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Abstract. Dead wood is a critical resource for biodiversity in boreal forests. We analysed the 

persistence of five model species inhabiting dead wood. By parameterising a metapopulation 

model (the incidence function model), the model species were all assigned characteristics that 

makes it likely that they have disappeared from some (20%) forest landscapes with a long 

history of forest management. In the metapopulation model, a forest stand (5 ha) was regarded 

as a habitat patch. The amount of habitat in each patch was obtained from models of dead 

wood dynamics of Norway spruce in central Sweden. Dead wood generated by altered 

management over the entire landscape was found to be less efficient in reducing extinction 

risks in comparison to the same amount of dead wood generated by protecting reserves. 

Because generation of dead wood by altered management is often less expensive than setting 

aside reserves, it is difficult to determine which conservation measure is most cost-efficient. 

In a landscape subjected to forestry for the first time, it was better to preserve a few large 

reserves than many small ones. However, in a managed, highly fragmented forest landscape it 

was better to set aside many small reserves. The reason for this was that small plots with high 

habitat quality could be selected, while large reserves originally contained habitats both of 

high and low quality, and the rate of habitat quality increase was low. A strategy for 

biodiversity conservation in a managed forest landscape should include information about the 

history of the landscape, the current amount and spatial distribution of forest habitats, and the 

potential for rapid restoration of forest habitats, both on managed and unmanaged forest land.  

 

Keywords: coarse woody debris, extinction debt, population viability analysis, restoration, 

saproxylic, SLOSS 
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Introduction 

Extinction risks of species are determined by their demographic characteristics and the 

changes in distribution and quality of their habitat. The latter processes generally occur over 

such large scales in space and time that they cannot be effectively studied experimentally or in 

the field. Consider, for example, forest structures that take decades to develop after a 

restoration (e.g. Singer and Lorimer 1997; Ranius and Kindvall 2004). Computer simulations 

support studies of larger spatial and temporal scales than are possible in empirical studies 

(Akçakaya et al. 2004). Landscape models can be used to predict habitat dynamics in 

response to natural processes and human activities (e.g. Baker and Mladenoff 1999), while 

population models, often metapopulation models, can be used to predict the viability of a 

focal species in a landscape (e.g. Sjögren-Gulve and Hanski 2000).  

Due to the extent and history of forestry, threats to forest biodiversity differ widely 

between regions. For instance, in southern and central Sweden and Finland almost all forest 

land has been managed for timber production, and this has generated monospecific, even-aged 

stands with short rotation periods (Esseen et al. 1997; Axelsson and Östlund 2001). In other 

regions with boreal forests, e.g. large areas in Russia and Canada, there are still large areas 

where commercial forestry has been absent or less intensive (Bryant et al. 1997). Among 

species that have decreased and are threatened due to forestry, a large proportion is 

saproxylic, i.e. dependent on dead wood, either directly or by being associated with other 

saproxylic species. This is because dead wood is a species-rich habitat, and the amount of 

dead wood is much lower in managed than in unmanaged forests (Siitonen 2001). In 

Fennoscandia, invertebrates (especially beetles) and cryptogams (especially fungi) comprise 

the largest groups of red-listed saproxylic organisms (Dahlberg and Stokland 2004). Changes 

in the population sizes of saproxylic invertebrates and cryptogams and the dynamics of their 

local colonisations and extinctions are poorly known. Therefore, knowledge about their 
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requirements for long-term persistence is scant. 

Protection of forest biodiversity has been attempted through the establishment of 

protected areas. Particularly during the last decade this approach has been combined with 

changes of silvicultural methods that also aim at preserving some components of biodiversity 

in the intervening matrix (e.g. Larsson and Danell 2001; Putz et al. 2001; Lindenmayer and 

Franklin 2002). Many threatened saproxylic species require dead wood that can occur both in 

managed and protected areas. Thus, both forest reserves and silvicultural methods are relevant 

for the preservation of these organisms (Kouki et al. 2001). In Finland and Sweden, the 

current strategy to preserve biodiversity is, to a greater extent than in many other countries, 

based on improvement of forest habitats by altered silvicultural methods (Raivio et al. 2001). 

