indication of underlying noise structures.  
This is a simple process when looking at univariate measurements such as 
temperature or pH of a few samples.  But a single hyperspectral image with 256 x 
320 pixels and 128 wavelength channels contains over twenty million data values, 
data which can be acquired in less than 5 seconds.  How does one quickly but 
effectively explore such a massive amount of data? 
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Clearly the simple plotting and exploratory analysis tools of univariate and 
multivariate statistical analysis are inadequate and need to be enhanced and 
adapted for these large data sets.  Regression techniques such as Partial Least 
Squares (PLS) are often applied to spectral data to build models useful for making 
chemical classification or quantification predictions.  But when such models are 
applied to a single hyperspectral image as described above, over eighty thousand 
predictions will be produced.  How do you efficiently present these results for 
interpretation?  While the shear volume of data contained in hyperspectral images 
may appear overwhelming and demand powerful computational resources, it also 
provides new opportunities to enhance our understanding of relevant chemical 
information.  Extending the chemometrics toolbox to facilitate efficient 
computations and enhance visualization of results will be further explored after the 
following theoretical discussions. 
 
3.1 Data structures 
The mathematical based term order of a dataset was introduced by Sanchez & 
Kowalski (1988a; 1988b) to describe the true dimensionality of a dataset.  A pH 
meter or thermometer is zero order, producing a single data value with each 
measurement.  A UV spectrometer is said to be first order: each measured 
spectrum is a vector of numbers indicating absorbance values obtained at different 
wavelengths.  A hybrid instrument such as a gas chromatograph – mass 
spectrometer (GC-MS) produces second order data matrices containing counts of 
ions for different mass numbers, as a function of time. A data set collected from a 
sensory panel of judges characterizing a collection of wines with a series of 
sensory taste tests is third order: judge vs. wine vs. test, and so on.  The term 
dimension, often confused with order, has several meanings.  The number of 
variables in a given order may be called dimensions e.g., the number of judges in 
the wine tasting dataset.  Dimension may also refer to the number of orthogonal 
axes in a dataset e.g., we see objects in a three dimensional world.  Time is 
sometimes considered a forth dimension.  This latter definition of dimension will 
be used throughout this thesis.  The dimension and the order of a dataset may not 
necessarily be the same. 
 

What is the order of a hyperspectral image? Consider a hyperspectral image X 
with I rows of pixels, J columns of pixels, and K wavelengths, as depicted in 
Figure 6.  This dataset appears to be three dimensional, but this data cube 
effectively contains a set of I•J spectra, or alternatively K gray-scale single 
channel images at different wavelengths. Is a hyperspectral image third order, or 
perhaps only second order? Consider first a two dimensional data set containing a 
matrix of spectra acquired over time or vs. distance from a fixed point; this is 
clearly second order. (i.e. wavelength vs. time or wavelength vs. distance)  Now 
combine a set of these two dimensional matrices, forming a three dimensional 
matrix of spectra acquired over time as a function of distance to a fixed point; this 
data set is third order with dimensions representing time, distance, and 
wavelength.  But a hyperspectral image is in between; it has a three dimensional 
dataset, but the data units represent distance vs. distance vs. wavelength and are 
not truly third order, but perhaps two and a half.  This is significant in that third 
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order analysis techniques such as PARAFAC and TUCKER (Smilde, Bro, & 
Geladi, 2005) are limited in their application to hyperspectral images.  Higher 
order problem formulations of multivariate data is discussed further by Esbensen, 
Wold, & Geladi (1988). 
 

Hyperspectral images can however be unfolded to create a two dimensional 
dataset to make use of second order analysis procedures.  Figure 6 demonstrates 
this technique; sets of spectra are removed from a hyperspectral image one row of 
pixels at a time and arranged sequentially.  This creates a very long matrix of 
spectra with a total size of number of pixels I • J vs. number of wavelengths K.  
By retaining the pixel location information of each spectrum, spectral prediction or 
processing results can be mapped back to a spatial location, creating an image map 
of results.  This back-folding exploits the extra half order in the original 
hyperspectral image and demonstrates one of the primary advantages (spatial 
information) over other spectroscopic techniques based on sample area integration 
alone. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6  The three dimensional hyperspectral image X is unfolded into a two dimensional 
matrix X. 

 
 

3.2 Principal Component Analysis  (PCA) 
One approach to reducing the data complexity in a hyperspectral image X is to 
first use multivariate data compression tools such as Principal Component 
Analysis (PCA) on the unfolded spectral data set X.  This process separates signal 
from noise by projecting the data into a lower dimensional data space. PCA was 
first proposed by Pearson (1901) as “(a way of finding) lines and planes of closest 
fit to systems of points in the space.” Axes in the original data space are rotated to 
align with the maximum signal variance. This process results in a bi-linear 
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decomposition as depicted in Figure 7. (Wold, Esbensen, & Geladi, 1987; 
Jackson, 1991; Malinowski, 2002) The column vectors contained in P are termed 
loading vectors, while those in T are called score vectors.  The matrix E 
represents any residual noise not included in the P and T decomposition.  A is the 
number of latent variables or components retained in the decomposition and 
ranges between 1 and K, the total number of independent variables. PCA finds the 
loading and score vectors in a decreasing order of importance: the first loading 
vector p1 is the loading vector which accounts for the most variance in the data 
structure.  p2 is the next most significant component, etc.  Data compression is 
achieved by selecting only the first A latent variables to represent the signal in X.  
The remaining A+1 to K latent variables characterize noise and are contained 
within the residual matrix E. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7  PCA is a bi-linear decomposition of data into scores, loadings, and residuals. 
 
 
3.2.1 Computation considerations 

For numerical computation purposes PCA is routinely computed by a Singular 
Value Decomposition (SVD) algorithm first introduced by Beltrami (1873) and 
Jordan (1874). For a modern description see Golub & Reinsch (1970).  Here X is 
decomposed into the product of matrices U, S, and V, where S is a diagonal matrix 
containing the K singular values of X, V contains the K eigenvectors of X, and U 
contains the K normalized score vectors. By definition U and V contain 
orthonormal column vectors and are ordered to reflect a decreasing sequence of 
singular values in S.  
 
X = U S VT [1] 
 
  Because of the large numbers of spectra (I•J rows in X) and their possible co-
linearity, problems with computation speed and numerical stability may occur in 
the SVD transformation of X.  Geladi et al. (1988) showed that the SVD 
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transformation of both X and the cross product, covariance or correlation matrix 
XTX  produced the same eigenvectors V.  From Equation 1 it follows: 
 
XTX = V ST UT U S VT [2] 
 

But since U contains orthonormal vectors, UTU equals the identity matrix and 
can be removed. 
 
XTX = V ST S VT [3] 
 

Since S is a diagonal matrix with decreasing elements, the product matrix S = 
STS is as well.  Therefore Equation 3 can be further simplified: 
 
XTX = V S VT [4] 
 

The SVD of the covariance matrix, Equation 5, has the exact same form as 
equation 4.  Since both V and Vc contain orthonormal eigenvectors, and both S 
and Sc contain diagonal elements with decreasing value, it follows that V and Vc 
must be identical. 
 
XTX = Uc Sc Vc

T [5] 
 

This is a significant contribution to the PCA of hyperspectral images.  Basing 
the SVD on XTX is much faster since the cross product matrix dimensions are K x 
K which is considerably smaller.  This matrix also lacks the collinearity problems 
of X making the SVD less prone to numerical instabilities.  Once the loading 
vectors V are known the score vectors can easily be computed: 
 
XV = U S VTV = U S = T [6] 
 
3.2.2 Local modeling 
As will be demonstrated later, outlier data points with high leverage will greatly 
influence the orientation of the PCA loading vectors.  Such data points must be 
identified and removed in order to enable PCA to find the true axes representing 
data variance.  Optimal transformations will also be achieved by selecting only 
portions of the image that truly represent the sample of interest.  This subset 
selection is termed local modeling.  Figure 8 shows the difference between global 
PCA modeling (all spectra) and local PCA modeling of spectra selected by an 
image mask.  The t1-t2 score plots have been colorized to indicate relative counts 
of points with identical pairs of score values, t1i, t2i (see section 3.4.3). 
 

This hyperspectral image is a view of four rectangular pieces of cheese 
surrounded by metal frames containing Spectralon internal standards.  The global 
PCA loading vectors have become aligned with the strong variation in internal 
standard and frame spectra as well as outlier spectra, indicated by the long tail like 
structure and scattered points seen in (b).  By limiting PCA modeling to only 
spectra from the cheese areas selected with the mask indicated in (c), well defined 
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clusters of the cheeses are obtained as seen in the score plot (d).  In this local 
modeling example two of the cheeses could not be separated because they are 
almost identical in chemical composition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8  Global PCA modeling of the full image (a) results in a score plot (b) spanning the 
full image space.  The well defined clusters in score plot (d) result from the local PCA 
model based on a subset of spectra indicated by the selection mask (c). 
 
 
3.3 Partial Least Squares regression  (PLS) 
3.3.1 Regression 
The Beer-Lambert law expresses the linear relationship between spectral 
absorbance  A and concentration c: 
 
A = ε ł c [7] 
 

Here ł represents the path length of the sample.  The molar absorbtivity ε is 
specific to each analyte and is a function of wavelength.  Since the path length is 
typically constant for a given instrument it is often combined with ε and inverted,  
b =  ε-1 ł -1, allowing Equation 1 to be written in an inverse form relating 
concentration y and spectral absorbance x: 
 
y = x b [8] 
 

For sets of complete spectra this can be written in a mean centered matrix form: 
 
y = X b + e [9] 
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Where 

y is a vector of mean centered concentrations 
X is a matrix containing mean centered rows of spectra 
b is a vector of constants relating the molar absorbtivity to wavelength 
e represents the total measurement error 

 
Partial least squares (PLS) is a multivariate regression technique which 

estimates b in such a way as to maximize the covariance between y and X. 
(Sjöström et al., 1983; Frank, 1987; Höskuldsson, 1988).  Latent variables or 
components are found which are aligned with the maximum variance of X as in 
PCA, but incorporate the covariance with y as well.  These components are 
determined on the basis of decreasing significance, and choosing the correct 
number of latent variables A to include in the calibration model is essential for 
valid predictions. The weights of the first A chosen components are combined, 
resulting in the regression vector bhat which can then be used to predict 
concentrations of analyte in new spectra: 
 
yhat = X bhat [10] 
 
The residual error r is a bias measurement or difference between the predicted 
values yhat and external reference values y, obtained from wet chemical analysis: 
 
r = y - yhat [11] 
 
3.3.2 Pseudorank diagnostics 
The number of latent variables A to include in the calibration model is called the 
pseudorank. If A is too small, termed underfitting, not enough signal is 
incorporated into the calibration model resulting in poor predictions.  Overfitting 
occurs when A is too large and excessive noise is included in the calibration 
model.  This results in a good fit of the spectra used for modeling, but poor 
predictions of additional spectra. (Martens & Næs, 1989; Beebe, Pell & Seasholtz, 
1998; Næs et al., 2002) 
 

To assist with determining the pseudorank various approaches have been 
suggested for splitting the experimental data into a calibration or training set {yc 
Xc } and a test set {yt Xt.}  Leave-one-out cross validation (LOO) is a special 
splitting where each sample is removed one at a time and predicted from a 
calibration model based on all the other samples (Hardy et al., 1996).  Diagnostic 
calibration model statistics can be computed from the sum of the squared residual 
errors for each of these approaches.  The Root Mean Square Error of Calibration 
(RMSEC), Root Mean Square Error of Cross Validation (RMSECV), and Root 
Mean Square Error of Prediction (RMSEP) all indicate summary measurements of 
the errors or residuals in predictions.  PRESS plots (Predicted Residual Error Sum 
Squares) can be made which graph these error diagnostics vs. the number of latent 
variables included in the model.  A minimum value or breaking point in the plot 
may be observed when a sufficient number of variables have been included. 



 18

 
Hyperspectral images permit additional diagnostic information based on the 

predicted values and residual errors.  First, since the spectra are obtained from 
specific pixel locations within an image, spatial coordinates can be used to map 
both the predicted and residual values, thereby forming prediction and residual 
images used for visual inspection.  This technique is explained further in the next 
section.   
 

Second, because of the large number of sample spectra within a hyperspectral 
image, accurate population statistic estimates can be obtained.  It was observed 
that for the prediction results of an image region of interest (ROI) containing a 
single chemical constituent with known concentration, as the number of latent 
variables was increased, the prediction bias decreased because of better model fit, 
but at some point, the standard deviation began to increase because of overfitting.  
This can be seen in Figure 12 below. 
 

A new diagnostic D-metric was introduced in Paper II based on pooling the 
average biases and the standard deviations of predictions from N different image 
ROIs: 
 
BIASpool = [ rave

T rave / N ] ½ [12] 
 
Spool ≈ [ save

T save / N ] ½ [13] 
 
D-metric = [ w1 BIASpool 2  +  w2 Spool 2 ] ½ [14] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9  D-metric combining BIASpool and Spool prediction errors in cheese. Protein 
(circle), fat (square), carbohydrate (triangle) vs. the number of components in the 
calibration model. 
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Here rave and save represent the vectors containing the average bias and average 
standard deviation estimates from each of the N sample ROIs.  The weights w1 and 
w2 were both set to the value 1.0 in Paper II however alternate weights could be 
used.  Figure 9 (reprinted from Paper II) shows the D-metric vs. the number of 
model components for the prediction of fat, protein, and carbohydrate in cheese.  
In this case two PLS components was found to be an optimal number for all three 
ingredients. This new D-metric diagnostic combines both accuracy and precision 
variance measured throughout the hyperspectral image and was found to be quite 
robust to variations due to sample presentation errors. 
 
3.3.3 Calibration dataset selection 
Since PLS models the variance in sample spectra, it is critical that spectral data 
sets be carefully selected to ensure maximum correlation between variance in 
independent variables (spectra) and dependent variables (concentration).  The 
following two figures demonstrate problems caused by two sources of spectral 
variance. 
 

It is well known that outlier points contribute high leverage in the computation 
of regression models.  This is demonstrated in Figure 10 where the addition of a 
single outlier point greatly perturbs the regression model.  For this reason it is 
essential that the entire set of hyperspectral image spectra be carefully examined 
and purged of all outliers.  This process is examined further in a later section of 
this thesis. 
 
 
 
 
 
 

Figure 10  The outlier point * with high 
leverage perturbs the regression model.  
Two regression lines are indicated:  the fit 
including the outlier point, and the cleaned 
dataset without the outlier (circle 
symbols). 

 
 
 
 

Figure 11 demonstrates another possible danger in modeling hyperspectral 
images.  Large amounts of noise exhibit leverage effects as well, even if normally 
distributed around expected values.  Regression modeling based on mean values 
eliminates this extra variance.  For this reason, it is recommended that 
hyperspectral image regression models be based on small sets of mean spectra 
from representative ROIs, rather than large sets of all spectra contained within the 
respective ROIs.  A signal averaging effect is obtained by first computing the 
mean spectrum: thus, reducing the impact of spectral variance due to particle 
scattering or instrumentation effects. 
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Figure 11  The effect of sample noise on linear regression of large sample sets:  two sets of 
5000 points containing 5 subsets of 1000 points each with N(y,1) distributions (a) and 
N(y,5) distributions (b).  The circle symbols indicate the mean values of each of the 5 
subsets.  In both examples the regression line fit to the mean values passes through the 
circle symbols, whereas the regression line fitted to all 5000 points is indistinguishable in 
(a) but clearly perturbed in (b). 
 
 
3.4 Exploratory analysis 
3.4.1 Histograms 
What exploratory tools are available and how can they be fully utilized to examine 
the information content unique to hyperspectral images? Univariate Exploratory 
Data Analysis (EDA) tools such as histograms or box-whisker plots can certainly 
be applied, but ideally they should be applied in conjunction with other 
multivariate techniques such as PCA or PLS.  For example, histograms of all the 
reflectance values for a particular wavelength channel can be examined for 
distribution profiles, mean, skewness, range, and especially outliers.  But which 
wavelength channel should be chosen for examination?  By first performing PCA, 
the same histogram diagnostics can be applied to scores, which better summarize 
the contributions of all channels. 
 

Histograms of PLS predictions can be similarly displayed. Figure 12 indicates 
the distributions of the ~20000 predicted values for sugar concentration in an 
example hyperspectral image sample ROI.  The distributions are presented 
sequentially as a function of the number of components included in the PLS 
model.  It is clear to see that as the number of model components is increased, the 
prediction distributions move closer to the expected target value indicated by the 
vertical line.  It can also be seen that the width of the distribution of predicted 
values increases, especially with 4 or more components.  This trade-off in overall 
bias vs. standard deviation is what led to the computation of the D-metric 
described previously.  Prediction histograms can also be examined for peak purity 
information.  In this case the peaks appear unimodal with fairly Gaussian 
appearing distributions.  Shoulder peaks or other anomalies can be useful in 
assessing sample uniformity.  This information is unique to hyperspectral images 
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and is not available from spectra recorded from sample averaging or integrating 
spectrometers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12  Sugar concentrations for 1-9 component PLS models.  Summary 
histograms represent results from ~20000 spectra within a single image ROI.  The 
vertical line indicates the target expected concentration of 33%. 
 
 
3.4.2 Images 
The spatial information contained in a hyperspectral image X is totally ignored by 
PCA or PLS analysis.  After unfolding, the order of the spectra contained in X can 
be totally randomized, producing identical PCA or PLS results.  But by retaining 
the spatial coordinate information, PCA scores or PLS prediction results can be 
mapped spatially to create new images.  Since PCA performs a significant data 
compression, the first few score images will indicate the greatest contrast in the 
spectral composition of image features.  Gray scale score images can be further 
explored with more traditional processing techniques such as thresholding, edge 
detection, or application of two-dimensional transform functions applicable for 
feature recognition. 
 

Both the prediction and residual values obtained from PLS can be similarly 
examined as gray scale images.  Useful information regarding both the sample and 
instrumentation may be gained by examining these images created as a function of 
the number of latent variables.  Systematically adding components may change the 
distribution or texture appearance of sample constituents.  Adding additional 
components may also reveal other sources of signal variance such as lighting 
uniformity or other hardware stability issues. 
 

In addition to the single channel gray scale images, combinations of images may 
be combined to provide false color mapping.  Figure 13 from (Paper III) shows the 
spatial mapping for the predicted concentrations of sugar (a), citric acid (b), and 
salicylic acid (c) contained in a ternary mixture.  The false color map image (d) 
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helps emphasize non-uniformity issues due to perhaps incomplete mixing of 
ingredients. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13  PLS prediction images for sugar (a), citric acid (b), and salicylic acid 
(c), can be overlaid to produce a false color map (d). 
 
 
3.4.3 Score plots 
Sometimes the EDA tool itself can be enhanced to augment the information 
content presented.  Such is the case with two dimensional score plots common to 
PCA analysis.  This plot is often used for pattern recognition or classification 
purposes.  When twenty to one hundred samples are plotted it is often possible to 
identify clustering of data points with or without the aid of additional symbol 
information.  However, when twenty or one hundred thousand points from a 
hyperspectral image are plotted the relative abundance and importance of 
clustering is easily lost:  one point may represent a single sample point, while 
another may in fact be one thousand sample points with identical score values.  
Esbensen & Geladi (1989) alleviated this problem by counting the number of 
points with each score pair (a two dimensional histogram) and mapping a color 
scale to the relative abundances.  Figure 8 and Figure 23 show examples of color 
mapping, where green indicates a very few sample points and red or white 
indicates a large number of points.  This color mapping helps to identify clusters 
of sample points with high populations indicating a large number of pixels with 
similar spectral characteristics.  It is equally important to view the sparsely 
scattered points representing outliers or pixels with unique spectral features. 
 
3.5 Summary of chemometrics 
Advances in computational hardware and the development and application of 
chemometrics were necessary to transform the field of NIR spectroscopy into a 
useful analytical tool.  This same combination of hardware and software tools 
must be further exploited to analyze and extract the information contained in 
hyperspectral NIR images.  The excessive amount of data in each hyperspectral 
image is both a burden and an advantage. 
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The set of spectra selected to use for calibration model building must be 
carefully filtered (cleansed of outliers), identified and masked to represent only the 
constituent of interest (local model), and spectrally compressed to reduce physical 
or instrumental contributions to spectral variation (mean ROI spectra). 
 

Processing results can be presented in new ways indicating population statistics 
and distributions (histograms) as well as incorporating spatial information (gray 
scale and false color mappings of score images, prediction images, or residual 
images).  Two dimensional score plots can be color mapped to reveal relative 
abundance of pixels with similar or unique spectral characteristics. 
 
 



 24

4.0 Hyperspectral Image Transformation and 
Standardization 

The signals acquired from a spectroscopic detector represent digitized values of 
voltage or current resulting from photons impinging on the surface of a 
photosensitive substrate.  The magnitudes of these signals are wavelength 
dependent due to differences in quantum efficiencies of the detector, system 
optics, and illumination intensity variations.  Standard Reference Materials 
(SRMs) are used to allow transformation of the instrument signals into reflectance 
or absorbance units, permitting comparisons between different sample spectra and 
spectral libraries.  Multivariate techniques such as PLS can be used to create an 
additional layer of calibration models to permit the conversion of reflectance or 
absorbance spectra into concentrations of chemical constituents. 
 

Both the reflectance transform functions and calibration models for prediction of 
chemical constituents remain valid only as long as the sample, instrument, and 
surrounding environment remain stable.  Physical changes in the sample such as 
particle size or texture, changes in the instrument response function due to 
component aging or power fluctuations, or even changes in ambient room 
temperature or humidity may lead to erroneous results. Periodic instrument 
standardization is needed to ensure that spectroscopic data is consistent on a day 
to day basis from one instrument, as well as between instruments. 
 

Instrument signal transformation, standardization, and calibration are common 
topics in spectroscopy.  These processes can be applied to hyperspectral image 
spectra as well. This section of the thesis explores transformation and 
standardization issues that are unique to hyperspectral images.  First, since a 
hyperspectral image contains thousands of spectra, how can the raw instrument 
signal be transformed to best ensure that a uniform response has been achieved for 
all pixel locations at all wavelengths within a single hyperspectral image?  Second, 
can subtle image to image or day to day variations in imaging system response be 
detected in such an extremely large dataset, and if so, how can they be best 
corrected?  Answers to these questions are dependent on having valid calibration 
standards to use for routine measurements.  What standard reference materials 
should be used for calibration of hyperspectral images?  These topics are 
discussed below. 

 
4.1 NIR Standard reference materials 
In the case of near infrared spectroscopy, spectral resolution varies considerably 
ranging from high resolution FT-IR (4 cm-1 ~ 0.4nm) to very coarse resolution (10 
to 20 nm) found in dispersive instrument configurations.  The NIR region extends 
from 700 to 2500 nm (14300 to 4000 cm-1) and the instrumentation is operated in 
both transmission and diffuse reflectance mode.  Finding SRMs for this broad 
range of conditions is not easy. SRMs are needed to calibrate and correct raw 
spectra for variations in both wavelength and intensity axes.  Spectral band 
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features in SRMs should not change because of the variation in spectral resolution 
of the instrumentation.  Standards should be stable, inert, and insensitive to 
environmental changes such as temperature and humidity.  They should also be 
easy to handle, easily cleaned, and be affordable. 
 
