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Foreword 
The first life cycle assessments (LCA) were conducted in the late 1960s and early 1970s, 
in the field of packaging. Since then, there has been a huge expansion in the practice of 
estimating the environmental impact from a product perspective, accounting for a broad 
array of environmental impacts and taking into account emissions and resource use in all 
stages of the product’s life cycle, including extraction of raw materials, production, 
transport, use and waste disposal. LCA is now used in both industry and research, and is 
applied to a wide variety of products and services, e.g. waste management, metals and 
other materials, transport modes, electronics, electricity and heat generation, biofuels and 
foods. LCA has proven to be a very useful tool for holistically assessing the environmental 
impact of products to avoid pollution swapping and sub-optimisation when trying to 
improve the environmental performance of products. However, even though the 
methodology in the field of LCA has improved enormously during the last 20-30 years, 
modelling a complex reality is highly challenging and LCA results remain uncertain. This 
uncertainty needs to be minimised, but can never be reduced to zero, so illustrating the 
uncertainty in results is crucial to enable good decision making.  
     LCA of foods is especially uncertain, since most emissions arise from biological 
processes that are difficult to control and model, and there is high variability in 
management practices, climate conditions and soil characteristics. Due to the focus on 
climate change in recent years, several studies have assessed the carbon footprint (CF) of 
livestock products, a LCA restricted to the impact category of global warming. These 
studies have provided valuable knowledge on the greenhouse gas (GHG) emissions 
associated with producing meat, milk and eggs, but the results are uncertain and 
comprehensive uncertainty assessments are generally lacking, so care must be taken when 
interpreting the results. 

The Federation of Swedish Farmers (LRF) commissioned and funded this report, 
spurred by curiosity about the magnitude of uncertainty in livestock LCA, when 
uncertainty is important and how uncertainty analysis can be conducted. The work was 
carried out at the Department of Energy and Technology, Swedish University of 
Agricultural Sciences (SLU) during spring 2013 by Elin Röös, a PhD student who has 
published studies on uncertainty in CF calculations, and Dr. Josefine Nylinder, a specialist 
in the field of modelling nitrous oxide emissions. The authors wish to greatly thank the 
following researchers who provided valuable input on parts of the report: Cecilia Sundberg 
(sections 4.2, 4.4 and 5), Per-Anders Hansson (sections 4.4, 5 and 6), Niclas Ericsson, 
Serina Ahlgren, Ingrid Strid, Gunnar Larsson (section 4.4), Jan Bertilsson (section 4.3) and 
Åsa Kasimir Klemedtsson (section 4.1). Thanks also to Jan Eksvärd and Helena Elmquist 
at LRF for comments on the report. Finally, great thanks to Mary McAfee for helping to 
improve the language. 
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Abstract 
Livestock production is a major contributor to anthropogenic climate change, 
being responsible for 18% of global greenhouse gas (GHG) emissions. In the quest 
to reduce emissions, the amount of GHG released during the production of 
livestock products is commonly quantified by calculating the carbon footprint 
(CF), which includes all GHG emitted during the life cycle of the product. 
Quantification of the CF is challenging for several reasons. The majority of GHG 
emissions from agricultural systems arise from complex microbial processes that 
are difficult to fully understand and highly variable in time and space. Changes in 
carbon pools above and below ground can have huge impacts on GHG emissions 
from agricultural systems. The increasing demand for food, feed and biofuel on 
the global market is leading to deforestation and thus increased emissions of GHG. 
In addition, there is great diversity between livestock systems, e.g. in feeding 
strategies, animal growth and production, housing systems and manure handling.  

This report describes uncertainties and variations in input data and models used 
to calculate the CF of livestock products. It discusses when uncertainty 
assessments are important and how uncertainty can be included in CF calculations.  

Uncertainty in the CF of livestock products arises from: 1) uncertain input data; 
2) the choice of model used for calculating emissions of e.g. N2O from soil, CH4 
from enteric fermentation in ruminants, CO2 emissions or sequestration in soils 
and emissions as a result of land use change, as well as uncertainties in these 
models; and 3) uncertainty due to scenario choices in modelling the livestock 
system, e.g. how system boundaries are drawn and how allocation between co-
products is handled. It is important to account for uncertainty when comparing 
different production systems where emissions arise from different sources. 
However, when similar production systems are compared, e.g. when they only 
differ in the amount of feed used, it is possible to draw solid conclusions without 
comprehensive uncertainty assessments. Uncertainty in input data and model 
parameters can be propagated through the CF model using stochastic simulation, 
which gives an uncertainty range for the resulting CF. Sensitivity analysis can be 
used to test how different modelling choices affect the results, thus providing a 
measure of their robustness. In a full sustainability assessment, it is important not 
to focus solely on the CF, but to include other environmental impact categories 
and social and economic aspects.  
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Sammanfattning 
Animalieproduktion är en viktig bidragande orsak till de klimatförändringar som 
orsakas av människan och står för 18% av de globala växthusgasutsläppen. I 
arbetet med att minska utsläppen, kvantifieras ofta animalieprodukters 
klimatpåverkan genom att beräkna produktens klimatavtryck (‘carbon footprint’ 
på engelska), d.v.s. den totala mängden växthusgaser som släpps ut under 
produktens livscykel. Att beräkna klimatavtrycket är en utmaning av flera skäl. 
Merparten av växthusgasutsläppen från jordbrukssystem uppstår via komplexa 
mikrobiella processer som varierar mycket i tid och rum. Dessutom kan 
förändringar i kolbalansen ovan och under jord ha stor effekt på utsläppen av 
växthusgaser från jordbrukssystem. Den ökande efterfrågan av livsmedel, foder 
och biobränsle på den globala marknaden leder till skövling av skog och därmed 
ökade växthusgasutsläpp. Dessutom finns det stora skillnader mellan olika 
djurhållningssystem t.ex. i utfodringsstrategier, tillväxttakt och produktionsnivåer, 
inhysningssystem och gödselhantering. 

Denna rapport beskriver osäkerheter och variationer i de indata och modeller 
som används för att beräkna klimatavtrycket av animalieprodukter. Det diskuteras 
när bedömningar av osäkerhet är viktiga och hur osäkerhet kan ingå i beräkningar 
av klimatavtryck. 

Osäkerheten i klimatavtrycket av animalieprodukter uppstår vid 1) osäkra 
indata, 2) val av modeller som används för beräkning av utsläpp av t.ex. lustgas 
från mark, metan från matsmältning hos idisslare, koldioxidutsläpp och upptag i 
mark och till följd av förändrad markanvändning, samt osäkerheten i dessa 
modeller, och 3) osäkerhet som beror på val vid modellering av 
produktionssystemet, t.ex. hur systemgränserna sätts och hur fördelningen av 
utsläpp mellan olika biprodukter hanteras.  

Det är viktigt att ta hänsyn till osäkerhet när man jämför olika 
produktionssystem där utsläppen uppstår från olika källor. Däremot när liknande 
produktionssystem jämförs t.ex. när de bara skiljer sig i mängden foder som 
använts är det möjligt att dra slutsatser utan omfattande osäkerhetsanalys. 
Osäkerhet i indata och parametrar kan fortplantas i klimatavtrycksmodeller med 
stokastiska simuleringstekniker, vilket ger ett osäkerhetsintervall för 
klimatavtrycket. Känslighetsanalys kan användas för att testa hur olika val av data 
och modeller påverkar resultatet och således ge ett mått på resultatets robusthet. I 
en fullständig hållbarhetsbedömning är det viktigt att inte enbart fokusera på 
klimatavtrycket utan också inkludera andra miljöeffekter så väl som sociala och 
ekonomiska aspekter.  
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1 Introduction 

1.1 Background 
Combating climate change is one of the most pressing challenges for humanity. 
Emissions of greenhouse gases arise mainly from the combustion of fossil fuels in 
the energy and transport sectors (Figure 1). However, the livestock sector has been 
identified as a major contributor to anthropogenic climate change, as it is 
responsible for 18% of global greenhouse gas (GHG) emissions when the 
emissions in the agriculture, transport and energy sectors that relate to livestock 
production are included (Steinfeld et al., 2006). Due to the estimated global 
population growth to approximately 9 billion in 2050 and growing income levels, 
FAO suggests that an 70% increase in food production will be necessary (FAO, 
2009). This is obviously an enormous challenge at a time when climate change, 
biodiversity loss, land, water and energy shortage, soil erosion and chemical 
pollution are placing serious stress on global food production systems. It is 
apparent that there is a huge need to improve production systems and lower the 
environmental burden per kg of product produced, but also to look into other 
measures such as reducing food losses and changing diets (SBA, 2012). The 
improvement of production systems and the development of more sustainable 
consumption patterns will require solid evaluation methods. 
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Figure 1. Contribution to global greenhouse gas emissions from different sectors in 2004 (IPCC, 
2007a). The agricultural sector does not include energy use and transport, as these are reported in the 
energy and transport sectors.  

When considering the environmental impact from livestock, the focus has 
commonly been on the release of GHG (Steinfeld et al., 2006; Gerber et al., 2010; 
Leip et al., 2010).  However, quantification of the carbon footprint (CF), the total 
amount of GHG emitted during a product’s lifetime, is difficult for agricultural 
products for several reasons. The majority of GHG emissions from agricultural 
systems arise from complex microbial processes that are difficult to fully 
understand, and to measure and model. The emissions are strongly affected by 
climate conditions and features in the agricultural system such as soil conditions. 
Hence, the emissions from one farm can greatly vary between years and fields, and 
variations within a region or country can be substantial. Furthermore, changes in 
carbon pools above and below ground can have huge impacts on the GHG 
emissions from agricultural systems. On-farm emissions arise from energy use, 
animals, soil and manure. Upstream processes such as animal feed production and 
production of capital goods are also emitters of GHG. The increasing demand for 
food, feed and biofuel on the global market is leading to deforestation in the quest 
for more agricultural land, and thus emissions of GHG. Emissions from all these 
phases and processes need to be included in the total assessment of the impact 
from livestock production. In addition, the diversity in livestock systems is great. 
Livestock can be produced in close linkage with crop (feed) production or as land-
less systems where feed is bought on the global feed market. Different feeding 
strategies, animal growth and production rates, housing systems and manure 
handling give varying amounts of GHG emissions released from different systems.  

Several studies have been conducted on livestock systems to quantify the GHG 
emissions or CF for different livestock products (see summaries in de Vries & de 
Boer, 2010; Nijdam et al., 2012; Röös et al., 2013). CF can be calculated for a 
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multitude of purposes. Some studies aim at identifying ‘hot-spots’ in production 
(processes which give rise to the majority of emissions) and effective mitigation 
options and some at comparing different production systems with different feeding 
strategies, manure handling etc. Other studies aim to quantify the emissions from 
the entire livestock sector in a region or a specific livestock sector, e.g. the dairy 
sector (Gerber et al., 2010). The purpose of a study determines how the work is 
carried out and how the results are presented and interpreted. Due to the great 
complexity of livestock systems, uncertainty analysis is often needed to draw solid 
conclusions but such an analysis is often lacking. In addition, it is not sufficient to 
assess the total sustainability of a livestock system using only the CF, as other 
environmental aspects, aspects of resource use efficiency and social and economic 
factors need to be included for a full sustainability assessment. 

1.2 Goal and scope of the report 
The overall goal of this report was to describe uncertainties and variations in input 
data and models used to calculate the CF of agricultural products. A further goal 
was to discuss when uncertainty assessments can be included in CF calculations 
and how this can be performed.  

The report does not claim to be comprehensive and to cover all aspects and 
models. Rather, it presents examples of different ways of quantifying GHG 
emissions from agricultural systems in order to highlight that uncertainties are 
substantial and that different modelling choices can give varying and in some 
cases contradictory results. The report is limited to studying the climate impact 
from a product life cycle perspective.  

1.3 Structure of the report 
The remainder of the report is structured as follows:  
Chapter 2 describes the methodology behind calculating the CF of livestock 
systems by first describing the underlying methodology used, namely life cycle 
assessment (LCA). In section 2.1 basic concepts in LCA are explained and 
exemplified using examples from the field of livestock production.  The concept of 
CF is described generally in section 2.2 and specifically for livestock systems in 
section 2.3.  

Chapter 3 deals with general concepts of uncertainty and variation. Section 3.1 
describes the difference between uncertainty and variation. Sources of uncertainty 
are described in section 3.2, while ways to handle and present uncertainties in 
LCA are presented in section 3.3 and 3.4. 
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Critical methodological choices for livestock CF calculations are described in 
Chapter 4. Section 4.1 describes the difficulties in measuring and modelling N2O 
emissions from agricultural soils used for feed production, while section 4.2 
discusses CO2 emissions from soil and carbon sequestration in soils. Section 4.3 
deals with methane emissions from enteric fermentation in animals and section 4.4 
describes emissions from manure handling. In section 4.5 emissions due to land 
use change (LUC), which includes the transformation of forests, scrubland, 
grassland and other non-crop land into crop producing land, are discussed. Section 
4.6 gives a brief overview of CO2 emissions from energy use, while section 4.7 
highlights some of the production parameters which influence the CF of livestock 
products. 

Chapter 5 deals with the uncertainties in the final CF of livestock products. 
Section 5.1 describes how different types of uncertainties are aggregated in the 
CF. Section 5.2 discusses and gives examples of when it is important to include 
uncertainty in comparisons. How uncertainties can be illustrated is described in 
section 5.3, while the wider concept of sustainable livestock production systems is 
discussed in section 5.4. Chapter 6 ends the report with a summary. 
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2 Calculating carbon footprint 

2.1 Life cycle assessment 
Life cycle assessment (LCA) is a well-established quantitative method for 
assessing the environmental impact of a product or service from a life cycle 
perspective. Inflows of natural resources (e.g. raw materials, energy, land and 
water) to the system and outputs in form of products, by-products, emissions and 
waste are quantified for all steps in the life cycle, starting at raw material 
extraction and continuing through to manufacturing, use and finally ending with 
the disposal of the product. LCA is a generic method that is not limited to the 
study of livestock products or food. It has been used extensively in many different 
fields, e.g. in energy production and in waste management.  

LCA aims at being a comprehensive methodology for assessing the complete 
environmental impact of a product, hence avoiding sub-optimisation and problem 
shifting. LCA was originally limited to describing the environmental damage of a 
product, but on-going research has suggested ways of including social issues 
(Kruse, 2010). LCA can be combined with other tools to provide a more 
comprehensive evaluation of a product, e.g. life cycle costing (LCC). See section 
5.4 for a more extended discussion of the role of LCA in sustainability 
assessments.  

LCA is standardised by ISO (ISO, 2006a, b). The standard can be regarded as a 
framework that encapsulates the different types of LCA variants (section 2.1.1), 
defines basic concepts and describes how a LCA study should be structured and 
what it should contain, i.e. it gives guidance on a general level. In a standard such 
as that for LCA, which has to be applicable in disparate sectors such as energy, 
transport, manufacturing and agriculture and be valid for a wide range of different 
types of LCA and for evaluating different types of environmental aspects, it is 
very difficult to set up very detailed requirements. Instead, using the ISO standard 
as the basic framework, different organisations have developed more specific 
specifications targeting a specific issue. For example, PAS 2050 (BSI, 2011) and 
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the Greenhouse Gas Protocol Reporting Standard (WRI & WBSCD, 2011) treat 
calculation of CF for products in general, while PAS 2050-1 contains additional 
specifications specifically for the production of horticultural products (BSI, 2012). 
The European Food Sustainable Consumption and Production Round Table, an 
initiative co-chaired by the European Commission and food supply chain partners, 
is developing the ENVIFOOD Protocol, which aims at providing a harmonised 
environmental assessment methodology for food and drink products (Food SCP, 
2012). In addition, through the International Dairy Federation (IDF) the global 
dairy industry has developed a common approach for calculating the CF of milk 
and dairy products (IDF, 2010). The international Environmental Product 
Declaration (EPD) system contains a framework for developing specific rules for 
specific products, Product Category Rules (PCR). Within that system, PCR have 
been developed for meat from mammals, with specific methods for the assessment 
of such production systems (EPD, 2013). 

Although standards are highly valuable for ensuring more consistent 
assessments, due to the diversity in the purposes of conducting LCA studies, it is 
very difficult to create a standard that fulfils all purposes in an optimal way. 
Therefore, there are still occasions when deviations from the more detailed 
standards are justified. In addition, there is a risk of the results being biased by the 
selection of methods and data collection strategies specified in the standard.  

2.1.1 Uses and types of LCA 
LCA can be used for different purposes, e.g. for decision making, learning about 
the environmental impact of the system, identifying mitigation options and 
communication. Decision making in product development has been a prime use of 
LCA since the formulation of the methodology and is still one of the most 
common uses. Other important decisions that are based on LCA are purchasing 
decisions and the development of environmental policies (Tillman, 2010).  

There are also different types of LCA. First, a division can be made between 
process-based LCA and input-output LCA (IO LCA). Process-based LCA uses a 
‘bottom-up’ approach in which the resource use and emissions from every process 
stage (raw material extraction, manufacturing, use, disposal) for every component 
(e.g. in the case of a bicycle: steel, rubber, electricity, machinery etc.) are surveyed 
individually. In IO LCA, economic input-output models that describe the 
monetary transactions between different economic sectors, such as the electricity 
sector, the steel sector etc., are extended with information on emissions to the 
environment. Hence, IO LCA models provide a way of studying ‘transactions’ of 
emissions between sectors and can be used to assess the environmental impact of 
products using a ‘top-down’ approach (Hendrickson et al., 2006). Although IO 
LCA has been used in LCA of livestock systems (Weidema et al., 2008), use of 
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process-based LCA is most common. Therefore, when LCA are referred to 
hereafter in this report, process-based LCA is what is meant.  

LCA can be performed as either attributional LCA (ALCA) or consequential 
LCA (CLCA). Nguyen et al. (2010) provide a good description of the two: 

 
“The former [ALCA] seeks to cut the portion of the global environmental impact 
related to a particular product, and the later [CLCA] seeks to capture change in 
environmental impact as a consequence of a certain activity and thereby provides 
information on consequences of actions.” 

In ALCA average data are used while in CLCA marginal data are used, since it is 
the marginal processes that will be affected by change (Weidema et al., 1999). 
Such data choices can lead to very different results, as is further discussed in 
section 4.6. Allocation of emissions between co-products is most often based on 
economic or physical relationships in ALCA, while in CLCA the system is 
expanded to include processes that are affected by the by-products entering the 
market (section 2.1.4). It could be argued that all LCA studies should be 
performed as CLCA studies, since the results are used as a basis for decisions that 
will inevitably lead to change. However, some authors argue that the ALCA 
approach can be more appropriate when the interest lies in evaluating how the new 
product would perform in a future steady state rather than the dynamic impact 
when the product is introduced or expanded on the market (Sonesson & Berlin, 
2010).  

2.1.2 The structure of LCA 
The ISO standard for LCA stipulates that a LCA study should be structured into 
four different phases; goal and scope definition, inventory analysis, impact 
assessment and interpretation (ISO, 2006a, b). A short description of the different 
phases as described in the ISO standard is provided below, together with some 
illustrative examples from LCA studies on livestock products. Although LCA is 
divided into four consecutive phases, conducting an LCA is very much an iterative 
process. For example, the goal and scope of the study defined in the first phase 
might need to be revised as more knowledge is gathered about the system in later 
phases, and sensitivity analysis performed in the last phase might call for more 
careful data collection in the inventory phase.  

Goal and scope definition 
When formulating the goal definition of the study the reasons for carrying out the 
LCA should be stated, as well as how the study is to be used and by whom. A few 
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examples of how objectives in previous studies on livestock products have been 
formulated are given below. 

 
- “The objective of this study…. was to assess the environmental profile of 

four different EU beef production systems, three based on dairy bull 
calves and one on suckler herds” (Nguyen et al., 2010) 

- “Our objective was to assess regional differences in GHG emissions 
associated with production of dairy, beef, pork and poultry and eggs in the 
EU-27” (Lesschen et al., 2011) 

- “The goal was to identify the processes in the product chain of pork with 
the largest environmental impacts…” (Dalgaard, 2007) 

When defining the scope of a study, several crucial decisions need to be taken and 
consistently complied with in the following phases of the LCA. These include 
choosing the system to study and the system boundaries, formulating a functional 
unit, deciding how to handle allocation of impact across co-products, and 
determining data quality requirements and methods to use for evaluating the 
environmental damage. Some of these critical choices are discussed in further 
detail in sections 2.1.3 and 2.1.4. Subjective choices are inevitable in this phase of 
an LCA study, but choices must be carefully justified and consistent with the aim 
and intended use of the LCA study as defined in the goal definition.  

Inventory analysis 
The inventory analysis phase is the phase in which data is collected. Often a 
‘cradle-to-grave’ flow model is constructed for the system under study in 
accordance with the goal and scope definition. An example of a flow model 
corresponding to the objectives stated by Nguyen et al. (2010) in the section above 
on goal and scope definition is shown in Figure 2.  
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Figure 2. Flow model for studying beef fattening from Nguyen et al. (2010). 

Data on the flows that are relevant for environmental impact assessment, e.g. use 
of resources, amount of environmentally damaging emissions and the production 
of waste and by-products, are collected for every step in the product life cycle. 
These data are aggregated over the life cycle and related to the functional unit (see 
section 2.1.3).  

The inventory analysis is often the most time-consuming phase of an LCA 
study, as the processes included are often many and complex. Life cycle inventory 
(LCI) databases (e.g. ecoinvent; Ecoinvent Centre, 2012) provide generic data, but 
depending on the purpose of the LCA, large amounts of more specific data are 
generally needed. For example, if the purpose of the study is to quantify the 
environmental impact from a specific farm, farm-specific data is needed, while if 
the purpose is to compare the impact of a product from two different countries, 
country-specific average data from those two countries are needed. However, data 
collection from a large number of farms is very time-consuming, so most studies 
use data from a few farms that are considered representative, or average data on 
yields, fertiliser use etc. from national statistics. These parameters are used to 
estimate emissions of GHG based on emission factors and simplified models, 
since emissions from agricultural systems cannot be measured directly (see 
Chapter 4).  
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Impact assessment 
The result of the inventory analysis is typically a long list of amounts of natural 
resources used (e.g. oil, coal, natural gas, different types of metals, land, water 
etc.) and substances emitted (e.g. CO2, N2O, CH4, SO2, NOx, HCl, NH3, P, CFCs 
etc.) to the environment during the life cycle of the product. In the impact 
assessment phase (also called life cycle impact assessment, LCIA), the physical 
flows identified in the inventory analysis are used to estimate how the product 
affects the environment. The substances are first classified (sorted) in accordance 
with the environmental impact category to which they contribute; CO2, N2O and 
CH4 cause climate change, while SO2, NOx, HCl and NH3 cause acidification and 
so on. In the characterisation step, the different substances are aggregated into one 
indicator for each impact category depending on their relative damage contribution 
according to some documented characterisation model. The model commonly used 
to calculate the global warming potential (GWP) expressed in CO2-equivalents 
(CO2e) and relevant for the CF is described in more detail in section 2.2.2.  

Results from an LCA study can be presented as individual impact categories. 
The most commonly used categories in LCA studies on livestock products are 
global warming potential, eutrophication potential, acidification potential, land use 
and energy use (Röös et al., 2013). An example of how results are commonly 
presented in LCA studies on livestock is shown in Figure 3, which is also taken 
from the study on different beef fattening systems by Nguyen et al. (2010).  

 

 
 

Figure 3. Example of how results from LCA studies on livestock systems are typically 
reported (from Nguyen et al., 2010). 
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The results for the individual impact categories can also be normalised and 
weighted using pre-defined methods so that the results from the LCA study can be 
given as only one or a few ‘environmental scores’ (e.g. Goedkoop et al., 2009). 
This way of presenting results from LCA studies on livestock is rather uncommon, 
since most studies aim not only to determine which system has the smaller or 
larger impact, but also to learn about the systems and how the impacts arise.  

Interpretation 
In the interpretation phase, significant issues in the results should be highlighted 
and discussed in relation to the purpose of the study, e.g. identification of impact 
categories contributing considerably to the environmental impact or the 
contribution from different life cycle stages. According to the ISO standard the 
interpretation phase must also include an evaluation of results that considers 
completeness, sensitivity and consistency. Finally in this phase, conclusions are 
drawn, limitations discussed and recommendations given.     

2.1.3 The functional unit 
In LCA the environmental impact is measured relative to the ‘functional unit’, 
which describes the function of the product or the service in a quantitative manner. 
The most commonly used functional unit for food products is simply the 
production of one kg of the food being studied, often also with a specification 
regarding system boundaries (section 2.1.4), e.g. “the production of 1 kg of 
potatoes at the farm gate”. In the case of meat it is important to specify whether 
the functional unit is 1 kg of live weight, carcass weight or edible meat (without 
bones). This is particularly important when comparing meat from different animal 
species, since the meat yield per animal carcass varies substantially between 
species (Hallström & Börjesson, 2012; Nijdam et al., 2012). The yield can also 
vary considerably between breeds and production systems, so it is very important 
to clearly state the type of meat yield used in calculation of the CF, as this could 
heavily influence the results.    

In LCA studies comparing different alternatives for the same ‘function’, it is 
crucial that the functional unit is chosen so that the products can be compared 
fairly. As an example, in LCA studies comparing milk production systems the 
functional unit should account for differences in nutrient content in the milk, so 
measures that include e.g. the fat and protein content of the milk are commonly 
used as the functional unit. One common measure is ECM (Energy Corrected 
Milk), which is defined as follows: 

 
ECM = 0.25*M + 12.2*F + 7.7*P 
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where M is the mass of milk in kg, F is the fat content in kg and P is the protein 
content in kg (Sjaunja et al., 1990). Hence, the functional unit in LCA studies of 
milk is often stated as “the production of 1 kg of ECM (at the farm gate)”.      

In the Western diet, livestock products are major sources of protein and it can be 
argued that the function of meat is to provide protein. Hence for LCA studies 
comparing different meat products and especially when comparing these to 
alternative protein sources, use of 1 kg of the food product as the functional unit 
might not be the most appropriate one, since different foods can have very 
different protein contents, e.g. eggs contain 12% protein and most meats 
approximately 20%. In that case, it might be wiser to use “the production of 1 kg 
of protein” as the functional unit. Livestock products not only provide proteins but 
are also important sources of several micronutrients such as iron and zinc 
(Hallström et al., 2013). To include several nutritional aspects, foods can be 
evaluated based on their ‘nutritional density’ in which their content of different 
nutrients such as proteins, carbohydrates, fats, vitamins and minerals is taken into 
account and weighted according to the recommended daily intake (Kernebeek et 
al., 2012; Saarinen, 2012).  

It is important that the functional unit represents the function of the product 
being studied. In most developed countries average protein intake is far beyond 
recommendations, so it could be argued that the function of livestock products in 
these countries is to supply pleasure rather than protein, which could motivate the 
use of mass as the functional unit. In addition, livestock not only provide food, but 
also other important functions, e.g. they help preserve biodiversity by grazing 
semi-natural grasslands, which might be relevant to include in the functional unit. 

2.1.4 System boundaries and allocation 
The system boundaries specify which processes to include in the product system 
under study. The ISO standard requires that all life cycle stages, processes, inputs 
or outputs that affect the conclusions of the study must be included. Typically, a 
product system for the production of livestock products should include the 
following processes; cultivation, processing and transport of feed and for this the 
manufacturing of all necessary inputs such as seed, fertilisers, pesticides, fuel, 
electricity and capital goods, the on-farm activities and post-farm processes such 
as slaughtering, processing, packaging, storage, distribution, preparation and waste 
disposal. However, since post-farm emissions are small in comparison with the 
emissions on the farm and from the production of inputs, the study often ends at 
the farm gate, called a ‘cradle-to-farm-gate’ study.  