Over the long-term, the combination of silvicultural methods and forest reserves have been 

predicted to increase the amount of dead wood of Norway spruce considerably (Ranius and 

Kindvall 2004). It will, however, take more than 100 years until these higher levels have been 

reached. In Finland, ongoing restoration projects (e.g., Kuuluvainen et al. 2002) aim at 

accelerating the formation of dead wood by damaging trees and creating small gaps in the 

forests by felling trees (Anonymous 2003). 

In this study, we conducted population viability analyses of generalized saproxylic 

species by combining simulations of dead wood dynamics with a metapopulation model. The 

model species differed in their colonisation ability and local extinction risk, but were all given 

characteristics that would made their populations decreasing (but still present) in managed 

forest landscapes to such an extent that they would be red-listed. We compared two habitat 

history scenarios. The first emulated the situation in parts of Canada or Russia where forest 

landscapes are used for commercial forestry for the first time, and at the same time 

biodiversity preservation is considered („with constant conservation effort‟). The second 

emulated the situation in parts of Fennoscandia, where there has been large-scale commercial 
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forestry on almost all forest land for a long period of time, and now the forest landscape may 

be restored („with a bottleneck‟). In the second scenario, we also studied the impact on 

population persistence if active measures are taken to increase the amount of dead wood 

rapidly, in comparison to generating dead wood at a lower, more natural rate. The study aims 

at answering the following questions: Do the efforts required for species conservation differ 

between a forest landscape used for commercial forestry for the first time and a landscape 

where almost all forests have long been used for commercial forestry? Is the amount of dead 

wood required for persistence of resident species dependent on whether dead wood is 

dispersed among all managed stands or concentrated in reserves? What is the most cost-

efficient strategy for preservation of species associated with dead wood? Should we expect 

red-listed species with declining patch occupancy in a managed forest landscape to exhibit 

particular patterns of occurrence? 

 

Methods 

The metapopulation model 

We modelled extinction risks of generalized saproxylic species (cryptogams or invertebrates) 

using the incidence function model (IFM) (Hanski 1994; 1999; 2000). We assumed that a 

forest landscape is divided into forest stands, and each stand is either occupied or not by a 

local population. The amount of habitat (denoted by Q) in the forest stand is equal to the 

volume of dead wood (in m
3
) useful for the species. 

The probability of colonisation of an empty stand is a function of its connectivity to 

existing local populations. The connectivity, S, of stand i is defined as: 

Si = Σ e
-αdijpjQj 

 

where p = 0 for empty and p = 1 for occupied stands, Q is the amount of habitat, d is the 
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distance between stands i and j, and 1/α is the mean dispersal distance. The colonisation 

probability C is assumed to be a function of connectivity and the constant y: 

 

Ci = Si
2 
/ (Si

2
 + y

2
). 

 

The risk of extinction of a local population is assumed to be inversely related to Q, because 

lower habitat amount gives rise to a smaller expected population size with a higher risk of 

local extinction. The extinction probability is given by 

 

Ei = min{1, (u / Qi
x
)(1 – Ci)}, 

 

where u and x are species-specific parameters and (1 – C) represents the rescue effect. 

We parameterised the IFM for the five model saproxylic species, setting the values of α, 

u and x for each to obtain a range species characteristics (Table 1). A species with a base-line 

combination of parameters was compared with species that have a higher and lower turn-over 

rate (i.e. rate of local colonisation and extinction) and species with longer and shorter 

dispersal distances. The mean dispersal distance has not been estimated for any threatened 

saproxylic organism in boreal forests, but it seems to vary widely (Jonsson et al. 2005). In the 

primaeval forest landscape, the extinction risk was <0.5% in 100 years for all species. By 

adjusting the value of y (a variable negatively related to the colonisation probability), the 

extinction rate of all species rose to 20% during the first 150 years in the scenario with a 