4.1.1 Wavelength standards 
Several types of materials have been considered as NIR wavelength or 
wavenumber standards.  Water peaks are abundant in the NIR region, but are 
typically unresolved multiplets.  Choquette et al., (2002) describe the history and 
release of the first certified SRMs.  SRM 2517 and SRM 2519 are gas standards 
that contain many lines which can be fully resolved by high resolution instruments 
only.  Polystyrene is inexpensive and contains highly reproducible but asymmetric 
bands, primarily occurring above 1600 nm  (Choquette, 2000). Locating the peak 
center in all these materials is highly dependent on spectral resolution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14  Spectrum of the prototype SRM 2035 standard reference material containing rare 
earth oxides. 
 
 

The NIR optical properties of glass containing rare earth oxides were presented 
by Fuxi (1992).  This led to a glass based SRM released by the National Institute 
of Standards (NIST), SRM 1920a, containing a mixture of erbium oxide (Er2O3), 
dysprosium oxide (Dy2O3), and holmium oxide (Ho2O3).  Further development led 
to SRM 2035 and by adding a backing of sintered polytetrafluoroethylene (PTFE), 
SRM 2036 (Choquette et al., 2005). This material contains the rare earth oxides 
samarium (Sm2O3), ytterbium (Yb2O3), and holmium (Ho2O3).  Choquette, 
O’Neal, & Duewer (2003) examined the stability of these glass materials as a 
function of temperature.  These SRMs have also been used to explore comparisons 
of spectrometers and peak fitting or spectral preprocessing effects on peak center 
locations (Isaksson et al., 2003).  Specially cut pieces of a prototype glass for 
SRM 2035 were obtained from Steve Choquette, NIST for use in this thesis.  A 
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typical spectrum for this material is displayed in Figure 14.  In this case the 
spectrum is the mean of over 12,000 spectra contained within a sample ROI of a 
diffuse reflectance hyperspectral image of the glass material positioned on top of 
99% reflectance material. 
 
4.1.2 Reflectance standards 
Spectroscopic reflectance standards are generally provided in one of three forms: 
powdered, thin films or coatings, or solid tiles.  Color ceramic tiles are popular 
SRMs for calibration of visible light (CERAM, Staffordshire, UK).   Similar white 
ceramic tiles can also be used in NIR applications; however reference materials 
made from MgO, BaSO4, or PTFE are more common.  Both BaSO4 and PTFE 
materials are used in powdered from as pressed disks, or as surface coatings for 
integrating spheres (Weidner & Hsia, 1981).  The variability of test spectra due to 
powder batch, instrumentation, and operator differences was reported by Barnes & 
Hsia (1995). 
 

For imaging applications it is desirable to have material that exhibits high 
Lambertian reflection, diffuse reflection that is uniform in all angles.  The 
predominant material in use is Spectralon, a sintered PTFE material (Labsphere, 
USA).  This material is also available with increasing amounts of black carbon 
added to produce gray reflectance standards.  Spectralon tiles with 99, 75, 50, 25, 
and 2 percent reflectance values were used extensively in this thesis.  These gray 
body reflectors are appropriate for area integrating spectrometers; however, at 
some level of magnification this material no longer appears homogenous.  This 
can cause problems for image calibration.  For this thesis, this issue was partially 
alleviated by randomly moving the Spectralon tiles during image acquisition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15  Emission spectrum of a fluorescent light tube averaged from 5000 
sample spectra, scaled as percent reflectance. 
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4.1.3 Additional Considerations 
One source of spectral measurement error is the detection of stray light within the 
spectrometer system.  This is especially important in imaging applications where 
high specular reflections from regions outside the intended sample field of view 
can enter the camera.  It is important, therefore, to position image samples on a 
background with minimal reflection.  Silicon carbide sandpaper provides an ideal 
sample background for this purpose; it has a very low reflectance throughout the 
NIR region, the surface texture helps to prevent sample movement, and it is 
inexpensive and disposable. 
 

A possible inexpensive radiation source for NIR wavelength calibration is the 
light emitted from ‘low energy consumption’ fluorescent lamps readily available 
for home use.  This light can be measured either directly or reflected from a 
Spectralon surface.  Figure 15 displays the average spectrum measured from 5000 
spectra in a hyperspectral image region of a 20 W fluorescent lamp.  The peaks are 
very sharp; however, the effects of temperature and power supply fluctuations on 
peak position are not known. 
 

New SRMs are needed specifically for hyperspectral imaging which appear 
homogenous at different scales of magnification.  It is not necessary that these 
materials have flat response spectra, as with Spectralon.  This is actually a 
disadvantage since very little wavelength information is conveyed.  It is only 
necessary that a set of standards span the full spectral space of the samples to be 
measured.  New standards that span the sample space and reflectance space need 
to be further investigated.  Standards for spatial calibration should be considered 
as well; spherical aberration, vignetting, and depth of field are important issues 
that relate to spatial resolution, but are dependent on wavelength as well. 
 
4.2 External standards 
Paper I describes in detail the use of a set of five Spectralon tiles to build models 
for transforming raw instrument signals into reflectance.  These models were 
based on acquisition of complete hyperspectral images of 99, 75, 50, 50, and 2 
percent reflectance tiles.  The objective was to transform the raw signal from any 
future sample images into reflectance.  The average spectrum from each 
hyperspectral image can be used to create transform models for each wavelength 
channel, accounting for any wavelength response dependencies in the camera.  
These models are termed global models.  To account for spatial variation in 
illumination and other system responses, independent reflectance transform 
models were also computed for every pixel location at every wavelength channel, 
termed local models. 
 

These two broad classes of transformation models were further sub-divided 
based on the type of model computed.  Calibration reference spectra were 
available for each of the Spectralon SRMs, consequently regression models were 
computed where the independent variables x represent the five hyperspectral 
image spectral values, and the dependent y variables were computed from 
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polynomial interpolation of the supplied reference spectra.  Five sample points 
were available, so that both linear and second order (poly) regression models 
could be computed.  Since baseline offsets are determined automatically by 
regression, no dark current or background measurement is needed.  However, for 
comparison purposes, dark current images were also acquired and used with the 99 
percent reflectance image to create single point transforms, termed simple models. 
 

Figure 16 (Paper I) summarizes the general results of these approaches.  The 
second order model permits the best approximation of the target reference spectra 
(a) and the local models (b) reduce the noise contributions sustained at each pixel. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 16  (a) The average spectra for 50 percent reflectance Spectralon based on simple 
(top), linear (middle), and second order (bottom) regression models.  (b) The average 
spectra with standard deviation bands for 75 percent Spectralon based on second order 
global models (top) and individual pixel models (bottom).  The targeted reference spectra 
are indicated by the dashed lines. 
 
 
4.3 Internal standards 
To correct for these instability issues, the instrument standardization techniques 
Direct Standardization (DS) and Piecewise Direct Standardization (PDS) were 
introduced (Wang, Veltkamp, & Kowalski, 1991; Shenk & Westerhaus, 1991). 
Here a set of carefully selected calibration standards are measured on two different 
instruments termed a slave and a master. The two resulting sets of spectra are used 
to compute a transfer function that allows the conversion of spectra from the slave 
instrument into approximations of the equivalent spectra, had they been acquired 
on the standardized master instrument.  Computation of the transfer function is 
based on the spectra from the calibration standards; however, once computed it 
can be applied to transform any subsequent sample spectra.  While this process 
does improve spectral stability, it is time consuming and there is uncertainty about 
when or how often to perform a new standardization. 
 

The use of SRMs embedded within the image field of view was investigated for 
instrument standardization.  The hyperspectral images acquired for use in this 
thesis work contained over 80,000 pixels or spectra; some of the spectra could be 
used for calibration purposes, while retaining large areas for sample imaging.  
Initially four tiles of Spectralon were positioned in the corners of the field of view, 
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however the metal frames enclosing the tiles used image space and their specular 
reflection may have contributed to stray light problems.  A gray scale was 
obtained that contained eight pieces of Spectralon laminated together that could be 
positioned along one edge of the image (TestElek Svenska AB). This calibration 
scale ranged from 99 to 2 percent reflectance, but its 10 cm length prohibited the 
viewing of all eight segments at one time.  Consequently, some of the material was 
excluded from the field of view.  Figure 17 shows a typical image indicating the 
placement of this scale. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17  A typical image (320 x 256 pixels) indicating the placement of internal standards 
for intensity calibration (gray scale on right) and wavelength calibration (dark rectangle on 
top of gray scale).  The sample is contained in a circular holder with glass window.  The 
axes labels indicate pixel location. 

 
Since the gray scale was included in all images, instrument standardization 

based on signal intensity could be achieved.  But the Spectralon materials 
purposely have a very flat spectral response and are therefore inappropriate for 
wavelength calibration.  A rectangular piece of the prototype SRM-2035 glass was 
obtained from NIST which could be positioned directly on top of the Spectralon 
gray scale.  This configuration provided a series of wavelength calibration spectra 
with decreasing signal intensity.  This material can also be seen as the dark 
rectangle on the far right in Figure 17. 

 
Corrections based on these internal standards are discussed in both Papers I and 

II.  In general it was found that the intensity corrections had very little effect on 
quantitative results.  However, the spectra were useful in monitoring the health of 
the camera system.  The median spectra from a region of the 99 percent standard 
for a series of hyperspectral images acquired in one day were analyzed with PCA.  
The resulting score plot is displayed in Figure 18.  The two clusters of sample 
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points can be attributed to image acquisition times occurring either before or after 
an automatic upload of the filter settings in the camera.  This change in the filter 
had minimal apparent effect on the prediction results from sample spectra, but was 
readily apparent in the diagnostic plot.  Unfortunately the glass standard was not 
available at the time that these images were made, however similar PCA plots of 
spectra from the glass standard from images acquired on later days were also 
periodically examined.  In those cases, variation in score values appeared to be 
random, with no time dependencies indicated.  This approach utilized the spectral 
intensities at all wavelengths.  The location of peak centers could be compared as 
well but was not attempted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18  Score plot of 99 percent reflectance internal standard from 21 hyperspectral 
images.  The two clusters of points correlate to image acquisition times before and after an 
update to the camera filter system. 
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5.0 Outlier Detection 

An outlier is an observation that lies at an unusually large distance from other 
values observed in a small random population sample.  Outliers can distort simple 
population statistics such as the mean and standard deviation, and have high 
leverage effects on chemometric techniques (Martens & Næs, 1989; Beebe, Pell, 
& Seasholtz, 1998; Næs et al., 2002).  This was demonstrated by the effect on 
linear regression indicated in Figure 10 where a single point greatly perturbed the 
slope of the regression line.  It is important to identify dataset outliers and 
selectively remove them from both calibration model generation and prediction 
processes.  Since hyperspectral images contain millions of data values, it is also 
important to utilize automatic outlier detection and removal schemes.  Several 
different approaches investigated in this thesis are described below.  To correctly 
determine any abnormal outliers, what is normal must first be characterized.  This 
characterization includes identifying the expected range in data values, an estimate 
of signal to noise ratios, and especially with multivariate data, the shape and 
orientation of sample distributions. 
 

In the case of the hyperspectral NIR imaging system used in this thesis, the 
Spectralon standard reference materials used to create reflectance transform 
models could be used to assess the signal and noise structure of the system as well.  
The series of five large Spectralon tiles were first imaged and used to create a 
second order reflectance transform model for each wavelength at every pixel.  
This model was then used to transform the five acquired images into reflectance 
values.  Any spatial variations due to instrumentation should have been removed 
by this process, resulting in hyperspectral images with very flat or uniform 
wavelength channels.  The average spectrum from each image should agree with 
the reference spectrum provided with the standard reference material. 
 
 
 
 
 
 
 
 
 
 

 
Figure 19  Mean spectrum with standard deviation computed from the entire hyperspectral 
image, 99% reflectance standard left, and 2% right. 
 
 

Figure 19 displays the mean spectrum and standard deviation for both the 99 
and 2 percent SRMs.  Both plots have the same vertical scale of 2 percent 
reflectance.  The standard deviations for both materials are fairly consistent 
throughout the full spectral range with a gradual increase from 0.2 to 0.3 percent 
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increasing with longer wavelengths.  These two materials span the extremes of 
nearly total reflectance to total absorbance and suggest a rather homoscedastic 
noise structure. 
 

The 81,000 points within the 1200 nm wavelength channel are displayed as 
histograms for each of the five Spectralon standards in Figure 20.  Again the 99 
and 2 percent SRMs appear quite consistent, having distributions with similar 
shapes and sizes.  However, the intermediate reflectance SRMs have a substantial 
wider distribution.  For comparison purposes, all five histograms have the same 
vertical scale and a 10 percent wide horizontal scale. 
 
 
 
 
 
 
 

 
 
Figure 20  Histograms of 81,000 points measured at 1200 nm in each of the Spectralon 
standards indicates a substantial increase in noise with the blended materials used for 25, 
50, and 75 percent reflectance. 
 
 

What caused this increase in sample variance?  The two extreme reflectance 
standards, 99 and 2 percent, are manufactured from very homogenous PTFE 
derived materials; the intermediate valued reflectance standards are blends of these 
two materials.  With course magnification or sample spinning often found in 
integrating spectrometers, these two materials are averaged together.  The 
hyperspectral images used for Figure 19 and Figure 20 were made from fixed or 
stationary samples where the spatial resolution of the image captured the 
inhomogeneity of the blended materials.  Based on these conclusions, the 
Spectralon materials were either spun on a bearing (Volvo, Sweden) or randomly 
moved by hand during image acquisition.  This physical averaging effect generally 
decreased the peak width of the signal distribution, but introduced other 
complications such as doublet formations, possibly due to vibrations or tilting of 
the sample surface during sample movement.  Homogenous materials or better 
solutions to random sample movement need to be developed. 
 
5.1 Hardware bad pixels 
Detectors such as the InGaAs detector used in this thesis are notorious for having 
random elements which respond with erroneous data values.  These elements in 
images are known as dead or bad pixels.  Often these points occur with either a 
constant zero or maximum signal value, but elements that are simply stuck at an 
intermediate value may occur as well.  The detector in the hyperspectral imaging 
system for this thesis used a 12 bit analog to digital converter, with data values 
ranging between 0 and 4095.  This instrument was tuned with a 99 percent 
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reflectance tile so that the maximum expected signal counts were typically 3900, 
thereby avoiding signal saturation.  The measured dark current or background 
signal from this detector had a typical value of 300 counts.  Consequently a simple 
thresholding approach was used to identify any pixels with an unusual value; any 
spectrum containing a data value less than 100 or greater than 4000 was removed 
from further processing.  This cleaning process removed the problematic data 
outliers with extreme signals, but it did not detect or remove the pixels with 
constant intermediate values within the acceptable data range. 
 
5.2 Distance to mean spectrum 
One of the simplest outlier tests was based on the Euclidean distances between 
spectral data sample points.  Data subsets were first selected utilizing spatial 
masks identifying regions of interest (ROIs) within sample images.  These 
rectangular or circular regions were selected such that each individual ROI 
contained only a single class of sample data.  When the selected spectra contained 
within such an ROI mask are viewed in a K dimensional feature space (K equals 
the number of variables or wavelengths), their distribution should appear as a 
cluster or ball of data points.  One test for outliers is based on the Euclidean 
distance to the center of this cluster.  This test is depicted in Figure 21 for two 
dimensions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21  Outliers can be identified based on their Euclidean distance to the mean sample 
point xm indicated by the small circle symbol.  The gray region indicates a hypersphere 
boundary with a radius of three standard deviations based on the distances of all sample 
points.  The sample points marked with squares are outside this boundary and are therefore 
identified as outliers.  The samples marked with triangles may also be outliers, but fall 
within the hypersphere boundary. 
 
 

The center of the cluster, xm, indicated by the circle symbol was first computed 
as the mean of all spectra contained in the sample subset Xc.  The distance d for a 
single sample spectrum x to this center point was then computed: 
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d = ((x - xm) T (x - xm)) ½ [15] 
 
An initial outlier test was based on the computed distances d for all spectra 
contained in Xc.  An estimate of the mean md and standard deviation sd of the 
population of distances d was computed and any spectra with distances greater 
than three standard deviations from the mean distance value were removed from 
Xc.  However, the location of the mean spectrum xm is heavily influenced by 
outliers, which led to an improved detection and cleaning process:  after removing 
the detected outliers a new xm, d, md, and sd were computed from the cleaned Xc. 
The new distances d were tested again for additional outliers based on the new 
population statistic estimates.  As additional outliers are removed, the mean md 
may shift and the standard deviation sd will shrink.  Consequently this detection 
and cleaning process was repeated iteratively until no more outliers were detected. 
 

This simple Euclidian distance cleaning process gives equal weight to all 
wavelength variables and assumes equal variances as well.  Outlier detection is 
effectively based on the identification of any outliers outside a hypersphere with a 
radius of three standard deviations.  The three sample points marked with squares 
in Figure 21 were identified as outliers.  The sample points with the triangle 
symbols could also possibly be considered outliers, but their distances were within 
the limits of the hypersphere. 
 
5.3 Angle to mean spectrum 
If a sample set contains many spectra with a common chemical constituent, any 
variations in the concentrations of this constituent will be observed as an 
elongated clustering of feature space points.  The elongated axis will be aligned 
with a vector representing the spectral values of this constituent. Such a data 
structure is exemplified in Figure 21 and Figure 22.  This variance in 
concentration contributes to a larger sample variance which increases the radius of 
the hypersphere boundary used in the outlier distance test.  A second outlier 
detection test was inspired by the collinearity of such expected components. 
 

The similarity of two spectra can be quantified as the cosine of the angle 
between their vectors in feature space.  This value can be used to test for outliers. 
As in the distance based outlier test, a mean spectrum xm was first computed from 
all sample spectra Xc. The cosine of the angle α between any spectrum x and xm 
can then be computed: 
 
α = xTxm ( ||x|| ||xm|| )-1 [16] 
 
Here the spectra are normalized to unit length as indicated by the double bar 
operator. 
 

The mean value mα and standard deviation estimate sα were then computed from 
the entire collection of angle cosines α.  Outlier detection and trimming of samples 
with an angle cosine greater than three standard deviations from the mean was 
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performed.  As with the distance detection approach, this cleaning process was 
repeated iteratively, refining Xc, xm, mα, and sα, until no further outliers were 
detected.  Figure 22 represents this angle based outlier detection.  In this case the 
dissimilar points indicated by the triangle symbols are detected as outliers, while 
the sample points with square symbols previously identified as distance based 
outliers are now deemed acceptable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22  Outlier detection can be based on spectral similarity as indicated by the angle α 
between the vectors passing through sample point x and the mean spectrum xm.  The gray 
region represents a three standard deviation wide region of acceptable points, based on the 
angle cosines of all samples points.  The samples with triangular symbols are now identified 
as outliers, while the samples represented with square symbols are acceptable points. 
 
 
5.4 Prediction extremes 
The outlier detection tests of faulty hardware, or distance and angles  in feature 
space, are all descriptive of spectral information obtained from wavelength data, 
or independent variables.  Outliers may also be observed as unacceptable values in 
predicted values, or dependent variables.  When validating a PLS calibration 
model, both calibration and test set prediction values and residuals should be 
examined.  As with the spectral distance and angle tests, estimates of the 
population means and standard deviations may be computed to set limits for 
outlier detection.   
 
5.5 Example 
The following example demonstrates the advantages of the outlier detection and 
cleaning process.  A hyperspectral NIR image was made of four Swedish cheeses 
surrounded by four internal standard Spectralon reference tiles.  All spectra were 
transformed to reflectance based on a second order transform model.  Figure 23 
indicates the effect of the sequential application of masks and the PCA score plots 
of the spectra remaining in the image dataset. 
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Figure 23  The sequential application of masking and outlier detection and removal is 
applied to the hyperspectral image of four cheeses.  A representative wavelength channel 
image and score plot of all 81920 spectra is presented in the top row.  A region of interest 
mask in the second row reduces the sample pixel count to 40,145.  Thirty two hardware 
outliers are identified and removed in the third row.  6461 outliers were detected and 
removed in the last row, based on a class distance cleaning of each of the four cheese 
regions.  The end result is a score plot with three well resolved classes.  Two of the cheeses 
were severely overlapped and could not be resolved. 
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The top row displays an image of one wavelength channel showing the location 
of the four cheese samples.  The long streaming tail formation evident in the color 
intensity mapped score plot of all 81920 spectra is due to the internal standard 
reference materials and their frames. 
 

The four white rectangles in the second row indicate region of interest mask 
areas to select for the four cheeses.  The spectra associated with the black pixels 
were removed from the data set leaving 40,145 sample spectra.  This ROI masking 
removes the streaming tail structure from the score plot, but many scattered outlier 
points are still evident. 
 

Hardware thresholding was applied to the remaining spectra, resulting in 32 
randomly located spectra identified with data values out of range.  These pixels are 
indicated in the mask on the third row.  Even after removal of the faulty spectra 
from the data set, the score plot still indicates many remaining outliers. 
 

Spectral class distances were computed for the remaining pixels in each of the 
four cheese classes.  Each class of spectra was processed using the iterative 
distance detection algorithm based on class population mean and standard 
deviation.  In total, 6461 outliers were detected and removed, indicated by the 
black pixels in the mask on row four.  This may sound like a significant number of 
samples to throw out, but it is less than 8 % of the original image. However before 
discarding, it is important to examine any outliers for causes of data faults. In this 
case these pixels had very high values, probably due to specular reflection.  
Removal of this last set of class outliers resulted in a major improvement in the 
score plot.  Three very well defined clusters of points can now be seen which 
correlate with the cheese types.  Two cheese types were highly overlapped and 
could not be resolved as separate classes. 
 

The example given here was analyzed before the development of the class based 
angle similarity detection algorithm.  PLS-I models were made for the determination 
of fat and protein. Iterative statistical analysis of the predictions of the calibration 
data set resulted in identification and removal of 41 additional outlier points.  This 
combination of localized ROI masked data and detection and removal of dataset 
outliers assured generation of the best possible PLS calibration model. 
 
5.6 Summary of outlier detection 
No clear approach is adequate for detection and removal of all outlier data; each of 
the spectral based processing approaches, hardware thresholding, class distance, or 
class similarity, was insufficient by itself.  The combination of all three 
approaches did however effectively screen most outliers.  These processes could 
be totally automated; however it is important to manually examine the outliers that 
are being removed, as well as the clean data, to make sure no outliers remain.  
Additional spectral preprocessing further complicates things.  It was found that 
applying treatments such as derivative transformations to previously cleaned 
datasets, often resulted in datasets with new outlier types.  Because of this, the 
outlier detection process was repeated after preprocessing treatments as well. 
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It should be cautioned that the estimates of population statistics such as mean 
and standard deviation were often made on distributions that were clearly not 
normal distributions.  These statistics were still useful for characterizing 
distribution differences; however, their use should not be confused with normal 
distribution statistics. 
 

Alternative outlier tests could be applied as well.  Computation of PCA and 
Mahalanobis distances could be performed to first  suppress unwanted noise.  The 
PCA loading vectors are also susceptible to leverage effects by outliers, so an 
iterative approach should be utilized here too.  This could be quite 
computationally exhaustive with large hyperspectral data sets.  An iterative 
Singular Value Decomposition (SVD) approach could be considered to speed up 
this approach and warrants further research for more complex spectral sets 
containing multiple classes. 
 