The system boundaries used need to delineate the product system under study 
from the 1) natural system and 2) the surrounding technical system. Drawing the 
line between the natural system and agriculture can be challenging, e.g. there are 
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different opinions on whether sequestration of carbon in soils and hence removal 
of CO2 from the atmosphere should be included within the system boundaries 
(section 4.2). Isolating the studied product system from the surrounding technical 
system is often associated with several challenges too, since agricultural systems 
are generally highly complex in several ways. One classical LCA topic that arises 
in most studies is how to handle the fact that most processes produce more than 
one product. This ‘allocation problem’ can be handled in several ways. In CLCA, 
the system is always expanded to include processes affected by the by-products 
reaching the market (system expansion), while in ALCA emissions from the 
product systems are split between the main products and the co-products according 
to physical (e.g. energy or mass) or economic relationships.  

A typical allocation problem in LCA on livestock products arises in the joint 
production of milk and meat. In an ALCA study on milk, emissions from the joint 
production can be divided (allocated) between the milk and the meat based on 
either the price of milk and meat (economic allocation) or some physical 
relationship, e.g. the energy and/or protein content of the milk and meat. A 
‘biological’ relationship based on the proportion of a dairy cow’s feed that is 
needed for milk production can also be used to allocate emissions. Such an 
allocation resulted in 85% of the total emissions being allocated to milk and 15% 
to the meat and the surplus calves in a study by Cederberg & Stadig (2003). The 
production system can also be expanded to include the production of pure meat, 
i.e. from suckler herds. Hence, the emissions from a corresponding amount of 
meat coming from joint milk-meat production, but produced from the suckler herd 
system, can be subtracted from the total emissions from the joint production of 
milk and meat. The remaining emissions are attributed to the milk. The reasoning 
behind system expansion is that when meat from the milk-meat system enters the 
market, ‘pure beef meat’ from suckler herds is no longer needed and its production 
is avoided.  

Results can show large variations depending on the way in which by-products 
are handled. Figure 4 shows the CF of milk using three different allocation 
methods and system expansion. In the first method (No all), all emissions are 
allocated to the milk, in the second (Ec all 92%) economic allocation is used and 
92% of emissions are allocated to the milk, and in the third (Bi all 85%) 
“biological” allocation as described above is used and finally system expansion is 
used. Since existing LCA studies show that GHG emissions from meat from 
suckler herds are generally larger than those from milk-meat systems, the CF of 
milk is substantially lower when system expansion is applied, since large 
emissions can be subtracted from the joint milk-meat production system.  
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Figure 4. Carbon footprint of milk with different ways of handling allocation of emissions between 
meat and milk (from Cederberg & Stadig, 2003). 

Examples of other allocation issues that arise in livestock systems are: allocation 
between the food products produced in the livestock system and other outputs such 
as manure, wool and leather, as well as allocation of emissions across different 
types of meat, e.g. higher value cuts such as fillet steak, other lower value parts 
and offal. In addition, in feed production, emissions from cultivation need to be 
allocated to the part of the crop used for human food and feed to animals, e.g. in 
production of oilseeds, the oil is used for human consumption and the meal for 
animal feed.  

2.2 Carbon footprint 

2.2.1 Overview of carbon footprint 
The global focus on the issue of climate change increased after the presentation of 
the fourth IPCC assessment report in 2007 and was further spurred by media 
events such as the launch of the movie The Inconvenient Truth by former US 
senator Al Gore in 2008. This new focus on climate change was accompanied by 
increased interest among researchers, industries and authorities in calculating the 
CF of e.g. products, services, companies and sectors.  

The CF is the total amount of GHG emitted from a life cycle perspective from 
the system under study, thus giving an estimate of the contribution to climate 
change from the products produced or services provided. The different GHG are 
summarised taking their different global warming potential (GWP) into account, 
arriving at a unit for the CF of kg CO2-equivalents (CO2e). For a product or 
service, the CF is therefore exactly the same as an LCA that only takes the impact 
category of climate change into account, and all methodological aspects as 
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discussed in section 2.1 apply to estimation of the CF too (apart from aspects 
related to LCIA other than the climate change impact category). 

2.2.2 Global warming potential (GWP) 
The CF is expressed as the total GWP from all GHG released. The GWP is 
defined as the integrated global mean radiative forcing out to a chosen time of an 
emission pulse of 1 kg of a compound relative to that for 1 kg of CO2 (IPCC, 
2007b). The GWP value for a specific gas depends on how efficiently and in 
which wavelength span the gas absorbs the infra-red radiation and the life span of 
the gas in the atmosphere. As a result of efficient absorption of infra-red radiation 
and long life span in the atmosphere, the greenhouse gas GWP value will be high. 
The GWP of a gas depends on the time perspective considered. The climate 
impact during 100 years is usually used, but this is an arbitrarily chosen time 
period. The GWP of different GHG is expressed as CO2e and can be added 
together in order to arrive at one measure of the climate impact, including all 
gases. Hence, the total GWP or CF is calculated as: 

 
Carbon footprint or GWPtot (kg CO2e) =  
= Amount of CO2 * 1 + Amount of CH4 * GWPCH4 + Amount of N2O * GWPN2O 

 
where GWPCH4 is the characterisation factor for CH4 and GWPN2O is the 
characterisation factor for N2O. Table 1 shows the characterisation factors for 
different time intervals. The uncertainty in these factors is estimated to be ±35% 
(90% confidence range) (IPCC, 2007b). 

Table 1. Characterisation factors for the GWP of methane and nitrous oxide for different time 
perspectives (IPCC, 2007b).  

Gas 20 years 100 years 500 years 

CH4 72 25 7.6 
N2O 289 298 153 

 
Indirect climate effects due to emissions are not included in the GWP concept. By 
including gas-aerosol interactions, Shindell et al. (2009) found that the GWP value 
for CH4 was substantially larger when this indirect effect was included. Changes to 
the climate system as a consequence of livestock production might also be caused 
by phenomena other than emissions of GHG, e.g. decreased evapotranspiration, 
aerosol formation and changes in albedo, which can have both cooling and 
warming effects (Höglund et al., 2013). Quantifying these effects is highly 
uncertain and has so far not been included in CF of livestock products.  
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Some haloalkanes, previously commonly used as e.g. refrigerants, are very 
powerful GHG, but their emissions are rare in livestock systems and they are not 
further discussed here. 

2.3 Carbon footprint of livestock products 

2.3.1 Contributing processes 
The main processes that are directly associated with livestock production and 
which contribute to emissions of GHG are the following (see also Figure 5): 
 
Pre-farm processes: 

- Production and transport of inputs to the farm; feed, fertilisers, fuels, 
pesticides, pharmaceuticals, machinery, buildings and other capital goods 
etc. 

On-farm processes: 
- Soil emissions 
- Emissions from enteric fermentation in animals 
- Emissions from manure handling 
- Emissions from energy use on fields and in animal houses 

Post-farm processes: 
- Slaughtering 
- Processing and packaging 
- Storage and refrigeration 
- Transport and distribution 
- Retail and wholesale 
- Preparation  
- Digestion and waste disposal 
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Figure 5. Processes contributing to the emissions of GHG from livestock systems (from de Boer et 
al., 2011). 

Apart from these direct emissions, indirect emissions also arise from eventual land 
use change, which is further discussed in section 4.5. CO2 can also be removed 
from the atmosphere through carbon sequestration in soils, hence contributing 
‘negative emissions’ to the CF (section 4.2). 

Direct emissions from livestock production are dominated by on-farm 
emissions, while post-farm emissions are often considerably smaller (Figure 6). 
However, transport from retail to the home can make a large contribution to GHG 
emissions if it is done by private car (Davis et al., 2006). Looking at the food 
sector as a whole, post-farm emissions are substantial in developed countries. 
Garnett (2011) estimated that post-farm emissions make up 50% of the emissions 
from the food sector in the UK. 
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Figure 6. Processes contributing to the carbon footprint of sheep meat (WA) and beef meat (VIC and 
NSW) in Australia. The processing stage (striped) contributes less than 20% to the CF. The 
processing stage does not include transport to the consumer, preparation and waste handling (from 
Peters et al., 2010). 

For beef meat, direct pre- and on-farm emissions are dominated by emissions from 
enteric fermentation, with 50% or more of the emissions coming from this process, 
while emissions from feed production and emissions from manure (including a 
small part from energy use) make up approximately equal shares of the rest 
(Figure 7). For monogastric animals emissions from feed production dominate the 
CF (Cederberg et al., 2009; Nijdam et al., 2012).     
   

 

 

 

  

Enteric fermentation

Manure and energy

Feed production

Figure 7. Direct emissions of greenhouse gases from beef production (data from Cederberg 
et al., 2009) 
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2.3.2 Results of carbon footprint of different livestock systems 
Nijdam et al. (2012) reviewed 52 LCA studies of animal and vegetal sources of 
protein and found great variation in the CF of livestock products due to diversity 
in production systems. The results for pork and poultry were more homogeneous 
than those for beef, as monogastric production systems are more streamlined. 
Figure 8 shows a summary of results from the 52 studies surveyed.   

 

 
Figure 8. Carbon footprint per kg of protein for different protein sources (from Nijdam et al., 2012). 

2.3.3 Challenges with CF of food  
Assessing the CF of livestock systems, or other agricultural products, introduces 
additional complexities compared with calculating the CF of industrial products. 
The difficulties in measuring and modelling GHG emissions from the biological 
processes involved in agriculture, and uncertainties arising from modelling 
emissions from LUC and energy use are discussed in Chapter 4. Other 
complexities include the following (based on a summary by McLaren, 2010): 

Agriculture uses and affects large areas of land. When comparing two 
agricultural systems, they may produce the same products, but use different 
amounts of land. It could be argued that alternative uses of the land ‘saved’ should 
be included in the assessment. One such use could be to grow bioenergy crops on 
the surplus land, which would lower GHG emissions from society by substituting 
for fossil fuels. Hence, the more land-efficient production system could then be 
seen as having a lower climate impact when this substitution effect is included. 

Large amounts of carbon are stored in agricultural soils. Depending on soil 
characteristics, climate and management practices, soil cultivation can lead to 
either loss of soil carbon to the atmosphere or carbon sequestration in soils, hence 
removing CO2 from the atmosphere. Conceptually, it is easy to argue for the 
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inclusion of soil CO2 emissions in the CF of agricultural products. However, these 
changes in soil carbon are very difficult to model. When it comes to carbon 
sequestered in soils, this uptake of carbon is also uncertain and highly variable. In 
addition, it can be debated whether the climate advantage of this temporary storage 
of carbon should be attributed to the products being produced on this soil. This is 
further elaborated upon in section 4.2. 

  Due to the practice of growing crops in rotation, it can be difficult to separate 
the processes belonging to different products in agricultural production. For 
example, if green manure is grown in one year, the fertiliser effect from this 
activity will be beneficial for several crops to follow. 

Weather conditions, outbreaks of pests, soil characteristics and other 
uncontrollable factors give rise to great variability in yield between years and 
places, even with similar management practices. Differences in on-farm practices 
give rise to additional variability.  
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3 Uncertainties and variations 
This chapter describes basic concepts of uncertainty and variation in relation to 
LCA and CF calculations. Chapter 5 further elaborates on these issues in specific 
relation to livestock production. 

3.1 Difference between uncertainty and variation 
Uncertainty arises due to lack of knowledge about the true value of a quantity. All 
measurements contain some uncertainty generated through systematic error and/or 
random error. Systematic error is an inherent flaw or bias in measurement where 
the mean of many separate measurements differs significantly from the actual 
value, while random error in measurements leads to the measured value being 
inconsistent when repeated measures of a constant or quantity are taken. Careful 
methodology can reduce uncertainty by correcting for systematic error and 
minimising random error. However, uncertainty can never be reduced to zero. 

Uncertainty should be distinguished from variability, which is attributable to the 
natural heterogeneity of values. Variability cannot be reduced by further 
measurement or improved measuring methods, but better sampling can improve 
knowledge about the processes causing the variability. 

In model estimations uncertainties arise from the input values, but also since 
models are an approximation of reality. In this regard, quality rather than quantity 
of measurements is more important for model development and more accurate 
answers, and could give an indication of what issues need further investigation 
(Juston, 2012). 

Acknowledging the uncertainty of data (both for models and measurements) is 
an important component of reporting the results of scientific investigations. 
Uncertainty specifies the degree to which scientists are confident with their data 
and models.  
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3.2 Sources of uncertainty in carbon footprint and life cycle 
assessment 

Uncertainty in LCA is challenging to address, but in most cases crucial to manage 
in order to understand LCA results. Uncertainty can be systematically divided in 
many different ways. One illustrative way of dividing uncertainty is into 
dependency of parameters, models and scenarios (Figure 9) (Baker & Lepech, 
2007). Parameter uncertainty arises from incomplete knowledge about the true 
value of a parameter and it is generally due to measurement error in input data. 
Model uncertainty arises e.g. when temporal and spatial characteristics are lost by 
aggregation, or when non-linear phenomena are simplified into linear models 
(Huijbregts, 1998). Uncertainty in model scenarios is due to choices made 
regarding e.g. functional units, system boundaries, allocation procedures and how 
to access future scenarios (Huijbregts, 1998).  

 
Figure 9. Uncertainty divided into three categories; parameter, model and scenario (from Baker & 
Lepech, 2007). 

Parameters can be divided into emission factors and activity data (Röös et al., 
2010). Activity data, or production data, are directly measurable parameters that 
describe the production system, e.g. the amounts of inputs spent, such as the 
amount of fuels, fertilisers and chemicals, and descriptive parameters such as the 
soil humus content and the transport distance. The emission factors describe the 
emissions caused by the production and transport of e.g. inputs or emissions from 
soil emissions per unit of activity data. 

Table 2 shows a way of summarising and structuring different types of 
uncertainty in LCA proposed by Björklund (2002).  
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Table 2. Examples of types of uncertainty and variability in life cycle assessment. Based on 
Björklund (2002). 

Type Description 

Data inaccuracy Inaccurate emission measurements 

Data gaps Lack of inventory data 

Unrepresentative data Lack of representative inventory data 

Model uncertainty Static instead of dynamic modelling. Linear instead 
of non-linear modelling 

Uncertainty due to choices of 
functional units, system  
Boundaries 

Choice of allocation methods, technology level, 
marginal/average data 

Spatial variability Regional differences in emission inventories 

Temporal variability Differences in yearly emission inventories 

Variability between  
objects/sources 

Differences in performance between equivalent processes 

Epistemological uncertainty; 
ignorance about relevant aspects of 
studied systems 

Ignorance about modelled processes 

Mistakes Any 

Estimation of uncertainty Estimation of uncertainty of inventory parameters 

3.3 Handling uncertainties in life cycle assessment 
Uncertainty in LCA can be reduced by following standards, most importantly the 
ISO LCA standard  (ISO, 2006a, b), but since this standard only provides guidance 
on a high level, more targeted standard documents can be used to ensure 
consistency in calculation methods. Uncertainty in input data can be reduced by 
e.g. improving data collection and measurements, using data from well-regarded 
databases and validating data. Uncertainty due to choices can be reduced using 
critical reviewing and model uncertainties can be reduced by using a higher 
resolution model with higher precision (Björklund, 2002; Heijungs & Huijbregts, 
2004). 

Uncertainty in LCA can only be reduced to a certain extent. The remaining 
uncertainty needs to be illustrated and presented as part of the results. The ISO 
LCA standard has a requirement for the inclusion of uncertainty assessment: “An 
analysis of results for sensitivity and uncertainty shall be conducted for studies 
intended to be used in comparative assertions intended to be disclosed to the 
public.” Uncertainty is defined in the ISO LCA standard as: 
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“Uncertainty analysis is a systematic procedure to quantify the uncertainty 
introduced in the results of a life cycle inventory analysis due to the cumulative 
effects of model imprecision, input uncertainty and data variability” 
 
and sensitivity analysis as: 
 
“Sensitivity analyses are systematic procedures for estimating the effects of the 
choices made regarding methods and data on the outcome of a study.” 
 
Uncertainty and sensitivity analyses are further described in the next two sections. 
It should be noted that uncertainty and sensitivity analyses are used not only when 
presenting and interpreting LCA results but, since LCA is an iterative process, also 
for improving the study. For example, if uncertainty is too large in the final results 
it might be possible to improve the certainty with better data, while if sensitivity 
analysis shows that some scenario choices are crucial to the results, it might be 
possible to improve the reliability of the results through a more refined analysis  
(Curran, 2013).  

3.3.1 Uncertainty analysis 
Uncertainty analysis involves quantification and propagation of uncertainty. When 
uncertainty in input data is described using probability distributions, it is possible 
to use stochastic stimulation to propagate the uncertainty in the input data though 
to the end results. Several such techniques have been employed in LCA and in 
calculating the CF, most commonly Monte Carlo (MC) simulation (Rubinstein and 
Kroese, 2007; Röös et al., 2010, 2011).   

In MC simulation, parameters are described by a probability distribution rather 
than a single deterministic value, and the calculation of the CF is repeated for a 
large number of times, for each of which a random parameter value from the 
probability distribution is used. The results of a MC simulation consist of a 
number of possible outcomes of the calculation, hence giving a representation of 
the probability of different results depending on the uncertainty and variation in 
the input data (Figure 10).   

http://en.wikipedia.org/wiki/Uncertainty_quantification
http://en.wikipedia.org/wiki/Propagation_of_uncertainty
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Figure 10. Schematically view of Monte Carlo simulation.  

Although MC simulation is technically easy to perform, finding probability 
distributions that describe input data can be time-consuming and difficult. It is also 
highly important to take correlations between parameters into account when 
performing MC simulations, since failing to do so could lead to uncertainty in the 
end results being heavily overestimated (Bojacá & Schrevens, 2010).   

Other ways of performing uncertainty analysis, using e.g. classical or Bayesian 
statistics or fuzzy logic, have been used to a limited extent in LCA. It is often 
complicated to use traditional statistical methods in LCA due to limited abundance 
of data, complex models and several correlations between parameters. Hence it has 
proven easier to use stochastic simulation techniques. Uncertainty analysis in the 
CF of livestock products is further discussed in section 5.3.   

3.3.2 Sensitivity analysis 
Sensitivity analysis aims at illustrating how choices in models and data affect the 
end results. It is useful for testing the robustness of models and results. It can give 
knowledge about the relationship between input and output variables in a model 
and thereby identify input parameters causing strong effects on the outputs. 
Sensitivity analysis can be carried out in several different ways in LCA. Some are 
exemplified here and the subject is further discussed in section 5.3. 

Sensitivity analysis can be performed by allowing one input parameter value to 
change by a certain predefined percentage while all other parameters are kept 
constant. The change in the end result shows how sensitive the results are to 
uncertainties or variability in this specific parameter. By using actual min and max 
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values, or e.g. a 95% confidence interval, for input parameters instead of an 
arbitrarily chosen percentage value, a better picture of the sensibility of the model 
is provided. This is called uncertainty importance analysis and one example of 
results from such an analysis is shown in Table 3.  

Table 3. Uncertainty importance analysis when calculating the carbon footprint of Swedish wheat 
(from Röös et al., 2011), testing how boundary values for different input parameters affect the final 
carbon footprint of wheat.   

  Boundary values Change in wheat CF 
(%) 

Humus content (%) 2.4 11 −3 +23 

Yield (kg/ha) 3,700 11,000 +37 −20 

Amount of N (kg/ha) 49 357 −38 +7 

EF production of mineral fertilisers 
(kg CO2e/kg N) 

5.2 9.0 −7 +9 

EF N2O from mineral fertilisers 
(kg N2O-N/kg applied N) 

0.003 0.03 −14 +41 

EF N2O crop residuals (kg N2O-N/kg 
applied N) 

0.003 0.03 −4 +11 

EF N2O leakage (kg N2O-N/kg 
applied N) 

0.0005 0.025 −2 +5 

 
Scenario analysis is a type of sensitivity analysis in which different modelling 
assumptions such as system boundaries, allocation methods, data choices etc. are 
tested in order to see how these choices affect the results. Scenario analysis can 
also be used to investigate future scenarios or alternative production strategies. 
Sensitivity analysis also includes testing different methods for calculating the 
emission sources (Chapter 4). 
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3.4 Presenting results from uncertainty and sensitivity analysis 
The results from uncertainty and sensitivity analysis can be presented in several 
ways depending on the purpose of the study and the type of results. One common 
way of presenting the outcome of an uncertainty analysis is to use bar diagrams 
with error bars. The error bars usually represent a 95% confidence interval, i.e. 
95% of the expected results lie within this range. However, error bars can also 
represent other intervals or minimum and maximum values, so it is important to 
state in the figure legend what the error bars represent.  

The results from uncertainty analysis can also be presented as a histogram, which 
gives additional information compared with a bar diagram with error bars as it 
shows the probability of different outcomes and not just an uncertainty range. A 
histogram shows the occurrence (commonly called frequency or density) of 
outcomes from the uncertainty analysis in different intervals. For example, the 
following outcomes {1,1,2,2,3,3,3,3,3,4,4,4,5,5,6} could be illustrated in a 
histogram according to Figure 12. 
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Figure 11. Example of results shown in a bar diagram with error bars illustrating the uncertainty in 
results. The possibility of drawing robust conclusions about the difference in CF depends on the 
correlations between systems.  
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Figure 12. Example of simple histogram showing the series {1,1,2,2,3,3,3,3,3,4,4,4,5,5,6}. 

When results from several systems are plotted together in one diagram, using 
either error bars in bar diagrams or histograms, and the uncertainty intervals 
overlap, it may appear difficult to distinguish between alternatives. However, if 
there are correlations between the systems, e.g. if they use the same uncertain 
input data for fertiliser production, it might be possible to differentiate between 
alternatives despite high uncertainty in the end results (section 5.2). Hence, when 
correlated systems are compared, it is wiser to show the outcome of the pair-wise 
difference in CF between the systems under comparison from e.g. MC simulation 
(Figure 13).  



37 
 

 
Figure 13. Difference in carbon footprint between two types of wheat mixes. The histogram shows 
the pair-wise difference from Monte Carlo simulation of the two wheat mixes in which correlations 
are considered. For example, the same value is used for fertiliser production for the two systems in 
ne iteration in the simulation, since the same fertiliser is used in both systems. The histogram shows 
that in the majority of cases (81%), the carbon footprint of one wheat mix was higher (positive 
numbers) than that of the other wheat mix (from Röös et al., 2011).  

The results from uncertainty analysis can also be presented using a cumulative 
distribution function (CDF), which describes the probability that the result will be 
found at a value equal to or less than a value on the x-axis (Figure 14).  
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Figure 14. Example showing results as a cumulative distribution function. Values on the y-
axis represent the probability of the parameter measured/calculated being less than or equal to 
the value on the x-axis. For example, if the numbers on the x-axis represent the carbon 
footprint of beef meat in kg CO2e per kg meat, there is an 80% probability that the carbon 
footprint is 22 or less.  
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The results from sensitivity analysis can also be presented in several different 
ways. One common way is to show in a table how the end result is affected by a 
change in input data or other assumptions (Table 4).  

Table 4. Example of presenting results from a sensitivity analysis in which the influence on the end 
result from changing input parameter values is evaluated. In this example parameters 1 and 2 have 
considerably larger influence on the end result than parameters 3-5. 

 Change in end result as a change in input parameter value 

Input parameter + 20% -20% 

Parameter 1 +15% -12% 
Parameter 2 +12% -10% 
Parameter 3 -2% +2% 
Parameter 4 +1% -1% 
Parameter 5 +0.5% -0.5% 

Other common ways include showing results from different scenarios in bar 
diagrams (see for example Figure 4, 23, 26 and 27) in this report, which are all 
examples of results from sensitivity analysis testing different modelling 
assumptions or production scenarios). Another way of showing results from 
sensitivity analysis is using tornado diagrams. 
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4 Critical method and data choices 

4.1 Nitrous oxide from soil 
Nitrous oxide (N2O) is naturally formed in soil when nitrogen is released from 
organic matter and is further converted to ammonium (NH4), nitrate (NO3) and 
with nitrogen gas as the end product (Figure 15). The formation of N2O occurs 
both during an aerobic process called nitrification and an anaerobic process called 
denitrification. During nitrification, ammonium is converted to nitrate with N2O as 
a by-product depending on the nitrification rate (the pressure through the pipe, 
Figure 15) and the maximum fraction of N2O that can be emitted (the size of the 
hole in the pipe, Figure 15). During dentrification, nitrate forms N2O with nitrogen 
gas (N2) as the end product in the reaction chain (NO3

- → NO2- → NO → N2O → 
N2). Small amounts of N2O will always be emitted to the atmosphere since the 
production of N2O cannot fully be avoided.  
 

 
The amount of N2O emitted is mainly regulated by available nitrogen and carbon 
supply, water content, pH and temperature in soil (Schindlbacher et al., 2004), 
which are the factors governing the size of the holes (Figure 15). The complex 

Figure 15. Schematic view of the ‘hole in the pipe’ concept (after Firestone & Davidson, 1989). 
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connections between the factors in the soil system contribute to large oscillations 
in N2O emissions. Since N2O is a very powerful GHG, with 1 kg N2O 
corresponding to 298 kg CO2 in a 100 year perspective, small amounts (often less 
than 1 kg per hectare) are highly important. Apart from direct N2O emissions, 
indirect N2O emissions originate from nitrogen that is removed from the soil via 
volatilisation, e.g. as ammonia or nitrogen oxide, or from leaching and runoff, e.g. 
nitrate (IPCC, 2006). Part of this nitrogen is later converted to N2O in other parts 
of the ecosystem. 

4.1.1 Measuring N2O emissions from field soils 
Measurements of N2O emissions from soils provide an indication of the magnitude 
of these emissions and their variations in space and time. The most common way 
of measuring N2O emissions from soil is by a manual chamber technique. 
Chambers are placed on the ground and caps close the chambers regularly so that 
samples of gas are taken (Klemedtsson et al., 1997). The concentration of N2O is 
measured and the rate of N2O emission can be estimated. By using automatic 
chambers, measurements with higher resolution are possible. Such measurements, 
with samples collected hourly, have shown that the temporal variation in N2O 
emission is large, 2-3 orders of magnitude (Zhu et al., 2012). Using the chamber 
technique, measurements are restricted to small areas (often <1 m2) and even with 
replicates of chambers, the uncertainty of these techniques is high. Errors have 
been detected when the concentration of N2O in the chamber builds up to such a 
high level that chamber capacity inhibits the normal emission rate (Rochette, 
2011). Differences in rainfall, temperature and moisture between the chamber and 
the field can further contribute to the uncertainty.  

The best, but most expensive, measuring method available at present is the 
automatic micro-metrological technique, which measures emissions of N2O from 
an entire field, without disturbing plants or soil (Wagner-Riddle et al., 2007). The 
atmospheric concentration of the gas and meteorological measurements such as 
wind speed, wet- and dry-bulb air temperature, net radiation and heat flux are 
continually measured by sensors on a mast. The frequency of measurement is 
typically 10 samples per second of vertical wind speed and N2O concentration and 
the sampling periods are long enough to encompass all the significant transporting 
eddies. This technique is reliable for determining field-scale fluxes, includes eddy 
correlation, energy balance, aerodynamic and mass balance and can capture the 
variability in both time and space. However, the wind direction can cause 
uncertainties in the results, particularly if the experimental field plot is square or 
rectangular rather than circular. If the plot is circular and the mast is placed in the 
middle, the wind will always blow towards the centre regardless of wind direction 
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and error is minimised (FAO, 2001). Figure 16 shows an example of the temporal 
and spatial variation in measured N2O emissions.  

 
Figure 16. Measured annual N2O emissions from five organic (B) and three integrated (C) fields 
during three years at Logården research station. 