bottleneck. This was done to get a level of population decline that is similar to the level that is 

required for red-listing species according the IUCN‟s criteria (Anonymous 2001), which is 

used for the national red-listing in Sweden (Gärdenfors 2005). We should expect that species 

with these characteristics still occur in many managed forest landscapes. Furthermore, the 
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adjusted extinction rate facilitated comparison of extinction risks between species during the 

following 100 years, because all species started with the same proportion of landscape with 

the species present. For the species with a high or low turn-over rate, the adjustment of y was 

in agreement with the combination of traits allocated to species in our model, i.e. those with a 

high local extinction risk obtained a lower value of y and thus a higher colonisation 

probability. Species with long-distance dispersal were assigned a higher value of y than those 

with short-distance dispersal. Thus, model species with long-distance dispersal are less 

successful in establishing new populations in comparison to species with short-distance 

dispersal. This relationship resulted from our desire to obtain the same extinction after 150 

years for all species in the bottleneck scenario; for saproxylic organisms the empirical data 

supporting this relationship are weak (however see Jonsson 2003). 

 

The landscape model 

We considered a 13.4 x 13.4 km landscape, which is similar to the scale used by Swedish 

forest companies in landscape planning (Larsson and Danell 2001). The landscape consisted 

of 3,600 squares, corresponding to forest stands, each 5 ha, which is near the average for 

harvested forests in Sweden (Anonymous 2004). Because we assumed this landscape to be 

adjacent to similar landscapes, the edges of the landscape were wrapped around. Thus, stands 

situated at the left and upper margin were bounded to those at the right and lower margin, 

respectively, as if they were located on a spherical surface.  

Landscape dynamics were taken into account with respect to the habitat for the model 

species. Hard dead wood of Norway spruce with most of the bark left (< 10 years after death) 

was considered to be suitable for the model species. Bark on dead wood is an important 

microhabitat; of 542 saproxylic red-listed invertebrates, 168 (31%) are directly dependent on 

bark as a microhabitat (Jonsell et al. 1998). In each stand that we modelled, either 0% or 
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100% of the trees were Norway spruce. The tree species composition of each stand was 

determined stochastically for each stand, with a 40% probability of being a Norway spruce 

stand. In Sweden, 43% of the growing stock is Norway spruce (Anonymous 2004). The 

amount of dead wood changed over time, determined by the management regime of the 

forest. We assumed that 50% of the volume of dead wood less than ten years old was suitable 

as a habitat for the model species. The remaining 50% was unsuitable, for instance, because 

of inappropriate microclimate or absence of appropriate rot types. 

We simulated persistence of saproxylic organisms over a period of 250 years under two 

scenarios, imitating different forestry history. The first scenario ('with constant conservation 

effort') imitated landscapes where commercial forestry was practiced for the first time, and 

thus it was possible to avoid a bottleneck in the amount of habitat (which is the case in parts 

of Canada and Russia). The other scenario ('with a bottleneck') imitated the situation where 

commercial forestry had long been practiced in the entire landscapes, such as in southern 

Fennoscandia (Fig. 1), without efforts to conserve dead wood.  

In both scenarios, the whole landscape was initially unmanaged, and the model species 

were present in all spruce stands. During the first 100 years, most forest stands (all except 

those that were unmanaged 100 – 150 years from the starting point) were cut and randomly 

given a value between 0 and 100, representing year of cut. Our simulations aimed at 

comparing different conservation regimes (i.e. a certain amount of large and small reserves 

and a certain management regime) that prevailed after that (Table 2). In the first scenario this 

conservation regime took over immediately after the first 100 years of logging (Fig. 1). This 

conservation regime was held constant 100–250 years from the starting point. In the second 

scenario, during the first 100 years 2% of the stands were left as small reserves, there were no 

large reserves, and forests were managed with traditional methods. This level can be 

compared to the fact that in Sweden about 1% of the productive forests outside the mountains 
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are legally protected, and in most of the regions, less than 2% of the privately owned forests 

are classified as key habitats (Anonymous 2004). This regime was held constant 100–150 

years from the starting point. Year 150 represented the current situation, when it was possible 

to select a strategy for the future. Thus, in this scenario the new conservation regime (Table 2) 

prevailed from this year.  