Regardless of the detection scheme used, the sheer number of spectra available 
in hyperspectral images provides two distinct advantages for outlier detection.  
First, since sample population size is quite large, population statistic estimates are 
reliable.  Second, this large sample size permits the liberal removal of outliers; if 
hundreds or even thousands of samples are thrown out, tens of thousands of 
samples still remain.  This permits the selection of very clean calibration sets 
which lead to more reliable and robust calibration models. 
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6.0 Spectral Preprocessing 

Individual spectral outliers are data vectors containing errors or dissimilar data 
values that cause them to appear abnormal or substantially different from the 
normal or expected population of spectra.  Less severe sources of data variance 
may also occur which may effect many or all spectra in the population 
contributing to an overall shift or disturbance to the quality of the dataset.  Sources 
of variance could be instrumental noise, sample preparation issues, or simply 
sample contamination or introduction of a new chemical component.  Various 
filters or transformations may be applied to these spectra to reduce the effect of 
these variances.  Transformations may be applied to reduce or counter the effect of 
noise, account for baseline offsets or slopes, or simply change non-linear 
components of the signal.  Collectively these data transformations are called 
spectral preprocessing treatments. 
 

While these treatments were initially developed for processing small sets of 
individual spectra from integrating spectrometers, they can also be applied to the 
thousands of spectra within hyperspectral images.  Two related questions were 
considered in this thesis:  First, how do preprocessing treatments of the spectra 
affect prediction results unique to hyperspectral images?  Second, what additional 
sample information can be gained from the combination of preprocessing 
treatments with the spatial information provided by hyperspectral images?  The 
first question is addressed further in papers II and III, while the second is explored 
in paper IV.  Results are summarized below.  For general discussions of spectral 
preprocessing treatments, see Katsumoto et al. (2001), Næs et al. (2002), and 
Thennadil & Martin (2005). 
 
6.1 Linearization transforms 
The transformation process described in section 4.2 of this thesis was used to 
convert instrument signal counts to reflectance units; however, the resulting 
reflectance values are not directly proportional to chemical constituent 
concentrations, frequently the objective of spectral analysis.  Two spectral 
pretreatments are often applied to linearize reflectance responses: conversion of 
spectral units to absorbance, or application of the Kubelka-Munk transform. 
 
6.1.1 Absorbance 

The Beer-Lambert law (Eq. [7] section 3.3.1) expresses the linear relationship 
between spectral absorbance and concentration.  For a given analyte at a particular 
wavelength the absorbance A is defined as: 
 
A = - log10 ( IT / I0 ) = - log10 ( T ) [17] 
 
Where: 

I0 is the intensity of incident light 
IT is the intensity of light transmitted. 
T = IT / I0 is known as the transmittance   ( 0 ≤ T ≤ 1 ) 
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For reflection spectroscopy a similar expression is used: 
 
A = - log10 ( R )    or    A =  2 - log10 ( RP ) [18] 
 
Where: 

R = IT / I0 is known as the reflectance  ( 0 ≤ R ≤ 1 ) 
Or in alternate units, RP is percent reflectance  ( 0 ≤ RP ≤ 100 ) 

 
This equation was used to transform the reflectance values to absorbance at each 
wavelength of the hyperspectral image spectra.  This linearization of reflectance 
values is only valid for low analyte concentrations, i.e. high reflectance values. 
 
6.1.2 Kubelka-Munk 
The Kubelka-Munk theory was developed to account for the effect of both 
absorbance and scattering in thin films of paint. (Kubelka & Munk, 1931).  
Equation 19 shows the relationship between the absorbance and scattering 
constants K and S and the diffuse reflectance R from an infinitely thick material: 
 
K/S = (1-R)2 / 2R [19] 
 
As with the absorbance transformation, this equation was applied directly to each 
wavelength of the hyperspectral image reflectance spectra. 
 

The K value is primarily a function of the chemical composition, while S is 
dependent on physical and non-homogeneity properties of the sample.  When R is 
less than 60% (or K/S > 0.13), equation 19 deviates from experimental results 
(Kortum, 1969).  This suggests that the Kubelka-Munk transform should be 
applied when scattering dominates over absorbance.  This can be achieved by 
grinding samples to very fine powder, increasing scattering.  Samples can also be 
diluted with non-absorbing materials such as potassium bromide.  An alternative 
linearization treatment has been proposed by Švedas (2004) but was not 
considered in this thesis. 
 
6.2 Additive transforms - derivatives 
Changing spectral baseline offsets and slopes are considered as additive processes.  
For example changes in instrumentation such as lamp intensity, temperature, or 
detector response, or changes in sample orientation, particle size distributions, or 
packing may result in a background signal that is added equally throughout the 
spectrum, or possibly uniformly as a function of wavelength.  These constant 
additive effects can be compensated for by applying first and second derivative 
transforms (Giesbrecht, McClure, & Hamid, 1981; Norris & Williams, 1984; 
Hopkins, 2001).  Derivative spectra can be computed based on the differences of 
adjacent data points; however, this can greatly magnify noise contributions.  When 
discrete spectral data points are evenly spaced, derivatives can be computed using 
standard Savitsky-Golay polynomial filters (Savitzky & Golay, 1964; Steiner, 
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Termonia, & Deltour, 1972; Madden, 1978). These filters have an additional 
smoothing effect resulting from fitting the multiple data points used within the 
filter window.  The use of digital derivatives of higher orders can also be used to 
assist with the determination of peak widths and intensities (Morrey, 1968).  Such 
information may be useful for matching of spectra to spectral libraries. 
 

Derivative transforms can be applied to both reflectance and absorbance spectra.  
In this thesis derivatives based on absorbance spectra that retained their linear 
relationship with constituent concentration were used for prediction analysis.  The 
analysis of scatter effects was based on the transformation of reflectance spectra.  
The hyperspectral images considered here typically had 118 wavelength channels.  
Second order five point polynomial filters were used for both first and second 
derivative transforms.  Window sizes were determined empirically based on the 
visual examination of sample plots of transformed spectra.  These values retained 
the maximum spectral resolution while minimizing noise enhancement effects. 
 
6.3 Multiplication transforms - scatter corrections 
Martens, Jensen, & Geladi (1983) and Geladi, McDougall, & Martens (1985) 
proposed an alternative correction for scatter effects, Multiplicative Scatter 
Correction, (MSC).  A target spectrum is first computed, typically the mean 
spectrum xm from the sample data set.  For each sample spectrum x, it is assumed 
that the scatter effect is constant for all wavelengths.  A plot of x vs. xm for all 
wavelengths should therefore result in a straight line.  The offset b0 and slope b1 
estimates from a linear regression of x vs. xm can be used to compute a corrected 
spectrum, xc: 
 
xc = (x - b0) / b1 [20] 
 

This correction process computes a different offset and slope unique to each 
sample spectrum.  But the scatter effect may not be exactly the same for all 
wavelength ranges.  Isaksson & Kowalski (1993) proposed correcting the spectral 
value at each wavelength with independent offset and slope correction terms.  
These terms are also computed by linear regression, using a small window of data 
centered about each wavelength.  This technique is called Piecewise Multiplicative 
Scatter Correction (PMSC).  Another variant, Extended Multiplicative Signal 
Correction (EMSC) was presented by Martens & Stark (1991) and Martens, 
Nielsen, & Engelsen (2003).  Results from testing both the MSC and PMSC 
techniques on hyperspectral image spectra are presented in this thesis.  These 
results are detailed in Paper IV, and summarized in section 8.2. 
 
6.4 Other transforms 
The Standard Normal Variate (SNV) transform was proposed by Barnes, Dhanoa, 
& Lister (1989) to correct for multiplicative scatter effects.  Although this 
technique does not require the use of a target spectrum, it has been shown to be 
linked directly to the MSC transform (Dhanoa et al., 1994).  This transform 
normalizes each spectrum x by first subtracting its mean value xm followed by 
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dividing by the standard deviation xs.  This process effectively creates a common 
baseline offset (zero) and variance (one) for all spectra.  Two additional 
normalization techniques were considered:  the 1-Norm and 2-Norm.  These 
normalization transforms scale each spectrum x such that the area of x is one (1-
Norm) or the length of x is one (2-Norm).  These three normalization techniques 
were explored in this thesis. 
 

New signal correction techniques have been more recently introduced for 
reducing the noise contributions that are not correlated to dependent or response 
data.  Orthogonal Signal Correction (OSC) was first introduced by Wold et al. 
(1998) with subsequent improvements suggested (Westerhuis, de Jong, & Smilde, 
2001; Trygg & Wold, 2002; Trygg, 2003).  A comparative analysis application 
was presented by Pizarro et al. (2003).  In addition to improving spectral quality 
by the application of spectral pretreatments, multivariate analysis techniques have 
been extended to make them more robust to outliers and noise.  This work has 
been described in summary by Liang & Kvalheim (1996) and Møller, von Frese, 
& Bro (2005). 
 
6.5 Applied testing 
Three different collections of samples were investigated to explore the effects of 
preprocessing treatments and multivariate analysis of hyperspectral NIR image 
spectra: 
 

1. A designed experiment sample set consisting of standard mixtures of 
sugar, citric acid, and salicylic acid was carefully prepared using 
gravimetric techniques.  This set of Tri-Mix samples was created to 
provide mixture samples with accurate response variable data, the 
concentrations of the individual constituent ingredients. The ingredients 
chosen had a combination of unique and highly overlapping spectral 
features. 

 
2. A set of commercially available Swedish cheeses were obtained and 

imaged to use for testing the effect of preprocessing treatments on the 
predictions of fat, protein, and carbohydrate content.  This sample dataset 
represented a valuable application of NIR imaging to food analysis.  The 
response variable values were obtained from product packaging labels, a 
much less accurate source than the artificially blended gravimetric sample 
set. A parallel set of more accurate fat and protein reference values was 
obtained for some of the cheeses using standardized analysis protocols. 

 
3. To investigate relationships between light scattering and preprocessing 

treatments a set of samples containing a range in particle size fractions of 
commercial grade salt and sugar were imaged.  Eight sieves with mesh 
sizes ranging from 400 to 63 micrometers were used to sort the particles 
into nine size fractions. 
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Replicate images were acquired of the different sample sets to facilitate splitting 
of data into calibration and test sets.  For comparison purposes all three sample set 
types were also measured with a grating based integrating NIR spectrometer.  
Results of concentration predictions from PLS regression models of the Tri-Mix 
samples and the cheese samples were presented in Papers II and III.  Variations in 
light scattering due to particle size differences were examined in Paper IV.  
Additional information is provided in section 6 of this thesis, Applications. 
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7.0 Java Implementation of Multivariate Image 
Analysis - JIMIA 

Supplementing spectroscopic information with detailed spatial or positioning data 
is the primary benefit of hyperspectral imaging.  The multivariate statistics 
techniques described in this thesis enable classification and quantification of 
chemical constituents at every individual spatial unit in the image, summarized by 
both image maps and distribution profiles.  Although these techniques are 
impressive in their utilization of all spectral channels, they are at the same time 
very constrained and limited in their approach; they make no use of the spatial 
information in either the modeling or prediction stages. 
 

This approach is contrary to how the human mind processes visual information;  
when we see a piece of fruit in a basket we immediately classify it as either 
familiar or new, based on our simultaneous observation of both color and shape.  
Part of the research effort behind this thesis was an attempt to emulate this dual 
spectral – spatial processing in computer software. 
 
7.1 Software design goals 
7.1.1 Spatial analysis 
Many approaches exist for computerized analysis of two dimensional gray scale 
images.  Spatial filters are available to sharpen, blur, or enhance image contrast.  
Computer vision topics include edge detection, feature recognition, texture 
analysis, and particle size counting; however, these techniques make minimal use 
of any spectral information; they simply operate on a single gray channel image.   
 
7.1.2 Spectral analysis 
The multivariate statistics techniques described so far in this thesis utilize the 
spectral information, but ignore the spatial information.  The order of the spectra 
contained in the unfolded hyperspectral image can be totally randomized, yet yield 
identical PCA or PLS loading vectors. 
 
7.1.3 Hybrid approaches 
How can these two dissimilar approaches be combined?  One solution is to first 
perform PCA to compress the wavelength channels, providing score images that 
contain maximum signal variance; spatial analysis can then be applied to the score 
images.  A second solution is the inverse process; spatial based feature detection 
can be used to select spectra subsets followed by local PCA modeling.  But is 
there a way to better enable simultaneous utilization of both spectral and spatial 
components?  In 1989 Esbensen & Geladi introduced an interactive analysis 
technique for Multivariate Image Analysis (MIA) they termed ‘brushing’.  
Software was developed to present both the score images and score plots resulting 
from the application of PCA to a hyperspectral image.  Pixels selected in a score 
image were mapped to their equivalent points in the score plots; alternatively 
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points in the score plots could be selected and their original spatial coordinates 
identified back in the score images.  This solution begins with a purely spectral 
technique, PCA of all spectra, but then offers simultaneous viewing of spatial and 
spectral components. 
 

This interactive approach to MIA was the starting design component of the JIMIA 
program.  Additional functionality was incorporated incrementally to allow greater 
flexibility in the selection of data points used for highlighting or brushing, as well as 
enhanced methods for the selection of spectral subsets utilized for PCA modeling. 
 
7.2 Software implementation 
Several programming languages and environments were considered for this 
project.  Java was selected as the core language for several reasons. First, because 
of limited resources, extensive function libraries were needed to provide some of 
the basic interactive and computational functionality.  These libraries are described 
below.  Second, although the program was developed in a Microsoft Windows 
platform, it was initially intended that the program would function cross-platform, 
and execute on both Apple and Linux systems.  Third, it was important to use an 
object oriented language that would execute efficiently and support the very large 
memory requirements in processing hyperspectral images. And finally, since this 
program would be developed by a single developer, it was important to select a 
programming environment with a strong research community.  Many online 
internet forums and source repositories were used. 
 

Both C++ and Java satisfied the basic language requirements.  These two 
languages were benchmarked and compared for their ability to handle singular 
value decompositions of huge arrays of data.  C++ is a compiled language and 
performed quite well.  Java is an interpreted language, but execution times were 
surprisingly quite fast.  Sun Microsystems also provided Java language extensions 
that looked attractive: Java2D and Java3D graphics, and Java Advanced Imaging 
(JAI) a set of functions specific to image processing.  Although these extensions 
were not used, there were other Java specific libraries that shortened program 
development cycle times.  It was decided to base all programming on the Java 2 
Software Development Kit (J2SDK) version 1.4.  Gel, a freeware Integrated 
Development Environment (IDE) for Windows development of Java code was 
used for all programming (GExperts, 2004). 
 
7.2.1 Function libraries 
ImageJ is a popular image processing program developed by Rasband (2006) at 
the National Institute of Health. This program first gained popularity as a Pascal 
program (NIH Image) but was ported to Java to embrace the needs of a wider user 
community. ImageJ has a comprehensive selection of 2D image processing filters, 
very good interactive exploratory functionality, and most important, is open source 
software which can be easily added to.  The original plan was to develop a 
Multivariate Image Analysis (MIA) add-in for to ImageJ to extend its 
functionality.  The increasing complexity of JIMIA mandated that it become a 
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stand-alone executable program; however the file reading class ImagePlus, the 
windowing classes ImageWindow, ImageCanvas, and WindowMgr, and the 
Region of Interest related classes ROI, FreehandROI, PolygonROI, and ShapeROI 
were copied from ImageJ to provide the basic mouse driven interaction. 
 

Basic numerical processing functions for matrix manipulation were needed for 
JIMIA. A basic linear algebra numerical processing library (JAMA, 2005) was 
developed jointly by the MathWorks and NIST, based on the proven algorithms in 
EISPACK and LINPACK. Two classes, SingularValueDecomposition and Matrix, 
were used from this open source Java project. 
 

A charting library was also needed to provide basic plotting functionality.  Line 
charts and scatter plots of PCA loadings were provided by classes from JFreeChart 
(2006). 
 

The ImagePlus file reader class from ImageJ provided reading of multi-channel 
(RGB) image files with BMP, JPG, PNG, or TIF file formats, and single channel 
GIF images.  The MatrixNIR hyperspectral images acquired for research purposes 
in this thesis used a proprietary file format.  A file reader was implemented in Java 
to permit reading these files directly by JIMIA. 
 
7.2.2 User interface 
The basic JIMIA user interface is based on a desktop architecture.  A single 
window (desktop) is used to contain an unlimited set of sub-windows used for 
display of images or score plots.  A menu and toolbar provides basic navigation 
and feature selection.  Figure 24 shows these basic design elements.  The desktop 
window was designed for a fixed screen resolution of 1024 x 768 pixels.  
 
The toolbar contains the following icons: 
 

• Brushing and ROI selection including rectangular, polygon or freehand.  
Complex ROIs can be achieved by OR-ing different ROIs together. 

• Zooming and scrolling of both images and score plots. 
• Brush size selection including single pixel, 5 pt cross, and 3x3 or 5x5 

pixel squares. 
• Image windows containing either gray scale or false color combinations 

of wavelength channels, score images, or residual images. 
• Score plots of any I,J pair of score vectors 
• A brushing layer manager that allows display of multiple sample 

selection layers in a choice of colors. 
• Listing of PCA model eigenvalues 
• Line or scatter plotting of loading vectors 
• Creation of sample subset selection masks for generation of local PCA 

models 
• Printing and save to file functions were not implemented. 
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Figure 24  The basic design elements of the JIMIA desktop. 
 
 
7.3 Application 
Description of the full functionality of JIMIA is beyond the scope of this thesis; 
however the following set of figures demonstrates the basic functionality, based 
on a hyperspectral image of four cheeses.  Figure 24 shows the default set of 
display windows: the t1 score image, and t1-t2, t1-t3, and t2-t3 score plots.  As 
explained in section 3.2.2, the global PCA model is strongly distorted by the 
spectra corresponding to the internal standards and frame hardware.  Restricting 
the analysis to a smaller rectangular ROI is demonstrated by the local PCA model 
represented in Figure 25.  Unfortunately JIMIA does not detect and remove the 
few spectral outliers that distort the axes of the autoscaled score plots. 
 

Figure 25 also demonstrates the first application of brushing: a small set of 
pixels has been selected in the score image.  The locations of these sample points 
are highlighted in the corresponding score plots. This helps to locate the score plot 
regions that indicate this kind of spectral content.  The inverse brushing process is 
demonstrated in Figure 26.  Here sample points are selected in the t1-t2 score plot, 
and subsequently highlighted in the other score plots and score image.  In this 
example case background pixels surrounding the cheeses have been selected based 
on their spectral scores. 

 
This sample selection process can be determined by resizable and movable ROIs 

(rectangular, polygon, freehand, or any combination of these).  For an immediate 
interactive mode the brush cursor allows immediate selection of only the sample 
points within a predefined area adjacent to the cursor.  These sample points are 

Score Image 

Score Plots 

Menu & Toolbar
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Samples 
Selected from 

Scoreplot

then highlighted immediately in all windows, providing a real-time sense of 
simultaneous spatial and spectral analysis. 

 
Figure 25  Image brushing.  Sample pixels selected in the score image are mapped and 
highlighted in the score plots.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 26  A set of samples is selected in the t1-t2 score plot.  These samples are in turn 
highlighted in the other score plots and score image. 

Samples 
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Multiple layers of highlighting can be created using different colors, allowing 
different classifications of spectra to be expressed.  This is indicated in Figure 27.  
Here three different sample classes have been selected from the t1-t2 score plot.  
These classes map to the different cheese types, as indicated in the score image. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 27  Multiple classes of sample points can be selected and expressed as different 
colors using the brush layer manager. 
 
 

Sets of points selected by different brushing layers can be added or removed, to 
create new pixel masks for use in computing new local PCA models.  The mask 
created by adding the three cheese areas has been indicated in Figure 28.  The 
current implementation of JIMIA allows this mask to be exported for use in other 
software programs. 
 

The JIMIA program demonstrates the utility of interactive exploration of 
hyperspectral image data.  Additional enhancements for spatial filtering as well as 
inclusion of regression functionality has yet to be implemented. 
 
 
 
 
 
 
 
 
 

Multiple Cheese 
Classes 
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Figure 28  A new mask can be created from adding or subtracting different brushing layers.  
This mask can then be used to select a new pixel subset for computing new local PCA 
models. 
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8.0 Applications 

Section 4 of this thesis described the use of external and internal standard 
reference materials for the transformation and standardization of hyperspectral 
NIR image reflectance values.  Detection and removal of outliers was explained in 
section 5.  The basis for further transformations and corrections to spectral data 
was expressed in section 6.  This section of the thesis details the results of 
combining all these processes on the multivariate analysis of hyperspectral images.  
General conclusions and additional details relating to the four research 
publications are first presented, followed by several additional applications. 
 
8.1 Concentration predictions 
Paper I provided the theoretical foundation for the transformation of instrument 
signal values into percent reflectance.  Papers II and III describe the results of the 
application of these reflectance transformations combined with spectral 
preprocessing treatments on the PLS regression model predictions of constituent 
concentrations.  Both the gravimetric Tri-Mix mixture and cheese sample images 
were examined.  Calibration models and predictions were obtained from single 
mean spectra from each image, effectively treating the hyperspectral imaging 
system as an integrating instrument.  The resulting calibration models were 
subsequently also applied to the individual spectra contained within spatial Region 
of Interest (ROI) image areas.  These results were summarized as histograms 
indicating the range and distribution of concentration predictions as well as 
concentration image maps showing the spatial distribution of prediction values.  
Both approaches demonstrate the enhanced information content available from 
hyperspectral imaging. 
 

Figure 29 (Paper III) indicates the histogram and spatial mapping of the 
predicted concentrations of citric acid in one of the sample Tri-Mix mixtures.  In 
this example four component PLS calibration models produced concentration 
prediction values with mean values very near the expected concentration of 
33.4%. The width of the histogram distributions revealed a considerable variation 
in concentration predictions at individual pixel locations.  The application of a first 
derivative pretreatment significantly decreased the variance in predicted values as 
indicated by the narrowing of the bottom histogram.  A change in granularity or 
texture in the concentration map due to the application of the spectral pretreatment 
is also evident.   
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Figure 29  Mixture predictions for citric acid with an expected concentration of 33.4%.  
Histograms and concentration maps are for 20,000 spectra selected with a circular ROI 
mask with an 80 pixel radius.  Prediction results are for absorbance (top) and first derivative 
spectra (bottom). 
 
 

Unfortunately in most cases, signal variances due to problems with sample 
preparation and presentation to the imaging system overshadowed the variance 
reduction available from the application of other spectral pretreatments.  Valid 
PLS models were obtained in all cases with similar prediction errors.  This 
prevented detection of any clear trend in improvement of results based on 
pretreatment type. 
 
8.2 Particle size scattering effects 
The analysis of the particle size sample set is detailed in Paper IV. The objective 
of preprocessing was to find a transformation which collapsed the measured 
spectra towards a common spectrum, i.e. removing the effect of particle size 
scattering effects.  The effects of spectral pretreatments on the mean spectra of 
hyperspectral images from each of the nine sugar size fractions are indicated in 
Figure 30.  The mean spectra from the set of each of these transformed spectra 
were used as target spectra for the plots in Figure 31, where the individual fraction 
spectra are plotted vs. the target spectra at each wavelength.   
 