These measurements were made in manual chambers on eight fields (B1-2, 4-5, 7 
and C2, 5-6) at the Logården research station in south-west Sweden (see Nylinder 
et al. (2011) for data on B2 and B4; data on other fields not published). The 
measurements were made in a crop sequence (field beans – spring wheat and green 
manure – winter rye) for organic (B) and integrated (C) systems. The bars in 
Figure 16 represent mean annual emissions from each field. In addition, the error 
bars include the spatial variation within the fields between six chambers and the 
temporal variation during one year. The large N2O emissions, with a high error 
bar, in field B4 2005 were governed by one occasion with a very large peak in 
emissions (Figure 17). The soil generally emits larger amounts and higher peaks 
of N2O during freezing-thawing periods. On an annual basis, these occasional 
emissions can be responsible for 66% of total emissions (Johnson et al., 2010). 
Thus freezing-thawing periods could be an explanation for the high peaks in 
Figure 17. N2O emissions depend on many factors, as mentioned earlier, so it is 
difficult to assess exactly the causes of variations between and within fields. To 
increase existing knowledge, accurate qualitative measurements of N2O emissions 
and the processes involved are important.  
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4.1.2 Modelling N2O emissions from field soils 
The most frequently used method to estimate N2O emissions in LCA is to use the 
IPCC emission factors, which only takes the amount of applied nitrogen into 
account (IPCC, 2006). More advanced empirical models are available, e.g. 
Crutzen et al. (2008), Stehfest & Bouwman (2006) and Novoa & Tejeda (2006), 
however, to use these models, information is needed about more parameters and 
site-specific characteristics and, depending on the type of study, these are not 
always available. For example, in a case study on crops from a specific field 
during a certain year, it would be possible to collect these data, while in a study 
investigating the CF of a livestock product from a specific region it would be very 
expensive to collect such data for all fields on which the feed is grown.    

Empirical models for predicting N2O emissions 
 

IPCC (2006): The emission factor is 1% of nitrogen applied to the field as mineral 
fertiliser, manure and crop residues with an uncertainty span of 0.3-3%. Indirect 
N2O emissions are estimated as 1% of nitrogen from volatilisation and 0.75% of 
leached nitrogen. The emission factors are based on the models developed by 
Bouwman et al. (2002), Stehfest & Bouwman (2006) and Novoa & Tejeda (2006), 
the latter two being described below.  
 
Stehfest & Bouwman (2006): This empirical model was developed based on 
statistical analyses of over 1000 measurements of N2O emissions, nitrogen 
application rate, crop type, fertiliser type, soil organic carbon content (SOC), soil 
pH and texture in agricultural fields. The relationship can be formulated as:  

 
Log(N2O-N) = -1.5 + 0.0038 fertN + korgC + kpH + ktextue + kclim + kcrop + kexperiment 

 
where fertN is the nitrogen amount in the fertiliser and k are constants, where korgC 
for different soil organic carbon content, kpH for different soil pH, ktextue for 
different texture, kclim for different climate zones, kcrop for different crop types and 
kexperiment differ depending on experiment length. This statistical model is useful to 
estimate seasonal or annual N2O emissions based on site-specific environmental 
and management parameters and the authors suggest that it can serve as a 
guideline for process-based models applied at larger spatial scales.  

 
Novoa & Tejeda (2006): Two linear models were developed from a data set of 45 
observations from literature reviews considering variable N2O emission rates, 
nitrogen (kg/ha) applied in plant residues (NPR), whether the residues were 
incorporated into the soil or not (ApM), rain (mm) and temperature (ºC): 
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Eq.1 N2O-N = -4.154 + 0.00955 NPR + 1.7278 ApM + 0.003996 Rain + 

0.6242 Tem- 0.0230 Tem2   
and 
 
Eq.2 N2O-N = 0.6535 + (-0.0404 + 0.0078 ApM + 0.000044 Rain + 

0.00567 Tem- 0.0001975 Tem2) NPR 
 

Both models explained 83% of the observed variation in N2O emissions. Novoa & 
Tejeda (2006) also suggested a general overall emissions factor of 1.055% of 
nitrogen applied in plant residues, which explained 60% of the observed variation 
in emissions. 
 
Crutzen et al. (2008): The method was developed by considering the historical 
change in the atmospheric concentration of N2O and relating this to the total 
amount of nitrogen that has been added to the agricultural system using either 
mineral fertilisers or nitrogen-fixing crops. Only 75% of the total N2O emitted has 
decayed to date and, according to Crutzen et al. (2008), 80% is derived from 
agriculture. It was found that 3-5% of the nitrogen added to agriculture has been 
emitted as N2O.  

Mechanistic models for predicting N2O emissions 
 
Li et al. (1992): DNDC (DeNitrification-DeComposition) is a mechanistic model 
of carbon and nitrogen biogeochemistry in agro-ecosystems. Apart from N2O 
emissions, the model can be used for predicting crop growth, soil temperature and 
moisture regimes, soil carbon dynamics, nitrogen leaching and trace gas emissions 
(NO, N2, NH3, CH4 and CO2).  
 
Jansson & Karlberg (2004): The CoupModel considers base processes of heat 
and water flow in a deep soil profile with plant and atmospheric exchange and 
interactions between different components. The model allows for simulation of 
different spatial and temporal scales, and is well adapted to consider winter 
conditions with snow and frost. The heat and water processes form a core 
framework to which it is possible to connect modules of interest linked with 
feedbacks to the core framework. It has been used to describe N2O emissions from 
a clay soil at Logården research station in south-west Sweden (Nylinder et al., 
2011). Temporal and spatial variations in N2O emissions from two fields in that 
crop sequence experiment are shown in Figure 17.  
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Figure 17. Simulated (grey) and measured (black) N2O emission rates from two organic crop fields 
from Oct. 2004 to Oct. 2006 for B2 and Oct. 2004 to Nov. 2007 for B4 (recreated from Figure 3 in 
Nylinder et al., 2011). 

Figure 17 shows simulated and measured N2O emission rates with six parallel 
chambers with error bars representing the standard deviation (SD) from the mean 
value. Both simulations were calibrated with a method called GLUE (Generalised 
Likelihood Uncertainty Estimation, Beven & Binley, 1992), where the model 
results are expressed as probability distributions of possible outcomes, 
using Monte Carlo simulations. The GLUE method was used by Nylinder et al. 
(2011) because many parameter sets within the CoupModel could give similar 
model responses due to the complex interactions of parameters. The GLUE 
method aims to quantify the uncertainties associated with the model predictions 
within predefined limits for the parameters. In the simulations carried out by 
Nylinder et al. (2011) the uncertainty of a number of predefined parameters was 
tested by 20000 model runs. Values were randomly picked between a maximum 
and a minimum for each parameter simultaneously. Thereafter, a number of runs 
were selected with respect to measured values of N2O emissions from the six 
chambers, nitrate leaching, mineral nitrogen in soil at three depths, nitrogen in 
grain, biologically fixed nitrogen from air, nitrogen in harvested crops, discharge 

http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Monte_Carlo_simulation
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and soil temperature at three depths. This example shows the difficulty in 
simulating the exact oscillation of the measured N2O emissions.  

A comparison of measured emissions and emissions simulated using the 
CoupModel on an annual basis is shown in Table 5. The measured annual 
emissions were markedly higher than the simulated emissions. A probable reason 
is that field measurements are performed more frequently when emission peaks are 
expected, which could cause the estimated annual mean of measurements to be 
higher than expected on a yearly basis and expand the SD. It is not possible to 
determine whether the measured or simulated values of annual emissions is closest 
to reality.  

The United States Environmental Protection Agency (US EPA) is in the front 
line of research using the process-based model DNDC instead of emissions factors 
in LCA (Salas & Li, 2013). In an ongoing LCA project on swine, the objective is 
to use a livestock farm design of the DNDC model to create region and practice 
emission factors, validate mitigation options from a LCA-LCC model and scale up 
GHG reductions. The capacity to perform this kind of investigation is a great 
opportunity and it might be applicable for other process-based models, but is still 
very time-consuming and expensive (a lot of data and modelling time are needed).  

Table 5. Measured and simulated annual N2O emissions with standard deviation (SD) in 2005 from 
two fields at Logården, Sweden. B2 measured on 30 occasions and B4 measured on 33 occasions. 
N2O-N emission 
2005 (kg ha-1) 

B2 B4 
Mean SD Mean SD 

Measured 3.06 8.83 4.86 9.93 
Simulated 1.61 0.70 1.68 1.05 

4.1.3 Discussion 
To illustrate how results can vary based on calculation method, three different 
methods (the IPCC emission factors (IPCC, 2006), Stehfest & Bouwman (2006) 
and Novoa & Tejeda (2006)) were used to calculate N2O emission from cereals, 
grass and legumes (Table 6 and Table 7). The results from the three methods 
differed, with the lowest emissions given by the Stehfest & Bouwman method, 
higher emissions from IPCC factor estimations and the highest by the Novoa & 
Tejeda method. The low N2O emissions calculated using the Stehfest & Bouwman 
method would have been considerably higher if it had been assumed that 
measurements of N2O emissions covered >300 occasions per year (where kexperiment 
>300 is 1.9910 instead of zero for kexperiment <=300 in the equation by Stehfest & 
Bouwman described above). The N2O emissions would then have been 7.5, 6.2 
and 10.2 kg N2O-N/ha for cereals, grass and legumes, respectively. This strong 
influence of one specific parameter has also been identified as a weak point by 
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Kasimir-Klemedtsson & Smith (2011), who estimated N2O emissions from 
bioenergy crops. 

Table 6. Data used for estimations of N2O emissions in Table 7 

 Cereals        Ley             Soy 

Yield (kg/ha) 4100 7000 2544 
Fertilisers (kg N/ha)    

- Mineral nitrogen 80 55 9 
- Organic nitrogen 24 93 0 

Crop residues above ground (kg N/ha) 28 26 28 
Crop residues below ground (kg N/ha) 17 45 48 
Total nitrogen 150 219 85 

Table 7. Direct N2O emissions calculated using three different approaches (IPCC (2006), Stehfest & 
Bouwman (2006) and Novoa & Tejeda (2006)) from cereals, grass and legumes with data from 
Flysjö et al. (2008), Berglund et al. (2009) and IPCC (2006). 

Method Emissions of N2O-N (kg/ha) 
 Cereals Grass Legumes 

IPCC, 2006 1.50 2.19 0.85 
IPCC, 2006 (confidence 
interval 95%) 

0.45 - 4.49 0.66 - 6.58 0.26- 2.59 

Stehfest & Bouwman, 2006 0.08 0.06 0.10 
Stehfest & Bouwman, 2006 
(95% confidence interval, -51-
107%) 

0.04 - 0.16 0.03 - 0.13 0.05 - 0.22 

Novoa & Tejeda, 2006. Eq.1 1.63 1.87 1.92 
Novoa & Tejeda, 2006. Eq.2 1.29 1.64 1.71 

 
A benefit with using the IPCC default emissions factors in LCA is that it is simple. 
The disadvantage is that it is coarse and gives a far from accurate description of 
the cause-effect chain of N2O emissions from soils, which are highly dependent on 
several other parameters in addition to yearly application of nitrogen. Hence, it is 
not possible to suggest mitigation options for reduced emissions using this 
method. Kasimir-Klemedtsson & Smith (2011) also point out that the IPCC factors 
are not always an accurate method for estimating N2O emissions, since it can 
underestimate the actual emissions, e.g. when the soil contains large amounts of 
organic matter, which contribute to the emissions by releasing nitrogen 
accumulated into the ecosystem long ago. Using the uncertainty range provided by 
IPCC (0.3-3%), a rough estimation of the uncertainty in emissions is obtained. The 
uncertainty interval can potentially include the large variation in N2O emissions. 
With the IPCC approach it is very important to state uncertainty ranges with the 
results. 
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The many dependent parameters and feedbacks in the formation of N2O 
emissions leave large uncertainties and difficulties in choosing methods for LCA. 
Use of the IPCC factors is convenient and not as time-consuming as the use of 
mechanistic models. Furthermore, it does not demand from the user in-depth 
information about all contributing factors in the formation of N2O emissions. 
Process-based models can be a significant help for creating specific emission 
factors and will probably become important as tools in LCA for estimating N2O 
emissions from local ecosystems or for supporting up-scaling in modelling. 

4.2 Carbon dioxide from and to soil 
Large amounts of carbon are stored in agricultural soils. The carbon content in 
soils varies considerably; from sandy soils with very low carbon content (<1%) to 
very humus-rich soils that may contain up to 50% carbon. Agricultural soils can be 
either carbon sources or carbon sinks. When the soil acts as a carbon sink, this is 
positive from a climate perspective, as CO2 is removed from the atmosphere and 
carbon stored in more stable forms in the soil. Much has been written regarding 
the possibility of slowing climate change though carbon uptake in soils (e.g. 
Freibauer et al., 2004; Smith et al., 2007).  

Management practices, input of biomass, climate conditions and soil 
characteristics determine whether a soil loses or sequesters carbon. Tillage speeds 
up the oxidation of carbon compounds into CO2, while the addition of carbon to 
soils in the form of roots, crop residues, animal manure and other organic material 
is a prerequisite for carbon storage. For example, permanent pastures that are not 
ploughed and have large growth of biomass below and above ground can store 
more carbon than soils that are tilled and have low input of biomass. Soils very 
rich in carbon, so-called organic soils as opposed to mineral soils, lose large 
amounts of carbon annually as it is rapidly oxidised into CO2 in these soils. 

Since the stock of carbon in agricultural soils is large, small changes in soil 
carbon are of great importance for the overall GHG balance. It was only recently 
that changes in soil carbon began to be included in LCA and CF calculations of 
livestock products (Halberg et al., 2010; Pelletier et al., 2010; Veysset et al., 
2011). Quantifying CO2 emissions from soils and sequestration in soils is difficult 
and highly uncertain. There is also a lack of consensus regarding whether removal 
of CO2 from the atmosphere through carbon sequestration should be included in 
the CF or not. This is further discussed in section 4.2.3. 

This chapter discusses emission/sequestration of CO2 from/in existing 
agricultural soils. GHG emissions due to land use change, most importantly the 
transformation of forests to agricultural land, are discussed in section 4.5. Carbon 
can also be temporarily stored in trees and other standing biomass in e.g. pastures. 
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However, the CO2 captured by living biomass will eventually be released back to 
the atmosphere as the biomass either decays or is burnt, although this could take a 
considerable time, potentially hundreds of years, if e.g. a tree is used to build 
houses, bridges and other infrastructure. Hence, such temporary storage, or the 
positive substitution effect of biomass replacing fossil fuels as an energy source, 
should not necessarily be included in the CF of the livestock products produced on 
the farm. This is further discussed in section 5.4.2. 

4.2.1 Measuring carbon dioxide from and to soils.  
It is possible to measure changes in carbon stored in soils by soil sampling. 
Accurate determination of changes in carbon stocks requires long time series 
(decades). It is also possible to use flux measurements in which fluxes of CO2 to 
and from fields are measured and carbon sequestration is calculated as the 
difference (Soussana et al., 2007). To allow certain estimates to be made of the 
long-term trend, long time series are needed for flux measurements too, as fluxes 
can vary considerably between years.    

4.2.2 Modelling carbon dioxide from and to soils 
Methods for including emissions and sequestration of CO2 to and from soils in 
LCA and CF are still highly immature and there is no consensus on how this issue 
should be handled. A common approach so far in studies on livestock production 
has been to use rough estimates of the annual carbon sequestration potential of 
grassland based on literature data, instead of actually modelling the carbon stock 
changes in the system under study. Some examples are given below (Leip et al., 
2010; Veysset et al. 2011).  

A few studies have modelled the changes in soil carbon stock using models 
calibrated against long-term trials that can be used to predict changes in soil 
carbon depending on management practices and soil characteristics. One such 
model is described below (Sundberg et al., 2012). 

Methods based on using literature data as rough estimates  
 

Veysset et al. (2011): who studied organic and conventional suckler cattle farming 
systems, used an estimate from Arrouays et al. (2002) that pastures older than 20 
years store 200 kg carbon per ha and year and pastures younger than 20 years store 
500 kg carbon per ha and year. Veysset et al. (2011) used an average of 350 kg 
carbon per ha and year to account for carbon sequestration in all permanent 
pastures and found that 13-21% of gross GHG emissions were offset by carbon 
sequestration. This result is of course heavily affected by the choice of carbon 
sequestration potential. 
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Leip et al. (2010) also used carbon sequestration potential data from the literature 
(Soussana et al., 2007; 2009) to include CO2 removal from the atmosphere in the 
calculation of CF for different livestock systems. However, Leip et al. (2010) 
included changes in both arable land and managed pasture in relation to natural 
grassland, which was assumed as the ‘natural’ land cover. Arable land was 
assigned the ‘lost carbon storage potential of natural grasslands’, while from a 
climate perspective managed grassland benefited from increased carbon 
sequestration compared with natural grassland. Hence, all use of arable land was 
burdened by emissions of 2.16 tons CO2 per ha and year, while managed 
grass/legume pasture was assumed to sequester 0.87/0.46 tons CO2 per hectare and 
year.     

Methods based on modelling soil carbon changes 
 
Sundberg et al. (2012): who studied organic milk production, used the ICBM 
model (Kätterer & Andrén, 1999) to assess emissions and sequestration of carbon 
in soils and included these sources/sinks in the CF of milk. ICBM is the most 
widely used model to calculate changes in carbon storage in agricultural land for 
Swedish conditions. The model calculates how much carbon is emitted or 
sequestered depending on the initial carbon content in the soil, carbon input, 
climate conditions and management practices.  

There are several other soil models which could be used in LCA, if not directly, 
as a tool for creating specific emission factors for regions and/or agricultural 
practices, e.g. the Roth C model (Coleman & Jenkinson, 1996), the CENTURY 
model (Parton et al., 1987) and the DNDC model (Li et al., 1992). 

4.2.3 Discussion  
To use models for assessing the carbon balance of soils, e.g. the ICBM model, 
detailed data on soil characteristics at field level is necessary. In many LCA/CF 
studies on livestock products it is not possible to track all the fields used for feed 
production, as feed is also commonly imported from other farms and other 
countries and bought from feed companies. Even when feed is produced on the 
farm, data on soil parameters are not always available to feed into models. In 
addition, since crops used for feed are commonly produced in a crop rotation, it is 
not obvious how changes in the soil carbon content, which depends on the design 
of the complete crop rotation, should be allocated between crops. Despite 
uncertainties and difficulties in assessing emissions/sequestration, it is important 
to try to assess the magnitude of emissions/sequestration of CO2 from/in soils, 
since its contribution to the CF can be substantial. 
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Due to the difficulty in modelling soil carbon balance, several studies on 
livestock production that include uptake of CO2 as carbon sequestration in 
grassland use values of carbon sequestration potential from other studies that 
specifically studied this. For example, results from the study by Soussana et al. 
(2007), which measured carbon fluxes during two years at nine different grassland 
sites in Europe, have been used in this way (Leip et al., 2010). Their study showed 
great potential for carbon sequestration in European grassland, of up to several 
tons of carbon sequestered per hectare and year. However, the variation was very 
large both between sites and between years for the same site. In addition, drawing 
firm conclusions from soil measurements performed during only a few years 
requires some caution, since variations between years are large. For example, 
measurements and model estimates of carbon sequestration rates in Swedish 
permanent semi-natural grassland showed much lower potential, only 30-60 kg 
carbon per hectare and year (SBA, 2010). More research is needed in this area to 
investigate the potential of different types of grasslands to sequester carbon and 
methodology regarding the inclusion of carbon sequestration in CF calculations 
needs to be established.   

Including carbon sequestration in the CF of livestock products can heavily 
influence the results. For large carbon sequestration rates, the uptake of CO2 in 
soils can cancel out the emissions from enteric fermentation, manure and feed 
production, as illustrated in Figure 18.  
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Figure 18. Carbon footprint (CF) of beef meat for different levels of assumed carbon sequestration in 
soils. Carbon footprint without any sequestration is assumed to be 36 kg CO2e per kg bone-free meat, 
corresponding to extensive beef production in Sweden with grazing during summer and mainly 
roughage feed during winter and a slaughter age of 22 months (based on data from Cederberg et al., 
2009b). 

Apart from estimates of carbon sequestration potential being highly variable and 
uncertain, there are also other methodological challenges in including 
sequestration in the CF of livestock products. One very important aspect is that the 
process of storing carbon is reversible, i.e. carbon stored in soils is slowly released 
to the atmosphere as CO2 again if management practices change, e.g. if grassland 
is later ploughed under to be used for growing crops. While this risk is small for 
some types of semi-natural grassland unsuitable for annual cropping, the carbon 
sequestration potential is also sensitive to heat and drought, which affect biomass 
growth and ecosystem respiration (Soussana et al., 2007). In addition, although the 
study by Soussana et al. (2007) indicated that carbon sequestration can take place 
even in old grassland, conventional soil science builds on an assumption of soil 
saturation. That means that in the absence of changes in management and 
environmental factors, soils will reach equilibrium in terms of carbon. Thus, 
although carbon sequestration can continue for many years, the potential to store 
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carbon in the soil will diminish with time (Powlson et al., 2011; Smith, 2012). 
This is illustrated in Figure 19.  

 
Figure 19. Decline in carbon sink strength over time. Change in soil and vegetation carbon 
sequestration, with large atmospheric carbon removals (sink strength) soon after management change 
(large vertical arrow on left-hand side of the diagram), but smaller removals over the subsequent 
equivalent time periods, as the soil approaches a new equilibrium (smaller arrows as soil gains in 
carbon) (from Smith, 2012). 

Due to these factors, it is not a foregone conclusion that carbon sequestration 
should be included when calculating the CF of livestock products, as one could 
argue that from a precautionary point of view it should not. If it is, care should be 
taken when forming decisions based on CF that include large potential carbon 
sequestration since: 1) the effect is reversible; and 2) the effect might not last 
forever. In addition, it is wise when presenting results to clearly distinguish 
‘negative’ emissions from carbon sequestration in soils from other emission 
sources, so that potentially exaggerated hopes for carbon sequestration do not 
eclipse other sources of emissions (Powlson et al., 2011). In addition, some 
management practices that increase carbon sequestration might lead to an increase 
in other GHG, e.g. increased fertilisation might lead to an increase in N2O 
emissions. This risk of pollution swapping is captured by the life cycle 
methodology used when calculating CF.      
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4.3 Methane from enteric fermentation  
Emissions of methane (CH4) from enteric fermentation in ruminants are a major 
source of GHG emissions from livestock production. Monogastric animals such as 
pigs also emit CH4, but in much lower amounts (IPCC, 2006) and are not further 
discussed here.  

Through a highly specialised digestive system, ruminants have the ability to 
digest cellulose and thereby utilise roughage feed such as grass for growth and 
milk production. In the process in which microorganisms in the rumen digest 
fibre-rich feed material, CH4 is formed as a by-product. The CH4 is released to the 
atmosphere mainly with the exhaled breath. The formation of CH4 means a 
considerable loss of dietary energy. As an average, 6.5% of the gross energy 
intake is lost as CH4, but the variation is large (Johnson & Johnson, 1995; IPCC, 
2006).      

It is well recognised that diet composition and the total amount of feed 
consumed affects CH4 emissions from ruminants (Beauchemin et al., 2008; Eckard 
et al., 2010; Shibata & Terada, 2010). Feed with high digestibility and low fibre 
content is known to reduce CH4 emissions from enteric fermentation, e.g. 
introducing grains, legumes and/or high-quality forage to roughage-based diets 
can lead to reduced CH4 emissions. Fat is another feed component known to 
decrease CH4 formation.  

4.3.1 Measuring methane emissions from enteric fermentation 
CH4 emissions from enteric fermentation can be measured directly from the 
animals. This can be done either by measuring the CH4 concentration in the 
exhaled and excreted air directly using a chamber that can fit the whole animal or 
a face mask, or by using tracer techniques in which a tube of tracer gas is added to 
the rumen. It is also possible to measure CH4 production from enteric fermentation 
by analysing concentrations in stable air or by in vitro techniques using artificial 
rumens (Johnson & Johnson, 1995). A newly developed technique in which CH4 
emissions are measured while the animal is eating concentrates opens the way for 
less expensive measurements (Garnsworthy et al., 2012).   

4.3.2 Modelling CH4 emissions from enteric fermentation 
When calculating the CF from livestock production, emissions of CH4 from enteric 
fermentation need to be modelled to better understand the relationships behind 
CH4 formation in the rumen, since measurements are expensive and can only be 
used in specialist research projects. Several different models for estimating the 
CH4 emissions from cattle have been developed. Empirical models based on 
observed CH4 production use feed characteristics such as total dry matter intake 
(DMI), different types of energy measurements, fibre and fat content etc. and/or 
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animal production data such as body weight, weight gain or milk production to 
predict emissions (Ellis et al., 2007, 2009, 2010). There are also mechanistic 
methane models in which the functioning of the rumen is modelled 
mathematically. Typically, these models build on hydrogen gas balance models 
from which CH4 production can be predicted (Ellis et al., 2008). So far empirical 
models have been most commonly used in LCA and CF calculations, since the 
input data needed for these models are more commonly available and mechanistic 
models are often too complex to be used on farm level (Gibbons et al., 2006). 

A few empirical models are briefly summarised below. These methods use 
measures of the energy content in feed in different ways, as well as other feed 
characteristics, to calculate yearly emission factors per animal (kg CH4 per animal 
and year).     

 
IPCC (2006) Tier 2: This method is commonly used both in national inventories 
and in LCA of livestock products. Emissions are calculated as a percentage of the 
gross energy intake. An average value of 6.5% is used to estimate the proportion 
of the gross energy in the feed that is converted to methane (Ym). The gross energy 
intake is calculated by adding net energy requirements for maintenance, animal 
activity, lactation, pregnancy and growth, and taking into account the digestibility 
of the feed ingredients. Parameters needed to calculate net energy requirements are 
amount of milk produced, fat content in milk, body weight and weight gain. 
 
Kirchgessner et al. (1991, 1995): In this method emissions from dairy cows are 
calculated based on milk yield and body weight. The model is based on data from 
67 milking cows. For other cattle, an equation using the amounts of crude fibre, 
protein, fat and NFE (Nitrogen Free Extract, an estimate of crude starch and sugar 
content) in the feed is used.  
 
Lindgren (1980): This is the model used in Swedish reporting for the national 
inventories and it has also been used in many LCA studies of Swedish livestock 
production systems. CH4 emissions are calculated based on the amount of feed and 
digestible energy in the feed. 
 
Mills et al. (2003): This model is based on data from lactating cows in the UK. 
Four linear models and one non-linear model have been developed. Two of the 
linear models are very simple to use; the first one includes the DMI as the only 
variable and the second one MEI (metabolisable energy intake), while the third 
includes several nutrients in the equation and the fourth the proportion of forage in 
the feed.   
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Moe & Tyrrell (1979): These authors developed a model based on an experiment 
with Holstein dairy cattle in North America. Emissions of CH4 were found to be 
most influenced by the soluble residue, hemicellulose, and cellulose and a 
regression equation was set up to describe this relationship.  

4.3.3 Discussion 
Since emissions from enteric fermentation dominate the CF of dairy and ruminant 
meat, large uncertainty in estimates of these CH4 emissions results in large 
uncertainty in the CF of the products. The choice of model used for calculating the 
emissions from enteric fermentation introduces uncertainty, as models give very 
different results. Table 8 shows emissions from dairy cows with different milk 
yields, calculated using three different models.  

Table 8. Estimated production of CH4 from enteric fermentation in dairy cows at different milk yields 
and using different models to calculate the emissions (from Berglund et al., 2009) 

 Methane production (kg CH4 per cow and year) 

Milk yield (kg ECM) IPCC Tier 2, 2006 Kirchgessner et al., 
1991, 1995 

Lindgren, 1980. 

6000 109 100 123 
9000 138 114 135 
10000 148 118 136 
11000 158 123 137 
12000 172 127 136 

The IPCC model has a linear relationship between milk yield and CH4 production. 
However, there is reason to suspect that the emissions are not linearly correlated to 
milk yield, since at a high feed intake the feed passes through the rumen faster and 
the methane-producing bacteria do not have time to process the feed to the same 
extent (Berglund et al., 2009). This phenomenon is better described by the model 
by Lindgren (1980). The model suggested by Kirchgessner et al. (1991, 1995) 
gives considerably lower emissions than the IPCC model and the model by 
Lindgren (1980).  