To make the three measures to increase the amount of dead wood comparable, in the 

scenario with constant conservation effort we used the number of small reserves and level of 

dead wood increase in the managed forest that over the long run generated the same amount 

of dead wood at the landscape level as setting aside different numbers of large reserves. One 

500-ha large nature reserve, for example, would correspond to 100 small reserves (5 ha each) 

and to an altered management generating a 15.7% increase of dead wood over all managed 

forest in the landscape. 

For the scenario with a bottleneck, we modelled a combination of large and small 

reserves, and altered forest management, in a manner similar to that done to meet certification 

requirements and follow the current forestry policy in Sweden. Moreover, we analyzed each 

of the three measures taken one at a time, at a level that in the long run generates the same 

amount of dead wood as the combination (Table 2). We also compared a scenario with dead 

wood accumulated at a natural rate, with active efforts taken to speed up dead wood 

accumulation (Fig. 1). The details are presented in Habitat amount. 

Using both scenarios, we predicted the extinction over a 850-year period, i.e., 150-1000 

years from the starting point. We found that for all species, conservation measures were 

ranked in the same way regarding their extinction rates whether extinction rates were modeled 

over the initial 100 years or the entire period of 850 years. In the majority of the simulations, 

most of the extinctions took place within the first 100 years. For several scenarios, an 

extinction risk of 100% were yielded when the entire period was considered. Given these 
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findings, we present only the extinction risk over 100 years, 150–250 years from the starting 

point. 

Unmanaged forest stands are rarely evenly distributed in a forest landscape. We divided 

the landscape into 36 equally large (500 ha) squares. Each square was randomly assigned a 

value, representing the probability for each forest stand (5 ha) within the square to be a small 

reserve. These probability values were evenly distributed between zero and two times the 

proportion of small reserves in the whole landscape. For each stand, it was randomly 

determined whether it was managed or a small reserve, based on the probability value for the 

square where it was situated. When the number of small reserves was increased, we assumed 

that stands of ages with the highest amount of dead wood were selected. When the number of 

large reserves was increased, those squares with the largest proportion of unmanaged forest 

were selected. When the management regime was changed, the same change was imposed on 

all managed forests in the landscape. 

 

Habitat amount 

We modelled habitat amount in managed forests as in Ranius et al. (2003), i.e. by simulating 

dead wood dynamics taking into consideration forest growth, tree mortality, dead wood 

decay, and destruction of dead wood at forestry operations. Site index (i.e. tree height at 100 

years) was assumed to be 24 m and the rotation period 100 years. We simulated two different 

management regimes: (i) traditional management with no particular care taken to preserve 

dead wood (dead wood volume = 7.4 m
3
/ha), and (ii) biodiversity-oriented management, 

following the FSC‟s certification regulations (Anonymous 2000) (Table 3) (resulting in a 

dead wood volume of 16.8 m
3
/ha). In managed forests in Sweden the present average is 6.1 

m
3
/ha (Fridman and Walheim 2000). In the landscape model, we predicted habitat amount in 

each stand based on a relationship between the amount of dead wood and stand age (Fig. 2) 
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established from simulations. Furthermore, we used two measures of stochastic variability in 

the predictions: one between stands and one between years within each stand. We estimated 

the variability from 500 replicate simulation runs. 

For unmanaged forests, we modelled long-term equilibrium between dead wood input 

(calculated from the volume of standing trees multiplied by tree mortality rate) and output 

(equivalent to decomposition) (Ranius et al. 2004). We used parameter values from Ranius et 

al. (2004) for central Sweden (site index = 24 m), which were based on field data from 

unmanaged forests. Our model found equilibrium at 83 m
3
/ha, which is near the amount 

estimated in field surveys in Fennoscandia (Siitonen 2001). Of these 83 m
3
/ha, 14 m

3
/ha 

belonged to the early decay stage, and thus, 7 m
3
/ha was assumed to be suitable for the model 

species (Fig. 2). As for managed forests, we estimated the variability from 500 replicate 

simulation runs.  