The particle size dependent scatter effect was clearly evident in the reflectance 
spectra, as well as the absorbance, Kubelka-Munk, and 1-Norm transformed 
spectra.  Trends from small to larger particle sizes are indicated by the arrows in 
Figure 30 and Figure 31.  The first and second derivative transforms indicate a 
significant reduction in size dependency; however wavelength bands remain that 
show strong correlations with particle size.  The MSC and especially PMSC 
transforms appear to remove most of the particle size dependencies. 
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Figure 30  The effect of spectral pretreatments on the mean spectra of the nine size fractions 
of sugar:  (a) reflectance, (b) 1-Norm, (c) absorbance, (d) Kubelka-Munk, (e) first 
derivative, (f) second derivative, (g) MSC of absorbance, and (h) PMSC of absorbance. The 
arrow indicates increasing particle size. 
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Figure 31  Plots of mean spectra for sugar size fractions vs. mean target spectrum, for 
various spectral pretreatments.  (a) reflectance, (b) absorbance, (c) Kubelka-Munk, (d) 1-
Norm, (e) MSC of absorbance, and (f) PMSC of absorbance. The arrow indicates increasing 
particle size. 
 
 

Figure 32 presents score plots of 250 randomly selected spectra from the 
hyperspectral image of each of the first eight size fractions for both salt and sugar.  
PCA was performed after mean centering the entire combined data set.  The t1-t2 
score plots have been autoscaled to fit the range in computed score values.  The 
variance of spectra from the smallest size particle fractions severely distorted the 
axis scaling and these fractions were therefore excluded from the plots.  The 
trends in size dependencies are evident in all plots except the MSC and PMSC 
corrected data.  Note that in these last two plots, the clusters with greatest variance 
are now salt spectra.  The higher relative noise levels of the low absorbing salt 
spectra now have become dominant.  
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Figure 32  The effect of spectral pretreatments on all spectra of the nine size 
fractions of both sugar and salt:  (a) reflectance, (b) 1-Norm, (c) absorbance, (d) 
Kubelka-Munk, (e) first derivative, (f) second derivative, (g) MSC of absorbance, 
and (h) PMSC of absorbance. The arrow indicates increasing sugar particle size. 
The plus symbol indicates the sugar cluster when size variance is not evident. 
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Similar score plots for second derivative spectra and SNV, MSC, or PMSC 
corrected second derivative spectra are presented in Figure 33.  The size 
dependency is only evident in the original second derivative sugar spectra.  
Relative signal noise is clearly a dominating factor here as indicated in the larger 
clusters in the corrected salt spectra.  This is especially evident in the PMSC 
corrected spectra, where the score axes have become greatly distorted by outliers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 33  Score plots of all second derivative spectra of the nine size fractions of both 
sugar and salt (a) reflectance, (b) SNV, (c) MSC, (d) PMSC. The arrow indicates increasing 
sugar particle size. The plus symbol indicates the sugar cluster when size variance is not 
evident. 

 
 
The combination of multivariate analysis tools with hyperspectral images 

provides a unique opportunity to explore two and three dimensional scattering 
effects and their relationship to particle size and shape.  A more exhaustive 
analysis of monodisperse particles is needed to elucidate differences in chemical 
and physical effects of light scattering. 
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8.3 Fuel pellets 
The work described in previous sections provided a solid theoretical and practical 
foundation for the proper acquisition and analysis of hyperspectral NIR images.  
The knowledge gained was applied to a more difficult application, the examination 
of wood fuel pellets.  This alternative energy fuel is a major focus of research at 
SLU Unit of Biomass Technology and Chemistry, Röbäksdalen.  Variations in 
source materials and production parameters contribute to significant differences in 
pellet product quality.  Physical properties of pellets such as bulk density, 
compression strength, and moisture uptake are influenced by raw material type, 
moisture content, and particle size. 
 

Hyperspectral NIR imaging was employed to investigate these differences.  Raw 
materials, production pellets, and individually produced laboratory pellets were 
imaged with the hope of providing a better understanding of the production 
process.  The spatial resolution of the imaging system and in particular the very 
limited depth of field available with the higher magnification optics limited the 
success of imaging individual pellets.  Pellets are cylindrical in shape with very 
coarse or broken ends.  Attempts were made to cut or sand pellet ends, but this 
was a destructive process which either fractured the pellet further or contaminated 
the surface with unwanted fines.  A few laboratory pellets with flat ends were 
produced under varying conditions, but no differences were visible in the 
hyperspectral images acquired of these pellets.  
 

Lower magnification optics that increased the size of the field of view (50 x 62 
mm) permitted imaging of collections of pellets and was more successful.  Raw 
materials and pellets from a series of pellet productions made at Skellefteå Kraft 
under varying conditions were obtained. A designed experiment of 12 different 
process conditions provided a variation in source material (fresh and aged pine, 
and spruce) as well as moisture content (8 to 12 percent moisture). The samples 
from the designed experiment were analyzed, both in powder form (milled and 
partially dried raw material) and as pellets. 
 

Figure 34 shows an example image of pellets, including the series of internal 
standards used for image standardization.  This image is the first principal 
component score image obtained after applying PCA to the complete set of pellet 
spectra, cleaned of significant outliers.  This is a very practical application of 
multivariate analysis to hyperspectral imaging.  The variance of all spectral 
channels has been combined or compressed to produce a single gray scale image 
with maximum signal contrast.  This data compression is useful for providing 
summary gray scale images for use with other more traditional image processing 
techniques. 
 

Figure 35 extends this exploratory  or data compression technique further.  Here 
PCA has been applied after first combining sample regions from two different 
hyperspectral images (fresh and aged pine) to produce an image mosaic.  The image 
displayed is the third principal component score image.  While specific chemical or 
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physical features have not been identified, visual inspection of this score image 
suggests a gross difference between pellets made from aged and fresh material. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 34  Principal Component Analysis (PCA) score image of pellets including internal 
standard reference materials for image standardization 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 35  Third principal component score image of a mosaic image of pellets made from 
aged and fresh pine material. 
 
 

To explore this further, PCA was applied to a set of spectra obtained from 
triplicate hyperspectral images of samples from all 12 pellet productions.  After 
detecting and removing class outliers, a single average spectrum was obtained 
from each hyperspectral image.  The 36 resulting spectra were preprocessed with a 
first derivative transform, followed by PCA. 
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Figure 36  PCA plot of triplicate measurements of 12 pellet productions indicating 
separation of high and low moisture content (open and solid symbols) as well as raw 
material compositions (fresh pine – circle, aged pine – square, and intermediate blends.) 
 
 

The score plot in Figure 36 represents the variation of all 36 spectra based on 
their second (t2) and third (t3) PCA scores.  The solid symbols indicate low 
moisture production runs (8 %) and the open symbols high moisture (12%).  These 
two classes are easily distinguished, primarily differentiated by their t2 scores.  
NIR is highly sensitive to water bands so it might not seem unusual to see this 
discrimination of moisture content; however, the production moisture levels 
described here reflect the content in the dry material before pellet production.  
Pellet formation occurs under extreme heat and pressure, and the hyperspectral 
imaging was performed six months after actual pellet production.  It is not known 
whether the observed scoreplot class separation was due to differences in water 
spectra, or some other byproduct of the production process. 
 

The symbol shapes represent the composition of source material: circle is 100 
percent fresh pine, square is 100 percent aged pine.  The star, cross, and diamond 
symbols represent blends with 10 to 20 percent spruce.  The plus symbols indicate 
a center point mixture that was repeated in three of the 12 pellet productions. The 
trend of blends from pure fresh to pure aged pine is also seen in Figure 2.  Similar 
results were obtained in the hyperspectral image analysis of the dried raw source 
materials as well. 
 

This analysis demonstrates the utility of hyperspectral NIR image analysis 
coupled with multivariate exploratory tools.  Without understanding the physical 
intricacies of the actual processing of the pellets, basic properties could still be 
distinguished.  To identify differences between fresh and aged starting material in 
such a complex matrix is quite remarkable.  Further research is needed to exploit 
these differences. 
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8.4 Other considerations 
One of the fastest and more powerful ways of extracting information from 
numerical data is to transform it into graphical objects. Line plots, bar charts, 
histograms, or scatter plots are just some of the ways of representing data that 
enable immediate visual interpretation.  But what if the data is visual to begin 
with?  What additional transformations can be performed to enhance or extend the 
normal visualization processes?  The following are a few examples of simple 
tricks or data manipulations that assist the interpretation of hyperspectral images to 
better understand samples or the imaging system. 
 
8.4.1 Enhancements with color 
Color itself can be used to convey additional information.  This was demonstrated 
in the colorization of the score plots in Figure 8 and Figure 23.  In this case, color 
indicates the relative abundance of data with identical pairs of score values; cool 
colors indicate relatively few counts while hot colors indicate high count levels. 
 
Color can also be used to create false color images; Three gray scale images can 
be mapped to levels of red, green, and blue respectively and overlaid to form a 
composite color image.  Different relative data values within the red, green, and 
blue channels will combine to yield different false colors.  This technique can be 
applied to sets of individual wavelength channels, score images, residual images, 
or scaled prediction levels of multiple constituents.  Figure 7 in Paper II 
demonstrates the benefit of combining prediction images of the three ingredients, 
sugar, citric acid, and salicylic acid, in one of the TriMix sample images.  Figure 9 
in Paper II and Figure X below demonstrate the use of color in representing the 
fat, protein, and carbohydrate content of cheese. 
 
8.4.2 Incorporating additional latent variables 
Normally the number of latent variables to include in a PLS calibration model is 
selected to minimize measured residual errors determined from a test set of data.  
The variance contained in additional components may not be correlated to the 
dependent Y-block variables, however it may contain useful information.  Figure 
37 shows the color mapped predictions for fat, protein, and carbohydrate (red, 
green, and blue channels) for four cheeses.  The top row of images represent the 
predictions obtained from a four component PLS model based on absorbance 
spectra.  The middle and bottom rows represent the results from PLS models 
utilizing first derivative spectra for two and nine components respectively. 
 

The colored rectangles below each image indicate the ‘target color’ expected for 
each cheese.  In all cases the general prediction levels match quite well for this 
range of four cheeses;  however, the detailed features (or lack of) in parallel 
images reveals additional information.  Physical factors such as the cutting marks 
in cheese b are removed by the first derivative transform.  Texture effects in the 
other cheeses, possibly due to specular reflection, are also removed by the 
derivative transform.  But the nine component prediction images in the bottom 
row indicate a new phenomena:  coinciding circular ring like features in all 
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images.  This is an artifact created by spinning the SRM reflectance tiles used for 
the reflection transform process.  In this case diagnostic information regarding the 
imaging system has been obtained. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 37  False color images indicate the fat (red), protein (green), and carbohydrate (blue) 
content of four cheeses (a – d).  Predictions are based on a four component PLS model of 
absorbance spectra (top), or PLS models of first derivative spectra with two components 
(middle) or nine components (bottom).  The circular ring feature in the bottom row is an 
artifact from the spinning tiles used for the instrument signal to reflectance transformation. 
 
 
8.4.3 Sample masks 
Additional system information was determined by purposely modifying image 
acquisition conditions.  A simple visual mask was created to help assess the depth 
of penetration of scattered light in the imaging system.  An imaging background 
was created by partially covering the 99 percent reflectance SRM with a piece of 
silicon carbide sandpaper and cover glass.  This resulted in a field of view 
consisting of two large rectangular areas with measured average reflectance values 
of 7.8 and 98.3 percent.  Glass microscope slides were added and positioned to 
create a sample frame 1 mm thick.  This area was filled with a uniform layer of a 
mixture of starch, cellulose, acetylsalicylic acid, ascorbic acid, and caffeine and 
imaged. 
 

Spectra from two rectangular 100 x 200 pixel ROIs in front of the white and 
black reflectance backgrounds were analyzed.  Median spectra were computed 
from each set of 20,000 spectra to minimize effects of outliers and are displayed in 
Figure 38.  Two wavelength channels were selected for further analysis based on 

(a) (b) (c) (d) 
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these spectra: the 1086 nm channel with relatively high defuse reflectance values, 
and the absorbance maximum at 1452 nm.  Histograms of the 20,000 values for 
each ROI are displayed in Figure 39. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 38  Median spectra from 20,000 spectra measured with a white or black reflectance 
background. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 39  Histograms of 20,000 spectra measured with a white or black reflectance 
background. 
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Score plots computed from a global PCA model of the combined set of 40,000 
spectra were also made.  Based on the score plots, histograms and median spectra 
plots, no discrimination was possible between the two classes of spectra with the 
white or black background.  This indicated that the 1 mm sample thickness was 
effectively blocking the extreme differences in background created by the simple 
visual mask.  This approach could be extended with other sample thicknesses or 
sample materials to characterize the actual light penetration levels. 
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9.0 Conclusions 

Hyperspectral NIR images contain an enormous amount of data, but to effectively 
extract meaningful information in an efficient way, a combination of chemometric 
and exploratory visualization tools are needed.  While the sheer volume of data 
may cause some computational burdens, it provides unique advantages as well.  
First, because there is so much data, it may be easily justifiable to set aside 
suspicious data for further examination, or throw it out completely.  Second, 
sample data space can be specifically allocated for inclusion of internal standard or 
Standard Reference Materials (SRMs).  Both of these approaches lead to 
improving the consistency or quality of the remaining data.  Because there is no 
spatial averaging effect as with integrating spectrometers, it is important to 
minimize any individual spectral disturbances.  It is especially important to ensure 
that the data is conditioned properly to avoid misuse and erroneous conclusions 
reached by automated processing. 
 

Several general conclusions can be made about this data cleansing: 
 

• Image data should be acquired and saved as raw instrument counts.  The 
transformation of this data into percent reflectance units should be based 
on transform functions computed from the second order regression 
models of a series of images of SRMs with known reflectance values.  
Retaining the original image data in raw instrument count format allows 
for optimal examination in case of instrument malfunction. 

 
• Internal standards should be incorporated into the image field of view to 

allow instrument standardization.  As with the raw data format, the 
internal standards are invaluable in case of instrument malfunction. 

 
• Outliers should be detected and removed.  A combination of detection 

techniques is needed, that should include excessive signal or threshold 
detection, as well as tests based on the Euclidean distances and angle 
cosines between each spectrum and a single mean target spectrum. 

 
• Depending on instrument or sample instabilities, spectral pretreatments 

may be applied to reduce or eliminate instable signal contributions. 
 
 

Three general types of analysis tools should be employed with the cleansed or 
conditioned hyperspectral data: 
 

• Univariate statistical techniques are still important for the analysis of the 
large sets of spectra and prediction data. Accurate population statistics 
estimates such as mean and standard deviation can be computed. 

 
• Multivariate statistical techniques are essential to take advantage of 

correlations between spectra and variables.  But because of the sensitivity 
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to noise, regression based calibration models such as PLS should be 
based on mean spectra from ROIs representing classes of spectra with 
known response variables. 

 
• Visualization tools must be used to facilitate exploration of the data.  

These tools include histograms, colorized score plots, and both gray scale 
and false color images representing score values, prediction values, and 
residuals. 

 
 

Properly cleansed and pretreated data from hyperspectral images can yield 
robust calibration models that in turn can be used to provide accurate sample 
information.  Bulk concentration values can be determined as with integrating 
spectrometer systems.  But more importantly, concentrations can be combined 
with spatial information to produce concentration maps.  Concentrations can also 
be displayed as histograms or concentration profiles.  Both techniques reveal 
uniformity or homogeneity information that would be very time consuming and 
costly to acquire with an integrating spectrometer. 
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10.0 Future research 

The combination of spectral and spatial information afforded in hyperspectral 
imaging systems provides a powerful research tool.  The acquisition of 
hyperspectral images provides extensive data sets for testing of new algorithms 
and studying of physical / chemical phenomena. 
 
 But there are difficulties with instrumentation and sample presentation that need 
to be addressed.  Faster instrumentation is needed to image biological materials or 
other samples which are heat sensitive. Better control of sample presentation 
inconsistencies is needed.  Particle size, packing force, light penetration depth, and 
static charge effects, are just a few parameters that need to be examined. 
 

Standard reference materials need to be produced which address the sample 
homogeneity issues at higher and higher magnifications.  SRMs are needed for 
both intensity and wavelength calibration.  Because multivariate statistics tools are 
employed, SRMs don’t need to have a flat uniform spectrum as is encouraged with 
the Spectralon material.  It is only necessary to have a set of standards that in total, 
span all expected sample reflectance values at all wavelengths; i.e. the two SRMs 
that provide the minimum and maximum reflectance values at one wavelength 
need not be the same two at any other wavelength.  A golden rule of chemometrics 
should be applied here: “Math is cheaper than physics.” 
 

Once the instrumentation and sampling issues are addressed, carefully designed 
experiments should be performed to further investigate the effects of spectral 
pretreatments on chemical and physical interactions such as the diffuse scattering 
of light in powders, thin films and colloidal suspensions.  Samples with precisely 
known particle sizes, shapes, and spectral features are needed. 

 
Other general spectroscopic issues should be examined that were totally ignored 

in the current research.  Variable or wavelength selection needs to be addressed.  
Alternative regression techniques and other spectral pretreatments should be 
examined as well. 
 

Other configurations of hyperspectral imaging systems offer new opportunities 
as well.  For example, the line scan camera with dispersing optics allows operation 
in a continuous mode.  Additional adaptations to existing analysis and 
visualization tools are needed to exploit this continuous operation mode. 

 
One aspect of hyperspectral image analysis needs extensive research: the 

question of “How can the correlations between data from adjacent pixels and 
adjacent wavelengths be fully exploited?”  This issue has been slightly addressed 
in the remote sensing field, but mostly ignored in the chemical laboratory.  For 
example, all spectral processing that was accomplished in the research performed 
for this thesis utilized an unfolded hyperspectral image. With the exception of 
pixel indices used for concentration and residual mapping images, the spatial 
positioning information associated with each spectrum was totally ignored.  That 



 67 

is to say, the spectra in the unfolded X-block matrix could be randomly re-ordered, 
with absolutely no effect on techniques such as PCA or PLS.  A similar claim can 
be made for the wavelength variables: the individual channels in the original 
hyperspectral image could be re-ordered, and no change in PCA results would 
occur, other than the shuffling from the re-ordering step. 

 
And yet there are very strong correlations between the neighbors in a 

hyperspectral image.  How can this linkage information between adjacent pixels or 
adjacent wavelengths be captured to improve calibration and prediction or 
classification processes?  Only when these linkages are completely exploited, will 
the rich information content of hyperspectral images become fully unlocked. 
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Hyperspectral NIR image regression part II: 
Dataset preprocessing diagnostics 
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When known reference values such as concentrations are available, the spectra from near infrared hyperspectral 
images can be used for building regression models. The sets of spectra must be corrected for errors, transformed 
to reflectance or absorbance values, and trimmed of bad pixel outliers in order to build robust models and 
minimize prediction errors. Calibration models can be computed from small (< 100) sets of spectra, where each 
spectrum summarizes an individual image or spatial region of interest (ROI), and used to predict large (> 20,000) 
test sets of spectra. When the distributions of these large populations of predicted values are viewed as 
histograms they provide mean sample concentrations (peak centers) as well as uniformity (peak widths) and 
purity (peak shape) information. The same predicted values can also be viewed as concentration maps or images 
adding spatial information to the uniformity or purity presentations. Estimates of large population statistics 
enable a new metric for determining the optimal number of model components, based on a combination of global 
bias and pooled standard deviation values computed from multiple test images or ROIs. Two example datasets 
are presented: an artificial mixture design of three chemicals with distinct near infrared spectra and samples of 
different cheeses. In some cases it was found that baseline correction by taking first derivatives gave more useful 
prediction results by reducing optical problems. Other data pretreatments resulted in negligible changes in 
prediction errors, overshadowed by the variance associated with sample preparation or presentation and other 
physical phenomena. 
 
 

KEYWORDS: Hyperspectral images, multivariate image regression, partial least squares modeling, spectral preprocessing, 
regression model validation 
 
 
 
1. INTRODUCTION 
 
In a previous article [1] it was explained how to convert 
hyperspectral images usually collected as A/D converter 
counts into corrected diffuse reflectance values. For this 
correction purpose, external (between-image) and internal 
(within-image) Spectralon [2] UV-Vis-NIR standard 
reflectance materials were used together with two-point, 
linear and nonlinear correction equations. One objective of 
these corrections is to standardize spectra for purposes of 
visual comparisons and to make spectra more interpretable. 
Accurate spectra are also essential for creation of robust 
and reliable discriminant analysis and regression models. 
Spectra are sometimes normalized or subjected to 
derivative transforms to correct for baseline offsets and 
physical effects within the sample [3,4]. In this paper the 
impact of the internal and external standard based 
corrections on calibration models and their effect on 
prediction errors is examined. Different approaches to 
hyperspectral data preprocessing and their effect on model 
formation and predictive performance are also explored. 
 
Hyperspectral images offer an abundance of data. Many 
pixels or spectra are available even in a local scene or 
spatial region of interest (ROI). This large population of 
calibration and test objects requires a different look at 
modeling and diagnostics. Although the number of 
calibration and test sample spectra is huge, the set of 
available reference material values is relatively very small, 
requiring extra care in model validation. An important 
property of calibration models is the determination of 
pseudorank, the number of latent variables or components 

to incorporate in the model [5]. The evolution of prediction 
bias and prediction variance as the number of model 
components increases is investigated. The small set of 
sample reference values necessitates leave-one-out sample 
cross validation. Regression diagnostics are often based on 
prediction bias alone, but may include variance as well 
[6,7]. Because of the large number of pixel samples in the 
hyperspectral images, prediction results can be studied as 
histogram distributions and large population statistics 
estimated. A new metric for the pseudorank determination 
based on these estimates is described and tested. 
 
By applying class membership masks, partial least squares 
(PLS) discriminant analysis has been applied to 
hyperspectral images to classify unknown image pixels 
[8,9]. Extraction of image features with principle 
component analysis (PCA) followed by PLS or artificial 
neural networks (ANN) has been used to obtain global 
quantitative information [10-12]. To apply PLS directly to a 
hyperspectral image, individual Y-block reference values 
are needed at every pixel of all calibration images. If such 
detailed data is unavailable, then global or mean reference 
values can be used, if each reference value is properly 
matched with a mean spectrum from a single image or large 
ROI representing the known sample. The resulting 
calibration model can then be used to make predictions at 
individual pixels of test images. The use of such ROI based 
models is explored in this paper. 
 
Two examples are used to illustrate how models are built 
and how they perform. Artificial mixtures of laboratory 
chemicals were prepared with the concentrations in the 
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mixtures determined in advance by gravimetric analysis. A 
second sample set was based on a collection of commercial 
cheeses, where concentrations of protein, fat and 
carbohydrate were indicated on the packaging provided by 
the manufacturer, and alternatively measured in the 
laboratory (fat, protein). The global or average ingredient 
concentrations are determined as with other spectroscopic 
analysis techniques, but since hyperspectral images provide 
additional spatial information, creation of concentration 
maps or images is possible. We show that the examination 
of the population distributions of predictions resulting from 
hyperspectral image regression provides additional 
diagnostic information, permitting further characterization 
of samples and performance of the instrument. 
 
