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Abstract 

Bankefors, J. 2006. Structural classification of Quillaja saponins by electrospray 
ionisation ion trap multiple-stage mass spectrometry in combination with 
multivariate analysis. Licentiate thesis. 
 
ISBN 91-576-7181-8. 
 
 
This thesis describes methods for structural classification of Quillaja saponins 
with electrospray ionisation ion trap multiple-stage mass spectrometry, in 
combination with multivariate analysis.  The mass spectrometry method was 
optimised by the use of design of experiments.  
 
47 of previously reported Quillaja saponins from the chromatographic fractions 
QH-A, QH-B, and QH-C have been investigated. MS1-MS3 spectra were 
analysed by multivariate methods such as PCA and PLS-DA. Fragmentation of 
saponins generally results in loss of end elements from the precursor ion. The 
essential part of this method is the re-referencing of spectra. Peaks in the 
obtained re-referenced spectra have a correlation to loss of common structural 
elements. The multivariate methods captured the variance corresponding to the 
common structural elements. Thus, the obtained models have the ability to 
predict new compounds that share the common structural elements.  
 
Two saponins previously not characterised were isolated and analysed by ESI-
IT-MSn, the multivariate models predicted the structure. The obtained models 
were applied to HPLC on-line coupled MSn data and a rapid method for 
screening of saponin fractions was developed. 
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Quillaja saponins, oligosaccharide sequencing, structural determination, PCA, 
PLS-DA. 
 
Authors address: Johan Bankefors, Department of chemistry, SLU, PO Box 
7015, SE-750 07 Uppsala, Sweden. E-mail:Johan.Bankefors@kemi.slu.se 
 





Table of Contents 

General introduction 9 

Saponins 

Quillaja Saponins as adjuvants with vaccines 10 

Structural determination of saponins 10 

Reported structures classified in this thesis 
Separation of saponins 
Structural characterisation of saponins 
Mass spectrometry on saponins 
Design of experiment, DOE 
Spectral data obtained 
Multivariate analysis of mass spectra 
Introduction 
Classification of saponins by multivariate modelling 
Differentiation of apiose from xylose as R4-substituent. 
Classification of previously unreported saponins 
LC/MS on chromatographic fractions containing saponins 

Concluding remarks 40 

References 41 

Acknowledgments 44 



Appendix 

Papers I and II 

 
This thesis is based on the following papers, which will be referred to by their 
Roman numerals: 
 
 
I. “Structural classification of Quillaja saponins by electrospray ionization 

ion trap multiple-stage mass spectrometry in combination with 
multivariate analysis” 

 
Johan Bankefors, Lars I. Nord, Lennart Kenne. Submitted to Journal of 
Mass Spectrometry. 
 
 

II. “Structural classification of fatty acyl substituted Quillaja saponins by 
electrospray ionization ion trap multiple-stage mass spectrometry in 
combination with multivariate analysis” 

 
Johan Bankefors, Lars I. Nord, Lennart Kenne. In manuscript form. 

 



Abbreviations 

1H Proton 
Ac Acetyl 
Api Apiose 
Ara Arabinose 
CCD Central composite design 
CID Collision-induced dissociation 
Di Discriminatory power 
Da Dalton 
DOE Design of experiment 
Fa Fatty acyl 
ESI  Electrospray ionisation 
Fuc Fucose 
Gal Galactose 
GC Gas chromatography 
Glc Glucose 
GlcA Glucuronic acid  
ISCOM Immunonstimulating complex 
IT Ion trap 
LOO-CV Leave-one-out cross-validation 
LV Latent variable 
MALDI-TOF Matrix assisted laser desorption/ionisation-time of flight 
Mi Modelling power 
MS Mass spectrometry 
MSn Multiple-stage mass spectrometry 
m/z Mass-to-charge-ratio 
NMR Nuclear magnetic resonance 
PC Principal component 
PCA Principal component analysis 
PLS Partial least squares projections to latent structures 
PLS-DA Partial least squares projections to latent structures-

discriminant analysis 
PRESS Predicted residual error sum of squares 
Q2

cv Squared correlation coefficient for cross-validation 
Q2

test-set Squared correlation coefficient for test set predictions 
R2 Squared correlation coefficient for calibration set fitting 
Rha Rhamnose 
RP-HPLC Reversed phase high performance liquid chromatography 
Spooled Pooled estimate of standard deviation 
SIMCA Soft independent modelling of class analogy 
SNV  Standard normal variate correction 
UV Ultra violet 
Xyl Xylose
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General introduction 

The scope of this licentiate thesis is to demonstrate the usefulness of multivariate 
methods in combination with mass spectrometry to obtain a method for rapid 
structural classification. The aim is to provide a method that is directly 
applicable to Quillaja saponins; however, this approach should also be relevant 
to other substances built of different monomers or repeating units.  
 

Saponins 
Saponins are a group of steroidal and triterpene glycosides that are widely found 
in plants, one commonly known is the ginseng plant that has been in use partly 
due to its haemolytic effects. However, there exist only a few plants that provide 
a larger source of saponins, hence are worth extracting for commercial use. The 
Quillaja saponaria Molina tree, which is native to Chile, Peru and Bolivia, is 
one of these sources. The bark contain of up to 5% by weight of saponins that 
makes it one of the strongest commercial sources. The widespread use of 
saponins extracted from this bark has led to a discussion about how to develop a 
sustainable exploration [1]. The applications of saponins stretch over several 
areas such as additives in food and cosmetics, as wetting agents for the 
agriculture and photographic industry and as adjuvants in the pharmaceutical 
industry [1].  
Extracts of bark contain a complex mixture of triterpenoid saponins that consist 
of a quillaic acid as the aglycone, which is substituted with a di- or trisaccharide 
at C-3 (X1) and an oligosaccharide at C-28 with an X2-, X3-, and X4-substituted 
fucose as the first monomer (Fig. 1). 
 