In our landscape, management regimes applied to various stands changed over time. 

When a biodiversity-oriented management regime was adopted, it did not change the amount 

of dead wood until the forest was cut. After cutting, the amount of dead wood typical for the 

new management regime was immediately assigned because the largest change in the amount 

of dead wood takes place immediately after cutting (Ranius and Kindvall 2004). When an 

unmanaged stand became managed, the amount of dead wood typical for managed forests was 

assigned after cutting. This is a reasonable assumption because a large proportion of dead 

wood is usually destroyed at clear-cutting, mainly due to the machinery used for soil 

scarification (Hautala et al. 2004). In transition from a managed to an unmanaged stand, we 

assumed that it takes 40–140 years (dependent on the age of the managed stand when it was 

set aside) for dead wood of early decay stages to reach amounts typical for unmanaged 

forests. When a managed forest is set aside, it has the same amount of dead wood as a forest 

that was continuously managed until it had reached an age of 60 years. After that age, dead 
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wood was assumed to increase faster in the unmanaged forest, due to higher standing volume 

and tree mortality. At the age of 140 years, the level of dead wood of early decay stages 

typical for unmanaged forests was assumed to be reached.  

By actively damaging and felling trees in set aside forest stands and in forests where 

biodiversity-oriented management measures had been adopted, it is possible to increase the 

amount of dead wood much faster (Anonymous 2003). Levels of dead wood of early decay 

stages typical for unmanaged forest, or for biodiversity-oriented management, were assumed 

to be reached immediately after the forest is set aside, or management changed, if active 

measures were taken. We assumed active measures to be conducted only in forests older than 

60 years, because it is difficult to generate dead wood of sufficient size in younger stands. In 

forests set aside or where biodiversity-oriented management had been adopted when they 

were younger, the damaging and felling of trees would take place when stands reach the age 

of 60 years.  

In the model, we emulated the effect of weather by including regional stochasticity, 

which affected the extinction risk and colonisation rate by generating a temporal change in 

habitat amount, Q. This factor was equal for the entire landscape but varied stochastically 

between years according to a normal distribution. Arbitrarily, we set the coefficient of 

variation of this factor to 0.25. 

 

Results 

With constant conservation efforts, relatively small efforts were required to avoid extinction 

of the species (Table 4). For example, to keep the extinction risk below 5% at the landscape 

level during a 100-year period, one single large reserve (2.8% of the landbase), or small 

reserves on an area corresponding to two large reserves (i.e. 5.6% of the landbase) were 

sufficient for most species. Almost all species required the same number of reserves. A larger 
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amount of dead wood was needed if it was generated by altered management on all forest 

land, instead of being generated in reserves. There was a difference in responses of modelled 

species to altered management methods (Table 4); species with long-distance dispersal or a 

high turn-over rate responded more strongly and positively to increases in amounts of dead 

wood due to altered management, in comparison to those with short-distance dispersal and a 

lower turn-over rate. 

In the scenario with a bottleneck, it was difficult to avoid extinction at a landscape level; 

with the combination of measures that emulated the current forest policy in Sweden, the 

extinction risk during the following 100 years was 26% for the base-line species (Fig. 3). If 

these measures (i.e. small reserves cover 2% of the land and the remaining forest land is 

managed with traditional management methods) were not taken, the extinction risk rose to 

98% during this period. In contrast to the scenario with constant conservation efforts, setting 

aside smaller reserves was a more efficient way to decrease the extinction risk under the 

bottle-neck scenario than was use of larger reserves (Fig. 3). If the amount of dead wood was 

increased only through altered management, the extinction risk remained high (72–100%) for 

all species. Active efforts to speed up the accumulation of dead wood considerably improved 

the effect, especially for altered management. For all species, a combination of efforts always 

generated an extinction risk in between the most efficient and the least efficient measure. 