 
2. THEORETICAL BACKGROUND 
2.1 Nomenclature 
The following notation is used in order to facilitate 
discussion: 
Z :  a typical hyperspectral image or hypercube (I×J×K 
variables). This hypercube contains K single channel or 
gray scale images (Zk) each containing I rows and J 
columns of pixels (zijk). The same hypercube can be viewed 
as I * J spectra (zij), each containing K variables. 
K : the number of wavelength bands in a hypercube, or 
variables in a spectrum. 
L : the number of pixels within one region of interest (ROI) 
in one image. 
P : the total number of hypercube images or ROIs. 
Q : the total number of replicate images or ROIs for one 
sample. 
N : the number of calibration objects. N can be I * J if one 
whole image is used, it may be another number of spectra 
(N=L if a region of interest is used), it may be the sum of 
the number of spectra from a number of regions of interest 
from the same or different images (N=L1+L2+L3... LP) or it 
may be the number of images (P) or regions used if they are 
each represented by individual mean or median spectra. 
M : the number of test set objects. The same explanation as 
for N is also valid here. In some cases M >> N in the 
present paper. 
A : the number of latent variables in a PLS model 
 
2.2 Regression models and prediction 
Hyperspectral image regression involves the building of 
regression models between hyperspectral images and 
external data. This means that for every image pixel 
containing the spectral vector xij there must be related 
external data yij. A spatial mask may sometimes be used to 
select subset regions Zr (r stands for region of interest) of 
the image to formulate optimized local models. However 
specific spatial information for the external yij reference 
values may not be available for individual pixel locations. 
In this case a single global y value may be used for all L 
samples in Zr. Alternatively, Zr may be reduced to a single 
spectrum or sample zr representing the mean or median of 
Zr. A calibration set can then be constructed from either the 
Zr or zr obtained from multiple regions from one or more 
hyperspectral images, and their respectively ordered y 
values. If y and X are variable-wise mean-centered, a 
regression model may be formed: 
 
 y = Xb + f    (1) 
 

y : external data for N spectra from one or more 
hyperspectral images, ordered in a vector  
X : spectra ordered in the same way as in y to form a matrix 
(N×K) 
b : a vector of regression coefficients (K×1) 
f : the residual (N×1) 
 
If the model in Equation 1 is adequate, the regression vector 
can be used for prediction of new hyperspectral images 
taken under the same physical conditions: 
 
 yh = Xtb     (2) 
 
yh : the predicted concentrations (M×1) 
Xt : the matrix of new objects, the test set (M×K) 
b : the regression vector of Equation 1 
 
As a way of testing the regression model, samples with 
known reference values ordered in a vector yt 
(corresponding to the rows in Xt) are used. This gives a 
prediction residual: 
 
 ft = yt - yh     (3) 
 
When the test set is made from mean spectra representing 
regions or entire images, the resulting predictions represent 
a mean region or global value. The values obtained in this 
way are effectively the numerical averaging equivalent to 
the physical averaging effect obtained from a spot probe or 
single beam type spectrometer. However the same 
regression models can also be applied to the individual 
spectra within a specified region or image, thereby 
providing prediction values at every pixel. This is one of 
the major benefits of hyperspectral image regression. 
 
Equations 1 and 2 were first developed and applied to 
spectral data measured with a conventional spectrometer to 
enable prediction of quantitative values associated with 
individual samples.  Regression of hyperspectral images 
provides an additional  advantage in that y, yh and ft also 
represent images or parts of images and consequently can 
be interpreted visually by using their respective spatial 
indices, ij.  In addition to providing spatial concentration 
profiles, examination of prediction and residual images 
from both calibration and test sets can yield important 
visual information regarding the proper choice of the 
number of latent variables. 
 
2.3 Regression diagnostics 
Diagnostic inspection of the calibration and prediction 
results is necessary to validate regression models and 
identify problems. As with conventional spectroscopy, a 
plot of the known vs. predicted values, y against Xb, should 
be examined. Ideally all plotted points should lie on a 
straight diagonal line. Nonlinearities, outliers, clustering of 
data points, heteroscedasticity, high leverage points, and 
errors in the design of X and y may be detected in such a 
plot [13]. Root mean square error of the calibration set 
(RMSEC), root mean square error of cross validation 
(RMSECV) or root mean square error of prediction of the 
test set (RMSEP) can be computed from residuals. PRESS 
plots (Predicted Residual Error Sum Squares) may assist in 
determining the proper number of components to use in the 
calibration model. These diagnostics are indicative of errors 
in the calibration model or the predictive ability of the 
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model applied to the entire test dataset. 
 
When the calibration and test sets are based on small sets of 
spectra representing the mean spectra of regions or images, 
the resulting diagnostic values are expected to be similar to 
those obtained from equivalent spectra acquired from spot 
probe instruments. This approach allows for instrument 
comparisons, but provides no clear advantage for 
hyperspectral images. But hyperspectral images offer an 
additional diagnostic benefit. Since each image may contain 
a very large sample or test set population, accurate 
population statistics can also be estimated from predicted 
values.  
 
Two descriptive parameters can be easily estimated to 
characterize the population of residuals obtained from the 
set of predictions representing a single image or region of 
interest: the population bias rn or average residual, and sn, 
the estimated standard deviation of the prediction residuals. 
If each region or image contains a true homogenous 
population, then these estimates represent the precision and 
accuracy of the model for predicting the constituent within 
the individual region. In this case the standard deviation 
estimate also describes the uniformity of the constituent 
within the region or image, a measurement which is clearly 
not obtainable from a spot probe technique. 
 
Additional diagnostics can be formulated to compare 
prediction results within an image as well as between 
images. Residual means and standard deviations may be 
compared directly between regions or images, or pooled, 
resulting in global diagnostic values. A global RMSEP can 
be computed based on the average residual or bias from 
each image: 
 
RMSEPG = [ rTr / P ] ½    (4) 
 
r : vector of bias values for each region 
Similarly a pooled standard deviation can be computed 
from the individual standard deviations: 
 
SG = [ Σ(si

2 (Li-1)) / (Σ (Li – 1) ] ½   (5) 
 
summations: i = 1 to P 
 
When large regions of equal size are specified, Equation 5 
may be further simplified: 
 
SG ≈ [ Σ(si

2 (L))/(Σ(L) ] ½  = [ LΣsi
2 /( L P) ] ½ = [ sTs/P ] ½

      (6) 
 
s : vector of standard deviation values for each region 
 
SG represents the precision or level of variance expected 
within one single image, while RMSEPG is a mixed 
measure of accuracy and precision representing the 
combined variance from all images. When regression 
models are based on a reduced space as in PLS, it may be 
useful to examine plots of RMSEPG vs. SG as a function of 
the number of latent variables included. For an underfit 
model RMSEPG may be quite large. As additional latent 
variables are added, the overall fit improves and RMSEPG 
is reduced. However any additional variance included in the 
model that does not correlate with Y, will contribute to an 
increase in the variance of the predicted values, SG. A new 

metric which is based on both RMSEPG and SG can be 
computed: 
 
DG = [ w1 RMSEPG

2  +  w2 SG
2 ] ½   (7) 

 
w1, w2: are balancing weights. In this paper w1 = w2 = 1. 
 
When the two weights are both 1, this new metric is 
effectively the distance from the plot origin to the points 
plotted in the plots of RMSEPG vs. SG. A plot of DG vs. the 
number of latent variables can be used to determine an 
optimal number of model components. This diagnostic 
incorporates variance contributions due to differences 
between samples imaged, sample variation within each 
individual region, and instrumentation changes. For model 
comparison purposes, the images should be well 
conditioned: instrument variation should be compensated 
for with the use of internal standards, and calibration set 
samples should be as uniform as possible throughout the 
region of interest. 
 
 
3. EXPERIMENTAL/MATERIALS AND METHODS 
3.1 Hyperspectral Images 
Near infrared (NIR) hyperspectral images were acquired 
using a Spectral Dimensions MatrixNIR [14] camera, 
producing images with 256 x 320 pixels at 118 wavelength 
channels, 960 – 1662 nm, with 6 nm resolution. Images 
were digitized with 12 bit resolution, with an average of 10 
scans recorded. A 64 ms integration time was used. The 
image field of view was 50 x 62 mm2 with approximately 
0.2 x 0.2 mm2 pixels. Samples were either placed in circular 
NIR sample holders with glass covers, or placed on pieces 
of silicon carbide sandpaper. The sandpaper is inexpensive, 
disposable, and produces a very low reflectance 
background. Image acquisition time was 3 – 6 minutes so 
samples which were heat sensitive were cooled with a small 
box fan positioned just beyond the field of view. 
 
The hyperspectral images were acquired as detector signal 
counts which needed to be transformed to reflectance 
before further processing. A series of five Spectralon [2] 
standard reference materials at 2, 25, 50, 75 and 99 percent 
reflectance were first imaged, allowing creation of 
independent reflectance transform functions at every pixel 
at every wavelength. Reflectance is commonly computed 
from single point transform functions based on only a 99 
percent measurement and an instrument ‘dark’ or 
background measurement. The full range of Spectralon 
image hypercubes permitted the use of first or second order 
transform functions without the need to specifically 
measure background. 
 
A calibration gray scale made from a second set of small 
Spectralon pieces was positioned to appear along the edge 
of every hyperspectral sample image. These standards 
permitted additional corrections or instrument 
standardization. A detailed description of these external and 
internal standards and their modeling algorithms has been 
given in a previous publication [1]. Figure 1a shows a 
typical image at one wavelength, including the internal 
standard gray scale. The imaged field of view was 
illuminated by 4 quartz halogen lamps. To test the 
robustness of the standard correction techniques, sets of 
Spectralon and sample images were acquired with the 
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lamps positioned for both maximally uniform and less ideal 
non-uniform illumination intensities. 
 
 

 
 

Figure 1. Hyperspectral images viewed as image channels or spectra: 
(a) An image representing a single channel including an internal 
standard gray scale. Median spectra from ten cheese samples in raw 
instrument counts (b), transformed to percent reflectance using a 
single point transform (c), or second order transform (d). The 
horizontal axis for (b), (c), and (d) is wavelength in nm. 

 
 
3.2 Datasets 
An artificial three component sample set was made from 
reagent grade citric acid (CAS 77-92-9), salicylic acid 
(CAS 69-72-7), and sugar (consumer grade Dan Sukker). 
All three pure chemicals were first screened with a 25 μm 
sieve to remove large particles, and then blended using a 
three component third order augmented simplex 
experimental design yielding 3 pure component, 6 binary 
(1/3, 2/3) and 4 ternary (1/3, 1/3, 1/3; 2/3, 1/6, 1/6; etc.) 
mixture samples. This collection of samples was designed 
to examine the detection limits and prediction abilities of 
different PLS calibration models and data pretreatments. 
The salicylic acid has a relatively unique spectrum with a 
strong peak at 1130 nm whereas the sugar and citric acid 
spectra are more collinear with overlapping peaks at 1438 
and 1470 nm respectively. Samples of each mixture were

placed in Foss NIRSystems [15] sample holders and 
imaged. The 3 pure and 6 binary mixture samples were 
imaged in duplicate, the 3 augmented ternary (2/3, 1/6, 1/6) 
mixtures in triplicate. For determining modeling statistics 
the center point ternary mixture (1/3, 1/3, 1/3) was imaged 
a total of 10 times. A single set of mixture samples without 
replacement was used. Replicate images were made in 
random sequence with random orientation of each circular 
sample holder. Two of the binary mixture replicates were 
removed from the dataset due to instrumentation failure, 
leaving a total of 35 hyperspectral images. A circular mask 
with radius of 80 pixels was used to identify the sample 
ROI, providing over 20,000 spectral samples from each 
hyperspectral image. 
 
A second dataset was obtained using an assortment of 
thirteen commercial cheese products, listed in Table I. 
These cheeses were specifically selected to span as large a 
range as possible in concentrations of protein, fat, and 
carbohydrate. Initially the published values on the 
packaging labels were used as standard reference values. A 
parallel set of values for protein and fat content was 
determined using standard techniques AOAC 976.05 
(Kjeldahl protein determination) and BS EN ISO 
1735:2004 (fat extraction). Triplicate measurements of 5 
cheeses yielded a standard deviation of 0.14 percent 
protein, and 0.41 percent fat.  For imaging purposes, cheese 
slices 2-4 mm thick were positioned on top of the black 
silicon carbide sandpaper to minimize background 
contributions. Alternatively round cheese cores were cut 
and placed inside the Foss NIR sample holders and imaged 
through quartz glass windows. 
 
Sets of images were acquired on five different days with 
varying numbers of replicates each day, providing a total of 
80 images. One set included 12 replicate images of three 
cheeses acquired after purposely reducing the lamp power 
from the original 64 percent to 63, 62, 61, and 60 percent. 
These 12 images were excluded from global calibration and 
test sets. The image set from one of the other days was 
partitioned into two subsets because of an instrumentation 
disturbance: the liquid crystal tunable filter (LCTF) was 
reprogrammed giving a slight change in wavelength 
bandwidths. Both subsets were included in the global image 
sets.

 
Table I  Protein, fat, and carbohydrate composition of cheeses from packaging labels and analysis†. 

Cheese Protein* Fat* Carbohydrate* Protein† Fat† 
1 26.0 31.0 1.5 24.9 32.6 
2 30.0 17.0 1.5 29.8 16.8 
3 27.0 28.0 1.5   
4 32.0 10.0 1.5   
5 24.0 33.0 1.5 27.1 35.3 
6 32.0 5.0 2.5 33.2 5.7 
7 31.0 10.0 1.0 32.8 11.7 
8 25.0 26.0 1.5   
9 13.5 18.5 7.6 14.4 17.9 

10 10.5 26.3 10.5  25.7 
11 18.0 12.0 6.5 18.1 12.4 
12 17.5 20.0 2.9 17.0 18.9 
13 29.0 23.0 1.5 26.4 22.3 

* Reference values from packaging labels;   † Reference values from replicate chemical analysis. 
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It is important to note that while a single hyperspectral 
image may provide twenty to eighty thousand sample 
spectra, there were only 13 actual cheese samples 
measured. Additionally, while the protein content ranged 
from 10.5 to 32% and the fat content from 5 to 33% the 
expected carbohydrate concentration was mostly 1.5% with 
only a few special cheeses being higher. This made the 
distribution skew and it may have caused problems with 
cross validation. These are serious challenges to forming 
robust and accurate regression models. 
 
3.3 Data Pretreatments and Analysis 
Some of the sensors in the imaging system produced 
obvious hardware dead pixels with consistent signal counts 
of zero or 4096, the minimum or maximum A/D converter 
value. Other pixels had saturated values due to specular 
reflection or simply provided erroneous data. An iterative 
pixel removal process was used to eliminate these pixels 
from each hyperspectral image: a general spatial region of 
interest (ROI) was first identified based on sample 
geometry and further masked based on a simple threshold 
level. From this subset class of spectra, the standard 
deviation of all Euclidean distances to the median ROI 
spectrum was computed, and any pixels with a distance 
greater than 5 standard deviations were eliminated. A new 
median spectrum, sorted distances and standard deviation 
were computed and used for additional outlier detection. 
This cleaning process was repeated, until no more pixels 
were removed. The resulting clean class mask was used for 
all subsequent sample pixel selection steps. Each of the 
images measured contained only one sample mixture, hence 
all the pixels in the clean mask were expected to belong to a 
single class population. 
 
For PLS calibration modeling purposes a single median 
spectrum was first computed from the set of all spectra 
contained within the cleaned ROI mask of each of the 
calibration set images. This reduced the effect of variance 
within an image due to physical diffuse reflectance 
processes such as light scattering and removed the high 
leverage effect due to any extreme outliers not removed by 
the mask cleaning process. Extreme outliers have a large 
effect on mean value computations, consequently median 
spectra which are more robust to this effect were computed 
from the ROI masks. It should be cautioned that it is 
possible that the median spectrum values at each 
wavelength channel may in fact have come from different 
pixel or spatial locations. In this example, due to the very 
large sample population sizes, typically 20 to 60 thousand, 
this was not likely to have caused errors. 
 
Two approaches towards spectral test set selection were 
used. To test the effectiveness of using the instrument in a 
spot probe mode, single median spectra were computed for 
each of the test image ROIs. Alternatively, to examine the 
spatial distributions afforded by hyperspectral images, 
complete sets of ROI spectra were included as test sets. In 
this case univariate tail trimming methods were employed 
before computing modeling statistics. Predicted values from 
the complete set of mask selected spectra were sorted and 
the first and last 2.5 percent of all results were removed 
before further computations of RMSEP, mean, or standard 
deviation. This trimming of ROI results was also justified 
by the massive number of samples within a typical image 
ROI. 

Unless noted otherwise, all PLS models were based on a 
leave-one-out sample cross validation method: for each 
mixture or cheese sample, all replicate images were 
eliminated from the calibration set and a PLS model 
computed. This avoided any aliasing effects that would 
otherwise be introduced by including the replicate images 
in a leave-one-out image cross validation. In addition to the 
reflectance transforms and internal standard corrections, 
spectra were also converted to first and second derivative 
spectra using Savitzky-Golay filters [16-18] or converted 
from reflectance to absorbance. No variable or wavelength 
selection was performed; the entire spectral range was used 
for all computations. All analysis was performed using 
MATLAB version 6.1. 
 
 
4. RESULTS AND DISCUSSION 
4.1 Calibration standards 
Figure 1 shows NIR spectra measured for a selection of ten 
cheeses: b) the raw instrument spectra; c) reflectance 
spectra using the single point transform; and d) reflectance 
spectra using the second order transform. Converting the 
spectra to reflectance corrected for the wavelength 
sensitivity of the detector sensors and wavelength variation 
of light source intensities. When viewed side by side, 
differences between the single point and second order 
reflectance transformed spectra were difficult to see.  
Closer examination of enlarged spectral plots suggested that 
the second order transform model generally performed best, 
yielding spectra which were smoother with slightly 
improved peak shape and more pronounced amplitudes. 
 
For each of the sample images collected, median spectra 
from ROIs of each of the internal standards were used to 
validate instrument performance and used to correct for 
short term drift and other instabilities. Figure 2a shows the 
variation seen for internal standard number two (72 percent 
reflectance) in the same series of cheese images as Figure 1. 
The results of applying different correction models can be 
seen in Figure 2b - d. Correction models were based on 
either the maximum reflectance internal standard only 
(single point) or the set of all internal standards (linear and 
second order). Individual correction models were computed 
for each image, and subsequently applied to all spectra 
within the same image. The second order correction model 
based on all internal standards performed best at 
converging the individual spectra towards a target 
spectrum, and hence converging the individual images (in 
essence a slave instrument) towards a single target image, 
or master instrument. This was evident from comparing the 
range in the minimum and maximum reflectance values for 
each transform.  A pooled variance was computed from all 
wavelengths of the internal standard spectra displayed in 
figure 2.  The computed standard deviations for the 
uncorrected, and single point, linear, and second order 
corrected spectra were 0.64, 0.32, 0.16, and 0.12 
respectively (percent reflectance), again indicating optimal 
performance from the second order correction transform.  
In the example provided in Figure 2a, one of the initial 
reflectance spectra showed a significant deviation with a 
peak at 1250 nm. Because this abnormality was measured 
in all internal standards, the correction procedure 
effectively removed it from the corrected spectra of Figure 
2d. Further implications of the use of internal standard 
corrections are discussed below. 
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Figure 2. Ten replicate spectra from the 72 percent reflectance 
standard (a) corrected by single point (b), linear (c), and second order 
(d), internal standard correction models. All plots are percent 
reflectance vs. wavelength in nm. 

 
 
4.2 Ternary mixture analysis 
4.2.1 Experimental design verification 
Principal component analysis (PCA) was performed on the 
mean centered median reflectance spectra obtained from the 
masked ROI of each of the replicate artificial mixture 
images. The t1 – t2 score plot is presented in Figure 3. The 
linear relationship of the mixing triangle was retained over 
the entire range of 0 – 100 percent concentrations of each 
constituent. The overall precision was very good, as 
indicated by the replicate scores of the 35 sample images. 
The ten replicates of the center point mixture clustered in a 
very small area. Replicates scores of other mixture samples 
were barely distinguishable from each other in the t1 – t2 
space. 
 
 
 
 
 

 
 

Figure 3. PCA score plot of median spectra from 35 artificial mixture 
images. Duplicate constituent and binary mixture (circle); triplicate 
ternary mixture (triangle); and ten center point mixture (cross) 
replicates. The mixing triangle represents mixtures of sugar (A), citric 
acid (B), and salicylic acid (C). 

4.2.2 Supervised exploratory analysis 
The immense quantity of data contained within a single 
hyperspectral image necessitates the use of chemometric 
data compression techniques to assist with image 
interpretation. This same volume of data also enables the 
extension of univariate tools to further data exploration. In 
the example dataset, a global PLS model was computed 
from the median spectra of all 35 mixture images, then 
applied to over 20,000 individual pixel or sample spectra 
measured in the masked region of one of the center point 
mixture images. Here K=118,  N = 13,  M=L≈20000. For 
each constituent of the mixture, the prediction results for 
the 20,000 spectra were summarized with a univariate 
histogram. These distribution plots offer insight into both 
the nature of the individual sample image, and the 
effectiveness of the regression model. The distribution 
shape, width, and any outlier locations provide information 
regarding the complexity of the sample, confirming sample 
purity or uniformity. The peak center location represents 
the average concentration and indicates model error.  
 
Prediction histograms based on a four component PLS 
model are displayed in Figure 4 for the three mixture 
constituents. Although this was intended to be a well mixed 
uniform sample, the range in predicted concentrations was 
very large. For each constituent the peak center or mean 
concentration was very close to the expected 33 percent. 
However the range in the distribution of concentrations at 
individual pixels was very broad, with values ranging from 
0 to 60 percent. The salicylic acid distribution was much 
narrower, probably due to the improved modeling of the 
more selective pure constituent spectrum. The peak shapes 
appeared very similar to a normal distribution, indicating 
that although there was significant variation from the 
expected concentration value, these deviations were 
randomly distributed. 
 
 

 
 

 
 

Figure 4. Histograms of 4 component model concentration predictions for 
a single center point mixture image. Model and predictions are based on 
absorbance spectra (top row) and first derivative spectra (bottom row). The 
expected concentration is indicated by the vertical line. 
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Table II Prediction errors and (number of components) for various diagnostic tests. 

Technique Test Set Sugar Citric Acid Salicylic Acid 
RMSEC Median 1.8 (4) 1.0 (5) 0.5 (4) 
RMSECV Median 4.0 (4) 4.1 (5) 2.6 (2) 
RMSEP - center point replicates Median 0.7 (3) 1.5 (3) 0.5 (2) 
RMSEPG - all images ROI Set 0.5 (3) 1.1 (3) 0.3 (3) 
SG ROI Set 2.6 (3) 3.4 (3) 3.0 (3) 
D-Metric ROI Set 2.7 (3) 3.6 (3) 3.0 (3) 
 
 
 
The bottom row of Figure 4 contains histograms for the 
same sets of spectra, pre-processed by a first derivative 
transform. In this case, the use of a first derivative 
transform greatly decreased the variance in predicted 
concentrations. Similar broad normal distributions with a 
narrowing of first derivative based prediction histograms 
was observed for predictions from images of the pure 
constituents as well. This suggested that the first derivative 
transform corrected for a physical process artifact in all 
samples, most likely associated with light scattering or 
specular reflection. 
 
Figure 5 demonstrates another modeling consequence 
observed in the prediction distributions, in this case sugar 
concentration based on first derivative spectra. As the 
number of components in the calibration model was 
increased from one to six, the distribution center shifted 
towards the expected value (decrease in bias) but the 
distribution also began to broaden (increase in standard 
deviation). This balance of distribution bias vs. distribution 
width is quantified in a new diagnostic descriptor for 
determining the number of latent variables, discussed 
further in the following section. 
 
 

 
 

Figure 5. Histograms of sugar concentration predictions from first 
derivative spectra of a single center point mixture image vs. 1 – 6 PLS 
components in the calibration model. 