 
 
Fig. 01. Common basic structure reported for Quillaja saponins. 
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Quillaja Saponins as adjuvants with vaccines  

The bark of Quillaja saponaria Molina has been shown to contain the most 
potent adjuvants of several investigated plants [2]. Several methods for 
enrichment have been carried out using techniques such as dialysis [2], 
gelpermeation [3] or diafiltration [4]. However, the fractions obtained this way 
are heterogeneous and their biological and chemical activities are not very 
predictable. This might be due to the fact that 20-25% of the extractable material 
in bark varies in content of saponins [5]. The first purified saponin fraction with 
predictable adjuvant properties was termed Quil A and the separation was 
achieved with anion exchange chromatography and gel filtration [6]. Quil A had 
in contrast to earlier fractions a more predictable adjuvant activity and was less 
toxic in veterinary applications. However, the use of a heterogeneous mixture 
such as Quil A is not satisfactory on humans since the toxicity and adjuvant 
activity still vary with the existence and concentration of different saponins. 
Several methods for separation and identification of saponin classes in Quil A 
were carried out utilizing RP-HPLC [4, 7-9]. Rönnberg et al. separated Quil A 
into three fractions using RP-HPLC which were designated QH-A, QH-B and 
QH-C due to elution order. The fractions were tested and were found to have 
different adjuvant activity and toxicity with QH-B as the more toxic fraction 
whilst QH-C is the one with most potent adjuvant activity. This activity has later 
been linked to the fatty acyl substituent on the fucose residue. The fatty acyl 
substituent has a large impact on the adjuvant activity and toxicity [10].  
Usually the best effect of a vaccine is reached by using live, attenuated or killed 
microorganisms, as an alternative approach a purified antigen can be used from a 
virus, bacteria or parasite. The latter approach is considered to be safer but 
induce less immune response. Therefore, adjuvants can be used to compensate 
for this loss of response. There is a wide range of adjuvant systems starting with 
aluminium salts that were reported in 1925 [11]. Veterinary applications of 
Quillaja saponins have been included in several of these. During the last decade 
a new system called ISCOM®s (Immunostimulating complex) was formulated by 
Morein et al. [12]. ISCOM®s are composed of antigen, cholesterol, 
phospholipids and saponins and a variant of ISCOM® without the antigen is 
called ISCOMATRIX®. ISCOM®s have shown to induce an antibody and 
cellular immune response in animals [13, 14] and show promising results for 
being developed into an effective human vaccine [15].  
The adjuvant component of ISCOM®s is a mixture of saponins from 
chromatographic fractions of QH-A and QH-C avoiding the more toxic QH-B 
fraction. ISCOM®s with different Quillaja saponin components differ in their 
immunomodulating activities and toxicities, hence it is of interest to study the 
composition of saponins and separate and determine their structures. This can 
however be a very time consuming task and thus rapid and sensitive methods for 
screening of Quillaja saponins are important for further understanding of its 
effects. 
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Structural determination of saponins  

Reported structures classified in this thesis 
To date, the complete structures of 67 native Quillaja saponaria Molina have 
been reported [16-23], 47 of these saponins were studied in this work. The 
common basic structure is illustrated in Fig 1. All studied structures consist of 
the quillaic acid that is substituted with a di- or tri-saccharide at C-3 and a 
branched oligosaccharide at C-28 (outlined in Fig. 2 and Fig. 3). Glucuronic 
acid, substituted at its C-2 with galactose, is linked to C-3 of the quillaic acid. 
The glucuronic acid is further substituted at its C-3 with either a rhamnose or a 
xylose. The R1 substituent is the reason why some saponins elute in pairs with a 
difference of 14 mass units. The common structure of the oligosaccharide at C-
28 consists of a fucose O-2 substituted by a rhamnose at C-2 and the latter is 
further substituted by a xylose at C-4. The fucose is O-4 acylated, either with an 
acetyl or a fatty acyl group. R substituents are numbered in order to be 
comparable to paper I (Fig. 2) and paper II (Fig. 3). The saponins included in 
this thesis are most of the major components in the chromatographic fractions 
QH-A, QH-B and QH-C. Components in QH-A were investigated in paper I, and 
those in QH-B and QH-C in paper II. The numbering of the compounds is 
preserved from the original publications.  
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Figure 02. Basic structure of the investigated Quillaja saponins in QH-A. 
Substituents in R1 to R4 are shown in Table 1. 
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Figure 03. Basic structure of the investigated Quillaja saponins in QH-B and 
QH-C. Substituents in R1 to R5 are shown in Table 2. 
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Table 01. Substituents of the investigated saponins in QH-A (Fig. 2)  
Compound R1 R2 R3 R4 Massa

4 H Rha H H 1436.7 
5 Rha Rha H H 1582.7 
6 Xyl Rha H H 1568.7 
7 Rha Rha H Api 1714.8 
8 Xyl Rha H Api 1700.7 
9 Rha Rha H Xyl 1714.8 
10 Xyl Rha H Xyl 1700.7 
11a,b Rha, Xyl Glc H H 1598.7, 1584.7 
17a,b Rha, Xyl Rha Glc H 1744.8, 1730.7 
18a,b Rha, Xyl Rha Glc Api 1876.8, 1862.8 
a Reported monoisotopic molecular masses  

 