Several studies have evaluated models for estimating enteric fermentation from 
ruminants by comparing observed (measured) values with values calculated 
(predicted) by the model (Wilkerson & Casper, 1995; Mills et al., 2003; Kebreab 
et al., 2006; Ellis et al., 2007; Ellis et al., 2010). Figure 20 shows the results from 
such a comparison, where observed values are plotted on the x-axis and predicted 
values on the y-axis. For a good fit the symbols should be aligned along the 
diagonal line. The IPCC Tier 1 model, which uses a default value per animal type, 
performed very badly of course, but the IPCC Tier 2 model was only slightly 
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better. The Moe & Tyrrell (1979) and Kirchgesser et al. (1995) models were the 
best predictors for this dataset, but even for these the RMSPE (square root of mean 
square prediction error) was approximately 24%. For another dataset evaluated in 
the same study, the IPCC Tier 2 model (using the old Ym value of 6% instead of 
6.5%) performed as well as the Moe & Tyrrell model, with an RMSPE of 
approximately 20%. RMSPE values of between 20-40% were the common 
outcome of all studies evaluating models for estimating emissions from enteric 
fermentation included here (Wilkerson & Casper, 1995; Mills et al., 2003; 
Kebreab et al., 2006; Ellis et al., 2007, 2010). 

 
Figure 20. Predicted versus observed CH4 production (g/day) using different models to predict 
emissions (from Ellis et al., 2010). 

How different models perform in evaluations depends to a large extent on the 
dataset used in the evaluation and how well data in the dataset match the data used 
to develop the model. For example, if the model was developed based on data 
from lactating cows it might perform well for such animals, but not for heifers or 
dry cows (Kebreab et al., 2006). Mills et al. (2003), who also compared different 
models for calculating CH4 emissions from enteric fermentation, concluded that 
statistical models usually fail to give reliable predictions outside the range of 
intake used in their development. Mills et al. (2003) also found that the model 
developed by Moe & Tyrrell (1979) and their own non-linear model performed 
best. However, the Moe & Tyrrell (1979) model requires the content of cellulose 
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and hemicellulose in the feed to be known, which is seldom the case, which makes 
it difficult to use this model in practice.   

Therefore the IPCC Tier 2 method is commonly used in LCA and CF 
calculations due to its simplicity. IPCC estimates that the uncertainty range of Ym, 
the proportion of the gross energy (GE) in the feed that is converted to CH4, is 
6.5% ± 1%. However, it is well established that as intake increases, the percentage 
of GE lost as CH4 decreases and that Ym should vary with GE intake (Kebreab et 
al., 2006). This limitation is acknowledged by IPCC, which also lists additional 
factors influencing CH4 emissions that are not included in the model, e.g. heat and 
cold stress, effect of feed intake and variations in microbial populations within the 
digestive system. How accurately GE intake can be estimated also affects the 
uncertainty in the end result (IPCC, 2006). 

Most model development to date has been based on measurements of emissions 
from dairy cattle, so estimating CH4 emissions from other types of cattle, e.g. 
heifers, bulls and suckler cows, and other ruminants is more uncertain than 
estimating emissions from dairy cows. The variation in emissions from this group 
is also large, since feeding strategies can differ considerably (Ellis et al., 2007). 

Ellis et al. (2007, 2009, 2010) found in their studies that variations in observed 
emissions were higher than variations in predicted values, which shows that 
current models cannot fully explain the variation in emissions due to several 
different factors, most importantly as a result of different feeding strategies. Ellis 
et al. (2010) highlight the risk of designing sub-optimal mitigation options if the 
model used to predict the CH4 emissions does not reflect the underlying cause-
effect chain. For example, the IPCC Tier 2 model only takes into consideration the 
total GE intake and not the feed composition. It is known that the proportion of 
CH4 that is lost (Ym) can vary between 2-12% (Johnson & Johnson, 1995), but this 
variation as a result of diet composition would not be captured by the IPCC model. 
Hence, if the purpose of the study is to evaluate mitigation options or compare 
systems with very different feeding strategies, it is important to use a model that 
describes the effect of the different strategies studied on emissions, e.g. a diet high 
in concentrates or a diet high in fat (Ellis et al., 2009). As most empirical models 
show low prediction accuracy and none covers all aspects, Ellis et al. (2010) 
suggest that when designing mitigation options it might be wiser to use 
mechanistic models which have the capacity to describe several of the 
fermentative and digestive processes not included in simple regression analysis. It 
is also very important to consider mitigation options from a life cycle perspective. 
For example, healthy animals that produce and grow well are important for 
reduced emissions per kg of product. When it comes to different feeding strategies 
for reduced emissions, emissions from production of the feed need to be included. 
This is because some feedstuffs can contribute to lower CH4 emissions from 
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enteric fermentation, but cause higher emissions from production, especially if 
these feed products are associated with LUC effects (section 4.5). Ley cultivation 
could also lead to carbon uptake and sequestration (section 4.1), which could 
potentially balance out increased CH4 emissions from enteric fermentation.   

4.4 Emissions from manure 
This section discusses emissions of GHG from managing, storing and spreading 
manure from the point that the manure leaves the animal until it is applied to the 
field. Emissions of N2O from microbial processes in the soil due to manure 
application are discussed in section 4.1. 

N2O is produced in manure in storage or on pasture by the same processes as 
N2O formation in soil. The type of manure system and the amount of nitrogen and 
carbon in the manure, as well as temperature and water content, mainly determine 
the amount of N2O produced (IPCC, 2006). Solid manure systems promote N2O 
formation, since they provide an opportunity for both nitrification and 
denitrification (see section 4.1). Emissions of N2O can be especially large in deep 
litter systems due to the good oxygen supply. Ammonia emissions can be 
substantial in manure management, giving rise to indirect emissions of N2O. 
Emissions of ammonia can be reduced by covering stored manure and lowering 
the temperature or pH of the manure. The technique used to apply the manure in 
the field also affects the ammonia emissions.  

In anoxic environments such as slurry systems, there is a significant risk of CH4 
release. Some important factors that affect the amount of CH4 produced during the 
storage period are temperature and the carbon content and pH of the manure 
(IPCC, 2006). At low temperature the microbial activity is reduced, giving rise to 
less CH4 formation. How the manure is stored also affects emissions, e.g. covering 
slurry during storage can reduce CH4 emissions (although covering it with a 
floating crust can give rise to N2O emissions). By feeding the manure to a biogas 
reactor, the CH4 from the manure can be captured and used as bioenergy. 
Concentrated manure on pasture or feedlots and manure stored as solid manure 
that is not well aired also give rise to CH4 emissions.  

4.4.1 Methods for estimating emissions from manure 
Most LCA studies use IPCC Tier 2 methodology for calculating the GHG 
emissions from manure management (IPCC, 2006). The Tier 2 method takes into 
account the type of manure storage and the amount of nitrogen (causing N2O 
emissions) or volatile solids (causing CH4 emissions) in the manure, while the Tier 
1 method provides default emissions factors for CH4 and N2O only based on 
animal species and climatic region. Other more complex and targeted methods for 
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estimating emissions from manure storage are also available, e.g. Sommer et al. 
(2004) presented a model for estimating CH4 emissions from manure storage in 
slurry systems. However, these models require sophisticated input data that are not 
readily available on farms, and hence they are used for increasing the 
understanding of the underlying chemistry and biology in GHG formation from 
manure handling rather than in LCA studies. Only the IPCC methodology is 
discussed in detail here. 

CH4 from manure management 
 
IPCC (2006): When calculating the CH4 emissions using the IPCC Tier 2 
methodology, the manure characteristics are described by the daily amount of 
volatile solids (VS) excreted and the theoretical ability of the manure to form CH4 
(Bo). The VS can be measured or calculated based on feed intake and digestibility 
(same parameters as needed when calculating CH4 emissions from enteric 
fermentation, see section 4.3). To differentiate between different manure 
management systems a factor called methane conversion factor, MCF, is used. 
MCF describes the fraction of the theoretical CH4 formation ability of the manure 
(Bo) that is realised for a specific manure management system.  

The emission factor for CH4 from manure management up until application in 
the field is hence calculated as follows (0.67 is a conversion factor for converting 
1 m3 of CH4 to 1 kg of CH4): 

 
EFCH4 = VS * Bo* 0.67 * MCF           [kg CH4 per animal and year]  

The IPCC guidelines provide default values for Bo and MCF that can be used, but 
it is recommended that country-specific values based on measurements be used. 
IPCC provides default values for average annual temperatures starting at 10 ºC and 
going up to 28 ºC with 1 ºC increments, giving 19 different MCF values ranging 
from 10% to 50% for covered slurry systems. The MCF for uncovered slurry 
storage is higher (17-80%), while it is considerably lower for solids storage, feed 
lots and pasture (1-5%). For Bo, values for different animal species and continents 
are given in the IPCC guidelines. The uncertainty range for the default values is 
estimated to be ±15%. 

The IPCC estimates that the uncertainty in the Tier 2 emission factors for 
calculating the CH4 emissions from manure management is in the range ±20%.  
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N2O from manure management 
 
IPCC (2006): In the IPCC guidelines, direct N2O emissions from manure 
handling are calculated by multiplying the amount of nitrogen in the manure on an 
annual basis by an emissions factor (in kg N2O-N per kg nitrogen in the manure) 
that varies for different manure management systems. The IPCC guidelines 
provide default excretion rates for different animal species in different regions 
(Tier 1), but in most LCA studies the excretion rate is calculated using the feed 
intake and the retention rate. The nitrogen content in manure can be accurately 
determined by analysing the manure for different nutrients.  The uncertainty in the 
IPCC emissions factors for N2O emissions is estimated to be a factor of 2 (IPCC, 
2006). 

For indirect N2O emissions, the amount of nitrogen volatised as ammonia is 
multiplied by the same emissions factor used for calculating indirect N2O 
emissions from soils (0.01 kg N2O-N per kg NH3-N volatised). The uncertainty 
range is 0.002-0.05. Emissions of ammonia from manure, especially urine, on 
pasture can be substantial, especially in warm climates. Leakage of nitrogen into 
soils from manure storage directly on the ground also causes indirect N2O 
emissions. However, very few measurements of such leakage have been 
conducted, so calculations of these emissions using the default values in the IPCC 
guidelines are highly uncertain. The emission factor is the same as for N2O 
leakage from soils, 0.0075 kg N2O-N per kg nitrogen leaked, with an uncertainty 
interval of 0.005-0.025 (IPCC, 2006).  

4.4.2 Discussion 
Manure is a highly heterogeneous substance and the content of nitrogen and VS 
(parameters needed for calculating emissions from manure handling using the 
IPCC methodology) varies with animal species, feed composition, bedding 
material used and manure handling system. On farm level the amount of nitrogen 
and VS in the manure can be established with reasonable precision through 
analysis of the actual manure. However, the IPCC emission factors are associated 
with large uncertainties, resulting in large uncertainties in the emissions of GHG 
from manure handling even in cases when input parameters can be established 
with good precision.  

The IPCC MCF values, determining the fraction of CH4 released from different 
manure handling systems, are in most cases not based on solid measurements due 
to lack of data, but on the judgment of the IPCC expert group. IPCC estimates that 
the uncertainty in the CH4 emissions factor calculated using the Tier 2 approach is 
±20%. Rodhe et al. (2012) compiled results from studies measuring CH4 emissions 
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from different types of manure handling systems, animal species and regions and 
found large variations both within and between studies (Figure 21).  

 
Figure 21. Results from studies measuring CH4 emissions from different types of manure handling 
systems, animal species and regions (from Rodhe et al., 2012). 

Data from warmer regions showed considerably higher emissions than in colder 
regions, as is expected due to higher microbial activity, and hence greater CH4 

production at higher temperatures, as reflected in the default MCF suggested by 
IPCC (2006). In the IPCC guidelines, all regions with a mean annual temperature 
below 10 ºC are given the same default MCF factor of 10%.  However, MCF 
measurements at a site in Sweden with mean annual temperature of 5 ºC showed a 
mean MCF value of 2.7% (Rodhe et al., 2009). Hence, using the default MCF 
value of 10% in cold climates could overestimate the CH4 emissions from manure 
storage.   

The emission factor for direct N2O emissions from manure management is 
associated with an uncertainty of -50% and +100% according to the IPCC 
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guidelines. Hence, even if the nitrogen content in the manure is established 
through measurements, the uncertainty in the calculated N2O emissions is large. 
This is due to the complex and highly variable processes driving N2O formation 
(see section 4.1), as well as the varying characteristics of manure, particularly 
solid manure, which can contain very different amounts and types of bedding 
material and be stored under more or less aired conditions. During solid manure 
storage composting can occur, increasing the temperature and the risk of N2O 
emissions. Webb et al. (2010) compiled literature data on N2O measurements from 
solid manure storage for different animal species and found high variability, with 
CV 40-110%. Furthermore, the amount of nitrogen volatised as ammonia in 
animal houses, pastures and manure storage can be substantial, giving rise to 
indirect N2O emissions. The variation in ammonia losses is large, owing to 
differences in manure management and climate conditions, and can be difficult to 
establish. In addition, the uncertainty range for indirect N2O emissions due to 
volatilisation is 0.2-5%, making estimations of indirect N2O emissions from 
manure management highly uncertain. 

It is only in case studies analysing GHG emissions from a certain farm that the 
nitrogen and VS content in the manure can be established through measurement. 
For studies covering a certain agricultural sector in a country or region or for 
hypothetical scenario studies, the content of nitrogen and VS needs to be 
established using modelling, introducing further uncertainty.  

Estimating emissions of N2O from manure dropped on pasture is associated 
with particularly high uncertainty. Apart from the emission factor being highly 
uncertain (0.3-3% of deposited nitrogen, see section 4.1), establishing the amount 
of nitrogen in the manure is uncertain for several reasons. It is difficult to know 
how much grass is consumed by the animals and the nitrogen content in the grass 
also varies throughout the year. In addition, the amount of nitrogen that is 
volatilised as ammonia, causing indirect emissions, is highly uncertain (Cederberg 
et al., 2009).  

Figure 22 presents a simplified example illustrating how emissions from 
different manure handling systems can vary. In the example, the same amount of 
manure from a fattening bull during one year is handled as either slurry without 
cover (bull kept indoors on a slatted floor) or as deep litter (bull kept indoors with 
bedding material).  
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4.5 Land use change 
According to the IPCC: “land use change occurs whenever land is transformed 
from one use to another, for example, from forest to agricultural land or to 
urban areas” (Verbruggen et al., 2011). Deforestation and other land use changes 
(LUC) are responsible for approximately 10% of global total CO2 emissions. 
Numbers of total emissions from LUC are highly uncertain, 0.9±0.5 PgC in 2011 
(Global Carbon Project, 2013). Emissions from LUC arise from burning of 
biomass above ground and soil carbon losses when forests and scrubland are 
turned into agricultural land. Conversion of grassland into arable land results in 
considerable amounts of carbon bound in soils being lost to the atmosphere as 
CO2. Changes in soil carbon can also lead to increased N2O emissions and burning 
of biomass leads to smaller amounts of CH4 and N2O being released. The most 
serious deforestation is currently taking place in Southeast Asia driven by oil palm 
plantations, in South America driven by the demand for soy and beef meat and in 
Africa driven by subsistence agriculture (UCS, 2011).  

Demand for agricultural land has been identified as the major driver of 
deforestation (UCS, 2011; Houghton, 2012). Discussions about attributing 
emissions from LUC to agricultural products started with the increased demand for 
biofuels, which initiated an intense debate and numerous research projects on the 
risk of bioenergy feedstock driving deforestation. Although the results obtained 
are highly variable, several studies have since indicated that the contribution from 
LUC emissions to total emissions from biofuels can be considerable and in some 
cases outweigh carbon savings from using biofuels (e.g. Fargione et al., 2008; 
Searchinger, 2008). Emissions from LUC are relevant not only for bioenergy 
crops, but also for all agricultural products, especially those requiring large land 

Figure 22. Emissions of greenhouse gases from manure storage from one animal during one year in 
two different types of storage system; slurry without cover (assuming only CH4 and no N2O 
emissions) and deep litter (assuming only N2O and no CH4 emissions). Emissions and uncertainty 
ranges calculated using the IPCC emission factors and uncertainty ranges (IPCC, 2006).  
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areas as is the case for livestock products. Therefore, to make fair judgments of the 
climate impact of different food products it is necessary to include emissions from 
LUC in the CF of food. Later studies quantifying the GHG emissions from 
livestock production are also increasingly taking LUC into account (e.g. Nguyen et 
al., 2010; Cederberg et al., 2011; Meul et al., 2012). 

LUC can be divided into direct land use change, dLUC, and indirect land use 
change, iLUC. Meul et al. (2012) give a good description of the two: 
 
“dLUC relates to the conversion of land attributed directly to one or more feed 
ingredients, for example, the conversion of natural forest into cropland for 
cultivation of soybeans in Brazil. Therefore, dLUC emissions can be avoided by 
growing feed crops on already existing cropland. However, it is possible that in 
that case former agricultural production on that cropland is displaced to other 
areas, some of which will be converted from other land use types, causing indirect 
land use change. Therefore, iLUC is the conversion of land that is induced by 
changes in production of or demand for one or more feed ingredients, which is 
indirectly associated with these ingredients.” 
 
As an indirect consequence, the demand for agricultural products, apart from 
resulting in LUC, can also lead to intensification of land use (Kløverpris et al., 
2010; Schmidt et al., 2011). Through e.g. increased fertilisation and irrigation, 
crop yields can be increased on land in other regions or countries. The emissions 
caused by the additional inputs can then be allocated to the crop driving the 
demand.  

LUC is most commonly discussed in terms of emissions of GHG, but some 
LUC can lead to decreased climate impact due to carbon sequestration. One 
example would be the sequestration of carbon in perennial crops, e.g. fruit trees, 
grown on arable land which was previously used for annual crops. This type of 
LUC would lead to the sequestration of carbon in biomass and soil. A part from 
carbon sequestration in soils which is discussed in section 4.3, such LUC is of 
minor importance in relation to livestock production at present and is not further 
discussed here. However, systems integrating livestock production with e.g. 
bioenergy production or perennial food crops are interesting future systems that 
deserve more attention (SBA, 2011), but more research and methodological 
development is needed to estimate the CF of livestock products from such 
systems.   

LUC can also affect the climate system in other ways than through emissions of 
GHG. Decreased evapotranspiration, aerosol formation and changes in albedo can 
have both cooling and warming effects. Quantifying these effects is highly 
uncertain and has so far not been included in CF of livestock products. 
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4.5.1 Methods for estimating emissions from land use change 
Determining emissions from LUC for inclusion in the LCA of agricultural 
products requires modelling, which is associated with particularly large 
uncertainties, especially for iLUC. Models for iLUC cannot be verified by 
measurements or observation, and need to take into account the complexity of the 
global food and fibre market driving demand for land. Several methods for 
calculating LUC have been proposed during recent years, but there is as yet no 
consensus on a Best Practice approach.  

Methods used to quantify emissions from LUC must include: 1) a way of 
estimating emissions per hectare of LUC, i.e. a way of determining the amount of 
GHG released as a consequence of e.g. converting forest land to arable land; and 
2) a way of allocating these emissions to specific crops and other drivers of 
deforestation (e.g. demand for timber), i.e. a way of determining which crops are 
responsible for the LUC and should thus bear the burden of the LUC emissions 
(van Middelaar et al., 2013). For emissions per hectare of LUC, the guidelines 
provided by the IPCC for national accounting can be used to determine the 
emissions caused by one hectare of LUC for different land types (IPCC, 2006).   

LUC can be calculated as dLUC only, or by using methods that include both 
dLUC and iLUC. In theory iLUC can also be handled separately but this is not 
commonly done. Some of the methods that have been used in the field of livestock 
production lately are summarised below.  

Method for calculating direct LUC 
 
Cederberg et al. (2011): This study calculates emissions from LUC in the LAR 
area of Brazil as a result of an expanding beef meat sector. Emissions from 
deforestation are calculated based on net difference in the carbon stock between 
the original land cover and the land cover after clearing. Emissions from decay of 
biomass that can continue for decades are included. The method takes into account 
that due to the dynamic nature of deforestation in Brazil (land being afforested 
again after some years or turned into pasture), more than one hectare of 
deforestation is needed to provide one hectare of arable land. Part of the emissions 
(6% of above and below ground biomass) is allocated to timber products based on 
the carbon content in the timber.  

Using this approach, Cederberg et al. (2011) found that emissions from 
deforestation in LAR, Brazil corresponding to 572±198 kg CO2e per ha should be 
attributed to the agricultural products being produced on the cleared land.  When 
the emissions were attributed to beef meat produced on the deforested land only 
(42 kg carcass weight per hectare) using an amortisation period of 20 years, the CF 
of beef meat was found to be 726± 252 kg CO2e per kg carcass weight. This is 
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approximately 25 times greater than the CF of beef meat without considering 
LUC. The CF is heavily dependent on the amortisation period used, as is 
illustrated in Figure 23. 

 
Figure 23. Example of the influence of amortisation on greenhouse gas emissions from land use 
change (Cederberg et al., 2011).  

This study is illustrative in several ways. It shows the large uncertainties in 
determining the GHG emissions caused by deforestation of a piece of land. 
Although the geographical area is fixed, emissions from clearing one hectare of 
land are associated with an uncertainty of ±35%. The study also illustrates very 
clearly how the results greatly depend on the arbitrary choice of amortisation 
period.  

The study also presents results of the beef CF when the emissions LUC were 
allocated on all beef meat produced in the LAR area (and using a 20-year 
amortisation period). The CF was then reduced considerably, to approximately 
180 kg CO2e per kg carcass weight, while allocating emissions on all beef 
produced in Brazil resulted in a CF of approximately 44 kg CO2e. This way of 
allocating emissions is not dLUC in its strictest sense, since dLUC emissions 
should be directly associated with the product being produced on the newly 
deforested land, which is not the case for the beef from other regions. However, 
assigning all LUC emissions to the products being produced on the newly 
deforested land gives a very high CF for these products, while the same product 
produced in the same area but on available arable land goes free from the LUC 
burden. Hence, a more reasonable way of allocating LUC emissions to livestock 
products and feed ingredients might then be to use this ‘semi-direct’ approach, s-
dLUC, since it can be argued that it is really the total demand for any such crops, 
regardless of where they are grown, that drives deforestation.  
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Methods for calculating emissions from semi-direct LUC 
 
Meul et al. (2012): In this approach emissions due to s-dLUC (see above for 
explanation of s-dLUC) are calculated for soybean meal only, because soybean 
cultivation is recognised as a major driver of tropical deforestation. All other feed 
ingredients are assumed free from LUC burden. It is assumed that 3.2% of total 
soybean area in Brazil originates from tropical forests and 5.2% from scrubland. 
Default values from IPCC are used to calculate the carbon stock in above and 
below ground biomass from this deforested land. Emissions are amortised over 20 
years and assigned to all soybean produced in Brazil. An s-dLUC factor for 
soybean meal of 0.63 kg CO2e/kg was the result from using this method. (In the 
study total LUC was also calculated according to the methodology in Audsley et 
al., 2009, which is described below.).   
 
van Middelaar et al. (2013): In this approach emissions due to s-dLUC (see 
above for explanation of s-dLUC) are calculated for feed ingredients directly 
associated with deforestation (soybean meal and palm kernel expeller) in a similar 
way as in Meul et al. (2012), but using slightly different assumptions regarding 
deforestation (1% of the soy produced in central west Brazil is assumed to come 
from former tropical forest land and 3.4% from scrubland, while soy produced in 
southern Brazil is assumed not be associated with LUC). Calculations of emissions 
from converting land into cropland are based on IPCC methods and default values. 
Two different ways of estimating emissions from s-dLUC during the 20-year 
amortisation period are considered; one including carbon sequestration from 
afforestation taking place during the period and delay in biomass decay (as in the 
Cederberg et al. 2011 method), and the other approach not taking this into account 
and just including emissions occurring at the point in time of deforestation. The s-
dLUC factor for soybean meal was found to be 0.18 kg CO2e per kg soybean meal 
using the method that included changes in land use after deforestation, and 0.17 kg 
CO2e per kg soybean for the method that did not take this into account. (Total 
LUC was calculated in this study according to the methodologies in Leip et al., 
2010 and Audsley et al., 2009, which are described below.).   

Methods for calculating emissions from total LUC based on the viewpoint that 
expanding crops only are responsible for LUC 
 
Leip et al. (2010): This method takes both dLUC and iLUC into account and uses 
historical land use changes to assign the responsibility for LUC between different 
crops. Data on the change in total arable area between 1999-2008, as well as the 
change in area for individual crops per EU country, were taken from FAO 
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statistics. For those countries where the total arable area had increased, the new 
arable area was assigned to the individual crops based on their expansion 
compared with the total expansion in arable land. The expanded area assigned to a 
specific crop was then divided over the total production of the crop during the 
same time period, arriving at a measurement of ‘expanded area in hectares per kg 
of crop X produced’. 
     To establish the amount of emissions caused by the expansion of 1 ha of 
cropland, three different scenarios were used. In Scenario I it was assumed that all 
expansion was on former grassland and savannah, while in Scenarios II and III 
expansion was assumed to be on a mix of grassland and forest, with a higher 
percentage of forest in Scenario III, hence representing a ‘maximum emissions 
scenario’. Emission due to changes in above and below ground biomass carbon 
stocks, carbon stocks in dead organic matter and soils and emissions from biomass 
burning were calculated according to the IPCC 2006 Tier 1 approach.  
     The Leip et al. (2010) method resulted in low emissions from LUC for feed 
crops from Europe due to small expansion of agricultural land, while emissions 
from LUC for imported feed stuffs were considerable, especially for soybean and 
rapeseed. The LUC factor for imported soybean meal from non-EU countries was 
1.5, 3.1 and 10 kg CO2e per kg soybean meal in Scenario I, II and III, respectively.  
     In this method no emissions were allocated to other causes of LUC, e.g. timber. 
The arbitrary choice of amortisation period was avoided by allocating the LUC 
based on historical LUC and allocating these to the actual production of a certain 
crop. However, the historical time period of 10 years was a choice that affected the 
results.  
 
Gerber et al. (2010): This method also uses historical changes in arable land 
expansion to quantify the emissions from LUC (total LUC, i.e. both dLUC and 
iLUC). The only crop that is assigned emissions due to LUC is soybean. From the 
average annual LUC rates in Argentina, Brazil and the US (countries that together 
with China, in which LUC is small, dominate the soybean market) and the 
expansion of soybean area in these countries, the amount and types of LUC to be 
attributed to soybean cultivation are determined. The default annual LUC value for 
forests and grasslands for these countries (e.g. deforestation in Brazil causes 
emissions of 37 ton CO2e per hectare and in Argentina 17 ton CO2e per hectare) 
given in PAS 2050 (BSI, 2011) is used to calculate the emissions per hectare 
undergoing LUC due to soybean cultivation. Allocation between the soybean cake 
and oil is done using economic allocation. Using this methodology, the LUC 
factor was 7.7 kg CO2e per kg for soybean meal originating from Brazil and 0.93 
kg CO2e per kg for soybean meal originating from Argentina. Soybean from other 
countries and other feed crops were assumed to cause no emissions from LUC. 
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Ponsioen & Blonk, (2012): This method is also based on historical LUC, but uses 
a trend analysis of land expansion for the period 1990-2009 rather than the actual 
emissions for a specific year or period. LUC emissions, which come from total 
LUC, are allocated between different crops according to the share of the total 
expansion for which a specific crop is responsible. The method uses a weighted 
average of existing land cover types (forests, steppe and scrubland) to estimate the 
type of land converted into agricultural land in different countries. The IPCC 
default values for above ground biomass of each forest type per continent and the 
IPCC soil organic carbon stocks are used to calculate the emissions caused by 
LUC.  Emissions due to LUC are allocated between timber harvest and cleared 
land based on timber prices and the agricultural return from cultivating the cleared 
land (resulting in an allocation factor of 0.65 for the use of agricultural land in 
Brazil). This method produces a LUC factor of 3.7 kg CO2e per kg for soybean 
meal from Brazil and 4.8 kg CO2e per kg for soybean meal from Argentina 
(calculated from values per hectare in Ponsioen & Blonk, 2012 using a soybean 
yield of 2500 kg/ha, an allocation factor of 0.72/0.28 between soybean meal and 
soy oil and 80% yield of soybean meal from soybean).  