We divided the forest stands into categories reflecting the density of suitable habitat in 

the stand and the surrounding area (Fig. 4). The two categories with the lowest amount of 

dead wood correspond to typical managed forest, while the two categories with the highest 

amounts correspond to typical old-growth forest. After the first 100-year period of forest 

cutting, for the base-line species, the frequency of occupancy was only weakly correlated with 

the amount of dead wood per stand (Fig. 4). Fifty years later, the frequency of occupancy was 

about three times higher in forest stands with dead wood amounts typical of unmanaged 
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forests in relation to managed forests. The relationship between presence/absence per stand 

and amount of dead wood was stronger at a larger spatial scale than at the stand level (Fig. 4). 

 

Discussion 

Extinction risks when dead wood is generated in large or small reserves 

In a landscape with constant conservation efforts, large reserves generated a lower extinction 

risk than the same protected area divided into smaller reserves. The same pattern has been 

achieved in many other theoretical studies (e.g. Diamond 1975; Wright and Hubbel 1983; 

Burkey 1995). This may be because the habitat is more fully used when it is more 

concentrated, as it is easier to colonise dead wood that is situated nearby the dispersal source 

(Jonsell et al. 1999; Edman et al. 2004a). However, when we studied a landscape with a 

habitat bottleneck, we found that setting aside forests in small areas generated the lowest 

extinction risk. This was because when small areas are set aside, it is possible to select older 

stands (which are those with the largest amount of dead wood), while large reserves must 

contain both older and younger forest stands. In the long run, dead wood per hectare in large 

reserves will reach the same level as in the small ones. Because that process is slow, however, 

many species will go extinct before sufficient amounts of dead wood have accumulated in the 

large reserves. 

Our results do not suggest that protection of large contiguous areas should not be 

prioritised in Fennoscandia. On the contrary, it is urgent to protect the remaining few more 

continuous forest areas with high conservation value, as restoration is time-consuming. This is 

because large forest areas with high conservation values are rare in relation to such areas of 

smaller size (for instance, on privately owned land in Sweden the mean size of woodlands 

classified as key habitats, i.e. habitats that may sustain red-listed species, is 3 ha, and the 

median is 1.4 ha (Anonymous 2004)), and some species are confined to the cores of larger 
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forest areas (Berglund and Jonsson 2003) or forests with long continuity (Siitonen and 

Saaristo 2000). However, conservation strategies in forest landscapes should not only be 

based on standard rules regarding the positive effect of habitat patch size and the negative 

effect of fragmentation. The current spatial structure of the most valuable forests and the 

potential to increase the habitat amount rapidly by habitat restoration must also be considered. 

 

Cost efficiency of biodiversity conservation: creation of reserves or altered management 

Dead wood generated by altered management reduced extinction risks to a lower extent than 

if the same amount of dead wood was generated in unmanaged forest (Table 4). To evaluate 

conservation measures information about the species‟ response is not enough, but estimates of 

financial costs must also be considered. Jonsson et al. (in press) have estimated the cost of 

setting aside a forest stand typical for different parts of Sweden and compared with 

biodiversity-oriented management measures that aim at increasing the amount of dead wood 

(here including 3 artificially created high stumps per hectare at thinnings and harvesting, 5% 

of the land retained at harvesting, and that 80% of the snags are preserved at harvesting). In 

northern Sweden, the cost of generating a certain amount of dead wood was highest for 

biodiversity-oriented management, while in southern and central Sweden setting aside forests 

was more expensive (Table 5). This means that if our model species are to be preserved in 

northern Sweden, it is more cost-efficient to set aside forests than to alter management in the 

harvested area. However, in southern and central Sweden, it is less clear which is the most 

cost-efficient strategy; to generate a certain amount of dead wood by setting aside a forest is 

more expensive, but on the other hand the reduction of extinction risks is larger, in 

comparison to altered management.  