Table 02. Substituents of the investigated saponins in QH-B and QH-C, (Fig. 3) 
Compound R1 R2 R3 R4 R5 Massa 
B1 Rha H H Fatty acyl Glc 2033.0 
B1a Rha H Fatty acyl H Glc 2033.0 
B2 Xyl H H Fatty acyl Glc 2018.9 
B2a Xyl H Fatty acyl H Glc 2018.9 
B3 Rha Api H Fatty acyl Glc 2165.0 
B3a Rha Api Fatty acyl H Glc 2165.0 
B4 Xyl Api H Fatty acyl Glc 2151.0 
B4a Xyl Api Fatty acyl H Glc 2151.0 
B5 Rha Xyl H Fatty acyl Glc 2165.0 
B5a Rha Xyl Fatty acyl H Glc 2165.0 
B6 Xyl Xyl H Fatty acyl Glc 2151.0 
B6a Xyl Xyl Fatty acyl H Glc 2151.0 
B7 H H H Fatty acyl Glc 1886.9 
B7a H H Fatty acyl H Glc 1886.9 
B8 H Api H Fatty acyl Glc 2018.9 
B8a H Api Fatty acyl H Glc 2018.9 
S1 Rha H H Fatty acyl H 1870.9 
S1a Rha H Fatty acyl H H 1870.9 
S2 Xyl H H Fatty acyl H 1856.9 
S2a Xyl H Fatty acyl H H 1856.9 
S3 Rha Xyl H Fatty acyl H 2002.9 
S3a Rha Xyl Fatty acyl H H 2002.9 
S4 Xyl Xyl H Fatty acyl H 1988.9 
S4a Xyl Xyl Fatty acyl H H 1988.9 
S5 Rha Api H Fatty acyl H 2002.9 
S5a Rha Api Fatty acyl H H 2002.9 
S6 Xyl Api H Fatty acyl H 1988.9 
S6a Xyl Api Fatty acyl H H 1988.9 
S7 Rha H Acetyl Fatty acyl H 1912.9 
S8 Xyl H Acetyl Fatty acyl H 1898.9 
S9 Rha Xyl Acetyl Fatty acyl H 2045.0 
S10 Xyl Xyl Acetyl Fatty acyl H 2030.9 
S11 Rha Api Acetyl Fatty acyl H 2045.0 
S12 Xyl Api Acetyl Fatty acyl H 2030.9 
a Reported monoisotopic molecular masses 
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Separation of saponins 
With time, several analytical methods have been used for both structural 
elucidation and quality control purposes. RP-HPLC with UV detection[4] is 
commonly used for separation, a drawback using this method is  low sensitivity 
because saponins lack  strong chromophores. However, studies have shown that 
an RP-HPLC system meets the requirements for most separations of Quillaja 
saponins. The retention time for saponins is sensitive to concentration of organic 
modifier and pH. The isolation of saponins from QH-A, QH-B, and QH-C is 
normally a two-step procedure. Initially the saponins are separated due to 
structural features in the C-28 oligosaccharide at pH 5.8-6.5. In the second step 
at pH 2.8, the co-eluted saponins with differences in the C-3 oligosaccharide are 
separated. This behaviour might be due to the glucuronic acid in the C-3 di- or 
trisaccharide. Fig. 4 visualises the two chromatographic steps of QH-C and QH-
B. The Quillaja saponin bark extracts used in this study were obtained from 
commercial fractions QH-A, QH-B and QH-C (Iscotec, Uppsala). Saponins in 
QH-A were previously isolated by Guo et al..[18, 19] A preparative and semi-
preparative scale HPLC separated QH-B and QH-C. Due to migration of the 
fatty acyl substituent mass spectrometric analysis followed the final separation 
step of the fractions QH-B and QH-C without delay to ensure that the sample 
contained only one of the regio-isomers. The phosphate buffer systems 
previously used to separate the region-isomers at low pH (2.8)[21, 22] were 
changed to a more volatile formate buffer to be in compliance with the liquid 
chromatography mass spectrometry method later used. 
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Fig. 04. HPLC chromatogram illustrating the two chromatographic steps of 
saponin fractions QH-C and QH-B with sub-fractions a-j. First separation step 
was carried out with a phosphate buffer at pH 6.4, in the second step a formate 
buffer at pH 2.8 was used. J1a, J1, J2, J3 are new compounds visualised in (d), 
J1a and J1 were positively identified by the method described. J2 and J3 were 
dissimilar thus not recognised by the models. 
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Structural characterisation of saponins 
So far, NMR techniques have mainly been used to achieve a full elucidation of 
the reported structures of saponins. This can however be a time consuming task 
and the phenomenon of overlapping signals usually troubles the investigation of 
saponins with NMR. Commonly hydrolysis, and derivatization[24] followed by 
GC-MS [25] and nanoelectrospray ion trap multiple-stage mass spectrometry 
[26, 27] and have been used as a complementary pre-NMR tool. Nord et al. [28] 
used multivariate analysis in combination with 1H NMR spectra to achieve a 
method for classification of saponins.  
 
Another approach of structural investigations is based on the fact that Quillaja 
saponins are combined of certain common structural elements. Hence it is 
possible to classify structures by mass spectrometry, without a full scale NMR 
characterisation procedure.  
The possibilities of using ESI-MSn on a mixture of triterpenoid saponins 
extracted from leaves of Acanthopanax senticosus Harms were investigated [29]. 
It was found that this procedure confirmed known structures and provided useful 
structural information on the components, but structures for unknowns were not 
proposed. Isolated compounds of Quillaja saponins from QH-A, QH-B and QH-
C were extensively investigated using ESI-ITMSn [30, 31]. Structural 
information was provided when fragmentation routes were elucidated and key 
fragments were proposed. This study provided a method to characterize the 
structures in a specific group of non-derivatized Quillaja saponins, based on 
MS1-MS3 experiments in the positive mode. 
 
Liquid chromatography coupled with on-line mass spectrometry has been applied 
to identify and authenticate saponins in crude extracts together with metabolomic 
profiling [32, 33]. Structures were investigated using HPLC-UV-MS/MS, key 
fragments that are characteristic to certain classes of saponins such as the fatty 
acyl domain and the aglycone were pinpointed to provide evidence of the 
structure. The approach of using LC/MS for metabolomic studies of Quillaja 
saponins is promising due to the increased resolution and sensitivity obtained 
with both chromatographic and mass separation. 
Previous studies of Quillaja saponins using on-line coupled RP-HPLC-ESI-
ITMSn for characterisation of structures have not progressed further than MS2 
either in positive or negative ion mode [33-36] hence the oligosaccharide 
structure at C-28 has not thoroughly been investigated.  
 
In order to combine structural identification with HPLC methods a rapid on-line 
method is required.  
Reported mass spectrometry methods have until today been manually evaluated 
and thereby time consuming. By combining the HPLC-MSn methods with 
multivariate methods the time required for a structural classification of known 
and unknown saponins will decrease.  
In paper I a method for structural classification using multivariate methods of 
most of the major saponins in QH-A is outlined.  
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Paper II adds the LC/MS profiling with the structural characterisation of Quillaja 
saponins into one method. The LC/MS procedure can be used as a profiling step 
while the multivariate models obtained from known structures in both paper I 
and paper II have the potential of structural classification of a large part of the 
major known and unknown compounds in crude extracts or chromatographic 
fractions such as Quil A. 
 
Mass spectrometry on saponins 
In paper I and II both MALDI-TOF and ESI-ITMSn have been utilized for 
studies on saponins with the emphasise on ESI-ITMSn. The area of application is 
different between the two but they have a few things in common, both belong to 
the group of so-called soft ionisation techniques. When an analyte is subjected to 
soft ionisation they almost exclusively form molecular ions thus initial 
fragmentation is not obtained.  
 
MALDI-TOF 
There are different sample preparation methods in MALDI-TOF MS [37], but 
commonly the analyte is dissolved in a light-absorbing matrix. The matrix with 
the embedded analyte is then targeted with a UV-laser beam whereupon the 
energy is absorbed and gently transferred by the matrix to the analyte that is 
ionised. This mechanism is not fully understood but since most matrices are 
acids some believe that by transferring a proton to the analyte they can promote 
the ionisation. When the analyte has been irradiated and formed ions these are 
accelerated by high voltage and separated based on the time it takes them to drift 
through a field free region. Since all ions will receive the same kinetic energy the 
ions with lowest molecular weight will travel faster over the field free region and 
reach the detector first. To increase the mass resolution of MALDI-TOF 
measurements an ion mirror or reflectron can be used. This device refocuses the 
ions of similar m/z so that the arrival time distribution is reduced at the detector.  
 