Methods for calculating emissions from total LUC based on the viewpoint that all 
land use drives LUC 
 
Audsley et al. (2009): This method is based on the assumption that all demand for 
agricultural land contributes to commodity and land prices and therefore to LUC 
(total LUC). It uses a simple top-down approach in which all global emissions 
from LUC (according to IPCC) that can be attributed to the expansion of 
commercial agriculture (58%) are evenly divided over the total area of land used 
for commercial agriculture, which gives an LUC factor of 1.4 t CO2e per ha. 
Examples of LUC factors per kg of feed product based on this values are: 0.50 kg 
CO2e per kg soybean meal (soybean yield of 2500 kg/ha, an allocation factor of 
0.72/0.28 between soybean meal and soy oil and 80% yield of soybean meal from 
soybean) and 0.23 kg CO2e per kg wheat (yield 6000 kg/ha). 
 
Schmidt et al. (2011): This method also covers both dLUC and iLUC and uses 
emissions from total globally observed LUC (from FAO data) and distributes these 
emissions on all activities occupying land, based on the viewpoint that all use of 
land is responsible for land use, irrespective of where occupation is taking place. 
In contrast to most other methods, when distributing emissions the ability of land 
to produce biomass is taken into account using the measure Net Primary 
Production (NPP). Hence, using land with a high capacity to produce biomass 
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inefficiently (low yields) will result in higher LUC emissions per kg crop than 
using the same land and obtaining high yields. The method also accounts for 
emissions due to intensification (increased fertiliser use on existing arable land) as 
a result of demand for land. Two ways of distributing emissions from global LUC 
on the land used are provided. One is suited for use in attributional LCA and 
divides emissions from LUC over all land, i.e. land already in use and expanded 
land, as well as land under intensified production. The other allocates emissions 
only to expanded and intensified land and is aimed at consequential LCA 
modelling. The two approaches give very different results. The consequential 
approach gives emissions due to LUC of 145 tons of CO2e per hectare and year, 
while the attributional approach results in 5.7 tons CO2e per hectare and year as a 
global average. Applying these numbers gives an iLUC factor of 52 or 2 kg CO2e 
per kg soybean meal for the consequential and attributional approach (calculated 
using a soybean yield of 2500 kg/ha, an allocation factor of 0.72/0.28 between 
soybean meal and soy oil and 80% yield of soybean meal from soybean).  

Method based on ‘missed potential carbon sink’ 
 
Schmidinger & Stehfest (2012): This method is fundamentally different from the 
other methods presented above as it does not aim to calculate the emissions caused 
by deforestation, but is based on the approach that all agricultural production on 
land prevents the land from regrowing its natural vegetation cover and in that way 
sequestering carbon. This ‘missed carbon sink’ is attributed to the products being 
produced on the land and in this way the CO2 implications of using land are 
quantified. The potential carbon sink for different world regions is calculated 
using an integrated assessment model for global environmental change (IMAGE). 
For example, cultivation of land in South America during a 30-year timeframe 
prevents the sequestration of 0.95 kg CO2 per m2 and year. The corresponding 
figure for Europe is 0.53 kg CO2 per m2 and year, which is close to the world 
average of 0.54 kg CO2 per m2 and year. This method does not differentiate 
between the different types of demand, and hence different rates of arable land 
expansion for different crops, e.g. the recent increased demand for soybean. 
Rather, it views all land occupation as equally contributing to the missed 
opportunity to sequester carbon, with a differentiation based on the ability of the 
land to regrow different amounts of biomass. The missed potential carbon sink for 
soybean from South America using this method is 4.8 kg CO2 per kg soybean meal 
(soybean yield of 2500 kg/ha, an allocation factor of 0.72/0.28 between soybean 
meal and soy oil and 80% yield of soybean meal from soybean). Note, however, 
that all crops are assigned emissions of this magnitude, and not only soy, using 
this method. 
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Economic modelling for determining LUC 
Economic equilibrium models are complex models that use actual economic data 
to estimate how an economy reacts to changes in policy. Such models have been 
used extensively to predict possible LUC due to different biofuel policies. These 
models cannot distinguish between dLUC and iLUC, as they model the complete 
economic system on a global or regional level and study the increased demand for 
certain crops on the market, rather than cultivation of a crop at a specific site. 
Many of the crops used as feedstock for biofuels are the same as the crops used for 
feed, so the results from some of these studies could be used to calculate LUC 
factors for feed ingredients. However, the results from these economic models are 
highly variable, as illustrated in Figure 24. The variation is to some extent 
expected, as the models describe very complex and varying future scenarios which 
are inherently uncertain. Furthermore, there is variation due to different modelling 
approaches, e.g. modelling of the entire world economy or only the agricultural 
sector, geographical resolution in crop trading and whether land expansion is 
allowed on pasture and/or forest land. In addition, parameters such as yield levels 
and amount of by-products differ between studies (Höglund et al., 2013). 
Although results from different studies that use economic equilibrium models to 
determine LUC cannot be directly compared due to different policies being studied 
and different scopes and purposes of the studies, the great variation in results 
illustrates the uncertainty associated with predicting future land use development.   
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In some of the studies using economic equilibrium modelling to determine 
emissions due to LUC, uncertainty analysis using Monte Carlo simulation (section 
3.3.1) has been used but the uncertainty ranges in the end results are large, ±30% 
or more and in some cases more than +100% (Plevin et al., 2010; IFPRI, 2011). It 
should be noted that Monte Carlo analysis only caters for uncertainties in 
parameter input and not in model uncertainties.  

4.5.2 Discussion and recommendations 

Crucial methodological choices 
Estimating emissions due to LUC, and especially iLUC, is highly complex. Some 
of the major modelling choices/challenges that are revealed from the models 
described above are summarised below: 

- Amount of emissions per hectare of LUC. The amount of CO2 released 
when an area is cleared varies greatly with the type of land deforested, since 
different land types hold different initial carbon stocks, e.g. Amazon forest 

Figure 24. Land use change factors for biofuels (g CO2e/MJ) calculated using different economic 
equilibrium models (from Di Lucia et al., 2012). 
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compared with cerrado (DG Energy, 2010). LUC are in some places also 
highly dynamic with cropping following deforestation, to be replaced later 
with pasture and later regeneration of forests again when land is depleted or 
overgrazed (Foley et al., 2007), so emissions also depend on the subsequent 
land management. 

- Allocation of emissions to crops. Emissions from LUC can be allocated to 
crops grown on the deforested land only, or on all crops in that country or 
region (or globally) of a specific type especially associated with 
deforestation, e.g. soy, or allocation of emissions from LUC on crops grown 
on all agricultural land. 

- Amortisation period. The LUC emissions can be amortised over an 
arbitrary period of e.g. 20, 30, 50 or 100 years after deforestation, or an 
arbitrary historical period can be used to predict future LUC. 

- Type of land affected. The amount and type of land globally that is 
affected by iLUC due to increased demand of feed crops can be determined 
using e.g. economic equilibrium modelling of trade with agricultural goods 
or more descriptive methods, e.g. using historical crop production statistics 
to identify trends. 

- Allocation between crops and other drivers of LUC. The emissions from 
LUC have to be allocated between timber/fuel wood (or other drivers of 
deforestation) and the large number of agricultural products that will be 
produced on the deforested land, e.g. on a mass basis or economic basis. 

 
Apart from the methodological choices described above, finding correct, relevant 
and up-to-date data from e.g. FAO statistics to feed into the models can be 
difficult and introduces more uncertainty into the LUC calculations. 

Comparing LUC factors and results obtained using different methods   
The LUC factors for soybean meal according to the methods described in the 
paragraphs above are summarised in Table 9. The variation is large, ranging from 
0.5 to 52 kg CO2e/kg soybean meal. However, all values are not directly 
comparable, since they come from conceptually different methods and their use in 
a full life cycle assessment needs to be taken into account when determining the 
full impact due to LUC for a specific livestock product. What can be concluded, 
however, is that the contribution from deforestation to the total CF of soybean is 
considerable in all cases, and in most cases greatly overshadows other life cycle 
emissions, such as N2O from soil and energy-related emissions estimated at 
approximately 0.7 kg CO2e/kg of soybean meal (Dalgaard et al., 2008).  
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Table 9. Land use change (LUC) factors for soybean meal using different LUC methods. Life cycle 
emissions from soybean meal without LUC are approximately 0.7 kg CO2e/kg (Dalgaard et al., 
2008). Note that for methods distributing emissions from LUC on all crops, this means all feed crops 
and not only soybean. 

Method Distribution of emissions to 
crops 

LUC factor (kg CO2e per kg 
soybean meal)  

Meul et al., 2012 (dLUC only) Soy only 0.63 
van Middelaar et al., 2013 
(dLUC only) 

Soy (and palm) 0.17-0.181 

Leip et al., 2010 Expanding crops2 1.5, 3.1 or 10.53 

Gerber et al., 2010 Soy only 7.7 Brazil 
  0.93 Argentina 
Ponsioen & Blonk, 2012 Expanding crops2 3.7 Brazil 
  4.8 Argentina 
Schmidinger & Stehfest, 2012 All crops 4.8 Missed carbon sink4 
Audsley et al., 2009 All crops 0.50 
Schmidt et al., 2011 All crops 52 Consequential LCA 
  2 Attributional LCA 

1 Method 1 in the study, variation is due to whether afforestation and delayed decay of biomass is included (0.18) 
or not (0.17)  
2 Crops that are expanding in a region where the total cropland is expanding bears the burden of LUC 
3 Three scenarios are used to describe the type of land converted: only grassland (1.5), only forest (10.5) or a mix 
(3.1) 
4 This is not an LUC factor but describes the missed carbon sink when land is occupied by agriculture which 
prevents the natural vegetation from regrowing. 

van Middelaar et al. (2013) calculated the CF including LUC for six different feed 
ingredients. LUC emissions were calculated in three different ways; 1) By the 
dLUC method described above for van Middelaar et al. (2013), 2) by the method 
by Leip et al. (2010) allocating emissions to expanding crops, and 3) by the 
method by Audsley et al. (2009) assigning emissions to all crops grown on 
agricultural land. Soybean meal and palm kernel expeller were the only feedstuffs 
that were assigned dLUC emissions using method (1), while all feed ingredients 
were assigned iLUC emissions using methods (2) and (3). Method (1) increased 
the CF of soybean meal by 35-38%, method (2) increased emissions by 632%, and 
method (3) increased emissions by 82%. The lower increase from using method 
(1) is explained by it only accounting for dLUC, i.e. only LUC directly associated 
with the crops under study, while methods (2) and (3) include both dLUC and 
iLUC. However, these two methods differ in principle, since Leip et al. (2010) 
assign LUC emissions based on the expansion rates of different crops, while 
Audsley et al. (2009) assign LUC emissions to all crops grown on agricultural land 
globally. This difference is illustrated by a simplified example in the next section.  
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A simplified example 
 

 
Figure 25. A simplified example of accounting for greenhouse gas emissions from land use change 
(LUC). Y is the yield of crops from the different land areas. E are the emissions of greenhouse gases 
from LUC. 

Figure 25 shows LUC in country Z. Every year, an area of non-cropland is 
converted into cropland on which crop A, a crop in large expansion, e.g. soy, is 
grown (yielding YAEN-C  kg per year) as well as other crops (YOEN –C kg), giving rise 
to emissions from LUC (EA kg CO2e from the area with expanding crop A on non-
cropland and EO kg CO2e from the area with other crops expanding into non-
cropland). When calculating dLUC emissions, only LUC emissions directly 
associated the crop expansion are considered, i.e. only YA emissions in Figure 25 
are included in the dLUC factor for crop A. In the strictest sense, these dLUC 
emissions, YA, should only be assigned to the products produced on the newly 
deforested land as:  

 
dLUC factor crop A [kg CO2e per kg crop A] = EA/ YAEN-C  
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However, it might be more reasonable to assign the EA emissions to all crops A as: 
 
s-dLUC factor crop A [kg CO2e per kg crop A] = EA/ (YAEN-C + YAEC + YAC) 

This semi-direct LUC approach (s-dLUC) is used in the studies by Meul et al. 
(2012) and van Middelaar et al. (2013).   

When calculating iLUC emissions, it is the displacement effects that are taken into 
account. Since crop A is also expanding on existing cropland, this pushes other 
crops out onto non-cropland, causing iLUC. Emissions from iLUC can be 
calculated as: 

 
iLUC factor crop A [kg CO2e per kg crop A] =  
= EO/ YAEN-C          or           = EO/ (YAEN-C + YAEC + YAC) 
 

However, this is seldom done in practice and rather total LUC, including both 
dLUC and iLUC, is considered. Some methods (Gerber et al., 2010; Leip et al., 
2010; Ponsioen & Blonk, 2012) assign total emissions caused by LUC (EA and EO) 
to the expanding crop A on the basis that it is the demand for crop A that is driving 
the increased need for land. 

 
Total LUC factor crop A [kg CO2e per kg crop A] =  
= (EA + EO)/ (YAEN-C + YAEC + YAC) 

 
Other methods (Audsley et al., 2009; Schmidt et al., 2011) assign total global LUC 
emissions (EA and EO, as well as LUC emissions in other countries EAll) to all 
agricultural land, generally justifying this strategy by the viewpoint that all use of 
land occupies land and is responsible for the need to expand agricultural land onto 
non-cropland:  

 
 Total LUC factor crop A [kg CO2e per kg crop A] =  
= (EA + EO+ EAll)/ (YAEN-C + YAEC + YAC + YOC + YOEN-C + YAll) 
 

This difference in viewpoint and the consequences it has for comparing the CF of 
livestock products are further elaborated upon in the following section.    
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Comparing methods assigning emissions to expanding crops only or to crops from 
all agricultural land 

For methods assigning emissions to all crops (Audsley et al., 2009; Schmidt et al., 
2011; Schmidinger & Stehfest, 2012), low total land use is important for lowering 
the LUC emissions, while for methods distributing emissions to crops that are 
expanding in area (Gerber et al., 2010; Leip et al., 2010; Ponsioen & Blonk, 2012) 
using less of these crops, of which soy is the most common one, is more 
important. When comparing production systems that use more land but less 
concentrate feed with production systems that use less land but more concentrate 
feed, this difference in viewpoint, i.e. either all land use drives LUC or crops with 
a high demand drive LUC, can result in contradicting results.  

To illustrate this, results from a study by Flysjö et al. (2012) in which the CF of 
conventional and organic milk was quantified using different methods for 
accounting for LUC are shown in Figure 26. Conventional milk production, which 
uses more soy as feed than the organic system (45 g soybean meal per kg milk 
compared with 12 g), produces milk with a higher CF if LUC is calculated using 
the Gerber et al. (2010) or the Leip et al. (2010) methods. These methods either 
allocate all LUC emissions to soybean (Gerber et al., 2010) or to expanding crops 
(Leip et al., 2010).  However, since organic production requires more land in total 
(2.93 m2 per kg of milk compared with 1.54 m2), LUC methods assigning LUC 
emissions to all land give a higher CF for organic milk than for conventional milk 
(Audsley et al., 2009; Schmidt et al., 2011).  

 
Figure 26. The carbon footprint of 1 kg of milk (ECM) without emissions from land use change 
(LUC) and including emissions of LUC using four different LUC methods. Data from Flysjö et al. 
2012. (All emissions were allocated to milk and none to meat in this example.) 
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Another example of the same phenomenon that is highly relevant is in 
comparisons of the CF of poultry meat and pig meat. This can be illustrated by 
adding emissions from LUC to the CF values for Swedish chicken and pig meat 
without LUC, which were estimated to be 2.5 kg CO2e per kg bone-free meat for 
chicken and 5.8 kg for pork in 2006 (Cederberg et al., 2009) using a meat yield 
from carcass weight to bone-free meat of 59% for pork and 77% for chicken 
(Hallström & Börjesson, 2012). In Swedish chicken production, 4.3 kg of feed, of 
which 0.72 kg is soybean meal, is consumed for every kg edible meat produced. 
The feed production results in a land use of approximately 6.4 m2 per kg bone-free 
meat. In pig production, more feed is used per kg of meat produced, 7.0 kg, but 
less soybean meal per kg of bone-free meat, 0.32 kg. Thus feed production for 
Swedish pig production results in a land use of approximately 10.3 m2 per kg 
meat. For most methods used to include LUC, chicken still has a lower CF than 
pork, but for two of the models chicken is approaching pork or even has a higher 
CF (Figure 27). 
 

 

Figure 27. The carbon footprint of 1 kg of chicken and pork meat (bone-free weight) without 
emissions from land use change and including land use change emissions using four different LUC 
methods. Data on feed consumption from Cederberg et al. (2009). 

The advantage in using methods that assign LUC emissions to crops that are 
expanding in area, e.g. those by Leip et al. (2010) and Gerber et al. (2010), is that 
they put the focus on currently ongoing deforestation by assigning high LUC 
factors to soybean in particular. This sends a clear signal to the actors in the 
soybean industry of the importance of halting deforestation. Ponsioen & Blonk  
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(2012) suggest an elaborated version of the same modelling approach, using trend 
analysis of crop data to avoid arbitrary amortisation periods.  

However, these methods do not take into account more long-term development 
and displacement effects driven by demand for certain feed crops. If Brazilian 
soybean is abandoned due to its high emissions from LUC and replaced with 
soybean from other countries, the effect could be either dLUC effects in that 
country or iLUC effects in other parts of the world (Flysjö et al., 2012). This is not 
always the case, as there are areas in which agricultural land is being abandoned 
and afforested, e.g. in inland Sweden. If LUC from soybean production in South 
America can be avoided by using this land for either production of other protein 
crops or high-quality forage that could replace soybean in dairy feed, methods 
‘blaming’ expanding crops are relevant and give logical results. Using methods 
which assign a LUC factor to all land (Audsley et al., 2009; Schmidt et al., 2011; 
Schmidinger & Stehfest, 2012), and hence result in higher emissions for 
production systems requiring more land, might discourage systems which use land 
that risks being abandoned for protein feed production, if the protein feed cannot 
be produced with the same yield as soybean meal. This is despite the fact that the 
alternative use of this land is for forest rather than producing feed or food for the 
global market, which makes these methods less useful for this specific case (Flysjö 
et al., 2012).     

However, in most regions, agricultural production is either stable or expanding 
and the limited availability of agricultural land is in most cases highly relevant. 
The methods by Audsley et al. (2009), Schmidinger & Stehfest (2012) and 
Schmidt et al. (2011), which assign LUC emissions to all agricultural land, include 
the aspect of land scarcity, since products requiring more land are assigned higher 
LUC emissions. The method suggested by Schmidt et al. (2011) has an major 
advantage over that suggested by Audsley et al. (2009) as it takes into account 
different types of land and their suitability for different uses, thus assigning lower 
LUC emissions per ha to production on rangeland that is not suitable for arable 
cultivation. Assigning general LUC factors to all land use, regardless of what is 
produced (food or biofuels), is attractive in its simplicity and generalizability but 
may be too simplistic, since the amount of land taken into production and where 
this land is located vary depending on where the demand increases (Kløverpris et 
al., 2010). However, as long as the much more complex, and thus harder to grasp, 
methods used in economic equilibrium modelling show very disparate results 
when comparing GHG emissions from different livestock systems, simpler 
methods might be ‘good enough’ to give a very rough estimate of the magnitude 
of LUC emissions. In that instance, it is highly important that very uncertain 
results from LUC are not added together with life cycle emissions that are more 
certain, and that LUC results are presented just as very uncertain estimates.  
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Recommendations 
Although studies quantifying LUC emissions and including these in the CF of 
livestock products show a great variation in results, they also show that the 
contribution of LUC emissions to the total CF of livestock products is 
considerable, sometimes totally overshadowing other life cycle emissions such as 
methane from enteric fermentation, soil emissions from feed production and 
emissions from manure and energy consumption. Hence, emissions due to LUC 
cannot be omitted when calculating the CF of livestock products. 

Due to the great uncertainty in LUC estimates and the lack of consensus on the 
most appropriate method to use for quantifying LUC emissions and to avoid 
reducing the incentive to work with reduction measures from cultivation, several 
authors recommend that emissions arising from LUC be presented separately from 
the emissions caused during cultivation and production (Flysjö et al., 2012; Meul 
et al., 2012; van Middelaar et al., 2013). This is also the recommendation in the 
draft ISO standard for carbon footprints that is currently under development (ISO, 
2010).  

Meul et al. (2012) present emissions from dLUC and iLUC separately from the 
emissions from cultivation, transport and processing and denote iLUC emissions 
as “total LUC risk”. The “total LUC risk”, which they calculate using the Audsley 
et al. (2009) method, hence includes both dLUC and iLUC and can be interpreted 
as an estimated risk of causing emissions from LUC of this magnitude. When 
designing policy and taking action to decrease the CF from LUC, Meul et al. 
(2012) recommend that efforts be made above all to avoid dLUC and that 
production systems could be further optimised by decreased “total LUC risk”. van 
Middelaar et al. (2013) state that the appropriate choice of method depends on the 
purpose of the study. If the purpose is to stimulate companies and countries to 
invest in more sustainable products, LUC methods with a direct connection to 
deforestation should be used. If the purpose is to emphasise that due to 
globalisation all use of agricultural land is responsible for deforestation, then a 
method that assigns LUC emission to all crops should be used.  

It is unlikely that emissions from iLUC can ever be quantified with a high 
degree of certainty due to the high complexity in the processes driving global 
deforestation and the fact that iLUC cannot be observed and therefore models 
cannot be verified. Emissions due to dLUC can be observed and are easier to 
measure, but using these measurements of GHG emissions in LCA studies is 
associated with several methodological challenges, e.g. the amortisation of the 
emissions over an period of time, which is an arbitrary choice. More research will 
help increase understanding of the processes and drivers behind deforestation and 
more standardised methods to include LUC in the CF of food will make it easier to 
compare results between studies. Future research also needs to address effects on 
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the climate system from decreased evapotranspiration, aerosol formation and 
changes in albedo, which further increase the uncertainty regarding LUC. Since 
the climate effects from these phenomena can be substantial (Höglund et al., 
2013), omitting their inclusion could lead to faulty CF of livestock products.  

4.6 Carbon dioxide from energy use 
Emissions of GHG from energy consumption in livestock arise mainly from: 
combustion of fuels used in field machinery, the use of fossil energy sources for 
the production of mineral fertilisers, feed, machinery and buildings, electricity use 
for lighting, ventilation and e.g. milking equipment in dairy units, combustion of 
fuels for heating animal houses and combustion of fossil fuels in vehicles used for 
transporting e.g. fertilisers, feed and animals.   

Calculating emissions from the combustion of fossil fuels is straight-forward, 
since the emissions are governed by the chemical reaction of hydrocarbon 
compounds in the fossil fuel being converted to CO2 and water. Emissions from 
combustion can vary somewhat, as some combustion conditions can lead to the 
production of N2O and CH4, but these variations are small (Eriksson & Ahlgren, 
2013). Emissions from the extraction of oil and production and transport of the 
fuel need to be added to the emissions from combustion. The uncertainty in 
emissions from these process steps is small compared with the uncertainties from 
other processes in agriculture, at least as long as conventional fossil sources are 
considered and not oil shale, tar sands and other unconventional sources (Eriksson 
& Ahlgren, 2013). Hence, the major uncertainty in assessing emissions from fossil 
fuel use lies in correctly assessing the actual amount of fuel used. Still, the 
uncertainty in emissions from e.g. diesel use is usually much less than the 
uncertainty arising from soil emissions (Figure 28). 
  



82 
 

 
Figure 28. Contributing processes to the carbon footprint of Swedish wheat for pasta production 
(KGI). Error bars show uncertainty as the range between the 2.5 and 97.5 percentiles. Numbers are 
the relative contribution to uncertainty from an individual process as the range divided by the total 
mean carbon footprint. Soil emissions, especially emissions of N2O from soils, give rise to large 
uncertainty. Emissions from production of mineral fertilisers are also uncertain, since it was 
unknown whether the fertilisers came from factories with or without N2O cleaning equipment (Röös 
et al., 2011).  

Estimating emissions from electricity consumption opens the way for several 
modelling choices. In ALCA the emissions from the average electricity mix are 
used and the challenge lies in determining the relevant mix to use, e.g. the national 
mix or whether electricity is traded on a market smaller or greater than the national 
borders, in which case this mix might be more relevant. In CLCA, the marginal 
electricity supply is used when modelling emissions from electricity, as this is the 
supply that will be affected when the demand for electricity increases. 
Determining the future marginal electricity source is far from simple (Finnveden, 
2008; Lund et al., 2010). For products which demand large amounts of electricity 
during production or use, the choice of modelling approach for electricity can have 
a major influence on the results. In most livestock production, however, emissions 
from electricity use are minor in comparison with other GHG emissions sources 
and the electricity modelling choice therefore has less influence on the final 
results.   

Manufacturing of mineral fertilisers is energy-demanding and also gives rise to 
emissions of N2O. Depending on the N2O cleaning technique used in production, 
total emissions of GHG from the production of mineral nitrogen fertiliser can vary 
greatly (Figure 28). If the origin of the fertiliser is known, the uncertainty in the 
emissions is small, ±30% for a 95% confidence interval (Röös et al., 2011), 
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compared with e.g. the uncertainty in soil emissions or that due to modelling 
choices. 

4.7 Collection of activity data 
Uncertainties in methods used for calculating GHG emissions from various 
processes are discussed in sections 4.1-4.6. The present section briefly discusses 
the uncertainty in the activity data, or production data, used in these methods. 

Substantial amounts of data are needed for calculating the CF of livestock 
production. It is important to get good data with regard to feeding and the 
production of feed, e.g. types and rations of feed used during the lifetime of the 
animal, and also for parent animals, crops yields and amounts of inputs used in 
cultivation (e.g. fertilisers and diesel), transport distances and means for imported 
feed, and energy use in feed industries, as well as feed losses in all stages. 
Production parameters such as milk, egg and meat yields, recruitment rates, 
number of off-spring per mother animal, age at first calving and slaughter age 
influence the results and need to be correctly described. In addition, information 
on grazing periods, manure management systems and energy consumption in 
animal houses is needed. Some models require information on soil characteristics 
and climate conditions. Generally, the variation in these parameters between 
farms, regions and nations is substantial.  

In a case study studying one or a few farms, this information can be gathered 
with rather high precision by surveying the actual farms directly. However, some 
parameters can show high variability even within farms and some can be difficult 
to assess, e.g. those relating to the production of imported feed. For studies 
covering e.g. a whole livestock sector, data collection at farm level is not feasible 
and data found in national or global statistics databases or data recorded by e.g. 
trade organisations have to be used. However, data for all parameters can usually 
not be found at this high level, so data from case studies are often scaled up and 
used as an approximation in these kinds of studies, which can result in substantial 
uncertainty. Some studies use economic models that contain a large amount of 
aggregated agricultural data for data collection (e.g. Leip et al., 2010). Little is 
known about the precision and uncertainty in these data, since the complexity of 
the models makes it difficult to verify the data and the results.   
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5 Uncertainties in the carbon footprint of 
livestock products 

5.1 Aggregating uncertainties  
In LCA and CF calculations a very complex reality is modelled to estimate the 
product-related environmental impact. The climate impact from agriculture arises 
from the emissions of CO2, N2O and CH4 coming from several different complex 
and highly variable biological processes. Emissions from these processes, which 
are mainly N2O emissions from soils, direct and indirect emissions and 
sequestration of CO2 in soils and biomass, CH4 from enteric fermentation in 
animals as well as N2O and CH4 emissions from manure management, can be 
estimated using different more or less uncertain models which only include parts 
of the cause-effect chain. These are discussed in sections 4.1-4.4. These uncertain 
model results are aggregated in the LCA model, which in itself is an uncertain and 
limited representation of reality built on several choices regarding functional unit, 
system boundaries, allocation principles (see sections 2.1.3-2.1.4) and methods for 
calculating the emissions from the different processes. These choices are to some 
extent subjective, although the purpose of the study sets the framework. Added to 
this are the GHG emissions from energy use. For fossil fuel combustion, it is 
relatively straight-forward to calculate the GHG emissions, while for electricity 
and especially biofuels several methodological complexities are introduced 
(section 4.6). In addition, it is not only the models that are uncertain, but also the 
data that are fed into these models, e.g. yield levels, energy use and types and 
amounts of fertilisers and feed, which are characterised by a high degree of 
uncertainty, but more importantly, variability (section 4.7).  