 
 
The visual inspection of the population distributions and 
statistics is a major analysis tool that takes advantage of the 
additional information contained within a hyperspectral 
image. The broad range in predicted values and impact of 

the first derivative transform, and the change in width of 
distribution width as a function of the number of model 
components, would not be easily detectable from the single 
spectra that a single beam or spot probe spectrometer 
provide. 
 
4.2.3 Number of components 
A critical step in the creation of accurate regression models 
is choosing the correct pseudorank or number of latent 
variables to use. Many classical chemometric approaches 
have been suggested and were considered. These tests were 
based on either calibration model statistics or statistics 
based on predictions of test set spectra. These various tests 
are summarized in Table II, for first derivative reflectance 
spectra only. In all cases, median image spectra were used 
for creating calibration models. Test sets were based on 
either the median spectrum from each image or the 
collection of all spectra within each image ROI (Li ≈ 
20000). 
 
The first test was based on RMSEC, the error in predicting 
all samples, using a calibration model based on all samples. 
(K=118,  N=35,  M=35) This diagnostic suggested that 4, 5, 
and 4 components should be used in the calibration model 
for the three constituents. Since all test spectra were used 
for creating the model the prediction errors were relatively 
small. 
 
The diagnostic from leave one out cross validation, 
RMSECV, (K=118,  N=35-Q,  M=Q,  P=35) indicated 
much larger prediction errors than the RMSEC. The 
optimal number of components for sugar and citric acid was 
similar, but the results suggested a significantly fewer 
number of components were needed for prediction of 
salicylic acid concentration. Since the center point mixture 
was imaged ten times, RMSEP was computed for this class 
of mixture samples alone as a pure test set diagnostic. 
(K=118, N = 25, M=10) This diagnostic suggested that 3 
components were needed for sugar and citric acid and only 
2 components were needed to accurately predict the 
salicylic acid. The primary difference with this test is the 
dramatic reduction in prediction errors, especially for sugar 
and salicylic acid, to values less than 1 percent. 
 
Because predictions from hyperspectral images offer large 
population statistics, diagnostic tests were included to take 
advantage of both inter and intra image statistics. From the 
35 total images, a pooled standard deviation SG (Equation 
6) and global RMSEPG (Equation 4) were determined from 
the individual standard deviation and bias values computed 
from the prediction populations for each individual image. 
(K=118,  N=35-Q,  M=L≈20000,  P=35) These global 
values utilized the bias and standard deviations of the 
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distributions as in Figure 5, but were summarized for all 
images. The values resulting from 3 component calibration 
models are listed in Table II. The RMSEPG values were 
very similar to the RMSEP values for the predictions of the 
center point median spectra, ranging from 0.3 to 1.1 
percent, and represented an overall prediction error 
resulting from the global effect of averaging all spectra 
predictions. However within an image the pooled standard 
deviation suggested that the average prediction error was 
close to 3 percent for all constituents. As indicated in the 
histograms of Figures 4 and 5, the PLS models do a good 
job of predicting the mean image concentration (< 1 
percent), but there is significant variation (3 percent) in the 
predicted concentrations within the sample ROI of each 
image. 
 
The variation of RMSEPG and SG is displayed in the 
scatterplot of Figure 6, as a function of the number of latent 
variables in the calibration model for the three ingredients. 
It is clear in this plot that as the number of components 
increases, RMSEPG decreases, indicating increased 
accuracy. However when too many components are 
included, the standard deviation increases, meaning less 
precision. The objective in this plot is to minimize both the 
RMSEPG and SG simultaneously. This can be done visually, 
or by computing the distance to the origin using Equation 7. 
Using this metric, the optimal number of model 
components suggested was 3 for all constituents. 
 
 

 
 

Figure 6. Center point mixture concentration prediction errors from 
first derivative spectra: RMSEPG vs. SG, the pooled standard 
deviation of errors from 10 replicate images, sugar (circle), citric acid 
(square), salicylic acid (triangle). The number indicates the number of 
components in the calibration model. 

 
 
This combined metric includes variance contributions from 
cross validated calibration models, as well as large test set 
population statistics, taking full advantage of the complete 
hyperspectral image information. Press plots of this metric 
allow summary comparisons of trends as a function of the 
number of latent variables or differences between 
ingredients. The resulting distance value is representative of 
the prediction error expected in all images. 
 

4.2.4 Prediction Image Maps 
Hyperspectral images offer an analysis benefit in addition 
to the large population statistics obtained from the large 
number of sample spectra: spatial information. The sets of 
concentration prediction results can be viewed not only as 
histograms, but the individual prediction results can also be 
mapped back to the original spatial locations of the source 
spectra used for prediction. These spatial maps can then be 
viewed as an image, indicating the spatial distribution of 
ingredient concentrations. The spatial mappings of sugar, 
citric acid, and salicylic acid for one of the center point 
sample images are provided in Figure 7. The apparent high 
contrast texture in Figure 7 a and b, explained the broad 
range of values observed in the concentration histograms of 
Figure 4. The salicylic acid concentration had a much 
narrower histogram, which was confirmed by the smoother 
appearing concentration map of Figure 7 c. 
 
 

 
 

Figure 7. Concentration prediction maps for a single center point 
image. Sugar (a), citric acid (b), salicylic acid (c), and a false color 
composite of all three constituents (d). Approximately 20,000 pixels or 
sample spectra in circular mask with 80 pixel radius. 

 
 
When viewed individually, the concentration maps for 
sugar, citric acid, and salicylic acid appear to exhibit a 
fairly uniformly distributed variation (uniform detailed 
‘texture’) with a very subtle gross variation (slightly darker 
areas.)  The three images can also be overlaid as red, green, 
and blue layers producing a false color image. Figure 7 d 
represents the resulting false color image after first scaling 
the predicted concentration information. The 0 to 100 
percent possible range of concentrations was scaled to 0 to 
1.0, for each ingredient, sugar (red), citric acid (blue), and 
salicylic acid (green). Again the fine structure variance or 
‘texture’ appears fairly uniform, however now large areas 
(color blotches) of different relative concentrations of the 
three ingredients are visible. The uneven coloring of Figure 
7 d was possibly due to constituent agglomeration within 
the 0.2 x 0.2 mm2 pixel areas.  Although the 25 micrometer 
sample particle sizes should have been much smaller than 
the individual pixel size, physical forces between particles 
may have prevented uniform mixing of the three 
constituents. The false color mapping technique is
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Table III Cheese prediction errors for different data preprocessing techniques. Four component PLS-1 models are based on single median spectra from each 
image ROI. 

Technique Protein* Fat* Carbohydrate* Protein† Fat† 
RMSEC:      
   Reflectance 2.7 2.4 1.6 2.5 2.4 
   Reflectance - First Derivative 2.3 1.3 1.4 2.0 1.4 
   Reflectance - Internal Std 
   Corrected 

2.9 2.3 1.6 2.7 2.4 

   Absorbance 3.1 2.8 1.9 2.6 3.0 
RMSECV:      
   Reflectance 4.0 3.1 2.7 3.5 3.2 
   Reflectance - First Derivative 4.0 1.7 2.5 3.5 1.8 
   Reflectance - Internal Std 
   Corrected 

4.0 2.9 2.5 3.6 3.2 

   Absorbance 4.6 3.6 2.8 3.8 4.0 
* Reference values from packaging labels;  Reference values from replicate chemical analysis. 
 
 
 
 
extremely useful for providing additional sample 
uniformity information. 
 
4.2.5 Additional Transformations  
An extensive comparative analysis was performed on the 
images using the various data pretreatment techniques 
described: the simple, linear and second order reflectance 
transforms, and the internal standard corrections, all in 
combination with or without first derivative or absorbance 
transformations, as well as first and second degree spectra 
normalization. With the exception of the first derivative 
transform, these pretreatments had very little systematic 
effect on prediction results. In fact regression models based 
on the raw instrument count data performed nearly as well 
as the second order reflectance transform with second order 
internal standard correction. However as indicated in 
Figures 1 and 2, these transforms and corrections greatly 
enhance the interpretability of the spectra and are useful for 
instrument validation and performance diagnostics.  
  
In this artificial dataset, sample presentation and instrument 
errors far outweigh the benefits available from data 
pretreatment and correction. Splitting the replicate images 
into different collections of calibration and test sets created 
substantial differences in the prediction errors and the 
determination of the optimal number of components. This 
was observed with test sets made up from both ROI median 
spectra and complete ROI spectra. Trends in RMSEC and 
RMSECV press plots changed dramatically for different 
calibration – test set splits with identical preprocessing 
conditions.  The results presented here are based on the 
complete set of all images, and are valid for comparative 
purposes. More robust models would be expected from a 
larger set of replicate images acquired from multiple 
samples of the artificial mixtures. After examining the 
results of many different calibration-test set splits, it 
appeared that the D-metric seemed to be most robust to the 
effects of sample variation. In most cases the measured 
error was around 3 percent for all constituents. This reflects 
the variation of concentration within an image ROI. 
 

4.3. Cheese Analysis 
4.3.1 Prediction Error Diagnostics 
The analysis of cheese represents a legitimate test of the 
potential of hyperspectral NIR image regression. Initial 
problems were encountered with sample preparation and 
measurement. During the lengthy five minute imaging 
process the heat from the quartz halogen illumination lamps 
caused some cheeses to melt. This caused samples to move 
during image acquisition due to the heating stress and in 
some cases, fat separated forming small beads on the 
cheese surface. Minimizing the analysis time through 
instrument optimization and the addition of a small box 
cooling fan permitted acquisition of acceptable sets of 
images. Sample preparation and stability are nonetheless 
critical elements of hyperspectral imaging of biological 
samples. 
 
A comprehensive study of PLS prediction errors in 
determining protein, fat and carbohydrate concentrations 
was performed using various image data pretreatments and 
corrections. Both reflectance and absorbance transforms 
were compared to the use of spectra in raw instrument 
detector counts. The effect of instrument standardization 
based on the internal standards was also explored, 
correcting each image to either a grand master target image, 
or a target image for each day. Median ROI spectra were 
computed from each set of ROI spectra after the 
preprocessing. As with the artificial ternary mixture 
datasets, it was difficult to find a pretreatment modeling 
strategy that consistently improved the prediction error or 
readily identified the optimal number of calibration model 
components to use. Regardless of the preprocessing 
conditions, between 2 and 4 components created a 
reasonable model for protein and fat with relatively similar 
prediction results. Table III lists some typical RMSEC and 
RMSECV values for a four component model of the entire 
set of replicate images acquired on five different days. 
(K=118,  N=68,  M=68 for RMSEC, and K=118,  N=68-Q,  
M=Q,  P=68 for RMSECV) Four components was not 
always the optimal number of components, but was chosen 
as a consistent value for comparison of data pretreatment 
techniques.  
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Table IV Global prediction error statistics based on four component PLS-1 models applied to complete ROI spectra test sets. 

Technique Protein* Fat* Carbohydrate* 
RMSEPG 1.8 0.7 1.3 
SG Pooled standard deviation 2.3 1.4 1.4 
D-Metric 3.0 1.6 1.9 
* Reference values from packaging labels. 
 
 
Table V RMSEP values before and after internal standard corrections for two types of instrumentation disturbances.  

Technique Protein* Fat* Carbohydrate* Protein† Fat† 
Power reduction:      
   Uncorrected 4.3 6.9 1.2 3.4 6.9 
   Global standardization 3.1 2.4 1.0 1.7 2.6 
LCTF Reload:      
   Uncorrected 2.4 2.1 1.7 2.2 2.1 
   Global standardization 2.9 2.4 1.7 2.8 2.6 
* Reference values from packaging labels;  Reference values from replicate chemical analysis. 
 
 
 
The regression models based on the ROI median spectra 
were also applied to individual image ROI spectra to 
compute predictions at each pixel location. Summary 
RMSEPG, SG, and D-Metric values for the images acquired 
on one day are listed in Table IV. (K=118,  N=12-Q,  
M=L≈67000,  P=12) The results listed are for reflectance 
spectra without any further preprocessing. 
 
The example results listed represent the errors found when 
using all images from all days, Table III, or only the images 
from one specific day, Table IV. It was very difficult to 
make any general performance conclusions valid for any 
specific set of conditions. As observed in the artificial 
ternary mixture analysis presented in the previous section, 
the choice of calibration set and test set images and the 
application of different data pretreatments provoked major 
changes in the general trends in the different RMSEC and  
 
 

 
 

Figure 8. D-metric combining RMSEPG and SG prediction errors in 
cheese. Protein (circle), fat (square), carbohydrate (triangle) vs. 
number of components in calibration model. 

RMSECV press plots. Again one of the more robust error 
diagnostics was the D-metric based on the global RMSEPG 
and SG. Figure 8 shows the D-metric press plot for the same 
one day test set images used for Table IV values, and 
suggested that in this particular case only two components 
were sufficient for each ingredient. 
 
The RMSEPG is a general indicator for how well the cheese 
constituents can be predicted. Typical errors of 1 – 2 
percent for protein and fat, and 2 to 3 percent for 
carbohydrate were determined, which was greater than the 
chemical analysis error measured ( 0.14 percent protein and 
0.41 percent fat) but similar to results obtained with other 
NIR spectrometers [19]. Unfortunately the reported value 
of carbohydrate in most of the cheeses sampled was 1.5 
percent, which is below the indicated detection limit. The 
larger SG values indicated additional variation of 
constituent concentrations within an image or cheese 
sample. Models based on constituent reference values 
obtained from packaging labels gave comparable results to 
those obtained from models based on the reference values 
obtained from chemical analysis for protein and fat. 
 
4.3.2 Internal Standard Corrections 
For most of the images, the internal standard correction 
preprocessing step made insignificant changes to the 
prediction results. However two special situations were 
examined. A test set of 12 replicate images was made of 
three cheeses after purposely reducing the power supply 
voltage to the sample illumination lamps. A second test set 
of 9 replicate images was obtained after a reset in the LCTF 
wavelength bandwidth settings due to a thermal drift in the 
filter. Principle component analysis of median ROI spectra 
from the internal standards within the entire image set 
clearly showed these two instrumentation disruptions as 
isolated clusters. 
 
The entire set of hyperspectral images was standardized by 
computing correction models for each individual image 
based on its internal standards and a common set of 
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standard target spectra. Corrected median ROI spectra were 
then computed and used as calibration and test set spectra. 
RMSEP results are presented in Table V for the lamp 
power reduction (K=118,  N=59,  M=12) and the LCTF 
reset (K=118,  N=59,  M=9) based on a four component 
PLS-I model consistent with previous examples. 
 
The internal standard correction clearly improved the 
predictions from the reduced power images. The change in 
lamp power resulted in a change in reflectance levels 
throughout all spectra, which was detected and 
compensated for by use of the internal standards. The 
LCTF reset made subtle changes to the spectral bandwidths 
which were detected by the PCA of the internal standard 
spectra. However this variance was not well correlated to 
the constituent variances and little change in prediction 
error was observed. In either case the inclusion of the 
internal standards enabled detection and possible correction 
of the instrumentation disturbances. 
 
4.3.3 Prediction Image Maps 
In addition to the average ingredient values, the 
concentration predictions from individual hyperspectral 
image spectra can be mapped to provide spatial 
information. Figure 9 provides the false color maps for the 
2 component prediction of protein, fat, and carbohydrate in 
one set of images for 12 individual cheeses. (K=118,  
N=12-p,  M=p,  P=12) For comparison purposes, the false 
color of the combination of expected values of the three 
ingredients was depicted in a smaller rectangle below each 
prediction image. Color intensities were scaled such that 0-
40, 0-40, and 0-10 percent ranges of protein, fat, and 
carbohydrate, were mapped to the full scale values of red, 
green, and blue. A wide range of target colors was 
displayed, representing the broad spectrum of compositions 
depicted in the cheese dataset. The color matching between 
expected and predicted values was quite good. The false 
coloring also aided spatial analysis. Slight inhomogeneous 
areas were easily noticed due to changes in coloration of 
the images. Concentration prediction maps resulting from 
purposely choosing overfitting calibration models may also 
be viewed. The additional variance modeled may provide 
spatial sample and instrument performance information. In  
 
 

 
 

Figure 9. False color concentration prediction maps for 2 component 
first derivative spectra models of 12 different cheeses. A smaller 
rectangle below each prediction map indicates the target ‘color’ 
expected. Rectangular cheese masks are 209 x 320 pixels. 

addition to the overall or average concentration values 
which are available with a probe type NIR instrument, the 
hyperspectral imaging provides detailed spatial resolution, 
which may be equally important in the manufacturing of a 
product such as cheese. 
 
The images represented in Figure 9 were acquired with the 
illumination lamps purposely defocused. Large areas of the 
image received only 60 – 70 percent of the full illumination 
intensity. This intentional unevenness was effectively 
flattened or removed using the second order external 
standard reflectance transform, permitting continuation 
with regression analysis and prediction of ingredients. 
 
 
5. CONCLUSIONS 
Regression of hyperspectral image data provides a powerful 
tool for increasing the understanding of sample constituent 
concentrations and their spatial variation. One striking 
property of the examples in this paper is that hyperspectral 
images often offer large spectral populations but only small 
sets of reference values. If known spatial regions of interest 
within an image are mapped to a single reference value, the 
collection of spectra in that region of interest can be 
represented by a single median spectrum. Sets of these 
median spectra can then be used to build calibration models 
which in turn can be applied to large populations of test set 
spectra to obtain large populations of predicted values. 
Histograms and statistic estimates of these populations 
provide information regarding the uniformity of constituent 
concentration. Averaged quantitative results can be 
computed which are comparable to those obtained with spot 
probe spectroscopic techniques. Mapping the concentration 
values adds spatial information, allowing even greater 
insight into sample uniformity. This may be further 
accentuated by use of false color mapping visualization 
techniques. 
 
Reliable prediction results can only be produced from 
accurate calibration models based on reliable data. It is 
important to ensure that only spectra truly representative of 
the known constituents are included in the calibration set. 
This is achieved by first constructing spatial region of 
interest masks, followed by the use of thresholding and 
within class distances to effectively remove all significant 
outlier pixels or spectra. It is also important to select the 
correct number of latent variables or components in the 
calibration model; too few or too many produce poor 
predictions. The availability of estimates of large 
population statistics of predicted values offers a new robust 
approach: a global RMSEP value provides a general 
measure of overall bias, while a pooled standard deviation 
describes the variance in prediction. A new distance metric 
has been proposed which balances contributions from these 
two measures. 
  
In the two example datasets examined, the use of a first 
derivative transform did little to change the average 
predicted concentration value of constituents however it 
provided a major reduction in the range in predicted values. 
This was clearly observed as a peak narrowing in the 
histograms of predicted values and as a noticeable 
smoothing in the concentration image maps. 
Transformations of spectra from instrument detector counts 
to reflectance or absorbance had minimal impact on the 



- 12 - 

constituent predictions but are useful for spectral 
interpretation. Similarly image standardization by use of 
internal standards included within the image field of view 
had little effect on constituent prediction but is still 
recommended to allow instrument and experiment 
diagnostics. This is especially important when a 
standardized instrument image is needed to make use of 
cataloged library spectra. Considerable variation of 
prediction results was observed after selection of different 
combinations of calibration and test set spectra. 
Examination of the internal standard spectra of questionable 
images confirmed that the instrument was performing 
properly and not the source of this variance. Other sources 
of variance need to be investigated further.  Physical effects 
such as light scattering can be mathematically corrected for.  
Sample preparation and presentation techniques of 
materials for quantitative and qualitative hyperspectral 
image analysis should be carefully examined to further 
reduce sample variance as much as possible.  
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A hyperspectral image in the near infrared contains thousands of position-referenced spectra.

After imaging reference materials of known composition it is possible to build Partial Least

Squares (PLS) regression models for predicting unknown compositions from new images or

spectra. In this paper a comparison is made between spectra from a hyperspectral image and

spectra from two spectrometers: a scanning grating instrument with rotating sample holders and

an FT-NIR instrument utilizing a fiber-optic probe. The raw spectra and the quality of the PLS

calibration models and predictions are compared. Two sample datasets consist of a set of

13 designed artificial mixtures of pure constituents and a selection of 13 sampled cheeses. The

prediction error from the hyperspectral image spectra is between that of the two spectrometers.

For a typical food sample, the average bias [and replicate standard deviation] was 20.6% [0.5%]

for protein and 20.2% [1.3%] for fat. Comparable values for the best spectrometer were 20.2%

bias for protein and 20.5% for fat. Some of the advantages of working with hyperspectral images

are highlighted: the simultaneous exploration of representations of both spectral and spatial data,

and the analysis of concentration profiles and concentration maps all contribute to better

characterization of organic and biological materials.

Introduction

The calibration and prediction of composition and other

properties in organic and biological materials by near infrared

spectroscopy are well established techniques.1–6 A near infrared

spectrum of a biological sample can be used for calculating

concentrations of e.g. fat, protein, water, carbohydrates etc.

Recent advances in technology enable the acquisition of near

infrared (NIR) hyperspectral images. These images consist of a

near infrared spectrum for each pixel allowing, in theory, the

prediction of analyte concentrations at each pixel, leading to

the creation of concentration images or maps.

Hyperspectral images, also known as hypercubes, are

created by overlaying hundreds of single channel black and

white or grayscale images, each representing a single band of

spectral wavelengths. A typical commercial instrument7 pre-

sented in this paper produces hypercubes with dimensions

256 6 320 6 128. This can be interpreted as 128 single

channel images each with 256 6 320 pixels. Alternatively, this

same hypercube can be viewed as over 81 000 spectra, each

with 128 wavelength points. This huge amount of data poses

data mining challenges, but also creates new opportunities.

As with conventional spectroscopy, chemometrics can be

applied to extract relevant information relating to the spectral

content, allowing sample classifications or quantitative

determinations. Multivariate exploration and classification of

multivariate images have been described earlier.8–10

When additional quantitative information is available for

calibration hypercubes, partial least squares (PLS) and other

regression models can be created for predicting future test set

hypercubes.11–14

An important question to ask is how this developing tech-

nology compares with other more conventional NIR spectro-

scopic techniques. What are the advantages or disadvantages

of using a hyperspectral imaging instrument? This paper

explores these issues by making a direct comparison between

three commercially available spectroscopic techniques: a

classical single beam scanning grating NIR spectrometer

(SG), a fiber optic probe FT-IR spectrometer (FO), and an

NIR hyperspectral imaging instrument (HI). The results are

based on the analysis of two sets of samples: a set of artificial

test mixtures, made according to a simplex lattice augmented

mixing triangle, containing salicylic acid, citric acid, and

sugar in known mass fractions; a set of 13 commercially

produced cheeses containing varying amounts of protein, fat,

and carbohydrate.

The two spectrometers measure light intensities over large

volumes of sample resulting in a single spatially averaged

spectrum for each sample measurement. The hyperspectral

images represent detailed local information measured from

light intensities obtained from individual small volumes,

generating a large population of sample spectra. How should

a calibration model that has useful prediction properties

be developed from such a large set of spectra? Calibration

models between near infrared spectra are often made by

e.g. partial least squares regression, sometimes after spectral

Unit of Biomass Technology and Chemistry, Swedish University of
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preprocessing. Performance diagnostics based on the regres-

sion model as well as predictions of independent data test sets

can be used to judge the analytical usefulness of the method.

Hyperspectral image calibration models for prediction and

their diagnostics are presented and discussed. Some advan-

tages of using images are pointed out and illustrated.