There was a large difference between species in their response to altered management. 

For species with high colonisation ability and no threshold in the amount of dead wood at the 
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stand level (species B and D), the spatial structure is less important, and thus biodiversity-

oriented management was more useful for the preservation for these species than for others. 

Therefore, dependable knowledge about the colonisation ability of saproxylic organisms in 

boreal forests is critical for a firm evaluation of the cost-efficiency of conservation efforts in 

managed forests, but today such data are generally absent (see however Jonsson 2003, Edman 

et al. 2004b). 

The combination of measures was always less efficient in decreasing the extinction risk 

than setting aside small reserves, given that the same amount of dead wood was generated. 

This suggests that for individual species there is no advantage to combining measures. 

However, for the preservation of a larger assemblage of species it may be an advantage, 

because species differ in their habitat requirements. In this study, we assumed dead wood in 

managed and old-growth forest to be of equal quality. For a species that prefers dead wood in 

large, unmanaged forest areas (for instance, because they require a high local habitat density 

continuously over time (Siitonen and Saaristo 2000), or dead wood in managed forests (for 

instance, because they prefer the warmer microclimate on clear-cuts; Lindhe and Lindelöw 

2004) the relative efficacy of different conservation efforts would obviously differ from the 

results in this study. 

 

Efforts to speed up the generation of dead wood 

If a managed landscape is to be restored, the result, in terms of population persistence, 

becomes much better if the accumulation of dead wood is actively enhanced (Fig. 3). This 

was particularly evident when management was altered. It is mainly at final cutting that 

biodiversity-oriented management increases the amount of dead wood (Ranius and Kindvall 

2004). Thus, it takes a rotation period until altered management generates an increase in dead 

wood in all stands in a managed landscape. The cases with accelerated accumulation of dead 
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wood meant that in all managed forests older than 60 years the amount of dead wood in 

earlier decay stages immediately reaches the level typical for biodiversity-oriented 

management. We simulated the scenario mainly in order to analyse the effect of a delayed 

increase of dead wood. For economic reasons it is hardly realistic to actively accelerate tree 

mortality over entire forest landscapes at one single occasion, however, it has been suggested 

that the accumulation of dead wood should be accelerated by more measures carried out at 

thinnings (Jonsson et al. 2005). Active measures are also a realistic alternative in more 

restricted areas, such as, nature reserves (Anonymous 2003). 

 

Delayed population changes after a change in amount of dead wood 

Under the IUCN‟s red-listing criteria (Anonymous 2001), annually reproducing species that 

show a population decline of at least 30% during the last 10 years are classified as vulnerable 

(VU), while they are near threatened (NT) if the decrease is somewhat lower. With the 

bottleneck scenario, during the ten-year-period before „today‟ (between year 140 and 150), all 

species went extinct from about 7-16% of the landscapes and their incidence per stand 

decreased by 7-54%. Thus, the model species we have studied would have been classified as 

NT, or perhaps VU, in the Swedish red-list. Despite this, the species also occurred frequently 

in managed forest stands, especially early after the first cutting (Fig. 4). This is probably due 

to a delay in the population decrease in relation to the habitat decrease, and to migration 

within the landscape. Thus, even a species occurring relatively frequently in managed forests 

may become extinct in a landscape because it is sensitive to the consequences of silviculture. 

For that reason, observations of saproxylic species in managed forest stands with low amounts 

of suitable substrate do not necessarily indicate that this habitat density is enough for species 

persistence. This is especially the case if the habitat density has only been studied at a small 

spatial scale and after a recent decline of habitat. 
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The extinction risk was much larger in the scenario with a bottleneck, i.e. when there 

had been a period with a low amount of habitat (Table 4; Fig. 3). This is caused by a delay in 

the formation of dead wood (Ranius and Kindvall 2004), and a restoration lag in the 

populations, which enhanced the extinction risk even after the amount of habitat has increased 