Figure 29 illustrates how the carbon footprint estimated is affected by several 
‘layers’ of uncertainty. 
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Figure 29. Many and different types of uncertainties contributing to the final uncertainty in the 
carbon footprint. 

From Figure 29 and the above discussion, it is easy to get the impression that LCA 
and CF calculations are so uncertain that they are verging on unusable. However, 
that is not true as these types of calculations have greatly increased our knowledge 
when it comes to the environmental impact of livestock products and other foods. 
Although CF are uncertain, without performing quantitative estimations of the 
GHG emissions from different types of livestock systems, it is highly likely that 
more intuitive beliefs and perceptions would govern decision making amongst 
consumers, industry and policy makers, e.g. that grazing animals are more 
‘natural’ and hence less environmentally harmful than animals in more industrial 
systems, or that emissions of GHG from livestock are dominated by transport 
emissions rather than emissions from cultivation of feed and enteric fermentation. 
In addition, as will be discussed in section 5.2, there are several situations where 
solid conclusions can be drawn despite large uncertainties.    

It must be stressed, however, that the CF of a food product is an estimate of the 
magnitude of emissions under the conditions formulated in the study. A CF value 
should not be presented as a single value and especially not to several significant 
digits. It should be presented together with results from relevant uncertainty and 
sensitivity analyses. The preferred way of presenting the results from CF studies is 
highly dependent on the purpose of the study, as further elaborated upon in 
sections 5.2 and 5.3. Although it is important to illustrate uncertainty in most 
cases, there are also cases when the uncertainty in the final CF is irrelevant. In 
addition, when evaluating the sustainability of livestock systems it is important to 
include other aspects than just the impact on global warming (see section 5.4).  
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5.2 When are uncertainties important? 
The necessity to include uncertainty and sensitivity estimates for the CF of 
livestock systems and products varies depending on the purpose of the study and 
the type of systems being evaluated or compared. Large uncertainties can make it 
difficult or impossible to draw solid conclusions between different livestock 
products. Even though it is not possible to distinguish a clear ‘winner’ a CF study 
is still far from useless, however, since much knowledge of the systems being 
investigated is gained and the pros and cons of different systems are clearly 
revealed (Curran, 2013). On the other hand, caution must be taken so that 
uncertainties in LCA results are not deliberately used to slow down regulation or 
policy instruments that might limit growth in a specific sector, as has been the case 
in regulation of tobacco and GHG emissions (Mattila et al., 2012). There are 
situations where uncertainties have little importance and decisions can be taken on 
solid grounds despite large uncertainties in the CF.  
    
Some examples of when uncertainty analysis is and is not important when 
studying livestock systems are given below. 
 
Comparing similar productions systems. There are several situations in which 
solid conclusions can be drawn from a comparison between different production 
systems despite large uncertainties. Such situations arise when the cause-effect 
chain between an activity and its emissions is known with certainty and only the 
activity data, and no other circumstances, differ between the systems being 
compared. This can be explained by the following simplified example: Imagine 
two bicycles, functionally the same, being produced in the same factory, but one 
bicycle is made from 10 kg of steel while the other is made from 11 kg of the same 
steel. Assume further that the emissions from steel production are highly 
uncertain. Despite these uncertainties, however large, it can be concluded that the 
bicycle made of 10 kg steel is environmentally preferable, since the cause of the 
emissions from the steel production depends on the amount of steel with absolute 
certainty.  

A simplified example from the livestock sector is when comparing two beef 
production systems with the same feeding regime, housing, manure handling 
system etc. and the only difference being slower growth and hence higher 
slaughter age in one system (due to e.g. bad health). In such a comparison it is 
possible to conclude with certainty that the system with a shorter fattening period 
causes less GHG on average despite all uncertainties in the CF calculations, since 
the causes of emissions are enteric fermentation, feed production and manure 
handling, all of which will be larger with a longer animal lifetime.  
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For livestock systems, however, comparisons are seldom this simple. Consider 
for example a comparison of different diets fed to animals on the same farm. If all 
crops are grown on the farm itself and land area required to grow the different 
diets is the same in both diets, emissions from iLUC (and its uncertainties) do not 
need to be included in the comparison. Since the same land is used for the feed 
cultivation in both alternatives, the soil conditions are the same and hence 
uncertainty in N2O emissions from soil is less than indicated by the IPCC 
uncertainty range. However, emissions of N2O vary between different crops 
(Bouwman et al., 2002) as well as soil carbon balances and the uncertainty in these 
processes needs to be considered when comparing the two different diets. 

  
Comparing different production systems.  When comparing systems for which 
emissions arise from very different sources, emissions from different processes 
might cancel each other out. It is then crucial to include uncertainty and sensitivity 
analyses to establish solid comparisons. For example, in a comparison between an 
intensive ruminant production system with an extensive system, methods for 
estimating CH4 emissions from enteric fermentation (section 4.3) show that feed 
with a higher digestibility results in less emissions. More grain and concentrate in 
the feed will also result in faster growth, which causes less CH4 emissions from 
enteric fermentation per animal. These two aspects would put the intensive system 
ahead of the extensive system. However, production of grain and concentrates can 
lead to less or no carbon sequestration or carbon loss from soils (section 4.2) 
compared with production of roughage and could in addition lead to major 
emissions from iLUC (section 4.5). Hence, since all estimations of emissions from 
these processes are highly uncertain, in order to draw any firm conclusions on 
which system has the lowest CF per kg of product, it is necessary to perform 
uncertainty and sensitivity analyses. Uncertainty analysis is necessary to establish 
the probability that decreased emissions from enteric fermentation due to a more 
digestible diet and shorter lifetime will lead to lower emissions when effects on 
soil balances and emissions from iLUC are included. Sensitivity analysis, 
including testing different methods, is necessary to evaluate how model 
uncertainties affect the result, e.g. by testing different methods for calculating 
iLUC.  
 
Comparing different foods. Many studies have highlighted the need in the 
Western world for changed food consumption patterns away from foodstuffs with 
high CF values (most importantly meat and dairy). A need to compare different 
types of protein sources arises from such conclusions, i.e. a need to compare the 
CF of  products such as meat from beef, pork, chicken, fish and other animals, as 
well as egg, dairy products and different types of legumes, nuts and novel foods 
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which could replace meat in the diet. In such comparisons of products from very 
different production systems that cause GHG emissions from different sources and 
with varying uncertainties, it is very important to use both uncertainty analysis and 
sensitivity analysis in order to draw solid conclusions. For example, chicken are 
known with certainty to be much better feed converters than pigs. As a result, most 
LCA studies on chicken meat show considerably lower CF than pork meat (see 
e.g. summary in Röös et al., 2013 and Nijdam et al., 2012).  Although the results 
of different LCA studies should not be compared in detail due to methodological 
differences, a clear trend of chicken meat having lower CF than pork is evitable 
from existing studies. However, these have not included emissions from LUC. 
Figure 27 in section 4.5.2 shows the CF of Swedish chicken and pork including 
the emissions from LUC according to different methods and makes clear that 
when emissions from LUC are included, the difference in the CF between chicken 
and pork meat is less pronounced.  

 
Hot-spot identification for determining mitigation options. Not infrequently, 
LCA studies are performed on just one production system, e.g. as a case study on a 
specific farm, with the purpose of identifying mitigation options on farm level. 
Using a LCA perspective, it is possible to identify which mitigation options offer 
most reductions in GHG. The uncertainty in the end result is of less importance in 
such studies, while it is crucial to perform sensitivity analysis to determine which 
parameters have a large influence on the results.  

 
Total impact from a sector. Several studies have estimated the CF of either the 
total livestock sector or a specific sector, e.g. the dairy or poultry sector in either 
the world, a country or a region (Steinfeld et al., 2006; Gerber et al., 2010). The 
outcomes from these studies can be used to compare the total impact from 
livestock production with that from other sectors, such as energy or transport 
(Steinfeld et al., 2006). In such comparisons it is necessary to include an 
uncertainty estimate, since emissions from agriculture are highly uncertain while 
emissions from energy and transport, which are dominated by emissions from 
fossil fuel combustion, are easier to calculate with high precision. It is also 
necessary in such comparisons to ensure that system boundaries and other 
assumptions in the different studies are the same. In the study by Steinfeld et al. 
(2006), the life cycle emissions of GHG from the livestock sector were wrongly 
compared to the emissions from the transport sector calculated according to the 
UNFCCC accounting methodology, which is not done using a life cycle 
perspective and hence only includes combustion from fuels and not emissions 
from infrastructure or production of fuels (Place & Mitloehner, 2012).  
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5.3 How to illustrate uncertainties 
In a paper by Björklund (2002), an array of ways to address uncertainty in LCA in 
general are outlined. The most commonly used methods are summarised in section 
3.3 of this report. In the present section, ways to illustrate uncertainties specifically 
in the CF of livestock products are outlined, assuming that measures to reduce 
uncertainty, such as following standards, filling data gaps where possible and 
validating data, have been taken.  
 
Basically, two types of uncertainties need to be illustrated: 
 

- Input data/parameter uncertainty and variability, which is handled with 
uncertainty analysis, most commonly using probabilistic simulation (section 
5.3.1).  

- Modelling uncertainty, which is handled with sensitivity analysis (section 
5.3.2). Modelling uncertainty in calculating the CF of livestock products 
can be divided into:  

o Different choices related to LCA modelling 
o Choices of models to calculate emissions from different processes, 

e.g. N2O from soil, CH4 from enteric fermentation and LUC, 
including uncertainties in these models 

5.3.1 Input data/parameter uncertainty and variability 
To establish how uncertainty and variability in input data are propagated though 
the CF model and affect the uncertainty in the final results, probabilistic or 
stochastic simulation can be used. Monte Carlo simulation (described in section 
3.3.1) is the most commonly used method in LCA, although other stochastic 
simulation methods have been proposed (Imbeault-T´etreault et al., 2013).     

Using MC simulation or similar techniques, it is possible to provide results as 
uncertainty intervals rather than just one highly uncertain deterministic value (for 
examples see section 5.3.3), which is advantageous for several reasons. Obviously 
the result is more correctly described with an uncertainty interval than with just 
one value, but an additional advantage is that an uncertainty interval also indicates 
that the result is uncertain and that conclusions and policy implication drawn from 
the result must take the uncertainty analysis into consideration. 

Although MC simulation is technically easy to perform, establishing relevant 
uncertainty representations for the input data in the form of probability 
distributions is often difficult and time-consuming. Available data are seldom in 
the abundance and form needed for classical statistical analysis and expert 
judgment is often needed to establish probability distributions and its parameters. 
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For example, although IPCC provides uncertainty intervals for its emission factors 
for N2O, it is not clear which distribution they relate to.  

Correlations are many in livestock systems and can sometimes be difficult to 
establish. For example, the yield of feed ingredients depends on the amount of 
nitrogen supplied, but also on several other parameters and it is not easy to 
establish a yield dependency based on the multitude of parameters involved in 
livestock production systems. Failing to take correlations into account can heavily 
overestimate the uncertainty in the end result. 

It must be stressed that MC simulation only provides an estimate of uncertainty 
due to uncertainty and variability in input data. It can give a false sense of 
certainty, as it is not uncommon for model uncertainties when calculating 
emissions from livestock systems, regarding e.g. the method chosen to calculate 
N2O from soil, CH4 from enteric fermentation and LUC or the allocation method 
used, to be much larger and to overshadow the uncertainties due to input data 
uncertainty and variations. In such cases the relevance of performing MC 
simulation must be questioned, especially considering the amount of time required 
to perform MC simulation. Whether or not it is sensible to perform stochastic 
simulations depends on the purpose of the study. In cases when model 
uncertainties affect the result more than input data uncertainty, sensitivity analysis 
(section 5.3.2) should be prioritised over stochastic simulation. 

5.3.2 Model uncertainties 
Model uncertainty in calculating of the CF of livestock products can be divided 
into: 1) Choices related to LCA/CF modelling; and 2) choices of models to 
calculate emissions from different processes, including uncertainties in these 
models. Different choices when it comes to CF modelling include choice of 
functional unit, system boundaries, allocation method and characterisation factors, 
as described in section 2.1 and 2.2.2. By using scenario analysis (section 3.3.2) 
and testing different alternatives of such choices, the robustness of the study 
results can be tested. 

The way in which the choice of model to calculate e.g. emissions of N2O from 
soil, CH4 from enteric fermentation and LUC affects the result can be tested by 
applying different methods and comparing the results. A specific model of a 
biological system is also uncertain in itself. Environmental systems are complex 
with open boundaries, uncontrolled conditions and substantial feedbacks and 
interactions (Odum, 1983). These intrinsic complexities bring serious challenges 
to connecting model representations and predictions to field-collected data 
observations (Beven, 2009). For example, environmental models often require 
mathematical complexity beyond linear relationships, particularly process-based 
models that simulate time series data. To account for uncertainty in model 
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parameters, stochastic simulation (section 3.3.1 and 5.3.1) can be used when 
employing these models in the CF calculation, e.g. IPCC provides uncertainty 
ranges for emission factors for N2O and these can be used to establish a 
probability distribution that can be fed into a MC model. 

Hence, model uncertainties should be illustrated using sensitivity analysis in 
which results from several model choices are presented both from choices related 
to LCA specific choices and methods used to quantify emissions from different 
processes. Model uncertainty in such methods can be illustrated using stochastic 
simulation.  

5.3.3 Examples of handling uncertainties in LCA 
This section provides a few examples of how uncertainties have been incorporated 
into LCA studies of livestock systems. 

Henriksson et al. (2011) carried out a study to investigate how much the CF of 
milk varies between different Swedish dairy farms as a result of variation in the 
most important production parameters. The study used MC simulation to look at 
variation in milk yield, feed DMI (Dry Matter Intake), enteric CH4 emissions, 
nitrogen content in DMI, nitrogen fertiliser rate and diesel use on the farm. The 
authors had access to a substantial amount of data regarding milk yields and feed 
intake and were able to perform statistical analysis to determine the probability 
distributions of the input data. The results were presented as a histogram or 
frequency distribution (Figure 30). 

 
Figure 30. Frequency distribution of the carbon footprint of 1 kg milk (ECM) as a result of variation 
in production input data on farm level, based on Monte Carlo simulation. Right and left vertical lines 
indicate the predicted 95% confidence interval (from 2.5% to 97.5%) (from Henriksson et al., 2011). 

The purpose of that study was to look at variation in the milk CF due to 
differences in management practices that the farmer could easily control, hence 
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identifying mitigation options at farm level, and not to compare the milk CF 
between farms or assess the total uncertainty in the Swedish milk CF. Hence, it 
was not necessary to include uncertainties in emission factors for N2O from soils.  
 
Basset-Mens et al. (2009) studied how different sources of uncertainty and 
variation in input data and characterisation factors affected the CF of 1 kg of milk 
from New Zealand. MC simulation was performed to establish the uncertainty in 
the end result coming either from inherent ‘variability’ between farms represented 
by the standard deviation in data, or from ‘uncertainty’ in input data represented 
by the standard error of the mean. In the ‘variability’ analysis, the standard 
deviation (SD) was used in the MC simulation, giving a standard deviation of 38% 
in the resulting CF, representing the uncertainty in the CF due to variability in 
farming practices on dairy farms in New Zealand. The ‘uncertainty’ analysis 
instead used the standard error of the mean (SEM=SD/√n), which was much 
smaller than the SD due to the large number of farm data. The ‘uncertainty 
analysis’ gave a standard deviation of 7% in the CF, which gives a measure of the 
imprecision in the CF of average milk from New Zealand. The results were 
presented as two different frequency distributions which clearly illustrated the 
uncertainty in the results due to variability in parameters such as soil 
characteristics, climate and farming practices, as well as the uncertainty in the 
average CF of milk from New Zealand as a result of uncertainties in input data 
(Figure 31).  

 
Figure 31. Frequency distributions of the carbon footprint of 1 kg of milk from an average farm in 
New Zealand. The “Uncertainty” and “Variability” analyses (from Basset-Mens et al., 2009).  
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Apart from the stochastic simulation performed, that study also used sensitivity 
analysis for assessing the uncertainty due to choice of time horizon for the GWP 
(20, 100 or 500 years) and for different scenarios for soil drainage. Figure 32 
shows how the results were presented, as three different cumulative probability 
distributions including the results from the uncertainty and the sensitivity analysis 
(three different drainage scenarios). Presenting results in this way provides far 
more information to the decision maker than just presenting a deterministic value 
that might look very certain, but in reality is highly uncertain. 

 
Figure 32. Cumulative probability distributions of the carbon footprint of milk from New Zealand 
(using “Uncertainty” analysis) for average, poorly drained soil and free-drained soil scenarios (from 
Basset-Mens et al., 2009). 

Gerber et al. (2010) performed sensitivity analysis by varying several parameters 
one at a time by ±10% while monitoring the change in the CF of milk. They 
concluded from this analysis that the CF of milk was sensitive to variations in the 
feed digestibility and yield values, whereas it was relatively robust to uncertainties 
in the herd dynamics parameters and manure management practices. A limited MC 
simulation was performed in which a few key parameters were set to vary (feed 
digestibility by ±10%, the conversion for enteric fermentation by ±15%, emission 
factors regarding manure and nitrogen application by ±50% and the energy use for 
feed production by ±25%). The uncertainty analysis was performed using Swedish 
data but the same final uncertainty range, ±26% (95% confidence interval), was 
then used to communicate the uncertainty in the global average.  
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5.3.4 The use of uncertainty information in decision making 
While the subject of uncertainty and sensitivity analysis in LCA is rather well 
documented in the literature and actual uncertainty and sensitivity analyses are 
beginning to appear in studies, the use of uncertainty information in decision 
making is a subject that is not well researched (Mattila et al., 2012; Curran, 2013).  

Mattila et al. (2012) studied a consumer decision situation between beer and 
wine based on five decision criteria; carbon footprint, water footprint, energy 
content, price and taste. The uncertainty in the beer and wine CF, determined by 
MC simulation, was so large that even when correlations were accounted for it 
could not be determined which beverage was preferable from a CF point of view. 
However, depending on the weight given to the CF as decision criteria in 
comparison with the other criteria, the uncertainty had more or less of an impact. 
Hence, it is not possible to give an absolute acceptable level of uncertainty, as it 
depends on the type of decision at hand and other criteria upon which the decision 
is based.     

5.4 Sustainable livestock systems 
The sustainability of a livestock system cannot be determined solely based on the 
carbon footprint. Sustainable development is often considered as consisting of 
three pillars; environmental, social and economic sustainability (United Nations, 
2005). Environmental sustainability is a necessity for all human development, 
while social and economic sustainability is necessary for systems to be equitable 
and viable.  

5.4.1 Life cycle sustainability assessment (LCSA) 
LCA can be used to assess many different types of environmental impact. For 
example, the ReCiPe LCIA method offers 18 mid-point indicators; ozone 
depletion, terrestrial acidification, freshwater eutrophication, marine 
eutrophication, human toxicity, photochemical oxidant formation, particulate 
matter formation, terrestrial ecotoxicity, freshwater ecotoxicity, marine 
ecotoxicity, ionising radiation, agricultural land occupation, urban land 
occupation, natural land transformation, water depletion, mineral resource 
depletion and fossil fuel depletion (Goedkoop et al., 2009). 

Methods have also been suggested for assessing the impact on soils in terms of 
soil fertility (Garrigues et al., 2012), biodiversity due to land use (e.g. Milá i 
Canals et al., 2007; Schmidt, 2008; de Baan et al., 2012) and water use (e.g. 
Bayart et al., 2010; Berger and Finkbeiner, 2010; Ridoutt et al., 2012; Ridoutt & 
Pfister, 2013). It is especially important to include environmental indicators that 
risk being in conflict in a sustainability assessment. LCA studies on livestock 
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production have shown that the CF can function reasonably well as a proxy for 
land use, eutrophication and acidification potential, but that there are risks of 
conflict when it comes to primary energy use, toxicity and biodiversity (Röös et 
al., 2013). However, local impact categories such as eutrophication and 
acidification are highly site-specific and the actual impact can differ substantially 
from the potential impact calculated in the LCA study.  

A unique feature of livestock systems that distinguishes them from crop 
production and industrial production systems is that they involve living, sentient 
beings. Hence, the aspect of animal welfare cannot be omitted when designing 
sustainable livestock systems. Healthy animals which produce meat, eggs and milk 
efficiently are favourable both for low CF and for animal welfare, while access to 
pasture and outdoor runs can increase feed consumption and hence increase CF. 
Breeding for fast growth and high yield decreases the CF of livestock products, 
but leads to health implications, e.g. leg problems. Methods for incorporating 
animal welfare aspects into LCA are being discussed, but have not so far been 
used (Blonk et al., 2010).    

Recent developments in LCA offer ways of assessing the social impacts of a 
product from a life cycle perspective, e.g. Social Life Cycle Assessment (SLCA), 
(Kruse, 2010), and economic performance can be assessed using tools such as Life 
Cycle Costing (LCC). A combination of these tools with the classic environmental 
LCA forms the concept of Life Cycle Sustainability Assessment (LCSA) 
(Heijungs et al., 2010).  

Although it is important to cover many aspects in a full sustainability 
assessment, it is not necessary to cover all aspects in the same model or study, as 
the model can become too complex to verify and understand and the results too 
complex to interpret. Hence, isolating the aspect of climate change and studying 
the CF only in a study can be highly valuable as long as it is not used in isolation 
to make important policy decisions.     

5.4.2 Limitations with LCA, SLCA and LCC 
Although LCA offers methodology to assess the environmental and social impact 
of products, it does not offer a way of determining whether a product is 
sustainable. Unlike e.g. the Ecological Footprint methodology, LCA does not 
provide a reference value of sustainability (Acosta-Alba & van der Werf, 2011). 
The fact that a product has a low impact per product unit compared with other 
products does not mean that the product is sustainable, as that depends on the scale 
of usage of the product. Emission reductions per product from improvements in 
production will not lead to absolute reductions if consumption is increased.  

Garnett (2009) outlines three limitations with using LCA in developing 
livestock policy strategies, namely the omission to include: 1) indirect second 
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order effects; 2) the opportunity cost of using land; and 3) how much people need 
livestock products at all. Recent developments in LCA, and especially CLCA, 
have provided ways of including indirect effects in LCA, e.g. the effect of LUC on 
the CF as described in section 4.5, so the first criticism by Garnett (2009) is now 
less relevant. However, the other two points are still highly relevant. Few studies 
consider alternative uses of land, feed and by-products if not used for livestock 
production (opportunity cost), or to what extent society needs livestock products 
such as meat, eggs and milk, as well as e.g. manure and leather, or whether these 
functions can be provided by production systems that cause lower GHG emissions. 
By including such concerns into sustainability assessment of livestock, one might 
come to the conclusion that rearing animals on land and by-products not suitable 
production of crops for human consumption is the only sustainable way forward 
(Garnett, 2009).   

de Boer et al. (2011) reviewed the main mitigation options from a life cycle 
perspective for reduced GHG emissions from livestock production and found 
several externalities that need to be considered. For example, animal welfare might 
suffer from breeding focused on increased production traits such as growth rate 
and milk production. Increased irrigation to increase biomass production, and 
hence yields and carbon sequestration in soils, might lead to freshwater depletion. 
Furthermore, de Boer et al. (2011) and Garnett (2009) mention that accounting for 
e.g. competition for land between grain for human consumption and animal feed 
might point towards producing beef on marginal land and feeding only by-
products to monogastric animals. They also highlight the need for more 
interdisciplinary research that includes the cause-effect chain, i.e. consequential 
life cycle sustainability assessment in which traditional environmental CLCA is 
supplemented by social and economic aspects. 

Depending on the decision at hand, other indicators than those provided within 
the current LCA framework can offer valuable additional insights when 
developing sustainable livestock systems. A few such indicators are briefly 
outlined below.  
 
Human edible protein (or energy) out divided by human protein (or energy 
in). This indicator offers a way of assessing to what extent the feed production in 
livestock systems competes for land with human food. As competition for land and 
the demand for food increases, this is an important indicator of efficient land use. 
Efficient land use for food production is important for freeing up land that could 
be used for either bioenergy production and hence decreasing global warming, 
and/or for more extensive production or wildlife conservation, with benefits for 
biodiversity. Using this indicator, Wilkinson (2011) showed that milk production 
and upland beef production were more efficient systems for producing protein than 
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pork and poultry, due to the large amount of grass in the diet of the ruminants. 
However, that study did not consider that some grassland might be suitable for 
bioenergy production. The grass as a resource for livestock feed is only truly ‘for 
free’ when there is no other competition for the grass.  
 
Renewable energy to society per kg product. Agriculture has the unique 
possibility to mitigate global warming caused by the energy and transport sectors 
through the production of renewable energy, as has been proposed in several 
studies covering the GHG emissions reduction potential from the agricultural 
sector (e.g. SBA, 2012). Renewable energy can be produced in agriculture in the 
form of biogas from manure, crop residues and ley crops, solid bioenergy from 
short-rotation coppice and trees in pastures or on marginal land, liquid biofuels 
from grain, oil crops, by-products or solid biomass, as well as from wind and solar 
power. In a study commissioned by the Swedish Board of Agriculture, the GHG 
emissions reduction benefit of producing bioenergy in the form of trees on pasture 
was subtracted from the CF of lamb and beef meat and it was shown that the 
benefits of the bioenergy replacing fossil fuels could almost entirely compensate 
for the emissions from animal production (SBA, 2011). However, according to 
LCA methodology, different production systems should be kept separate, in this 
case the meat and the bioenergy production systems. Otherwise strange results 
might be obtained and the risk of double counting is great. In this case the 
bioenergy produced would ‘emit’ as much as fossil fuels when burned, since it is 
burdened with part (or all) of the emissions from animal production. Therefore, to 
reward farms which invest in renewable energy production, it could be wiser to 
use a separate indicator such as ‘renewable energy to society per kg of product’ to 
account for bioenergy production at farm level. Note, however, that this needs to 
be ‘new’ energy production and not existing bioenergy outtake of e.g. existing 
forest land. Defining what can be considered ‘new’ energy will be challenging.            
 
‘New’ nitrogen per kg of product. Nitrogen losses from agricultural systems 
cause global warming and eutrophication. Hence, minimising nitrogen losses is 
crucial in sustainable agriculture. Nitrogen surpluses (added nitrogen minus 
removed nitrogen) per hectare or farm and nitrogen efficiency (added nitrogen 
divided by removed nitrogen) are important parameters that are commonly 
assessed. Another nitrogen-based indicator is the ‘new nitrogen per kg of product’, 
which is used in the Swedish Climate Certification for Food (Klimatcertifieringen, 
2012). It measures ‘new’ nitrogen added to the system, through mineral fertilisers 
or using nitrogen-fixing crops per kg of product produced, and has been included 
under the assumption that parts of all new nitrogen added to the ecosystem will be 
lost to air or water.  However, all use of nitrogen, old in the form of manure and 
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new, will give rise to nitrogen losses, so it is important to keep track of all nitrogen 
used, not only that newly added. 
 
Stocking density. The number of animals held per unit area of agricultural land, 
the stocking density, is important, since it determines the amount of manure that is 
generated in the area. High accumulation of nutrients on a restricted area of land 
increases the risk of eutrophication and water pollution due to nutrient run-off.  
 
Grazing pressure on semi-natural grassland. Many of the endangered and red-
listed species in Sweden and in Europe are found in the traditional mosaic 
agricultural landscape that is disappearing due to agricultural intensification and 
rationalisation, but also due the abandonment of agricultural land in less 
productive areas. Hence, keeping traditional semi-natural pastures grazed and 
conserving the traditional mosaic landscape has been identified as one of the most 
important measures for preserving biodiversity in Sweden and in many other parts 
of Europe (Henle et al., 2008). Hence, an indicator which shows e.g. the amount of 
land that will be grazed could be a relevant indicator, as could an indicator that 
shows the amount of landscape elements preserved that could act as refuges for 
different species. 
 