Experimental

Datasets

An artificial three constituent sample set (TriMix) was made

from reagent grade citric acid (CAS 77-92-9), salicylic acid

(CAS 69-72-7), and sugar (consumer grade Dan Sukker). A

three component third order augmented simplex experimental

design yielding 3 pure constituent, 6 binary and 4 ternary

mixture samples was used. All three pure chemicals were first

screened with a 25 mm sieve to remove large particles, and then

blended according to this design scheme. Table 1 lists all

samples and the number of replicates measured. The designed

mixture ratios were binary (1/3, 2/3), ternary (1/6, 1/6, 2/3), and

center (1/3, 1/3, 1/3). Replicate HI and SG measurements of

each mixture were made from a single subsample, while the FO

replicates were acquired by repeated measurement of the bulk

sample containers.

A second dataset was selected from an assortment of

commercial cheese products. These cheeses were specifically

chosen to span as large a range as possible in concentrations of

protein, fat, and carbohydrate. Initially the published values

on the packaging labels were used as standard reference values.

A parallel set of values for protein and fat content was

determined using standard techniques AOAC 976.05 (Kjeldahl

method) and BS EN ISO 1735:2004 (fat extraction). The

percent protein content ranged between 10.5 and 32, fat

between 5 and 33, and carbohydrate 1.5 and 10.5. The protein

and fat concentration values were fairly evenly distributed

however the carbohydrate values were skewed with 10 of the

13 being less than 3 percent. The number of replicate

measurements for all cheese datasets is listed in Table 2. All

replicate measurements were made on independent sub-

samples. Measurements were made on five separate days from

either 12 or 10 of the different cheeses. Set V was imaged and

then immediately measured with the SG instrument.

Hyperspectral images (HI)

Near infrared (NIR) hyperspectral images were acquired

using a Spectral Dimensions MatrixNIR camera.7 The spectral

range recorded was 960–1662 nm, with 6 nm resolution,

producing hyperspectral images with 256 6 320 pixels at

118 wavelength channels. Each channel was scanned 10 times

and digitized with 12 bit resolution, using a 64 ms integration

time. The image field of view was 50 6 62 mm with approxi-

mately 0.2 6 0.2 mm2 pixels. Total image acquisition time was

3–6 minutes so heat sensitive samples were cooled with a small

box fan positioned just beyond the field of view. This lengthy

acquisition time is due to the settling time required by the

liquid crystal tunable filter (LCTF) used in the camera;

changes in the number of replicate scans had little effect on

total image acquisition time. All images were acquired in raw

signal format representing A/D sensor counts and stored

directly to disk. Image files were subsequently transformed to

reflectance using models based on a series of calibration

images.15 The time required for acquisition of calibration

images was 30 minutes, with an additional 7 minutes needed

for computation of reflectance transform models using a

3.2 GHz P4 processor. The subsequent conversion of

individual hyperspectral images from A/D sensor counts to

reflectance required only 20 s of processing time. Samples for

imaging were either placed in circular NIR sample holders

with glass covers, or placed on pieces of silicon carbide

sandpaper. The sandpaper is inexpensive, disposable, and

produces a very low reflectance background.

Scanning grating spectrometer (SG)

The Foss NIRSytems 5000 is based on a scanning grating

monochromator with a PbS detector.16 The wavelength range

selected was 1100–2498 nm with 2 nm resolution. Each

spectrum was averaged from 32 scans. Samples were contained

in glass covered sample holders which spun during signal

acquisition. These same sample holders were also used for

hyperspectral imaging. The results were given immediately in

absorbance by the instrument. The acquisition time per sample

including the scanning of a standard reference material and

conversion to absorbance was typically ,60 s per sample.

Fiber optic probe spectrometer (FO)

Spectra were also acquired from a Bruker Matrix F FT-NIR

instrument, equipped with a fiber-optic sampling probe.17 This

instrument uses an InGaAs detector with a working range of

4000–12 000 cm21. Spectra were collected at 4 cm21 resolu-

tion, but for instrument comparison purposes were displayed

in wavelength units, 833–2500 nm. Each spectrum was

an average of 32 scans. The total acquisition time was typically

,30 s for each sample spectrum. The probe was inserted

Table 1 Sample datasets for each instrument

Instrument Sample
Number of
samples

Number of
replicates

Number of
spectra

HI Constituent 3 2 6 6 20000
Binary mix 6 2 12 6 20000
Ternary mix 3 3 9 6 20000
Center mix 1 10 10 6 20000

SG All samples 13 3 39
FO All samples 13 5 65

Table 2 Sample datasets for each instrument

Instrument
Sample
set

Number of
samples

Number of
replicates

Number of
spectra

HI I 12 1 12 6 20000
II 12 1 12 6 20000
III 12 1 12 6 20000
IV 10 1 10 6 20000
V 10 1 10 6 20000

SG V 10 1 10
FO VI 12 3 36

VII 10 5 50
VIII 10 8 80
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directly into containers of the artificial sample set mixtures,

or positioned directly perpendicular on the surface of the

cheeses. These spectral results were also given immediately

in absorbance.

Data selection and pre-treatment

Some of the sensors in the hyperspectral imaging system

produce obvious hardware dead pixels with consistent signal

counts of zero or 4095, the minimum or maximum measurable

detector sensor value. Other pixels may have saturated values

due to specular reflection or simply provide erroneous data.

Euclidean distances to a mean spectrum were computed and

then thresholded to eliminate these outlier pixels from each

hyperspectral image. A region of interest (ROI) mask was then

created to specifically select these cleaned spectra (pixels) to be

included in PLS calibration and testing. For PLS calibration

modeling purposes a single median spectrum was first

computed from the set of all spectra contained within the

cleaned ROI mask of each of the calibration set images. This

reduced the effect of variance within an image due to physical

diffuse reflectance processes such as light scattering and

removed the high leverage effect due to any extreme outliers

not removed by the mask cleaning process. Extreme outliers

have a large effect on mean value computations, consequently

median spectra which are more robust to this effect were

computed from the ROI masks.

For initial comparisons of the instruments, test set spectra

consisted of single median spectra computed from each of the

hyperspectral test image ROIs. Alternatively, to examine

the advantages of the spatial distributions and large sample

populations afforded by hyperspectral images, complete sets of

ROI spectra were included as test sets. In this case univariate

tail trimming methods were employed before computing

modeling statistics. Predicted values were sorted and the first

and last 2.5 percent of all results were removed. This trimming

of ROI results is justified by the massive number of samples

within a typical image ROI, typically 20 to 60 thousand.

Except where noted, all PLS models were based on a leave-

one-out sample cross validation method: for each sample, all

replicate spectra were eliminated from the calibration set and a

PLS model was computed. This avoids any aliasing effects that

would otherwise be introduced by including the replicate

spectra in a leave-one-out spectrum cross validation. Spectra

were also converted to first derivative spectra using Savitzky–

Golay filters and in the case of the hyperspectral image they

were first converted from reflectance to absorbance. For the

first derivative computation, a second order polynomial was

used with a window size of 5 (HI) or 17 (SG and FO) points.

Raw spectra were acquired for different wavelength ranges

on each instrument; however a trimmed common wavelength

region between 1100–1662 nm was also used. Within this

range, the different instruments generated spectra containing

between 94 and 797 discrete data points. The common

wavelength instrument comparison was performed after first

integrating and averaging each spectrum into an equal number

of 94 evenly spaced bins with 6 nm bandwidths.

Hyperspectral image exploratory software, JIMIA, was used

to enable interactive exploration of both spatial or feature

space and spectral or PCA score space. This software

was written by one of the authors in Java version 1.4

with supporting libraries from ImageJ,18 JAMA,19 and

JFreeChart.20 All other data analysis was performed using

MATLAB version 6.1.

Results and discussion

Artificial mixture

The absorbance spectra of three pure constituents used in the

artificial mixture test set are shown in Fig. 1(a), measured on

the hyperspectral imaging camera. Fig. 1(b) displays the

spectra of sugar measured on the three different instruments:

hyperspectral imaging camera (HI), scanning grating spectro-

meter (SG), and fiber optic FT-IR spectrometer (FO). A

wavelength range of 1100–1662 nm which is common to all

three spectrometers has been used for comparative display

purposes. The individual spectra displayed from the three

instruments each represent an average spectrum: with the HI

data, a median spectrum from a spatial region of interest

(ROI) mask was computed; the SG spectrum is measured from

a spinning sample, physically averaging the sample; the FO

spectrum results from averaging the contributions from each

Fig. 1 (a) Averaged hyperspectral image spectra of pure constituents

salicylic acid, sugar and citric acid. (b) Sugar measured with hyper-

spectral image (HI), scanning grating (SG), and fiber optic probe (FO)

instruments. The wavelength region displayed is common to all three

instruments.
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fiber in the probe bundle, also a physical averaging technique.

The spectra displayed are the average values from replicate

spectra measured from multiple samples on each instrument.

This compound averaging effect minimizes any variance effects

due to sample inhomogeneity or spatial sensitivity differences

within each instrument.

Two important observations can be made from Fig. 1. First,

the three constituents have unique spectral features: salicylic

acid has a single peak centered at 1130 nm, whereas citric acid

and sugar are more collinear, with overlapping peaks centered

at 1470 and 1438 nm respectively. Secondly, the HI and SG

spectra are nearly identical, however a significant spectral

baseline offset was consistently observed with all measured

spectra obtained with the FO spectra.

It is important to know how well the measured spectra

represent the sample mixing triangle. Do the mixture spectra

accurately reflect the constituent mixtures, or are there

perhaps additional components contributing to the baseline

differences? One technique of determining this is to use

Principal Component Analysis (PCA) to project the spectral

data into a reduced dimensional space. PCA was applied to

the common binned–common wavelength range spectra from

replicate measurements of each sample, for each instrument.

Fig. 2(a) shows the resulting t2–t3 score space plots. The t1

component effectively removes the average spectrum common

to all spectra. The t2 and t3 scores represent the variance due to

differences between the individual constituent spectra as seen

in Fig. 1 as well as any additional sample and instrument

variation. In all three instrument score plots the 13 points

or distinct clusters of points of the designed experiment

mixing triangle can be clearly seen. This is especially important

with the FO score plot, indicating that the spectral offset

observed in Fig. 1 occurs in all mixture spectra as well, and

the offset amplitude is linearly proportional to constituent

concentration. As with the raw spectra, the mixing triangle

plots of the HI and SQ instruments agree quite well.

Fig. 2(a) also indicates the difference in relative precision

between instruments. Scores from replicate spectra from all

mixture samples are plotted. The SG instrument has the best

precision and the scores of the triplicate spectra measured

of each mixture sample can not be distinguished. The HI

score plot shows only slight replicate variance; the ten

replicated spectra of the center point mixture sample are

very tightly clustered. In contrast however, the FO score plot

shows a significant loss in precision; there is a significant

variation within the cluster of each set of replicate mixture

spectra. This is due to the fiber optic measurement carried

out over a smaller sampling volume, and imprecision in

inserting the probe into the sample matrix in a reproducible

manner.

In an attempt to standardize the instruments, the absor-

bance spectra were converted to first derivative spectra before

binning, and normalized to unit length. The resulting t1–t2

PCA score plot is displayed in Fig. 2(b). The three mixing

triangles of the three instruments are now very similar,

indicated by the score locations of the mixture spectra

from all three instruments. This combination of transforms

permits standardization of the three instruments, however it

also destroys the linear relationships between absorbance and

constituent concentration. This standardization technique was

not used in the subsequent work discussed below.

PLS-1 models were computed using all available spectra

except the center point sample mixture, which was used for

testing model predictions. The sample replicate numbers are

indicated in Table 1. While the optimal number of latent

variables might vary with instrument or constituent, for

comparison purposes, a four PLS component model was used

for all predictions. Table 3 summarizes the results for all three

constituents. It should be cautioned that these statistics are

Fig. 2 PCA scoreplots of replicate spectra, HI (triangle), SG (circle)

and FO (cross), showing the designed experiment mixing triangle of

sugar (A), citric acid (B), and salicylic acid (C). Data preprocessing

treatments were absorbance (a) and first derivative + 2-norm (b).

Table 3 Center point mixture predictions. Average bias and standard
deviation of replicate measurements

Sugar Citric acid Salicylic acid

Bias Std Bias Std Bias Std

Absorbance
HI 0.6 1.2 22.8 1.1 1.7 0.2
SG 0.4 20.7 0.5
FO 0.5 1.4 22.1 0.7 1.4 1.6
First derivative
HI 2.0 1.3 23.0 1.4 0.8 0.3
SG 0.1 20.9 1.1
FO 20.5 1.7 21.9 0.6 2.1 1.7
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based on very small numbers of samples, (10, 3, and 5 for the

HI, SG, and FO instruments) however this variation represents

typical uncertainties observed. The SG instrument provides the

best precision, while the FO instrument the least. The bias

generally ranged between ¡3 percent, without observing any

clear trends due to instrument differences. Results for

modeling and predictions of first derivative spectra are also

listed. No clear improvement in the predicted values was

gained using this transformation.

These results are based on the modeling and prediction of

the full spectral range collected from each instrument, which

varied significantly from instrument to instrument. Computa-

tions were repeated, but restricted to the spectral range

1100–1662 nm, which was common to all three instruments.

Additional predictions were made after first applying a first

derivative transform to the absorbance spectra. Fig. 3(a)

represents the results of all center point mixture sample

predictions. No clear trend in differences was observed

between using the full spectral range or the narrower common

wavelength range, or between choice of absorbance or first

derivative spectra. However the increased replicate sample

variance observed in the FO spectra score plots of Fig. 2 is

manifested in the large error bars of the FO predictions dis-

played in Fig. 3. The SG instrument provided the best preci-

sion, although these conclusions were based on only triplicate

measurements made on the same sample of each mixture.

Because of different digital sampling techniques in the

different instruments, the continuous spectral waveforms

within the 1100–1662 nm range are digitized as 94, 282,

and 797 discrete points for the HI, SG, and FO instruments

respectively. For a more consistent comparison, the spectra

from all three instruments were integrated and binned creating

94 point spectra with 6 nm bins. Additionally, the PLS

loadings were examined to select 20 variables with significant

loadings as a preliminary test of predictions based on

wavelength variable selection. In all cases no clear trend was

observed for improving the model–prediction process. The

predominant source of observed variance came from the

repeated measurements of the mixture samples. The accuracy

in prediction was consistent between all three instruments,

with most prediction errors less than ¡ 2 percent. The

precision of replicate measurements was substantially different

between instruments: the SG instrument offered the best

repeatability, while the FO instrument provided the least.

Cheese analysis

The artificial sample mixtures previously described are useful

for testing the relative performance of the three spectroscopic

instrument techniques with carefully designed laboratory test

samples. However, most applied uses of spectroscopic

measurements target real samples of organic and biological

materials where the composition and structure are determined

by nature or by food processing. An assortment of 13 cheeses

was used to compare applied results on a complex food

product. Cross validated leave-one-out models were used to

first predict the full range of protein, fat and carbohydrate

concentrations provided by the cheese manufacturers. Leave-

one-out modeling was based on cheese type, that is any

replicate measurements of the LOO cheese were removed from

the calibration set as well, to avoid any model alias effects. As

with the artificial mixtures, a region of interest mask was used

to select a subset of spectra from the hyperspectral images,

from which median spectra were computed. An average cheese

was selected to see how well models built on the remaining

cheese types would perform. Independent calibration models

and test set predictions were made from five sets of HI images,

one set of SG spectra, and three sets of FO spectra with

replicates. The expected values for this average cheese were

30% protein, 17% fat, and 1.5% carbohydrate.

Fig. 3(b) summarizes the predictive results for fat obtained

from five independent sets of replicate samples measured with

the HI instrument. Results from four types of spectral

preprocessing are presented: the full wavelength absorbance

spectra, first derivative spectra, and absorbance and first

derivative spectra but limited to the 1100–1662 nm wavelength

range common between instruments. Once again the major

variance observed in this and similar plots with results of

other samples or other instruments was that associated

with sampling and instrument errors. No clear trends were

Fig. 3 (a) Average bias with replicate standard deviation for a 4

component model of salicylic acid predicted from hyperspectral image

(HI), scanning grating (SG), and fiber optic probe (FO) spectra. (b)

Average bias for a 3 component model of fat in cheese predicted from

replicate hyperspectral images. Data pre-treatments were: none (star),

first derivative (circle), common wavelength range absorbance

(square), and common wavelengths + first derivative (triangle).
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observed in the effects of the spectral pre-treatments, or

between instruments.

In addition to the protein, fat, and carbohydrate content

reported by the cheese manufacturers, the cheeses were

analyzed independently for protein and fat content. The

concentration values varied slightly, and were used for

independent modeling. Prediction results for all constituents

with all instruments are listed in Table 4. General bias and

standard deviation values were about the same as those

obtained in the artificial mixture analysis. The overall bias

results of the three instruments were quite similar, however the

observed precision decreased significantly from SG to HI to

FO instruments. All the instruments used were based on

diffuse reflection. The SG instrument scanned over a large

area, and gave very precise results. The HI was not as precise

as the SG instrument, but because of the averaging effect

of thousands of sample spectra it did very well. The FO

instrument provided the highest wavelength resolution and

was considered very stable, but the fiber optic probe

introduced additional uncertainty. The major variation

observed with all instruments seemed to be due to sample

preparation and presentation technique.

The lab results for protein and fat were for the actual cheeses

and were considered reliable. The values reported on package

labels agreed well, but were less reliable because they were only

for typical batches. Most HI results were therefore good.

They were within the error expected between the label value

and actual cheese value. The agreement with the lab results

was also good.

Hyperspectral image advantages

The results discussed so far have been based on the com-

parison of a single median spectrum from each hyperspectral

image with the spectra obtained from the physical averaging

obtained with the other spectrometers. The main advantage of

the hyperspectral image is that it contains over 81 000 spectra

from which large sample population statistics and spatial

information can be extracted. The calibration models pre-

viously computed from median spectra were applied to the

sets of spectra defined by the spatial ROI selection masks,

resulting in thousands of prediction values. These values can

be summarized in a univariate histogram, or depicted as a

concentration map by assigning each prediction value to the

spatial coordinates provided by the sample selection mask.

Fig. 4 shows these results for the 4 component PLS model

predictions of citric acid from one of the center point mixture

images. This figure provided very significant information not

available by the median spectrum prediction or the spectra

acquired from the SG or FO spectrometers. As with the other

instruments, the mean of the distribution was very close to the

expected value, 34.3 percent, but there was an extremely wide

distribution of predicted values ranging between 0 and over

60 percent. The spatial concentration map indicated how this

non-uniformity was distributed throughout the measured

sample. The lower half of Fig. 4 represents the predictions of

the same masked area, but based on first derivative spectra.

Again the mean value of the prediction distribution was very

close to the expected value. The peak width was substantially

narrower, and the intensity contrasts in the spatial concentra-

tion map much less. This suggested that a significant baseline

offset type correction was being made by the first derivative

transform.

Additional interpretation of hyperspectral image prediction

histograms and spatial maps can be gained by using purposely

overfit and underfit PLS calibration models. As additional

latent variables are included, signal variance is included which

may or may not correlate to the independent y block variables.

However when this information is viewed as a spatial map,

information regarding sample surface defects or illumination

inconsistencies may appear. Such sample and instrument

diagnostic information is not easily available from the non-

imaging spectrometric techniques.

Fig. 5 shows similar results for the protein analysis of one

of the cheeses. The relative shape and offset of the two

histograms may assist in determining the correct number of

components, or best preprocessing technique to use. In this

case the two spatial maps help identify two sample problems.

Cutting marks are visible as streaks in the upper image, but

were removed by the first derivative transform. This is a

surface effect that contributes to the accuracy of the prediction

results. The first derivative image also showed areas of much

higher protein concentrations. This may indicate non-uniform

distribution of the protein, or possibly be an artifact caused by

drying of the surface from the high intensity illumination

lamps. But in either case, this is additional information not

available with the SG and FO spectrometers.

It is essential to interactively explore the different spectral

and spatial aspects of the hyperspectral images. Additional

software was developed to facilitate exploratory analysis using

PCA decompositions. This software allows the simultaneous

presentation of images and two-dimensional score plots. The

PCA scores for every pixel can be presented as images,

compressing the information contained in tens or hundreds of

image channels into a very few significant score images. Scatter

plots of score pairs obtained from two principal components

can also be made, permitting visualization of the clustering of

samples with similar spectral characteristics. Because there are

so many sample points often overlapping in these score plots,

it is advantageous to additionally color-map the 2D plots to

indicate the relative level of counts of each pair of score values.

From these sets of score images and score plots, single points

or sets of points contained in ROIs may be selected in one plot,

and mapped into all other plots. Fig. 6 is one example of this

Table 4 Bias and standard deviations of replicate measurements of
one cheese. Calibration models were based on all other cheeses, with
values provided by manufactures, or (*) from laboratory analysis

Protein Fat Carbohydrate Protein* Fat*

Bias Std Bias Std Bias Std Bias Std Bias Std

Absorbance
HI 22.0 2.8 1.9 3.3 0.5 0.7 21.3 3.5 0.1 0.4
SG 23.0 0.2 0.7 21.6 1.2
FO 21.4 1.0 21.0 1.4 20.1 0.7 21.6 1.3 20.9 1.3
First derivative
HI 21.5 2.3 20.9 0.9 20.1 1.1 20.6 0.5 20.2 1.3
SG 20.8 21.6 0.1 0.2 20.5
FO 21.9 2.0 21.2 1.2 0.4 0.9 23.0 2.7 20.7 0.8

6 | Analyst, 2006, 131, 1–9 This journal is � The Royal Society of Chemistry 2006



Fig. 5 Protein concentration predictions (expected concentration: 24 %) for a 4 component model. Histograms and concentration maps are for

absorbance spectra (top) and first derivative spectra (bottom). y48 000 sample spectra were selected using a rectangular mask, 195 6 250 pixels.

Fig. 4 Center point mixture predictions for citric acid concentration (expected concentration: 33.4 %) for a 4 component model. Histograms and

concentration maps are for absorbance spectra (top) and first derivative spectra (bottom). 20 000 sample spectra were selected using a circular ROI

mask with an 80 pixel radius.
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process. A region of interest in the t2–t5 score plot (Fig. 6(a))

has been selected. The pixels associated with these score values

were then identified and marked in all other image and score

plots currently displayed. In this case, a class of pixels having

to do with shadows or edges of holes in the cheese has been

identified, which has been indicated by the white masking in

Fig. 6(b).

This interactive exploration of both spatial and spectral

information is unique to hyperspectral image data, and can be

performed in either direction: score space points selected and

mapped into image space, or image pixels selected and mapped

into score space. Specific pixels selected in this manner can

then be used as mask regions for use in obtaining more robust

PLS prediction models.

Conclusion

Hyperspectral images offer a natural expansion of conven-

tional spectroscopy, adding spatial positioning information to

the sets of spectra acquired. The resulting data-rich hypercube

must be carefully examined to fully extract the information

hidden within. Simple spatial compression techniques reducing

the entire hypercube or a subset region of interest to a single

average spectrum show comparable global predictive ability

with other spectrometers. Calibration models based on these

average ROI spectra can also be used to predict constituent

concentrations at each individual pixel in new test set images.

Accurate large sample population statistics and prediction

value histograms can then be generated, providing information

regarding the uniformity of constituent concentration.

Mapping the concentration values to pixel locations adds

spatial information allowing even greater insight into sample

uniformity.