ESI-ITMSn 
ESI is an ionisation method by which the analyte is charged and transferred from 
a solution to the gas phase. Generally, the process involved in this formation of 
ions needs an electric field to the tip of a capillary containing a solution of 
electrolyte ions. Depending on the field a double layer will form with either 
positive or negative ions near the surface. When the capillary is positive, positive 
electrolyte ions will be near the surface and destabilise the meniscus and a cone 
is formed. The cone will eventually break up into small multiple charged 
droplets. The solvent will evaporate from droplets and the shrinkage will lead to 
coulombic repulsion, at a stage when the repulsion is high enough to overcome 
the surface tension droplet fission takes place. Eventually very small droplets 
will form, however the final formation of the singly charged molecular ion is not 
fully understood. There exist two accepted mechanisms, the charged residue 
model and the ion evaporation model [38-40].  
 
The ions transferred into gas phase have to be focused by ion-optics from the 
needle into the ion trap. This is done by a capillary-skimmer-octopole system. 
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The drying gas, heated capillary and pressure gradient all contribute to removing 
the remaining solvent ion-clusters. The skimmers then let ions through to the 
octopole while removing most of the drying gas. The octopole acts as a selective 
filter where ions in a certain m/z range are stabilised depending on voltage. 
Optimizing the ion-optics conditions is important for the efficiency of ion 
transport as well as for the signal to noise ratio obtained and appearance of 
spikes in spectra.  
 
When ions are collected in the quadrupole ion trap they can either be ejected and 
detected or isolated and fragmented. An additional voltage accelerates the ions. 
Fragmentation is achieved when collision occurs between the accelerated 
precursor ions and the inert gas (collision-induced dissociation, CID) [41]. The 
daughter ions formed from the previously isolated and fragmented precursor ion 
can then be detected in the second MS stage, thus ions solely originating from 
the precursor ion can be monitored. This procedure can be repeated until the 
abundance of ions is too low to be detected.  

 
Fig. 05. MSn spectra of compound 6 (a) MS1spectrum of a fraction containing 
compound 6 (b) MS2 spectrum of the isolated and fragmented precursor ion 
[M+Na]+ and the dominating ions [A+Na]+ and [B+Na]+. (c) MS3 spectrum of 
the isolated and fragmented daughter ion [B+Na]+. 
 
The advantage with MALDI-TOF compared to ESI-ITMSn is the mass accuracy 
and the rapid sample preparation, but on the other hand there is no possibility of 
fragmentation in several successive MS steps, which is the case with ESI-ITMSn, 
which is visualised on compound 6 in Fig. 5.  
All spectra reported in paper I and II were measured in positive ion mode, using 
ion-optic parameter settings optimised with design of experiment, DOE.  
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Design of experiment, DOE 
 Design of experiment is used in order to find out if a set of variables has an 
effect on one or more responses. Further, by using a systematical design 
understanding of a complex interdependent system can be obtained with 
relatively few measurements, thus providing time effectiveness and beneficial 
economic effect [42]. 
Four important aspects are implemented when applying DOE, which are 
replication, blocking, randomisation, and orthogonality. Replication of 
experiments separates the systematic variation from error of measurement. 
Blocking makes it possible to distinguish the impact of certain variability onto 
the response. Randomisation evens the impact of unknown factors over all 
experiments. Orthogonality between experiments allows for evaluation of 
independent effects [43].  
Making a full investigation using DOE often involves the use of several designs 
depending on knowledge of the field of application. Firstly, a screening design is 
applied to decide the important set of factors that have a significant effect on the 
response. Elimination of non-significant factors that make later designs more 
effective. Secondly, an optimisation design is used to find best performance. The 
general approach is to use a design that requires as few experiments as possibly. 
There are numerous different designs depending on the application, the most 
common to start with is a full factorial design or a fractional factorial design. 
Since the number of experiments included in a full factorial design increases 
rapidly with a factor 2k in a two level design or 3k in a three level design, where k 
is the number of variables. Fractional designs are reduced full factorial designs, 
the advantage of using these is that less experiments have to be included. The 
drawback is loss of resolution, which is the ability to evaluate independent 
effects. In order to study curvature a three level full factorial design or a 
response surface design or other similar designs, which is able to adapt to and 
describe curvature, are required.  Variables included in paper I were skimmer 
potential (V), octopole potential (V), trap-drive (%) and concentration of formic 
acid (%). The response was defined as a value produced by dividing the intensity 
of the [M+Na]+ ion by the intensity of the ion with the second highest intensity. 
All measurements were outlined on compound 6. Since the time needed for each 
experiment was short, a full factorial design was deployed resulting in 24 (16) 
experiments, three centroid replicates were added to the design in order to detect 
lack of fit and to measure the experimental error (assuming homoscedastic 
noise). The values of the encoded design matrix corresponds to; skimmer 50, 75, 
and 100 V, octopole 2, 3.5, and 5 V, trap-drive 70, 97.5, and 125%, and formic 
acid concentration 1, 3, and 5%. The effects of the variables on the response 
were evaluated and skimmer, octopole and trap-drive settings showed to be 
significant while the concentration of formic acid was insignificant. Fig. 6 
visualises the response against the three significant variables. All three centroid 
replicates were obtained at a higher response than predicted by the response 
surface of the original full factorial design, indicating a curvature in the response.  
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Fig. 06. Response plots of the full factorial design. The three centroids 
(encircled) are visualised above the response surface, indicating a response 
curvature.  
 
A central composite design (CCD) was used to find the optimal parameter 
settings. The evaluation of the full factorial design made it possible to exclude 
one variable (concentration of formic acid) and detect a curvature in the response 
as well as adjusting the limits for the design.  
The limits for the three variables were set to; skimmer 65, 70, 82.5, 95, and 100 
V, octopole 2, 2.5, 3.5, 4.5, and 5 V, trap-drive 70, 78, 97.5, 117, and 125%. 
The effects of the variables on the response are shown in Fig. 7 and it is evident 
that the interaction effects have a significant effect on the performance of the 
method.  
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Fig. 07. Effect of variables on the response calculated for the central composite 
design.  
 