Sustainable use of antibiotics. Antibiotics are the main drug used to treat 
bacterial infections in animals and humans. Through incorrect and generous use of 
antibiotics, problems with antibiotic-resistant bacteria have become one of the 
most serious threats to human and animal health world-wide. Resistant bacteria 
and resistance genes in the environment spread between animals and humans. In 
some countries, antibiotics are administered to animals routinely as a preventative 
measure or to increase growth. In some regions, e.g. in the EU, this is not 
permitted. There are large differences in the use of antibiotics in livestock 
production. Hence, including some measure of the sustainable use of antibiotics is 
important when assessing the sustainability of livestock systems.  However, it is 
not straight-forward to compare the use of antibiotics across animal species and 
animals in different countries, since dosages and preparations differ across species 
and ways of treatment (Bondt et al., 2013), so careful thought is needed when 
designing an indicator for sustainable use of antibiotics in livestock production. 
 
Animal welfare. Until methods for incorporating animal welfare into LCA have 
been fully developed, assessing the impact on animal welfare outside the LCA 
framework is necessary. Possible conflicts between CF and animal welfare exist, 
as discussed in section 5.4.1, making it particularly important to include 
considerations of animal welfare in a full sustainability assessment.  
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Additional indicators and ways of evaluating the sustainability of livestock 
systems can be beneficial for illuminating various aspects of different production 
systems. However, the recipient of the information is still left with the difficult 
task of weighing different aspects together. The LCA methodology provides 
various ways of doing this, so it could be preferable if possible to stick to the LCA 
framework. However, not everything can be quantified and/or put into categories 
that fit the LCA framework, so LCSA will need to include qualitative judgments 
of some aspects, as well as separate indicators that complement the LCA. Other 
frameworks for assessing the sustainability of livestock production have also been 
developed, e.g. the sustainability index for beef production within the REKS 
project, which includes a large number of aspects related to the sustainability of 
beef production and also a method for weighting these (REKS, 2013). However, 
these are often targeted at one type of livestock only and do not offer the 
possibility to compare products or systems across animal and plant species. 
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6 Summary and conclusions 

6.1 The complexity of calculating the CF of livestock systems 
Production of livestock products gives rise to emissions of GHG from a number of 
different complex processes (Figure 33).   

 
Figure 33. Direct sources of greenhouse gas emissions from a livestock system (de Boer et al., 
2011). 

Calculating the product CF of livestock products and other food is a valuable 
exercise for arriving at an estimate of the climate impact of different products and 
production systems. By including GHG emission sources from all stages in the life 
cycle of the product, including pre-farm, on-farm and post-farm processes, as well 
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as in-direct effects, sub-optimisation and pollution swapping can be avoided when 
striving for lowered GHG emissions. By surveying different livestock systems in 
detail, knowledge about the environmental impact of the system is often greatly 
increased. By putting a value on the environmental impact, the sustainability of 
livestock systems becomes more tangible and concrete. 

The complexity and diversity of livestock systems themselves are great. 
Emissions from processes directly associated with livestock production are mainly 
N2O emissions from soils, emissions and sequestration of CO2 in soils, CH4 from 
enteric fermentation, N2O and CH4 emissions from manure management and CO2 

from energy consumption. Such emissions, except those from fossil energy 
consumption, arise from highly variable biological processes, which are difficult 
to measure and model. Methods used currently for quantifying GHG emissions 
only include parts of the cause-effect chain and have been developed using 
uncertain and variable input data. Methods for estimating indirect emissions, 
above all those from land use change, are also highly uncertain and there is lack of 
consensus as to how these changes should be modelled. With increased 
measurements of GHG and continued development of models, the capacity to 
produce increased robustness in estimations is high. 

The diversity in management practices and in non-controllable parameters 
which influence emissions, e.g. climate conditions and soil characteristics, in 
agriculture is great. Hence, the variability in e.g. yields, fertiliser application in 
feed production, feeding strategies, manure management etc. is great. Scenario 
choices in modelling the livestock system introduce additional uncertainty in the 
calculation of the CF, e.g. how system boundaries are drawn and how allocation 
between different co-products is handled. Depending on the time perspective used 
for calculating GWP (e.g. 20, 100 or 500 years), the results can greatly vary.  
Figure 34 illustrates how different types of uncertainty are aggregated in CF 
calculations.  
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Figure 34. Many and different types of uncertainties contribute to the final uncertainty in the carbon 
footprint of livestock products. 

Uncertainty can be reduced through improved models and data collection, while 
variation in e.g. yields and management principles is an inherent property of a 
system and cannot be reduced. In livestock systems, this variation can be larger 
than the measurement uncertainty, so uncertainty in the final CF can only be 
reduced to a certain limit. Therefore, it is in most cases important to illustrate and 
discuss uncertainty in the results. If uncertainties are handled in an appropriate 
manner and results used taking uncertainty and modelling assumptions into 
account, CF is a very valuable measurement of the climate impact of livestock 
products despite the high uncertainties associated with several of the processes.   

Highly uncertain sources of emissions which arise from fundamentally different 
processes, such as emissions from land use change and ‘negative emissions’ due to 
carbon sequestration in soils, should be reported separately. However, it is 
important to include these highly uncertain sources, since they make a 
considerable contribution to overall emissions in many cases.  

6.2 Input data uncertainties and variability 
Uncertainty and variability in input data collected from farms directly, from 
agricultural statistics at local, regional or national scale, or chosen hypothetically 
in order to evaluate future scenarios can be propagated though the CF model using 
stochastic modelling, e.g. Monte Carlo simulation. By using stochastic modelling, 
an uncertainty range can be established for the CF showing the uncertainty in the 
end result due to uncertainty and variability in the input data.  
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The stochastic modelling process is straight-forward. The CF value is calculated 
a large number of times, each time randomly drawing different values for the input 
parameter from probability distributions describing the uncertain input data. 
However, finding probability distributions for different types of input data can be 
highly challenging and time-consuming. It is also very important to consider 
correlations between systems, since failing to do so will overestimate uncertainty. 
In particular, when systems are being compared it is important to account for 
correlations, e.g. if two systems using the same mineral fertilisers are being 
compared, the system using less fertiliser will cause less emissions from the 
production of fertiliser, regardless of how uncertain the estimate of emissions from 
fertiliser production happens to be. This illustrates that in some cases it is possible 
to draw solid conclusions despite large uncertainties and without performing 
uncertainty assessment.  

6.3 Modelling choices and uncertainty 
When calculating the CF of livestock products, emissions from agriculture need to 
be modelled, since it is very expensive and difficult to measure them directly. 
There are a number of methods available for estimating e.g. soil emissions, 
emissions from enteric fermentation and manure and emissions from LUC. 
Choosing a specific method to use introduces uncertainty due to model choice into 
the CF calculation. In addition, the method itself is an uncertain representation of 
reality.  

Table 10 presents examples of the uncertainty in major sources of GHG from 
livestock production. A detailed description of these is given in Chapter 4. Except 
for emissions from energy use, the uncertainty in models and for different model 
choices is large for all processes. Uncertainty in model parameters can be 
propagated to the end CF result using stochastic simulation just as for input data 
uncertainty (section 6.2). By performing sensibility analysis and testing different 
models in comparisons of different systems or products, the robustness of the 
results can be investigated. For example, if one system performs better for all 
model choices, the result of identifying this system as better is robust. If the 
outcome depends on the method chosen for assessing emissions, the result has to 
be interpreted with great care. 
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Table 10. Examples of uncertainty in major sources of greenhouse gases in the assessment of the 
carbon footprint of livestock products. 

Methodological choices 
related to emissions sources 

Methods used in LCA  Example of uncertainty in 
commonly used emission factors 

N2O from soil IPCC coarse method, several 
empirical and mechanistic models 
available but with limited use in LCA 
due to limited data availability and 
great variation in emissions  

IPCC direct emissions:   
 -70% - +200% 
IPCC indirect, volatilisation:  
-80% - +400%  
IPCC indirect leakage:  
-50% - +150% 

CO2 to/from soil Several methods suggested, great 
variation, no consensus, differing 
opinions on if and how to include 
carbon sequestration on the CF 

 

CH4 enteric fermentation IPCC method for dairy, very coarse 
for other ruminants, several empirical 
and mechanistic models available but 
with limited use due to limited data 
availability 

kg CH4 per cow and year, milk 
yield 10,000 kg ECM/year: 
Lindgren, 1980: 136  
IPCC Tier 2, 2006: 148 

Kirchgessner et al., 1991: 118  
N2O and CH4 from manure IPCC method, empirical and 

mechanistic models available but 
with limited use due to limited data 
availability 

Uncertainty range IPCC EF for: 
CH4 from liquid storage: ±20% 
N2O solid storage: -50%-+100%  

Land use change Several methods suggested, great 
variation, no consensus 

LUC factor for Brazilian 
soybean, kg CO2e per kg 
soybean meal: 
Leip et al., 2010: 1.5, 3.1 or 
10.51 
Gerber et al, 2010: 7.7  
Ponsien & Blonk, 2012: 3.7 

Energy use Usually minor importance for 
ruminants, modelling electricity 
production (mix/marginal), biofuels 
associated with several of the 
uncertainty sources listed here 

 

1 Three scenarios are used to describe the type of land converted: only grassland (1.5), only forest (10.5) or a mix 
(3.1) 

6.4 Scenario choices in LCA modelling 
In addition to the uncertainty arising from input data uncertainty and variability 
and model uncertainty when calculating the CF, uncertainty is also introduced 
from choices associated with how the system is modelled. Although several 
standards for calculating the CF exist, which regulate some of the modelling 
choices, the application of these is still scarce. This is partly because several of the 
standards are new, but another reason behind the lack of widespread use is that it 
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is very difficult to design a standard that fulfils the needs of all types of studies. 
How a livestock system is modelled, e.g. where system boundaries are drawn, how 
allocation between co-products is handled and whether the study is performed as 
an attributional LCA, ‘accounting’ emissions evenly on all the world’s products, 
or as an consequential LCA, looking at marginal changes and processes actually 
affected by an increased demand for the product, depends on the purpose of the 
study. Further examples of methodological choices when calculating the CF of 
livestock systems are given in Table 11 and these choices were addressed in detail 
in Chapter 2. 

How different modelling choices affect the end CF result can be assessed using 
sensitivity analysis, in which different model choices are tested and the results 
compared.  

Table 11. Examples of methodological choices when calculating the carbon footprint of livestock 
products 

Methodological choices 
LCA 

Examples  

Goal and scope of the study Case study on one farm, national/global/regional average of the 
livestock sector, average milk/beef/pork/chicken/egg CF, comparison 
between different types of production systems/diets/manure handling 
systems 

Functional unit Per kg, per kg protein, nutritional index, live weight, carcass weight or 
bone-free meat 

System boundaries Indirect effects, opportunity cost from using land, boundaries with 
nature e.g. carbon sequestration and the surrounding technical system 
e.g. inclusion of capital goods 

Allocation System expansion, economic or physical allocation, e.g. between milk 
and meat, and between vegetable oil and oilseed meal 

Data collection Using farm level data or local, regional or national statistics, time period 
for data collection, use of databases for background data etc. 

Type of LCA Attributional (ALCA) or consequential (CLCA) 
Time perspective GWP 20, 100 or 500 year perspective e.g. characterisation factor for methane: 

20 years: 72, 100 years: 25, 500 years: 7.6 

  

6.5 Presenting uncertainty and sensitivity analyses 
Results from uncertainty and sensitivity analyses can be presented using bar 
diagrams with uncertainty ranges, histograms, cumulative distribution functions, 
tornado diagrams, text and tables (section 3.4). The results should be presented in 
such a way that the uncertainty in results is reflected, e.g. it is seldom possible to 
present the CF of livestock products to more than two significant digits.  
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6.6 Sustainable livestock systems 
Climate change is one of the most severe challenges facing humanity. However, 
there are several other pressing environmental issues that need to be included in a 
full sustainability assessment of livestock production, as well as economic and 
social aspects, not least animal welfare and the sustainable use of antibiotics. Life 
cycle sustainability assessment (LCSA) shows promising progress in including 
both economic and social aspects as well as a wide array of environmental 
categories, including categories such as biodiversity impact and impacts on soil 
fertility, which have been challenging to quantify. However, to capture some 
aspects, especially related to the efficient use of land and other resources, other 
indicators (e.g. human edible protein out divided by human edible protein in, or 
renewable energy to society per kg of product produced), might provide additional 
information.   

6.7 Conclusions 
 
Despite the progress in research about GHG emissions in the past decade, the 
estimation of GHG emissions from livestock production systems is highly 
uncertain. The CF of a livestock product is an estimate of the magnitude of GHG 
emissions under the conditions formulated in the study. It is a great tool for 
preventing pollution swapping when identifying mitigation options and for 
identifying what is large and small. However, a CF value should not be presented 
as a single number and especially not to several significant digits. It should be 
presented together with results from relevant uncertainty and sensitivity analysis. 
Policy decisions and mitigation options should only be based on results that are 
robust and consistent under a wide range of scenarios. 

The CF does not take into account the aspect of need or scale. Just because a 
livestock product has a lower CF than another livestock product does not mean 
that it is low enough. It is also important to take alternative ways of delivering the 
same function (nutrition, pleasure, tradition etc.) into account. Furthermore, in a 
full sustainability assessment of livestock production, the CF is only one part. 
Other environmental aspects, as well as economic and social sustainability, need to 
be considered.   

Last, but not least, care must be taken to design studies that give answers to 
relevant questions and at the same time be aware of the limitations in science. The 
reductions in GHG emissions needed to reach global climate goals are enormous. 
Since environmental assessments and detailed analyses are time-consuming and 
costly, it is important that studies focus on solutions and approaches that could 
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bring about the major changes necessary in food production and consumption to 
achieve a sustainable food supply system.  
  



109 
 

References 
Acosta-Alba I, van der Werf H, 2011. The Use of Reference Values in Indicator-Based Methods for 

the Environmental Assessment of Agricultural Systems. Sustainability 3, 424-442. 
Arrouays D, Balesdent J, Germon JC, Jayet PA, Soussana JF, Stengel P, 2002. Contribution à la lutte 

contre l’effet de serre. Stocker du carbone dans les sols agricoles de France? Expertise 
scientifique collective. Rapport INRA 332p 

Audsley E, Brander M, Chatterton J, Murphy-Bokern D, Webster C, Williams A, 2009. How low can 
we go? An assessment of greenhouse gas emissions from the UK food system and the scope to 
reduce them by 2050. FCRN-WWF-UK.  

Baker J, Lepech M, 2007. Treatment of uncertainties in life cycle assessment. Stanford University, 
Stanford, USA  

Basset-Mens C, Kelliher F, Ledgard S, Cox N, 2009. Uncertainty of global warming potential for 
milk production on a New Zealand farm and implications for decision making. International 
Journal of LCA 14, 630-638 

Bayart J-P, Bulle C, Deschênes L, Margni M, Pfister S, Vince F, Koehler A, 2010. A framework for 
assessing off-stream freshwater use in LCA. International Journal of LCA 15, 439-453 

Beauchemin K, Kreuzer M, O’Mara C, McAllister T, 2008. Nutritional management for enteric 
methane abatement: a review. Australian Journal of Experimental Agriculture 48, 21–27 

Berger M, Finkbeiner M, 2010. Water Footprinting: How to address water use in Life Cycle 
Assessment? Sustainability 2, 919-944 

Berglund M, Cederberg C, Clason C, Henriksson M, Törner L, 2009. Jordbrukets klimatpåverkan – 
underlag för att beräkna växthusgasutsläpp på gårdsnivå och nulägesanalyser av exempelgårdar. 
Delrapport JOKER-projektet. Hushållningssällskapet Halland. 

Beven KJ, 2009. Enviromental Modelling: An Uncertain Future? Routledge, Oxon 
Beven K, Binley A, 1992. The future of distributed models: model calibration and uncertainty 

prediction. Hydrological Processes 6, 279-298 
Björklund A, 2002. Survey of approaches to improve reliability in LCA. International Journal of 

LCA 7, 64–72 
Blonk H, Marinussen M, Goedkoop M, 2010. Developing an LCA based consumer guide for 

environmental and animal welfare performance of meat/animal products. Proceedings of LCA 
Food 2010, 381-386 

Bojacá C, Schrevens E, 2010. Energy assessment of peri-urban horticulture and its uncertainty: Case 
study for Bogota, Colombia. Energy 35, 2109-2118 

Bondt N, Frøkjær Jensen V, Puister-Jansen LF, van Geijlswijk IM, 2013. Comparing antimicrobial 
exposure based on sales data. Preventive Veterinary Medicine 108, 10-20 



110 
 

Bouwman A, Boumans L, Batjes N, 2002. Emissions of N2O and NO from fertilized fields: 
Summary of available measurement data. Global Biogeochemical Cycles 16, 1-13 

BSI, 2011. PAS 2050:2011 Specification for the assessment of the life cycle greenhouse gas 
emissions of goods and services. British Standards Institution, London 

BSI, 2012. PAS 2050-1:2012 Assessment of life cycle greenhouse gas emissions from horticultural 
products. Supplementary requirements for the cradle to gate stages of GHG assessments of 
horticultural products undertaken in accordance with PAS 2050. British Standards Institution, 
London 

Cederberg C, Persson U, Neovius K, Molander S, Clift R, 2011. Including carbon emissions from 
deforestation in the carbon footprint of Brazilian beef. Environmental Science and Technology 
45, 1773–1779 

Cederberg C, Sonesson U, Henriksson M, Sund V, Davis J, 2009. Greenhouse gas emissions from 
production of meat, milk and eggs in Sweden 1990 and 2005. SIK Report 793. Swedish Institute 
for Food and Biotechnology, Gothenburg, Sweden 

Cederberg C, Stadig M, 2003. System expansion and association in life cycle assessment of milk and 
beef production. International Journal of LCA 8, 350-356 

Coleman K, Jenkinson DS, 1996. RothC-26.3 – A model for the turnover of carbon in soil. In 
Evaluation of Soil Organic Matter Models, Ed. DS Powlson, P Smith and JU Smith., pp. 237–
246, Springer-Verlag, Berlin 

Crutzen P, Mosier A, Smith K, Winiwarter W, 2008. N2O release from agro-biofuel production 
negates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics 
8, 389–395 

Curran M A, 2013. Assessing environmental impacts of biofuels using lifecycle-based approaches. 
Management of Environmental Quality: An International Journal 24, 34 – 52 

Dalgaard R, Schmidt J, Halberg N, Christensen P, Thrane M, Pengue W, 2008. LCA of soybean 
meal. International Journal of LCA 13, 240–254 

Dalgaard R, 2007. The environmental impact of pork production from a life cycle perspective. Ph.D. 
Thesis. University of Aarhus, Department of Agroecology and Environment, Tjele & Aalborg 
University, Department of Development and Planning, Aalborg East, Denmark 

Davis J, Sonesson U, Flysjö, A, 2006. Lokal produktion och konsumtion av baljväxter i Västra 
Götaland. (”Local production and consumption of legumes in Western Götaland”). SIK Report 
756. Swedish Institute for Food and Biotechnology, Gothenburg, Sweden 

de Baan L, Alkemade R, Koellner T, 2012. Land use impacts on biodiversity in LCA: a global 
approach. The International Journal of Cycle Assessment. Published online: DOI 
10.1007/s11367-012-0412-0. 

de Boer IJM, Cederberg C, Eady S, Gollnow S, Kristensen T, Macleod M, Meul M, Nemecek T, 
Phong LT, Thoma G, van der Werf HMG, Williams AG, Zonderland-Thomassen MA, 2011. 
Greenhouse gas mitigation in animal production: towards an integrated life cycle sustainability 
assessment. Environmental Sustainability 3, 423-431 

de Vries M, de Boer IJM, 2010. Comparing environmental impacts for livestock products: A review 
of life cycle assessments. Livestock Science 128, 1-11 

DG Energy, 2010. The impact of land use change on greenhouse gas emissions from biofuels and bi-
oliquids. Literature review. An in-house review conducted for DG Energy as part of the Euro-
pean Commission's analytical work on indirect land use change. 

Di Lucia L, Ahlgren S, Ericsson K, 2012.  The dilemma of indirect land-use changes in EU biofuel 
policy – An empirical study of policy-making in the context of scientific uncertainty. 
Environmental Science & Policy 16, 9-19 

http://www.sciencedirect.com/science/article/pii/S1877343511000856
http://www.sciencedirect.com/science/article/pii/S1877343511000856
http://www.sciencedirect.com/science/article/pii/S1462901111001754
http://www.sciencedirect.com/science/article/pii/S1462901111001754


111 
 

Eckard R, Grainger C, de Klein C, 2010. Options for the abatement of methane and nitrous oxide 
from ruminant production: A review. Livestock Science 130, 47–56 

Ecoinvent Centre, 2012. ecoinvent data, Swiss Centre for Life Cycle Inventories, Dübendorf, 
Switzerland, available at: http://www.ecoinvent.ch [13-04-10] 

Ellis J, Bannink A, Dijkstra J, Parsons A, Rasmussen S., Edwards G, Kebreab E, France J, 2009. A 
modelling approach to evaluate the feeding of high sugar grasses to cattle: Nitrogen and methane. 
Canadian Journal of Animal Science 89, 532–533 

Ellis J, Bannink A, France J, Kebreab E, Dijkstra J, 2010. Evaluation of enteric methane prediction 
equations for dairy cows used in whole farm models. Global Change Biology 16, 3246–3256 

Ellis J, Dijkstra J, Kebreab E, Bannink A, Odongo N., McBride B, France J. 2008. Aspects of rumen 
microbiology central to mechanistic modelling of methane production in cattle. Journal of 
Agricultural Science 146, 213-233 

Ellis J, Kebreab E, Odondo N, McBride B, Okine E, France J, 2007. Prediction of methane 
production from dairy and beef cattle. Journal of Dairy Science 90, 3456–3467 

EPD, 2013. The international EPD (Environmental Product Declaration) system – a communications 
tool for international markets. Available at http://www.environdec.com/sv/ [13-05-17] 

Eriksson M, Ahlgren S, 2013. LCAs of petrol and diesel - a literature review. Report 2013:058. 
Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, 
Sweden. 

FAO, 2001. Global estimates of gaseous emissions of NH3, NO and N2O from agricultural land. 
International fertilizer industry association. Food and Agriculture Organization of the United 
Nations, Rome, Italy 

FAO, 2009. How to Feed the World in 2050. High Level Expert Forum. Food and Agriculture 
Organization of the United Nations, Rome, Italy 

Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P, 2008. Land clearing and the biofuel carbon 
debt. Science 319, 1235-1238 

Finnveden G, 2008. A world with CO2 caps. Electricity production in on sequential assessments. 
International Journal of Life Cycle Assessment 13, 365–367 

Firestone M, Davidson A, 1989. Microbiological basis of NO and N2O production and consumption 
in soil. Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere, 7-21 

Flysjö A, Cederberg C, Henriksson M and Ledgard S, 2012. The interaction between milk and beef 
production and emissions from land use change – critical considerations in life cycle assessment 
and carbon footprint studies of milk. Journal of Cleaner Production 28, 134-142 

Flysjö A, Cederberg C, Strid I, 2008. LCA-databas för konventionella fodermedel - miljöpåverkan i 
samband med produktion. SIK-Report 772. Swedish Institute for Food and Biotechnology, 
Gothenburg, Sweden 

Foley J, Asner G, Heil Costa M, Coe M, DeFries R, Gibbs H, Howard E, Olson S, Patz J, 
Ramankutty N, Snyder P, 2007. Amazonia revealed: forest degradation and the loss of ecosystem 
goods and services in the Amazon Basin. Frontiers in Ecology and the Environment 5, 25–32 

Food SCP, 2012. ENVIFOOD Protocol. Environmental Assessment of Food and Drink Protocol. 
Draft version 0.1. European Food Sustainable Consumption and Production Round Table, 
Brussels. Available at http://www.food-
scp.eu/files/consultation4/ENVIFOOD_Protocol_November_2012.pdf [13-07-16] 

Freibauer A, Rounsevell M, Smith P, Verhagen J, 2004. Carbon sequestration in the agricultural soils 
of Europe. Geoderma 122, 1-23 

Garrigues E, Corson MS, Angers DA, van der Werf HMG, Walter C, 2012. Soil quality in Life Cycle 
Assessment: Towards development of an indicator. Ecological Indicators 18, 434-442 

http://www.ecoinvent.ch/
http://www.environdec.com/sv/


112 
 

Garnett T, 2009. Livestock-related greenhouse gas emissions: impacts and options for policy makers. 
Environmental Science & Policy 12, 491-503 

Garnett T. 2011. Where are the best opportunities for reducing greenhouse gas emissions in the food 
system (including the food chain)? Food Policy 36, 23–32 

Garnsworthy P.C, Craigon J, Hernandez-Medrano J.H., Saunders N, 2012. On-farm methane 
measurements during milking correlate with total methane production by individual dairy cows. 
Journal of Dairy Science 96, 2476–2493 

Gerber P, Vellinga T, Opio C, 2010. Greenhouse Gas Emissions from the Dairy Sector. A Life Cycle 
Assessment. Food and Agriculture Organization of the United Nations, Rome, Italy 

Gibbons J, Ramsden S, Blake A, 2006. Modelling uncertainty in greenhouse gas emissions from UK 
agriculture at the farm level. Agriculture, Ecosystems & Environment 112, 347-355 

Global Carbon Project, 2013. Global Carbon Budget Highlights. Available at: 
http://www.globalcarbonproject.org/carbonbudget/12/hl-full.htm [13-02-18] 

Goedkoop MJ, Heijungs R, Huijbregts M, De Schryver A, Struijs J, Van Zelm R, 2009. ReCiPe 
2008—a life cycle impact assessment method which comprises harmonised category indicators at 
the midpoint and the endpoint level; First edition Report I: Characterisation, first edition 
(revised), July 2012. Available at http://www.lcia-recipe.net [13-04-10] 

Halberg N, Hermansen J, Kristensen I, Eriksen J, Tvedegaard N, Petersen B, 2010. Impact of organic 
pig production systems on CO2 emission, C sequestration and nitrate pollution. Agronomy for 
Sustainable Development 30, 721–731 

Hallström E, Röös E, Börjesson P, 2013. Sustainable meat consumption- a quantitative analysis of 
nutritional intake, climate impact and land use from a Swedish perspective. Submitted to Food 
Policy. 

Hallström E, Börjesson P, 2012. Sustainable meat consumption to meet climate and health goals- 
Implications of variations in consumption statistics. Proceedings from the 8th International 
Conference on Lifecycle Assessment in the Agri-food Sector, Oct 1-4 2012, St Malo, France 

Heijungs R, Huppes G, Guinée J, 2010. Life cycle assessment and sustainability analysis of products, 
materials and technologies. Toward a scientific framework for sustainability life cycle analysis. 
Polymer Degradation and Stability 95, 422–428  

Heijungs R, Huijbregts MAJ, 2004. A review of approaches to treat uncertainty in LCA. Proceedings 
of  the IEMSS conference, Osnabruck. 

Hendrickson C, Lave L, Matthews S, 2006. Environmental Life Cycle Assessment of Goods And 
Services: An Input-Output Approach. Routledge, Taylor & Francis Group, London, ISBN-10: 
1933115246. 