In the two datasets examined, the use of data preprocessing

transforms did little to change the average overall predicted

concentration value of constituents. Just as much variance

was observed from sample replicates as from altering the

preprocessing treatment. However the first derivative

transform provided a major change in the range in values

and spatial distribution of the prediction results obtained from

applying the calibration models to the individual spectra in

sample regions of interest. Additional transforms had minimal

impact and were overshadowed by sample handling and

instrumentation variations. Sample selection and preparation

is a critical part of obtaining accurate quantitative results and

needs to be examined further.

Hyperspectral NIR imaging is a hybridization of spectro-

scopy and spatial imaging. The decrease in spectral wavelength

resolution currently available in NIR imaging systems is offset

by the increase in spectral quality obtained from averaging

thousands of spectra. Although lengthy image acquisition

times may be a problem for some biological samples which

either move or are temperature sensitive, the overall quanti-

tative results obtained are comparable to those of spot probe

spectroscopic techniques. The spatial concentration mapping

and sample uniformity information provided by hyperspectral

imaging is a benefit not easily obtainable with other spot

probe spectroscopic techniques. Specialized software which

promotes the simultaneous exploration of both spatial and

spectral information enables further data-mining not attain-

able with other spectroscopic techniques.
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Spectral pre-treatments of hyperspectral NIR images: analysis of diffuse reflectance 
scattering 
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Scattering effects are often encountered when measuring diffuse reflectance near infrared (NIR) spectra of solid 
and semi-solid materials.  How does this phenomenon effect hyperspectral imaging of powders?  A series of 
hyperspectral NIR images of particle size fractions of commercial grade salt and sugar were acquired.  Spectral 
pre-processing techniques including Kubelka-Munk, standard normal variate, and absorbance transforms, unit 
length or unit area normalization, first and second derivative transforms, and several variants of multiplicative 
scatter corrections (MSC) were applied to the images and examined for their effectiveness at reducing or 
eliminating scatter effects.  Principal component analysis (PCA) scoreplots produced expected results: derivative 
transforms reduced variance, but did not eliminate the particle size dependencies; piecewise MSC transforms 
reduced the data to two clusters, one for salt and one for sugar.  Partial least squares (PLS) regression was applied 
to examine the impact of the pre-processing transforms on prediction of particle size.  RMSEP values between 10 
and 50 micrometers were determined for particle fractions ranging between 140 and 315 micrometers for all 
transforms except the piecewise MSC; in spite of the reduction in additive and multiplicative effects, enough 
correlated variance remained after application of the pre-processing transforms to allow prediction of particle size 
ranges from PLS models.  Additional scatter effect information was obtained by examining particle size 
distribution histograms and spatial particle size mappings facilitated by the hyperspectral images. 

 
 
Keywords:  Hyperspectral image, scatter correction, pre-treatment, near-infrared 
 
 
 
 
 
Introduction 
 

Much has been written about various numerical 
preprocessing treatments proposed to linearize spectral 
response and reduce or eliminate additive or multiplicative 
effects in near infrared (NIR) spectra.1-4  The most basic 
approach is to simply convert the diffuse reflectance R 
measurements into more linear units such as absorbance 
which can then be directly related to concentration.  
Alternatively the Kubelka-Munk transform can be applied.5  
When changing baseline offsets are encountered, first and 
second derivative transforms may be applied to remove the 
offset.6,7  This is typically done in spectroscopy using 
standard Savitsky-Golay polynomial filters.8-10  To correct 
for multiplicative effects such as those introduced by light 
scattering from different sized particles, multiplicative 
scatter corrections11-17 (MSC), piecewise MSC18 (PMSC), 
and extended MSC have been successfully implemented.19  
The standard normal variate (SNV) transform20 has also 
been used, however this can be shown to be linked to the 
MSC transform.21 

The spectral perturbations encountered in NIR 
spectroscopy addressed by this collection of pre-processing 
treatments occur in the spectra contained in hyperspectral 
NIR images as well, although the spectroscopic geometry 
of an integrating spectrometer and that of an imaging 
camera are quite different. 

How do the spectral pre-treatment transformation 
techniques affect the quality of a hyperspectral image 

containing tens of thousands of spectra?  How do light 
scattering effects from different sized particles propagate in 
the spectra acquired at adjacent pixel locations within a 
hyperspectral image?  The purpose of this work is to assess 
the impact of pre-processing treatments on a series of 
hyperspectral images obtained from two sets of particle size 
fractions of commercial grade sugar and salt.  The ability of 
these treatments to negate the effect of the variations in the 
particle sizes will be examined 
 
 
Experimental 
Samples 

Two sets of samples were prepared from consumer 
grade sugar (Pärlsocker, Danisco Sugar AB) and salt (Grovt 
Salt, Ab Hanson & Möring).  Course particles were placed 
in a kitchen food processor (OBH Nordica) and chopped for 
1 minute.  The mixture of particle sizes was then separated 
into nine size fractions using a series of woven wire mesh 
sieves (Endecotts Ltd.) with screen openings ranging from 
600 to 63 micrometers using a mechanical shaker system 
for 10 minutes.  The individual fractions retained a 
significant amount of fines, and were therefore re-separated 
one at a time, placing each fraction at the top of a set of 
three sieves, starting with a mesh size two sizes larger than 
the final targeted fraction size end point.  This final 
separation was done by manual shaking for larger particles, 
and with the aid of the mechanical shaker for the very small 
particles.  Table 1 indicates the resulting nine size fractions 
obtained for both the sugar and salt particles. 
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Table 1 Particle Size Distribution Limits and Ranges 

Sample Fraction Size Range (μm) 
A > 400 
B 315 – 400 
C 250 – 315 
D 200 – 250 
E 140 – 200 
F 125 – 140 
G 100 – 125 
H 063 – 100 
I < 063 

 
 
Approximately 6 grams of each fraction was placed in 

a circular NIR sample holder (Foss NIRSystems) and 
measured with a Foss NIRSystems 5000 scanning grating 
monochromator equipped with a rotating sample holder.  
The wavelength range selected was 1100-2498 nm with 2 
nm resolution.  Spectra were mean centered and processed 
with principal component analysis (PCA.) The resulting t1 – 
t2 score plots were examined for general trends in spectral 
deviations related to particle size.  Several samples 
appeared out of line, and were hand sieved an additional 
time, producing a set of samples having score plots with 
consistent particle size trends for both sugar and salt 
fractions. 
 
Instrumentation 

Hyperspectral NIR images or hypercubes were 
acquired using a MatrixNIR imaging system (Spectral 
Dimensions, Inc.)  The spectral range used was 960 to 1662 
nm with 6 nm resolution.  Ten replicate scans were 
acquired and averaged from each sample, producing 
hyperspectral images or hypercubes with 256 x 320 pixels 
and 118 spectral channels.  The entire camera field of view 
was first calibrated for reflectance by measuring a series of 
five Spectralon standard reference material tiles with 99, 
75, 50, 25, and 2 percent reflectance.  This set of 
reflectance standards was measured at the beginning and 
end of every set of samples.  The Foss NIR sample holders 
were also used for imaging purposes, providing a flat 
sample surface necessary for the limited focal distance of 
the MatrixNIR optics.  The sample height for each sample 
was adjusted to maximize image sharpness.  The 60 x 52 
mm image field of view (200 x 200 micrometer pixels) also 
included a gray scale series of Spectralon standard 
reference materials for reflectance calibration, as well as a 
rectangular piece of NIST glass standard reference 2035A 
for wavelength calibration.  The use of these materials for 
instrument standardization and system diagnostics as well 
as the larger standards for reflectance calibration has been 
described in previous papers.22, 23  Figure 1 shows a typical 
image from one channel measured at 1074 nm.  The 
circular sample holder, the Spectralon gray scale, and the 
rectangular glass standard can be easily seen.  Duplicate 
samples were taken from all sample fractions, producing a 
second set of test images.  A third set of replicate images 
was also measured, using a higher magnification lens.  This 
last series of images had a field of view of 10 x 12 mm (40 
x 40 micrometer pixels) which was completely filled with 
sample.  The internal standards were outside the field of 
view for this magnification. 
 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1. A single channel image (256 x 320 pixels at 1074 nm) including 
circular sample holder and internal standard reference materials for 
monitoring reflectance (gray scale) and wavelength (dark rectangle) 
stability.  The circular sample region contains ~18000 usable pixels 

 
Numerical processing 
Reflectance transforms 

All hyperspectral images acquired were stored in raw 
data format with data points ranging between 0 and 4095, 
the range of the 12 bit A/D converter.  The series of five 
reference Spectralon hypercubes permits the computation 
of individual second order reflectance transform functions 
for every pixel location at every wavelength channel.  
These transform functions were applied to each sample 
hypercube to produce hyperspectral images transformed to 
diffuse reflectance units.  Although each sample image 
contained internal standards, further corrections for 
instrument standardization based on the image internal 
standards were not done.  However spectra from the 
internal standards in all images were compared to confirm 
stability of the instrument. 
 
Pixel selection and outlier detection 

Because of the geometry of the Foss sample holders, 
slight shadow effects were observed in the perimeter area 
within the circular sample region.  A slightly smaller region 
with a radius of 80 pixels was chosen to eliminate this 
effect, resulting in a sample pixel count of ~20000 points.  
The detection device used in this imaging system also 
contains dead pixels which produce faulty data or outlier 
points.  An iterative two step process was employed to 
detect and remove resulting outlier spectra.  Since each 
image contained in theory thousands of spectra belonging 
to a single sample class X, (particle size distribution), 
outliers from this class were detected based on estimates of 
class population statistics.  First the mean population 
spectrum was computed as a target spectrum, x.  Two 
metrics were then computed for all spectra: d, the Euclidean 
distance to x, and c, the cosine of the angle to x.  The mean 
and standard deviations of d and c were used to selectively 
trim away outliers, spectra whose metrics exceeded a three 
standard deviations displacement.  Both the mean and 
standard deviation are heavily influenced by outliers, so 
after trimming any outliers a new target spectrum x was 
computed and the outlier detection process repeated.  It was 
found empirically that neither metric test alone was 
sufficient; angle outliers remained after removing all 
distance outliers, and vice versa.  It was also found that 
after applying this cleaning process to a set of reflectance 
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spectra, followed by a spectral pre-treatment, additional 
outliers could be detected.  Consequently the iterative 
outlier detection and removal process was repeated after the 
application of any spectral preprocessing treatment.  Of 
course all outliers should be examined before discarding, 
however there is a general advantage to hyperspectral 
images: because there is such an abundance of spectra, a 
rather liberal outlier detection scheme can be applied and 
still allow the retention of a very large number of sample 
spectra.  For the discussion that follows, it is assumed that 
all image sample spectra sets have been thoroughly cleaned, 
that is all outlier spectra have been detected and removed.  
This typically left ~18000 to ~19000 sample spectra from 
each hyperspectral image.  Sample mean spectrum and 
population statistics were based on these fully cleaned 
datasets, however in some cases for computational 
efficiency these large spectra sets were further reduced in 
size by sample subselection; only every kth spectrum was 
selected for analysis. 
 
Additional computations 

In addition to the spectral pre-treatments, principal 
component analysis (PCA) and partial least squares 
regression (PLS) were performed.  All computations were 
based on the entire spectral range of the acquired spectra.  
No variable selection was done.  For the purposes of PLS, 
the spectra are considered predictor variables or X block 
data.  Response or Y block data are related variables such 
as concentration or other measurable physical properties.  
Computations were performed using MATLAB 6.1, using 
scripting code written by the authors. 
 
 
Results and discussion 
Mean image spectra 

Mean spectra were computed form the cleaned spectra 
sets from 18 sample images: 9 sugar and 9 salt fractions.  
Two observations can be made from the raw absorbance 
spectra displayed in Figure 2a.  Firstly, salt has a very weak 
absorbance in the NIR, whereas sugar has a relatively large 
absorbance especially above 1400 nm.  Secondly, as 
expected from light scattering effects, a systematic decrease 
in absorbance was observed with a decrease in particle size.  
This was evident in both the sugar sample spectra, and also 
the weaker salt sample spectra: the greatest absorbance was 
measured in the largest particle size fractions.  Figure 2b 
shows the effect of the first derivative transform.  Baseline 
offsets have been removed however particle size 
dependencies are still clearly evident.  A global piecewise 
MSC (GPMSC) was performed choosing the mean of all 
sugar or salt spectra as a target value.  The GPMSC 
transform collapses all spectra towards a common target 
spectrum, clearly seen in Figure 2c where the corrected 
spectra form two narrow bands.  The corrected spectra for 
both salt and sugar are very similar below 1370 nm, but are 
distinguishable above this wavelength. 
 
Principal component analysis 

The spectra displayed in Figure 2 represent the results 
from first compressing the entire hyperspectral image into a 
single mean spectrum from each sample, effectively 
producing the same results as would be obtained from a 
typical integrating NIR instrument.  PCA was employed to 
more closely examine the variations within the abundance 

of sample spectra contained in each hyperspectral image.  
An augmented spectral matrix was created by appending 
the ~20000 spectra from 16 sample images (both salt and 
sugar) and subjected to PCA.  For display and 
computational purposes, only every 80th spectrum was 
included, resulting in a matrix of ~4000 spectra.  
Additionally since the smallest particle size fractions for 
both salt and sugar were extremely noisy, they were 
excluded from this analysis because of their significant 
variance contribution.  Figure 3 shows the mean centered 
PCA t1 – t2 score plots for the raw absorbance spectra 
before and after spectral pre-treatments.  The points from 
each particle size fraction have been color coded (gray 
scale) to help discriminate between particle sizes.  An 
arrow has been included to indicate the relative direction 
from small to large particle size fractions.  All sugar spectra 
are represented with a star symbol, and all salt spectra with 
a small circle.  These plots reveal many interesting spectral 
features uniquely available from hyperspectral images. 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2. Mean image spectra for 8 sugar and 8 salt particle size fractions: 
raw absorbance spectra (a), first derivative spectra (b), and global (salt or 
sugar set) piecewise MSC spectra (c). Raw absorbance is greater for sugar, 
and decreases with particle size. 

 
Figure 3a represents the clustering of raw absorbance 

spectra.  The variance along the t1 axis is significantly 
greater for sugar, as would be expected from the greater 
variance in absorbance observed in the sugar spectra 
presented in Figure 2a.  However the variance on the t2 axis 
is nearly the same for sugar and salt.  In both cases a 
systematic trend can be seen with respect to particle sizes.  
A trend in the amount of variance within each size fraction 
is also visible in the sugar clusters: as the particle size 
increases, so does the size of the score plot cluster due to 
the variance in the individual spectra.  The measured light 
scattering effect has a greater variance with larger particle 
sizes.  This is possibly due to a sample averaging effect:  
for any given pixel area, there is a greater number of small 
particles than large.  This imposes a statistical averaging 
which reduces the measured variance of the small particles 
relative to the large 
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Figure 3. PCA scoreplots for ~250 spectra from each particle fraction 
image, salt (circle) and sugar (star).  Scoreplots are based on  raw 
absorbance spectra (a), first derivative spectra (b), MSC applied to each 
individual set of image spectra (c), and global piecewise MSC applied to 
all salt or sugar spectra (d). An arrow indicates the relative direction from 
small to large particle size fractions. 

 
The effect of baseline offset corrections can be seen in 

the score plot of Figure 3b for the first derivative transform: 
the clustering of points within each individual image is 
much tighter.  The particle size dependency is however still 
clearly visible.  A similar plot of second derivative scores 
revealed a similar clustering structure for sugar, while the 
size dependency for salt was nearly removed.  MSC 
corrections on an image by image basis further reduced the 
variance within each image, as indicated in the clustering in 
Figure 3c.  With this pre-treatment, the mean of the spectra 
from each image should be nearly identical before and after 
MSC correction, hence the over all class structure of 
Figures 3a and 3c were very similar.  The global piecewise 
MSC correction ideally projects all spectra towards a single 
target spectrum, in this case one spectrum for sugar and one 
for salt.  Figure 3d indicates the result of this correction 
treatment.  The entire set of sugar spectra now forms a very 
small cluster.  The particle size dependency has been 
removed from the salt spectra as well, but because of 
greater relative noise levels, these points form a 
significantly larger sized cluster.  Nonetheless, it appears 
that this pre-treatment removes the particle size component 
from the image spectra. 
 
Partial least squares predictions 
Calibration / test set selections 

One of the primary goals of spectral pre-treatments is 
to linearize or correct spectra to improve regression 
modeling and predictions of analyte properties.  Since the 
measured hyperspectral images showed a strong correlation 
with particle size information, the performance of PLS 
models to predict the sugar particle sizes, before and after 
different spectral pre-treatments was investigated.  What 
characterizes a particle size distribution?  The true size 
distribution of each fraction was not known.  The particles 
studied were not monodisperse, they formed a distribution 
achieved by an imperfect sieving process.  If the actual 
particle size distribution had been known, properties such 
as mean or median particle size, or distribution moments 
such as width or skewness could be expressed.  This was 
not the case with the experimental sample fractions, so 
some parameter obtained from the sieving process had to be 
used as a distribution descriptor.  The lower size endpoint 

of each size fraction was chosen as an external reference 
value.  This value was not known for the smallest size 
particle fraction, so the smallest size fraction was 
eliminated from modeling and prediction.  The mean 
spectrum from the clean set of spectra from each calibration 
set image was used for modeling purposes, resulting in PLS 
models computed from 8 spectra with 118 variables.  In all 
cases a one component PLS model accounted for nearly all 
predictor and response variable variance. 

Predictions were made from the complete set of clean 
spectra from the same set of images used for calibration 
model creation, a second set of independent test images and 
a third set of test images acquired under higher 
magnification.  Prediction results were also compared with 
and without fraction size cross validation;  that is, using all 
8 sample size fractions in the PLS model, vs. removing the 
spectrum from the calibration set that corresponded to the 
fraction used for testing.  The results from all of these 
calibration / test set scenarios were nearly identical.  The 
results presented here are based on the mean spectra from 
one set of images used for calibration, and the second set of 
independent test set image spectra used for predictions, 
typically 18000 – 19000 spectra from each image.  All 8 
fraction sizes were included in the calibration model. 
 
Summary prediction statistics 
Figure 4 displays the RMSEP values for different pre-
treatments of the different particle size fractions.  The 
individual image based MSC contributed to a significant 
decrease in RMSEP for the largest particle size fractions, 
where spectral variation was greatest.  The global based 
MSC reduced the variance between the spectra used for the 
calibration model, and consequently the RMSEP values for 
all particle sizes were higher for this pre-treatment.  
Otherwise all pre-treatments resulted in quite similar 
RMSEP values, with a slight decrease in values associated 
with the derivative pre-treatments.  In spite of the changes 
in clustering exhibited in the scatter plots of Figure 3, PLS 
does a very good job at finding any correlated variance 
between predictor and response variable blocks. 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 4 Particle size prediction RMSEP values for ~18000 spectra from 
images of each sugar size fraction.  Results are for raw absorbance (star), 
and individual image based MSC (square), global piecewise MSC (cross), 
first derivative (circle), second derivative (diamond), or Kubelka-Munk 
(triangle) pre-processing transforms. 

Hyperspectral image results 
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The RMSEP value represents a single statistical value 
characterizing each of the pre-treatment / size fraction 
combinations.  Hyperspectral imaging permits other 
representations of the same prediction results.  Histograms 
of the over 18000 predictions from a single image can be 
examined and provide an indication of size distributions.  
Figure 5 displays the histograms of the one component PLS 
predictions for the B fraction of sugar, with an expected 
particle size of 315 μm indicated by the vertical line.  The 
distribution of raw absorbance based predictions (histogram 
a) is well centered on this expected value however the 
predicted values range from 200 – 400 μm.  The image 
based MSC yields a very narrow distribution (histogram b); 
the derivative treatments narrow the distributions slightly 
(histograms d and e); and finally the global MSC and 
Kubelka-Munk treatments broaden the distributions 
(histograms c and f.)  These general trends in predicted size 
distribution resulting from the various spectral pre-
treatments were observed for all samples and are not 
identifiable in the simple RMSEP values of Figure 4. 
 
 

 
Figure 5. Distributions of ~ 18000 particle size predictions for the 315 μm 
sugar fraction based on one component PLS models of raw absorbance (a), 
and individual image based MSC (b), global piecewise MSC (c), first 
derivative (d), second derivative (e), or Kubelka-Munk (f) pre-processing 
transforms.  Vertical lines indicate target 315 μm size. 

 
The same sets of individual spectra predictions can 

also be mapped into their spatial image locations, producing 
2-dimensional prediction maps as in Figure 6.  In this case 
the gray scale images have been mapped such that black to 
white represents the particle size range 150 – 500 μm.  The 
background squares surrounding each of the circular 
prediction maps has been set to the target value of 315 μm.  
This representation provides another perspective for 
interpretation of prediction results.  Relative to the raw 
absorbance based predictions (image a), the very narrow 
distribution of image based MSC predictions appears as a 
very flat prediction image (image b);  the broader prediction 
distributions of the global MSC and Kubelka-Munk 
treatments appear as course texture (images c and f); while 
the derivative based predictions appear slightly smoother in 
texture (images d and e.)  As with the particle size 
distribution histograms presented in Figure 5, these general 
results were obtained for all samples, offering additional 
size distribution scattering effect details not achievable with 
integrating NIR spectrometers. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Prediction image maps of ~ 18000 particle size predictions for 
the 315 μm sugar fraction based on one component PLS models of raw 
absorbance (a), and individual image based MSC (b), global piecewise 
MSC (c), first derivative (d), second derivative (e), or Kubelka-Munk (f) 
pre-processing transforms. 

 
Mixture analysis 
The prediction results obtained suggest that PLS models 
can be constructed to determine particle sizes with 
reasonable accuracy.  To test this further, a mixture was 
made of equal amounts of material from sugar fractions B 
and H, having size distributions of 315 – 400 and 063 – 100 
μm respectively.  Unfortunately particle scattering effects 
do not add the way the absorbance of different chemical 
constituents do.  Figure 7 shows the distributions for the 
size predictions of the second derivative spectra of the B, 
H, and BH mixture samples.  The narrow size fraction  
 
 

 
Figure 7. One component PLS model based particle size prediction 
distributions for ~ 18000 second derivative sugar spectra each from images 
of the 315 μm (a), and 63 μm (b) fractions, and a 1:1 mixture of the same 
two fractions (c).  Vertical lines indicate target sizes of 315 μm and 63 μm. 

 
samples B and H are predicted quite well, however the 
combination of B and H samples does not yield a bi-model 
prediction distribution.  In this case, the smaller particles of 
sample H have filled in some of the holes of sample B, 
producing light scattering effects with an intermediate 
nature. 
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Conclusion 
The spectral pre-treatments of the mean spectra from 

hyperspectral NIR images give similar results to those 
obtained with traditional integrating NIR instruments.  
However examination of the thousands of NIR spectra 
within each hyperspectral image provides additional 
information not available from these classical spectroscopic 
techniques:  PCA score plots and histograms and spatial 
mappings of PLS predictions provide insight into the bulk 
and spatial distributions of spectral deviations and their 
dependencies on the results of pre-processing treatments.  
Derivative transforms reduce the within image variance 
(additive effects), but not the particle size dependencies 
(multiplicative effects).  The GPMSC transform performs 
the best at minimizing both these effects.  These results are 
not unexpected however it was surprising to find that PLS 
could still find enough correlated variance to enable particle 
size prediction.  No prior knowledge was known regarding 
the true particle size distributions in the samples measured; 
a similar analysis of monodispersive powders or particles 
with known particle size distributions should be examined 
to further examine the effects of spectral pre-treatments on 
hyperspectral images. 
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