The response surfaces (Fig. 8) were calculated, the optimum settings were found 
at: skimmer 100 V, octopole 4 V, trap drive 100%. These settings were then 
applied to all measurements in paper I and II.  
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Fig. 08. Response plots of the central composite design. The optimum parameter 
settings were found at; skimmer 100 V, octopole 4 V, trap drive 100%. 
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Spectral data obtained 
All compounds previously listed in Table 1 and Table 2 were investigated in 
positive ion mode MS1-MS3. The obtained MS1 spectra provided the expected 
singly charged [M+Na]+ ions. In both paper I and II isolated structures were 
investigated, but in paper II mixtures and chromatographic fractions were also 
investigated. The chromatographic and mass spectral resolution contributed to 
the finding of a large number of minor components in QH-B and QH-C, MS1 
spectral data vs. chromatographic resolution is visualised in Fig. 9. Each 
coloured area represents an eluted saponin. A distance of 132 and 162 mass units 
can be found between several of the saponins, corresponding to one extra 
pentose and hexose, respectively. The area marked with a rectangle in Fig 9(b) is 
further investigated in Fig 10(a) where all spectra of the region are presented and 
in Fig 10(b) where spectrum number 32 is selected. The saponins in QH-B and 
QH-C elute pair-wise, separated by 14 mass units within the pair, and 22 mass 
units between the pairs. 
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Fig. 09. Ion map obtained from HPLC on-line coupled MS1 on chromatographic 
fraction of QH-B (a) and QH-C (b). The selected part in (b) is further shown  in 
Fig 10. 
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Fig. 10. Extracted spectra from Fig. 09, spectrum no. 32 is selected and 
visualised. Difference of 14 mass units is due to the co-eluting pairs of saponins 
with either xylose or rhamnose as R1-substituent. The difference of 22 mass units 
is probably due to extra sodium attached to the carboxylate in the glucuronic 
acid ([M-H+2Na]+). 
  
The full [M+Na]+ isotopic peak pattern was isolated and fragmented in MS2 
providing the [A+Na]+ and the [B+Na]+ fragment ions. [A+Na]+ reflects the loss 
of the C-3 di- or tri-saccharide whereas the [B+Na]+ reflects cleavage of the 
bond between the C-28 oligosaccharide and the aglycone, thus both the aglycone 
and the di- or tri-saccharide can be classified out of MS2 spectra. 
 
 The [B+Na]+ ion was then selected, fragmented and detected in MS3. 
Theoretically, fragmentation of an ion such as the [B+Na]+ leads to simultaneous 
cleavage of all glycoside bonds, which produce all possible daughter ions. 
Nonetheless, not all fragments are observed in the spectra, due to different 
stability of the glycoside bond and that of the formed ions. Ions formed in MS3 
can then generally be considered to belong to one of either two fragmentation 
routes. One route is based on a charged fucosyl residue ion, where the end 
elements are cleaved off while the charge remains on the fucose unit. Each loss 
in such a successive series will then reflect (mirror) the mass of a certain 
monomer. The fragmentation pattern with a perspective from the m/z of the 
precursor ion makes it possible to deduce the monomer sequence.  
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The second main route is where charged end elements are separated from the 
fucosyl containing oligosaccharide. Fragments of this route will always appear at 
the same m/z regardless of the original monomer sequence. Thus revealing 
elements of the structure that can be puzzled together to obtain a structure. The 
drawback in monitoring fragments from the second route is low sensitivity; the 
larger fragments containing the fucose unit have a higher abundance due to a 
higher stability. 
Compounds included in paper I and II showed that loss of structural elements 
from the ends dominated [30]. The ions derived from loss of the same structural 
element are thus depending on the molecular mass of the original ion and are for 
this reason positioned at different m/z-values in the spectra. By studying a 
fragmentation map (Fig. 11) of observed ions it is evident that most of the 
detected fragments contain the fucose residue. 
Fragmentation will not be further described here, for a detailed study the Ph. D. 
thesis by Broberg S. can be recommended.  
 

 
Fig. 11. Proposed fragmentation for compound 6 in MS3. The theoretical mass 
of the precursor ion [B+Na]+ is given in italics. The labelling of the fragments 
is preserved from the original publications [30] 
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Multivariate analysis of mass spectra 
 
Introduction 
The pattern recognition technique is a branch of what is commonly called 
chemometrics. Pattern recognition has frequently been applied to various types 
of data where the aim is to distinguish between two or more classes. The pattern 
usually provides information about the relations between objects (compounds) in 
one class. These relations are more or less similar within one class and dissimilar 
between classes.   
Pre-treatment of data is often required before the actual multivariate analysis in 
order to magnify or weaken effects contributing to the models. There are 
numerous techniques divided in three main areas: filters, signal correction 
techniques and scaling [44]. Pre-treatment in this work has been used to remove 
differences in intensity due to concentration or ion suppresion. Pattern 
recognition is typically carried out in two steps, firstly a principal component 
analysis (PCA) [44-46] for exploring data and secondly a projection to latent 
structure (PLS) [47].  
PCA is a data compression technique that finds orthogonal principal components 
(PCs), which describes major trends in the data. These PCs are ordered 
according to the amount of variation described so that the first PC describes the 
largest variation. The scores represent the objects (samples) in the new 
coordinate system defined by the PCs, and plotting the scores for the first few 
PCs against each other may discover major trends or clusters in the data. The 
loadings describe how the PCs are obtained from the original variables. By 
examination of the loadings it is possible to analyse which variables are likely to 
be related to observed clusters in the score plot.  
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A geometrical interpretation of a PC is visualised in Fig. 12.  The direction of the 
line is described by the loading and the scores are illustrated as the open circles, 
which is the orthogonally projected data (closed circles are the obtained 
measurements).  
 

 
Fig 12. A geometrical interpretation of a PC, the open circles are the projected 
experimental data (closed circles) onto the PC.  
 
When the first PC has been fitted to the data (X-matrix) the captured variation in 
the first PC (t1 and p1) is subtracted from X leaving the residual matrix E1 (See 
Fig 13). The second PC is then fitted to the residuals E1, giving t2 and p2. The 
procedure is repeated until all systematic variation has been captured. 
 

 
Fig. 13. A presentation of the matrices involved in PCA. X is the spectral data 
from which the scores (t) and loadings (p) are calculated. E is the residual 
matrix containing the information not included in Xmodel.  
 