Henle K, Alard D, Clitherow J, Cobb P, Firbank L, Kull T, McCracken D, Moritz R, Niemelä J, 
Rebane M, Wascher D, Watt A, Young J, 2008. Identifying and managing the conflicts between 
agriculture and biodiversity conservation in Europe–A review. Agriculture, Ecosystems & 
Environment 124, 60-71 

Henriksson M, Flysjö A, Cederberg C, Swensson C, 2011. Variation in carbon footprint of milk due 
to management differences between Swedish dairy farms. Animal 5, 1474-1484 

Houghton RA, 2012. Carbon emission and the drivers of deforestation and forest degradation in the 
tropics. Current Opinion in Environmental Sustainability 4, 597-603  

Höglund J, Ahlgren S, Grahn M, Sundberg C, et. al., 2013. Biofuels and land use in Sweden – An 
overview of land use change effects. The Swedish Knowledge Centre for Renewable 
Transportation Fuels and Foundation, Sweden. Available at www.f3centre.se [13-07-35] 

Huijbregts M, 1998. Application of uncertainty and variability in LCA. Part I: A general framework 
for the analysis of uncertainty and variability in Life Cycle Assessment. International Journal of 
LCA 3, 273–280 

http://www.sciencedirect.com/science/article/pii/S1462901109000173
http://www.globalcarbonproject.org/carbonbudget/12/hl-full.htm
http://miljo.lth.se/fileadmin/miljo/personal/Elinor/Sustainable_meat_consumption_to_meet_climate_and_health_goals.pdf
http://miljo.lth.se/fileadmin/miljo/personal/Elinor/Sustainable_meat_consumption_to_meet_climate_and_health_goals.pdf
http://www.sciencedirect.com/science/journal/01413910
http://www.sciencedirect.com/science/article/pii/S0167880907002319
http://www.sciencedirect.com/science/article/pii/S0167880907002319
http://www.f3centre.se/


113 
 

IDF, 2010. International Dairy Federation. A common carbon footprint for dairy, The IDF guide to 
standard lifecycle assessment methodology for the dairy industry. International Dairy Federation, 
Brussels  

IFPRI, 2011. Assessing the Land Use Change Consequences of European Biofuel Policies, Final 
report by Laborde D, ATLASS Consortium. 
http://www.ifpri.org/sites/default/files/publications/biofuelsreportec2011.pdf 

Imbeault-T´etreault H, Jolliet O, Deschênes L, Rosenbaum R, 2013. Analytical propagation of 
uncertainty in life cycle assessment using matrix formulation. Journal of Industrial Ecology. 
DOI: 10.1111/jiec.12001 

IPCC, 2006. IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4. Agriculture, 
Forestry and Other Land Use. Intergovernmental Panel on Climate Change, Geneva 

IPCC, 2007a. Climate Change 2007: Mitigation of Climate Change .  Exit EPA Disclaimer 
Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental 
Panel on Climate Change B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds). 
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA 

IPCC, 2007b. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental 
Panel on Climate Change. Climate Change 2007: Working Group I: The Physical Science Basis. TS.2.5 
Net Global Radiative Forcing, Global Warming Potentials and Patterns of Forcing. Available at 
http://www.ipcc.ch/publications_and_data/ar4/wg1/en/tssts-2-5.html [13-07-13] 

ISO, 2006a. ISO 14040 International Standard. In: Environmental management – Life cycle 
assessment – Principles and framework. International Organization for Standardization, Geneva 

ISO, 2006b. ISO 14040 International Standard. In: Environmental management – Lifecycle 
assessment – Requirements and guidelines. International Organization for Standardization, 
Geneva 

Jansson P-E, Karlberg L, 2004. Coupled heat and mass transfer model for soil-plant atmosphere 
systems TRITA-LWR report 3087. Royal Institute of Technology, Dept. of Land and Water 
Resources Engineering Stockholm, Sweden 

Johnson J, Archer D, Barbour N, 2010. Greenhouse gas emission from contrasting management 
scenarios in the northern corn belt. Soil Science Society of America Journal 74, 396-406 

Johnson K, Johnson D, 1995. Methane emissions from cattle. Journal of Animal Science 73 (8), 
2483-2492 

Juston JM, 2012. Environmental modelling: Learning from uncertainty. PhD thesis, Royal Institute 
of Technology (KTH), Stockholm, Sweden 

Kasimir Klemedtsson Å, Smith K, 2011. The significance of nitrous oxide emission due to cropping 
of grain for biofuel production: a Swedish perspective. Biogeosciences 8, 3581–3591 

Kätterer T, Andrén O, 1999. Long-term agricultural field experiments in Northern Europe: analysis 
of the influence of management on soil carbon stocks using the ICBM model. Agriculture, 
Ecosystems and Environment 72, 165-179 

Kebreab E, France J, McBride B, Odongo N, Bannink A, Mills J, Dijkstra J, 2006. Evaluation of 
models to predict methane emissions from enteric fermentation in North American dairy cattle. In 
Nutrient Digestion and Utilization in Farm Animals, Modelling Approaches (Eds E. Kebreab, J. 
Dijkstra, A. Bannink, W. J. J. Gerrits & J. France), Wallingford: CABI Publishing. 

Kernebeek H, Oosting S, de Boer, I, 2012. Comparing the environmental impact of human diets 
varying in amount of animal-source food – the impact of accounting for nutritional quality. 
Proceedings from the 8th International Conference on Lifecycle Assessment in the Agri-food 
Sector, Oct 1-4 2012, St Malo, France 

http://www.ifpri.org/sites/default/files/publications/biofuelsreportec2011.pdf
http://www.ipcc.ch/publications_and_data/ar4/wg1/en/tssts-2-5.html


114 
 

Kirchgessner M, Windisch W, Müller H, 1995. Nutritional factors for the quantification of methane 
production. In: Ruminant physiology: digestion, metabolism, growth and reproduction. Editors: 
von Engelhardt W, Leonhard-Marek S, Breves G, Giesecke D. pp. 333-348  

Kirchgessner M, Windisch W, Müller H, Kreuzer M, 1991. Release of methane and of carbon 
dioxide by dairy cattle. Agribiological Research 44, 2-3  

Klemedtsson L, Kasimir Klemedtsson Å, Moldan F, Weslien P, 1997. Nitrous oxide emission in 
Swedish forest soils in relation to liming and simulated increased N-deposition. Biology and 
Fertility of Soils 25, 290-295 

Klimatcertifieringen, 2012. Klimatcertifiering för mat (“Climate Certification for Food”). Available 
at http://www.klimatmarkning.se [13-05-22]  

Kløverpris J, Baltzer K, Nielsen P, 2010. Life cycle inventory modelling of land use induced by crop 
consumption. Part 2: Example of wheat consumption in Brazil, China, Denmark and the USA. 
International Journal of LCA 15, 90-103 

Kruse SA, 2010. Inclusion of social aspects in Life Cycle Assessment of Food. In: Sonesson U, 
Berlin J, Ziegler F (ed) Environmental assessment and management in the food industry, 
Woodhead Publishing Limited, Cambridge, UK. 

Leip A, Weiss F, Wassenaar T, Perez I, Fellmann T, Loudjani P, Tubiello F, Grandgirard D, Monni 
S, Biala K, 2010. Evaluation of the Livestock Sector’s Contribution to the EU Greenhouse Gas 
Emissions (GGELS). Final Report. European Commission, Joint Research Centre. 

Lesschen J, van den Berg M, Westhoek H, Witzke H, Oenema O, 2011. Greenhouse gas emission 
profiles of European livestock sectors. Animal Feed Science and Technology 166–167, 16-28 

Li C, Frolking S, Frolking T, 1992. A model of nitrous oxide evolution from soil driven by rainfall 
events: I model structure and sensitivity. Journal of Geophysical Research 97, 9759–9776 

Li C, Aber J, Stange F, Butterbuch-Bahl K, Papen H, 2000. A process-oriented model of N2O and 
NO emissions from forest soils: 1 Model development. Journal of Geophysical Research 105, 
4369–4384 

Lindgren E, 1980. Skattning av energiförluster i metan och urin hos idisslare. En litteraturstudie. 
Rapport 47, Avdelningen för Husdjurens Näringsfysiologi, Swedish University of Agricultural 
Sciences, Uppsala, Sweden 

Lund H, Mathiesen BV, Christensen P, Schmidt JH, 2010. Energy system analysis of marginal 
electricity supply in consequential LCA. The International Journal of LCA 15, 260-271 

Mattila T, Grönroos J, Judl J, Korhonen M-R, 2012. Is biochar or straw-bale construction a better 
carbon storage from a life cycle perspective? Process Safety and Environmental Protection 90, 
452-458 

McLaren, SJ, 2010. Life Cycle Assessment (LCA) of food production and processing: An 
introduction. In: Sonesson U, Berlin J, Ziegler F (ed) Environmental assessment and management 
in the food industry, Woodhead Publishing Limited, Cambridge, UK 

Meul M, Ginneberge C, Van Middelaar C, de Boer I, Fremaut D, Haesaert G, 2012. Carbon footprint 
of five pig diets using three land use change accounting methods. Livestock Science 149, 215-
223 

Milà i Canals L, Romanyà J, Cowell S, 2007. Method for assessing impacts on life support functions 
(LSF) related to the use of ‘fertile land’ in Life Cycle Assessment (LCA). Journal of Cleaner 
Production 15, 1426-1440  

Mills J, Kebreab E, Crompton L, France J, 2003. The Mitscherlich equation: an alternative to linear 
models of methane emissions from cattle. In: Proceedings of the British Society of Animal 
Science 2003. 

Moe PW, Tyrrell HF,1979. Methane production in dairy cows. Journal of Dairy Science 62, 1583–
1586 

http://www.cabdirect.org/search.html?q=au%3A%22Kirchgessner%2C+M.%22
http://www.cabdirect.org/search.html?q=au%3A%22Windisch%2C+W.%22
http://www.cabdirect.org/search.html?q=au%3A%22M%C3%BCller%2C+H.+L.%22
http://www.cabdirect.org/search.html?q=do%3A%22Ruminant+physiology%3A+digestion%2C+metabolism%2C+growth+and+reproduction.+Proceedings+8th+International+Symposium+on+Ruminant+Physiology.%22
http://www.cabdirect.org/search.html?q=do%3A%22Ruminant+physiology%3A+digestion%2C+metabolism%2C+growth+and+reproduction.+Proceedings+8th+International+Symposium+on+Ruminant+Physiology.%22
http://www.cabdirect.org/search.html?q=ed%3A%22Engelhardt%2C+W.+von.%22
http://www.cabdirect.org/search.html?q=ed%3A%22Leonhard-Marek%2C+S.%22
http://www.cabdirect.org/search.html?q=ed%3A%22Breves%2C+G.%22
http://www.cabdirect.org/search.html?q=ed%3A%22Giesecke%2C+D.%22
http://www.klimatmarkning.se/
http://www.cabdirect.org/search.html?q=au%3A%22Kl%C3%B8verpris%2C+J.+H.%22
http://www.cabdirect.org/search.html?q=au%3A%22Baltzer%2C+K.%22
http://www.cabdirect.org/search.html?q=au%3A%22Nielsen%2C+P.+H.%22
http://www.cabdirect.org/search.html?q=do%3A%22International+Journal+of+Life+Cycle+Assessment%22
http://www.sciencedirect.com/science/article/pii/S0377840111001775
http://www.sciencedirect.com/science/article/pii/S0377840111001775
http://www.springerlink.com/content/112849/?p=65c7b3a12f2e42508b4943690a6b3e93&pi=0
http://www.sciencedirect.com/science/article/pii/S0957582012001188
http://www.sciencedirect.com/science/article/pii/S0957582012001188
http://www.sciencedirect.com/science/article/pii/S1871141312002752
http://www.sciencedirect.com/science/article/pii/S1871141312002752
http://www.sciencedirect.com/science/article/pii/S0959652606001600
http://www.sciencedirect.com/science/article/pii/S0959652606001600
http://centaur.reading.ac.uk/8910/
http://centaur.reading.ac.uk/8910/


115 
 

Nguyen T, Hermansen J, Mogensen L, 2010. Environmental consequences of different beef 
production systems in the EU. Journal of Cleaner Production 18, 756-766 

Nijdam D, Rood T, Westhoek H, 2012. The price of protein: Review of land use and carbon 
footprints from life cycle assessments of animal food products and their substitutes. Food Policy 
37, 760-770 

Novoa R, Tejeda H, 2006. Evaluation of the N2O emissions from N in plant residues as affected by 
environmental and management factors. Nutrient Cycling in Agroecosystems 75, 29-46 

Nylinder J, Stenberg M, Janson P-E, Kasimir Klemedtsson Å, Weslien P, Klemedtsson L, 2011. 
Modelling uncertainty for nitrate leaching and nitrous oxide emissions based on a Swedish field 
experiment with organic crop rotation. Agriculture, Ecosystems and Environment 141, 167-183 

Odum H, 1983. Maximum power and efficiency: A rebutttal. Ecological Modelling 20, 71-82 
Parton W, Schimel D, Cole C, Ojima D, 1987. Analysis of factors controlling soil organic matter 

levels in Great Plains grasslands. Soil Science Society of America Journal 51, 1173–1179 
Pelletier N, Pirog R, Rasmussen R, 2010. Comparative life cycle environmental impacts of three beef 

production strategies in the Upper Midwestern United States. Agriculture Systems 103, 380-389 
Peters G, Rowley H, Wiedemann S, Tucker R, Short MD, Schulz M, 2010. Red meat production in 

Australia: life cycle assessment and comparison with overseas studies. Environmental Science & 
Technology 44, 1327–1332 

Place S, Mitloehner F, 2012. Beef production in balance: Considerations for life cycle analyses. Meat 
Science 92, 179–181  

Plevin R, O’Hare M, Jones A, Torn M, Gibbs H, 2010. The greenhouse gas emissions from market-
mediated land use change are uncertain, but potentially much greater than previously estimated. 
Environmental Science and Technology 44, 8015-8021 

Ponsioen T, Blonk T, 2012. Calculating land use change in carbon footprints of agricultural products 
as an impact of current land use. Journal of Cleaner Production 28, 120-125 

Powlson D, Whitmore A, Goulding K, 2011. Soil carbon sequestration to mitigate climate change: a 
critical re-examination to identify the true and the false. European Journal of Soil Science 62, 42–
55 

REKS, 2013. Regional nöt- och lammköttsproduktion - en tillväxtmotor (“Regional beef and lamb 
production – an engine for growth”). Available at http://www.reks.nu[13-05-25] 

Ridoutt B, Sanguansri P, Freer M, Harper G, 2012. Water footprint of livestock: comparison of six 
geographically defined beef production systems. International Journal of LCA 17, 165-175 

Ridoutt B, Pfister S, 2013. A new water footprint calculation method integrating consumptive and 
degradative water use into a single stand-alone weighted indicator. International Journal of LCA 
18, 204-207 

Rochette P, 2011 Towards a standard non-steady-state chamber methodology for measuring soil 
N2O emissions. Animal Feed Science and Technology 166-167, 141-146 

Rodhe L, Ascue J, Nordberg Å, 2009. Emissions of greenhouse gases (methane and nitrous oxide) 
from cattle slurry storage in Northern Europe. IOP Conf. Series: Earth and Environmental 
Science 8 012019 doi:10.1088/1755-1315/8/1/012019 

Rodhe L, Baky A, Olsson J, Nordberg Å, 2012. Greenhouse gases from manure handling – Literature 
review and model validation. Report 402, Agriculture & Industry (In Swedish with English 
summary). JTI – Swedish Institute of Agricultural and Environmental Engineering. Uppsala, 
Sweden. ISSN-1401-4963 

Röös E, Sundberg C, Hansson P-A, 2010. Uncertainties in the carbon footprint of food products: a 
case study on table potatoes. International Journal of LCA 15, 478–488 

Röös E, Sundberg C, Hansson P-A, 2011. Uncertainties in the carbon footprint of refined wheat 
products: a case study on Swedish pasta. International Journal of LCA 16, 338–350 

http://www.sciencedirect.com/science/article/pii/S0306919212000942
http://www.sciencedirect.com/science/article/pii/S0306919212000942
http://www.sciencedirect.com/science/article/pii/0304380083900327
http://www.reks.nu[13-05-25/


116 
 

Röös E, Sundberg C, Tidåker P, Strid I, Hansson P-A, 2013. Can carbon footprint serve as an 
indicator of the environmental impact of meat production? Ecological Indicators 24, 573-581 

Rubinstein R, Kroese D, 2007. Simulation and the Monte Carlo method. Wiley-Interscience, ISBN 
0470177942, 9780470177945 

Saarinen  M, 2012. Nutrition in LCA: Are nutrition indexes worth using? Proceedings from the 8th 
International Conference on Lifecycle Assessment in the Agri-food Sector, St Malo, 1-4 Oct 2012. 

Salas W, Li C. 2013. Integration of the Greenhouse Gas (GHG) Model and Denitrification and 
decomposition (DNDC) Model. Available at: http://www.extension.org/pages/65659/integration-
of-the-greenhouse-gas-ghg-model-and-denitrification-and-decomposition-dndc-model  

SBA, 2010. Inlagring av kol i betesmark (”Storage of carbon in semi-natural pastures”). Report 
2010:25, Swedish Board of Agriculture, Jönköping, Sweden 

SBA, 2011. Den svenska kött- och mjölkproduktionens inverkan på biologisk mångfald och klimat – 
skillnader mellan betesbaserade och kraftfoderbaserade system. (”The impact on biodiversity and 
climate from the Swedish meat- and dairy production – differences between pasture-based and 
cereal/concentrate-based systems”). Swedish Board of Agriculture, Jönköping, Sweden 

SBA, 2012. Ett klimatvänligt jordbruk 2050. (“Climate friendly agriculture 2050”). Report 2050:35. 
Swedish Board of Agriculture, Jönköping, Sweden 

Schindlbacher A, Zechmeister-Boltenstern S, Butterbach-Bahl K, 2004. Effects of soil moisture and 
temperature on NO, NO2, and N2O emissions from European forest soils. Journal of Geophysical 
Research-Atmospheres 109, 1-12 

Schmidinger K, Stehfest E, 2012. Including CO2 implications of land occupation in LCAs-method 
and example for livestock products. International Journal of LCA 17, 962-972 

Schmidt J, Gass V, Schmid E, 2011. Land use changes, greenhouse gas emissions and fossil fuel 
substitution of biofuels compared to bioelectricity production for electric cars in Austria. Biomass 
and Bioenergy 35, 4060-4074 

Schmidt J, 2008. Development of LCIA characterisation factors for land use impacts on biodiversity. 
Journal of Cleaner Production 16, 1929-1942 

Searchinger T, Heimlich R, Houghton R, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T, 
2008. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from 
land-use change. Science 319, 1238-1240 

Shibata M, Terada F, 2010. Factors affecting methane production and mitigation in ruminants. 
Animal Science Journal 81, 2-10 

Shindell D, Faluvegi G, Koch D, Schmidt G, Unger N, Bauer S, 2009. Improved attribution of 
climate forcing to emissions. Science 326, 716–718 

Sjaunja L, Baevre L, Junkkarinen L, Pedersen J, Setala J, 1990. A Nordic proposal for an energy 
corrected milk (ECM) formula. In: 27th session of the International Commission for Breeding 
and Productivity of Milk Animals, Paris, France 

Smith P, 2012. Agricultural greenhouse gas mitigation potential globally, in Europe and the UK. 
Scientific review. Global Change Biology 18, 35-43 

Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, 
Scholes B, Sirotenko O, 2007. Agriculture. In Climate Change 2007: Mitigation. Contribution of 
Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate 
Change [Metz B, Davidson O, Bosch P, Dave R, Meyer L (eds)], Cambridge University Press, 
Cambridge, United Kingdom and New York, NY, USA 

Sommer S, McGinn S, Hao X, Larney F, 2004. Techniques for measuring gas emissions from a 
composting stockpile of cattle manure. Atmospheric Environment 38, 4643-4652 

http://www.extension.org/pages/65659/integration-of-the-greenhouse-gas-ghg-model-and-denitrification-and-decomposition-dndc-model
http://www.extension.org/pages/65659/integration-of-the-greenhouse-gas-ghg-model-and-denitrification-and-decomposition-dndc-model
http://www.sciencedirect.com/science/article/pii/S0961953411003989
http://www.sciencedirect.com/science/article/pii/S0961953411003989
http://www.sciencedirect.com/science/article/pii/S0959652608000139
http://www.sciencedirect.com/science/article/pii/S135223100400487X
http://www.sciencedirect.com/science/article/pii/S135223100400487X


117 
 

Sonesson U, Berlin J, 2010. Towards sustainable industrial food production using Life Cycle 
Assessment approaches. In: Sonesson U, Berlin J, Ziegler F (ed) Environmental assessment and 
management in the food industry, Woodhead Publishing Limited, Cambridge, UK. 

Soussana J, Allard V, Pilegaard K, Ambus P, Amman C, Campbell C, Ceschia E, Clifton-Brown J, 
Czobel S, Domingues R, Flechard C, Fuhrer J, Hensen A, Horvath L, Jones M, Kasper G, Martin 
C, Nagy Z, Neftel A, Raschi A, Baronti S, Rees R, Skiba U, Stefani P, Manca G, Sutton M, Tuba 
Z, Valentini R, 2007. Full accounting of the greenhouse gas budget of nine European grassland 
sites. Agriculture, Ecosystems and Environment 121, 121–134 

Soussana J, Tallec T, Blanfort V, 2009. Mitigating the greenhouse gas balance of ruminant 
production systems through carbon sequestration in grasslands. Animal 4(3), 334–350 

Stehfest E, Bouwman L, 2006. N2O and NO emission from agricultural fields and soils under natural 
vegetation: summarizing available measurement data and modeling of global annual emissions. 
Nutrient Cycling in Agroecosystems 74, 207-228 

Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C. 2006. Livestock´s long 
shadow – environmental issues and options. Food and Agriculture Organization of the United 
Nations, Rome, Italy 

Sundberg C, Kimming M, Nordberg Å, Baky A, Hansson P-A, 2012. Organic farming without fossil 
fuels – LCA of energy self-sufficiency. Proceedings from the 8th International Conference on 
Lifecycle Assessment in the Agri-food Sector, Oct 1-4 2012, St Malo, France 

Tillman AM, 2010. Methodology for Life Cycle Assessment. In: Sonesson U, Berlin J, Ziegler F (ed) 
Environmental assessment and management in the food industry, Woodhead Publishing Limited, 
Cambridge, UK. 

UCS, 2011. Drivers of Deforestation- What is driving deforestation today? Union of Concerned 
Scientists, Cambridge, MA, US 

United Nations, 2005. Resolution adopted by the General Assembly 60/1. 2005 World Summit 
Outcome. 

van Middelaar CE, Cederberg C, Vellinga Th, van der Werf HMG, Boer IJM, 2013. Exploring 
variability in methods and data sensitivity in carbon footprints of feed ingredients International 
Journal of LCA 4, 768 - 782 

Verbruggen A, Moomaw W, Nyboer J, 2011: Annex I: Glossary, Acronyms, Chemical Symbols and 
Prefixes. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation 
[Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, 
Eickemeier P, Hansen G, Schlömer S, von Stechow C  (eds)], Cambridge University Press, 
Cambridge, United Kingdom and New York, NY, USA 

Veysset P, Lherm M, Bébin D, 2011. Productive, environmental and economic performances 
assessments of organic and conventional suckler cattle farming systems. Organic Agriculture 1, 
1–16 

Wagner-Riddle C, Furon A, McLaughlin N, Lee I, Barbeau J, Jayasundara S, Parkin G, von Bertoldi 
P, Warland J, 2007. Intensive measurement of nitrous oxide emissions from a corn-soybean-
wheat rotation under two contrasting management systems over 5 years. Global Change Biology 
13, 1722–1736 

Webb J, Pain B, Bittman S, Morgan J, 2010. The impacts of manure application methods on 
emissions of ammonia, nitrous oxide and on crop response—A review. Agriculture, Ecosystems 
& Environment 137, 39-46 

Weidema B, Frees N, Nielsen A-M, 1999. Marginal production technologies for life cycle 
inventories. International Journal of LCA 4, 448–456 

http://www.sciencedirect.com/science/article/pii/S0167880910000046
http://www.sciencedirect.com/science/article/pii/S0167880910000046


118 
 

Weidema BP, Wesnæs M, Hermansen J, Kristensen T, Halberg N, Editors: Eder P, Delgado L, 2008. 
Environmental Improvement Potentials of Meat and Dairy Products. Joint Research Center, 
European Commission. EUR 234 91EN–2008. 

Wilkinson JM, 2011. Redefining efficiency of feed use by livestock. animal, 5, pp 1014-1022 
Wilkerson VA, Casper DP, 1995. The prediction of methane production from Holstein cows by 

several equations. Journal of Dairy Science 78:2402-2414  
WRI & WBSCD, 2011. Greenhouse gas protocol. Product life cycle accounting and reporting 

standard [online]. Available at http://www.ghgprotocol.org/standards/product-standard [2013-06-
23] 

Zhu J, Mulder J, Wu L, Meng X, Wang Y, Dörsch P, 2012. Spatial and temporal variability of N2O 
emissions in a subtropical forest catchment in China. Biogeosciences Discussions 9, 14945-14980 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



119 
 

 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SLU 
 

Institutionen för energi och teknik 
 

Box 7032 
 

750 07 UPPSALA   
Tel. 018-67 10 00 
www.slu.se/energyandtechnology 

SLU 
 

Department of Energy and Technology 
 

Box 7032 
S-750 07 UPPSALA 
SWEDEN 
Phone  +46 18 671000 

http://www.slu.se/

	Framsida rapport 2012
	titelsidarappSV 
	Carbon footprint of meat production - variations and uncertainties 130822
	1 Introduction
	1.1 Background
	1.2 Goal and scope of the report
	1.3 Structure of the report

	2 Calculating carbon footprint
	2.1 Life cycle assessment
	2.1.1 Uses and types of LCA
	2.1.2 The structure of LCA
	Goal and scope definition
	Inventory analysis
	Impact assessment
	Interpretation

	2.1.3 The functional unit
	2.1.4 System boundaries and allocation

	2.2 Carbon footprint
	2.2.1 Overview of carbon footprint
	2.2.2 Global warming potential (GWP)

	2.3 Carbon footprint of livestock products
	2.3.1 Contributing processes
	2.3.2 Results of carbon footprint of different livestock systems
	2.3.3 Challenges with CF of food


	3 Uncertainties and variations
	3.1 Difference between uncertainty and variation
	3.2 Sources of uncertainty in carbon footprint and life cycle assessment
	3.3 Handling uncertainties in life cycle assessment
	3.3.1 Uncertainty analysis
	3.3.2 Sensitivity analysis

	3.4 Presenting results from uncertainty and sensitivity analysis

	4 Critical method and data choices
	4.1 Nitrous oxide from soil
	4.1.1 Measuring N2O emissions from field soils
	4.1.2 Modelling N2O emissions from field soils
	Empirical models for predicting N2O emissions
	Mechanistic models for predicting N2O emissions

	4.1.3 Discussion

	4.2 Carbon dioxide from and to soil
	4.2.1 Measuring carbon dioxide from and to soils.
	4.2.2 Modelling carbon dioxide from and to soils
	Methods based on using literature data as rough estimates
	Methods based on modelling soil carbon changes

	4.2.3 Discussion

	4.3 Methane from enteric fermentation
	4.3.1 Measuring methane emissions from enteric fermentation
	4.3.2 Modelling CH4 emissions from enteric fermentation
	4.3.3 Discussion

	4.4 Emissions from manure
	4.4.1 Methods for estimating emissions from manure
	CH4 from manure management
	N2O from manure management

	4.4.2 Discussion

	4.5 Land use change
	4.5.1 Methods for estimating emissions from land use change
	Method for calculating direct LUC
	Methods for calculating emissions from semi-direct LUC
	Methods for calculating emissions from total LUC based on the viewpoint that expanding crops only are responsible for LUC
	Methods for calculating emissions from total LUC based on the viewpoint that all land use drives LUC
	Method based on ‘missed potential carbon sink’
	Economic modelling for determining LUC

	4.5.2 Discussion and recommendations
	Crucial methodological choices
	Comparing LUC factors and results obtained using different methods
	A simplified example
	Comparing methods assigning emissions to expanding crops only or to crops from all agricultural land
	Recommendations


	4.6 Carbon dioxide from energy use
	4.7 Collection of activity data

	5 Uncertainties in the carbon footprint of livestock products
	5.1 Aggregating uncertainties
	5.2 When are uncertainties important?
	5.3 How to illustrate uncertainties
	5.3.1 Input data/parameter uncertainty and variability
	5.3.2 Model uncertainties
	5.3.3 Examples of handling uncertainties in LCA
	5.3.4 The use of uncertainty information in decision making

	5.4 Sustainable livestock systems
	5.4.1 Life cycle sustainability assessment (LCSA)
	5.4.2 Limitations with LCA, SLCA and LCC


	6 Summary and conclusions
	6.1 The complexity of calculating the CF of livestock systems
	6.2 Input data uncertainties and variability
	6.3 Modelling choices and uncertainty
	6.4 Scenario choices in LCA modelling
	6.5 Presenting uncertainty and sensitivity analyses
	6.6 Sustainable livestock systems
	6.7 Conclusions

	References

	BaksidaA4 2013