 
A projection to latent structure-discriminant analysis (PLS-DA) is a linear 
regression method used to find the relationship between two datasets (X and y) in 
order to classify new objects. PLS-DA shares some similarities with PCA but the 
most important difference is the introduced y-vector, containing designed dummy 
variables that guide the algorithm to capture the relevant variation in the X 
matrix. A PLS can be explained simply as two interdependent PCA (one for X 
and one for y) connected via the score vectors. Altough, the model is somewhat 
more complex than a PCA. It is important to understand that the captured 
variance in a PLS-DA model can be quite different compared to the captured 
variance in a PCA, this is due to the supervised guidance of the X matrix via the 
dummy variables in the y-vector.  
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When a multivariate model is fitted to a set of data the amount and relevance of 
the captured variance (PCA and PLS-DA), and ability to predict new samples, 
(PLS-DA) must be validated so that the optimal numbers of PCs can be decided 
[46, 48]. There are multiple ways of assessing this and three methods mainly 
used in this study are described below. Firstly, the residuals of X (E in Fig 13.) 
reveal if the systematic variation has been captured. The PCs are ordered 
according to described amount of variance, the first few PCs will describe the 
underlying phenomenon [49] that is searched for and the latter ones describe 
only noise. Thus one can study the amount of described variance and decide 
number of components based on the break point between systematic variation 
and noise. This, however, usually leads to an excessive number of included PCs 
because not even all the systematic variation might be of interest in a PLS-DA. 
Another approach is to use validation techniques such as leave-one-out cross-
validation (LOO-CV) and test-set validation. The LOO-CV is helpful when a 
limited number of objects are available. The basic principle of LOO-CV is to 
split the dataset, object-wise, and one object (row containing spectral data) is 
taken out at a time whilst a model is fitted with one to n number of latent 
variables, then the object left out is predicted. This is repeated until all objects 
have been excluded. Predicted residual error sum of squares (PRESS) can then 
be calculated for each number of included latent variables according to Eq. 1 and 
plotted against the corresponding number of latent variable. 
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By this procedure the appropriate model can be decided. Furthermore, a test-set 
is used to assure the appropriate number of latent variables. The squared sum of 
error of prediction (Q2) for the test-set can then be compared for each number of 
included latent variables. Typically, when comparing the three methods for 
assessment, the optimum number of latent variables decreases when going from 
investigating the residuals to LOO-CV and test-set for assessment.  
R2, Q2, and captured X-variation are important statistical aspects of a model. R2 
(Eq. 2) is the modeled (included) variance of the y-vector compared to the total 
variance of the y-vector whereas Q2 (Eq. 3) is the predicted variance of an 
unknown or cross-validated sample compared to the total variance of the 
predicted sample. The captured X-variance is the amount of variance included in 
the model compared to the total variance of the spectral data. 
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The purpose of PLS-DA is classification of unknown objects. A new y-value is 
calculated when the measured spectrum of an unknown object (compound) is 
predicted. In order to arrange the predicted y-values as members or non-members 
class intervals must be set. Decision limits can be decided in several ways, in this 
study an interval was based on the pooled variance of predictions according to 
Eq. 4 where S1 is the standard deviation and n1 the number of objects in member 
class and the prediction (S-1 and n-1 corresponds to non-members).  
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The interval was then set to 1.0 ± 3Spooled for membership and -1.0 ± 3Spooled for 
non-membership.  
Soft independent modeling of class analogy (SIMCA) was applied to investigate 
the relations between compounds 7, 8, 9, and 10 with respect to the pentose R4- 
substituent. Wold et al. first introduced SIMCA in the 1970s, as a pattern 
recognition technique [50]. SIMCA is a modelling technique applied to objects 
related to soft classes. When two classes overlap they are considered to be soft. 
The actual classification technique is not applied in this investigation but the 
modelling power (Mi, Eq. 5) and discriminatory power (Di, Eq. 6), related to 
SIMCA, were calculated in order to scrutinise the X matrix by PCA.  
 

irawiresiduali SSM /1−=  Eq. 5 
 
Modelling power is calculated in Eq. 5, where Siraw is the standard deviation of 
the variable in the original spectral data and Siresidual is the standard deviation of 
the variable in the residuals in E. The obtained values for each variable varies 
between one and zero, where variables with Mi close to zero are of little or no 
use for describing the underlying phenomenon.  
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Discriminatory power (Di, Eq. 6) reveals the variables that discriminate between 
two classes. The objects (spectral data corresponding to each compounds) must 
be split into two classes before Di can be calculated, the splitting must reflect the 
differences (substituents in this investigation). Thus 7 and 8 formed the first class 
(A) and 9 and 10 the second (B). PCA is then carried out providing two models, 
one for each class. Thereafter all objects in the first class are fitted to both 
models and the squared standard deviation of each variable in E is inserted in Eq. 
6 and likewise for the second class (B). Then Di is calculated and a larger value 
indicates a higher discriminatory power, the variables (spectral data points) 
holding the largest Di are most valuble to the discrimination between classes. 
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Classification of saponins by multivariate modelling 
The mass spectra obtained of isolated compounds of fractions QH-A, QH-B and 
QH-C were imported into Matlab™, where all calculations were performed. The 
spectra have several sources of variation due to noise, concentration differences, 
fragmentation patterns, stability and molecular weight of the precursor ion. The 
aim of the developed method is to identify saponins with respect to 
fragmentation pattern. Scaling was used to make spectral data comparable with 
respect to noise, concentration and ion abundance whereas the impact of 
molecular weight were to be levelled out. In paper I (QH-A) data was normalized 
whilst in paper II (QH-B and QH-C) standard normal variate correction (SNV) 
[48] was applied. Spectra were re-referenced in order to remove the impact of 
molecular weight and PCA was calculated followed by the classification models 
(PLS-DA). The y vectors were constructed before PLS-DA could be initialised, a 
total of 9 y vectors were constructed for QH-A and 12 for QH-B and QH-C. 
Each of the variables code for a structural element at  a certain position. 
Furthermore, the vital part of this method is the re-referencing of spectral data so 
that the [M+Na]+ is the new reference on the m/z axis. The constructed spectra 
correlate the peaks to the fragmentation of the saponins and remove the influence 
of molecular weight. The impact of referencing is visualised on spectral data 
from compounds in QH-A in Fig. 14 by two PCA models of the same MS2 data 
before (a) and after (b) re-referencing. The score plot with referenced data in Fig. 
14(b) has the saponins grouped due to loss of fragments in R1 whereas the groups 
in Fig. 14(a) are uncorrelated to structural information in R1. 
 

 
Fig. 14.  Two PCA models of QH-A saponins. The score plots show MS2 data (a) 
before re-referencing, (b) after re-referencing, data was normalised before a 
PCA was performed. 
 
Fig. 15 shows the successive transformation of MS3 spectral data of compound 6 
via re-referencing and normalisation to the loading plots (PLS-DA) and the 
connection to the fragmentation route. The precursor ion [B+Na]+ was isolated 
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and fragmented. The fragments [C+Na]+, [D+Na]+, [E+Na]+, and [S+Na]+ (See 
Fig. 11) are all pinpointed throughout the procedure. [S+Na]+ is an end charged 
element that is separated from the fucose unit whereas the other fragments are 
based on a fucosyl residue ion. 

 
Fig. 15 (a) MS2 spectra of compound 6 with proposed fragments, (b) Processed 
spectra. (c) Loading vector 1 and (d) loading vector 2 from a PLS-DA model. (e) 
Proposed fragmentation of precursor ion [B+Na]+ at m/z 635.2 from compound 
6. Loss of key fragment masses are given in italics. 
 
The obtained models were then validated and the optimal number of PCs were 
decided with respect to PRESS, Q2

cv and Q2
test-set. The number of PCs used was 2 

or 3 for QH-A and two and seven for QH-B and QH-C models. In paper I the 
decision limits were based on the cross-validation, in order to assess the 
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predictions of the test-set. In paper II decision limits were based on the test-set 
predictions in order to evaluate the spectral data obtained by LC/MS. Test-set 
validation is anticipated to simulate the practical application of a model on future 
spectral data hence the calculations of decision limits based on the test-set is the 
best estimate.  
 
 
Differentiation of apiose from xylose as R4-substituent. 
In all three investigated fractions of saponins there are positions in the structure 
containing a pentose unit that is either xylose or apiose. The PLS-DA models 
described above proved to be insufficient for distinguishing these two closely 
related substituents. There are four compounds in the QH-A fraction with the 
actual pentose substituent, compounds 7 and 8 have an apiose and compounds 9 
and 10 xylose as R4-substituent. The fragmentation amplitude was ramped 
between 0.4 V and 0.7 V in 0.03 V increments, resulting in spectral data from in 
total 44 MS3 spectra of each compound. Spectral data was initially evaluated 
using the nine PLS-DA classification models (paper I), resulting in 25 positively 
identified objects of which 23 were used in this study. The two excluded but 
positively identified objects were recognized as outliers in the initial PCA, they 
corresponded to the lowest identified fragmentation amplitude. The exploratory 
analysis of the 23 re-referenced, normalized and mean centered spectra  (Fig. 
16(a)) using PCA showed a promising result with two groups corresponding well 
to the R4-substituents (Fig. 16(b)). 
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Fig. 16.  (a) Shows the pretreated 23 × 8901 data points corresponding to the 
selected spectra. (b) Shows the corresponding PCA of the 23 objects. 
 
Modelling power and discriminatory power, related to SIMCA, were used to 
outline the important variables of the underlying phenomena analogous to the 
classification of these objects. Usually, utilizing SIMCA, the objects are first 
divided class-wise and then modelling and discriminatory power are calculated. 
In this investigation the class-wise data-split was outlined only for the 
discriminatory power calculation. The motive is that expectedly the same 
variables (data points) are important to the PCA modelling in both classes since 
the fragmentation pattern is the same, thus splitting is not beneficial. The 
difference between the classes containing apiose and xylose is expected in 
relative intensities. The modelling power was calculated for all 23 objects as one 
class according to Eq. 5, 1811 variables (data points) were found to be the most 
contributing variables. The objects were then divided class-wise with 7 and 8 (13 
objects with apiose as R4-substituent) in one class and 9 and 10 (10 objects with 
xylose as R4-substituent) in the other class. The variables with high modelling 
power were then selected in each class thus yielding a 13 × 1811 X-matrix and a 
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10 × 1811 X-matrix. Discriminatory power was then calculated according to Eq. 
6 for each of the 1811 variables. Fig 17(a) shows the area of the most important 
variables for discrimination between classes, the peaks assigned I and II 
correspond to the main fragment-ions in Fig 16(a) above. Fig 17(b) shows the 
score plot from the PCA calculated on the corresponding 23 × 112 matrix. 
 

 
Fig. 17. (a) Shows the 112 selected data points corresponding to the 23 selected 
spectra. (b) Shows the corresponding PCA of the 23× 112 matrix. 
 
The peak in Fig. 17(a) assigned as I corresponds to the fragment-ion [C+Na]+ 
and the peak assigned as II corresponds to the fragment-ion [S+Na]+. The PCA 
loading plot that corresponds to the score plot in Fig 17(b) suggests that the 
fragment-ion [C+Na]+ assigned as I in Fig. 17(a) has a higher relative intensity 
with apiose as R4-substituent. The fragmentation route of [B+Na]+ producing the 
fragment ions [C+Na]+ and [S+Na]+ is visualized in Fig. 18.  
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Fig 18. The fragment ions important to differentiate between the xylose and 
apiose substituents in compound 7, 8 and 9, 10. 
 
Finally, a PLS-DA was fitted to the spectral data consisting of an X matrix of 23 
× 8901 variables, and a y vector where +1 corresponded to objects containing a 
xylose and –1 to objects containing an apiose as R4-substituent. PRESS reached 
its first minimum with three latent variables, and R2 and Q2

cv were calculated to 
0.97 and 0.82, respectively. The score plots consisting of the three latent 
variables plotted in Fig. 19 show the 10 xylose objects as one group and the 13 
apiose objects as another group. 
 

 
Fig. 19.  Final PLS-DA score plots of 23 objects corresponding to selected 
spectra of compounds 7, 8, 9 and 10. Two groups with different structural 
features of the R4-substituent, xylose and apiose. 
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Classification of previously unreported saponins  
A fraction of QH-C (Fig. 4(d)) containing saponins previously not reported was 
investigated in paper II.  The spectral data corresponding to MS2 and MS3 were 
extracted and pretreated. The 12 PLS-DA models were then used for prediction 
of y-values analogous to each substituent. Table 3 shows the result of the 
predictions. 
 
Table 03. Predictions for unknown objects according to 12 structural features.  
 PLS-DA model 
Compound R1, 

H 
R1,  
Xyl 

R1, 
Rha 

R2, 
H 

R2, 
pentose 

R3, 
Fa-Ara 

J1 0.9 -0.9 -0.9 -0.8 0.8 0.6 
J1a 0.9 -1.0 -0.9 -1.0 1.0 -0.8 
J2 -1.0 -1.0 1.0 1.0 -1.0 -1.8 
J3 -1.0 1.0 -1.0 0.7 -0.7 -1.5 
       
 R3, 

H 
R3,  
Ac 

R4, 
Fa-Ara 

R4, 
H 

R5, 
Glc 

R5, 
H 

J1 -0.6 -0.9 -0.6 0.6 -0.8 0.8 
J1a 0.8 -1.0 0.8 -0.8 -0.8 0.8 
J2 1.0 -0.2 1.8 -1.8 0.3 -0.3 
J3 0.7 -0.1 1.5 -1.5 0.1 -0.1 
a Bold-face values indicate non-classified objects. 
 
The compounds J1 and J1a were classified and a structure was proposed, see 
Table 4. The molecular weight of both J1 and J1a were calculated to 1858.0 that 
correspond well to the proposed structure. J2 and J3 were predicted outside the 
decision limits indicating structural features unknown to the PLS-DA models. 
 
Table 04. Proposed substituents in compound J1 and J1a. Numbering of 
substituents correspond to Fig. 3. 
Compound R1 R2 R3 R4 R5 
J1 H Pentose (apiose or xylose) Fa-Ara H H 
J1a H Pentose (apiose or xylose) H Fa-Ara H 
  
LC/MS on chromatographic fractions containing saponins 
The PLS-DA methods outlined was applied to LC/MS data, in order to find out 
whether classification of such data is possible. The recording of a spectrum 
showed to be a limitation, data obtained from HPLC on-line coupled electro-
spray mass spectrometry has a much narrower time window in which the 
acquiring can take place compared to direct injection using a syringe pump. 
Direct injection was used to gather data for PLS-DA modelling. When data was 
acquired using direct injection the accumulation time of the trap varied between 
0.1-50 ms, and up to 512 scans were averaged to produce the final spectra. The 
resulting time window needed for this measurement is up to several minutes. The 
time during which a compound is possible to measure using HPLC in the 
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presented method is shorter, less than 2 minutes. As a result the accumulation 
time was limited to between 0.1 and 2 ms and 64 scans were averaged. Three 
injections were performed in order to acquire spectra in MS1, MS2, and MS3.  
Two different previously separated fractions (phosphate buffer at pH 6.4) were 
investigated as well as QH-B and QH-C. The aim of the pre-separated fractions 
was to prove classification of region-isomers possible in LC/MS data whereas 
the reason for investigating QH-B and QH-C was to show the appropriateness of 
the method applied on more complex fractions. The two pre-separated fractions 
contained the compounds S1, S1a, S2, S2a and B1, B1a, B2, and B2a, 
respectively. The fractions mainly contain pairs of saponins with differences in 
R1 (14 Da, xylose, rhamnose) and with both fatty acyl regio isomers visualized in 
Fig. 4(a) and Fig. 4(h). The classification of the regio-isomers showed to be 
possible; Table 5 shows predicted values of classes corresponding to MS3 data. 
S1, S2, B1, B2 were studied in the two chromatographic fractions QH-B and 
QH-C. The obtained data was pre-treated and predicted using the PLS-DA 
models in paper II, the result can be seen in Table 6. The positive identification 
of compounds by multivariate analysis of HPLC on-line coupled ES spectral data 
has shown that the method is valid for use on mixtures of saponins.  
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Table 05. Prediction of MS3 spectral data from LC/MS on pre-separated 
fractions. A negative value indicates a non-member and a positive a member of 
the class. Each class represents an R-substituent. 
 PLS-DA model  
Comp-
ound 

R2,  
H 

R2,  
pentose 

R3, 
Fa-Ara 

R3, 
H 

R3, 
Ac 

R4, 
Fa_Ara 

R4, 
H 

R5, 
Glc 

R5, 
H 

S1 0.9 -0.9 -0.8 0.8 -1.0 0.9 -0.9 -0.7 0.7 
S1a 0.8 -0.8 0.6 -0.7 -1.0 -0.6 0.6 -0.8 0.8 
S2 0.9 -0.9 -0.8 0.7 -0.8 0.9 -0.9 -0.7 0.7 
S2a 1.1 -1.1 0.7 -0.9 -0.8 -0.8 0.8 -0.7 0.7 
B1 0.7 -0.7 -0.4a 0.3a -0.9 0.4a -0.4a 0.6 -0.6 
B1a 0.4 -0.4 0.8 -0.8 -1.0 -0.8 0.8 0.5a -0.5 
B2 1.1 -1.1 -0.9 0.8 -0.9 0.9 -0.9 0.7 -0.7 
B2a 0.4 -0.4 0.7 -0.6 -1.1 -0.7 0.7 0.6 -0.6 
a Bold-face values indicate non-classified objects. 
 
 
Table 06. Prediction of peaks from LC/MS on QH-B and QH-C. A negative 
value indicates a non-member and a positive a member of the class. Each class 
represents R-substituent.  
 PLS-DA model 
Compound R1, H R1, Rha R1, Xyl R2, H R2, pentose R3,Fa-Ara 
B1 -0.9 -0.8 0.7a 0.7 -0.7 -1.1 
B2 -0.8a 0.7a -0.9 0.9 -0.9 -0.7 
S1 -0.9 -0.9 0.8 0.9 -0.9 -0.7 
S2 -1.0 0.9 -1.0 0.8 -0.8 -1.1 
       
 R3, H R3, Ac R4, H R4, Fa_Ara R5, H R5, Glc 
B1 1.0 -0.9 -1.1 1.1 -1.1 1.1 
B2 0.8 -1.1 -0.7 0.7 -1.0 1.0 
S1 0.9 -1.2 -0.8 0.8 0.8 -0.8 
S2 1.1 -1.1 -1.1 1.1 0.9 -0.9 
a Bold-face values indicate non-classified objects. 
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Concluding remarks 

Today the most promising formulation of saponins as adjuvants is ISCOM®s.  
The way these microspheres interact in humans are not fully understood, neither 
is the function of saponins in human. However, a mixture of Quillaja saponins 
from QH-A and QH-C with low toxicity and high adjuvant activity has been 
proposed that are being tested in clinical trials. 
 
The method outlined here is an analytical tool for further understanding and 
applications of Quillaja saponins. Most of the major compounds in saponin 
fractions from Quillaja saponaria Molina have been structurally elucidated by 
NMR studies, which is not the case for the minor compounds that are still to be 
investigated. Applying NMR techniques usually require around 200 μg or more 
of the isolated sample, compared to a few μg for a full classification using mass 
spectrometry. Combining mass spectrometry with multivariate analysis provides 
a rapid method for structural classification of these minor unknown compounds.  
Further, young plants of Quillaja saponaria Molina have shown different 
metabolomic profiles of saponins compared to older specimen; hence the 
biological and chemical activity differs between batches from different specimen. 
The LC/MS method outlined in paper II could in future work be used together 
with multi-way analysis for screening of chromatographic fractions of saponins 
or to monitor the metabolomics of Quillaja saponaria Molina saponins, in order 
to achieve better and more identical fractions for use as adjuvants as well as to 
study variations between batches and species.  
 
The method developed in paper I and II is specific to a group of Quillaja 
saponins, but can be applied to other molecules built up of monomers such as 
glycoproteins.  
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