(Huxel and Hastings 1999). With a combination of measures in the bottleneck scenario, the 

extinction risk for our model species during the next 100 years decreased from almost 100% 

to 9–96%. Most Swedish counties contain 20–200 landscapes similar in extent to those 

modelled in this study. If the extinction risk per landscape could be decreased below 50%, 

that would be enough to hold the extinction risk low at the county level, because the species 

would survive at least in a few forest landscapes. For strong dispersers a rescue effect would 

also reduce their extinction risk. If the goal is to preserve biodiversity at a county level, the 

same conservation measures should not be practiced everywhere. Instead, for each forest 

landscape habitats that occur or recently have occurred in high amounts should be identified, 

as they consequently are expected to harbour species communities with many threatened 

species at a relatively high abundances (cf. Axelsson and Östlund 2001; Nilsson and 

Baranowski 2003). Conservation efforts should be focused on maintaining and restoring these 

habitats, because it is much easier to preserve species associated with these habitats in 

landscapes where they have not been exposed to a long bottleneck in habitat availability. 
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Table 1. Parameters used in the incidence function model for five model species. 1/α is the 

mean dispersal distance (in km). Definition of other parameters, see Methods: The 

metapopulation model. 

 

 A. Base-line B. 

Long-
distance 
dispersal 

C. Short-

distance 
dispersal 

D. 

High 
turn-
over 

rate 

E. 

Low 
turn-
over 

rate 

u 0.5 0.5 0.5 0.85 0.2 

x 0.2 0.2 0.2 0.1 0.4 

y 60.5 765 2.05 33.7 300 

1/α 0.5 2 0.1 0.5 0.5 
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Table 2. Four assumed conservation regimes in a forest landscape that is restored after a 

bottleneck, each in the long run generating the same amount of dead wood as the combination 

(1.86 m3/ha). 

 

Conservation regime Large reserves 
(numbers/landscape 

and % of the area) 

Small 
reserves 

(% of the 
area) 

Altered management. 
Increase of dead wood 

of in relation to a 
forest with traditional 
management 

Only large reserves 5 (13.9%) 0 0 

Only small reserves 0 13.9% 0 

Only altered 
management 

0 0 79% 

All measures 1 (2.78%) 2.23% 53%* 

 
* equal to the situation with biodiversity-oriented management (see Table 3). 
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Table 3. Assumed differences between traditional forest management and biodiversity-

oriented management that influence the amount of dead wood in managed Norway spruce 

forests. The biodiversity-oriented management of managed stands, in combination with 

setting aside stands, means that the FSC-regulations are followed. 

 

Management measure Traditional 

management 

Biodiversity-

oriented 
management 

Artificially created high stumps at thinning 

and final cutting (number/ha) 

0 3 

Area with retained trees at final cutting 

(diameter of these trees 85% of the mean) 

0% 5% 

Dead wood destroyed at final cutting 58% 20% 

At occasions of high tree mortality: (i) 
minimum volume of newly dead wood 
present when it may be removed, and at 

such a removal (ii) the amount of newly 
dead wood retained. 

(i) 2 m
3
/ha 

(ii) 0 m
3
/ha 

(i) 3 m
3
/ha 

(ii) 1 m
3
/ha 
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Table 4. Outcome from simulations in a landscape with constant conservation efforts with one 

of three possible measures taken to increase the amount of dead wood. (i) Extinction risk over 

100 years, with the amount of dead wood equal to a landscape with one nature reserve. (ii) 

Amount of dead wood required for maintaining the extinction risk during 100 years below 

5%, measured as equivalents of large reserves (i.e. the number of 500-ha reserves with 

unmanaged forests generating the same amount of dead wood in a 18,000 ha managed forest 

landscape). Model species denoted A-E according to Table 1. n = 500. 

 

Species Large 

reserves 

 Small 

reserves 

 Biodiv. 

management 

 

 i ii i ii i ii 

A. Base-line 1% 1 25% 2 74% 3 

B. Long-dist. 7% 2 30% 2 42% 3 

C. Short-dist. 1% 1 18% 2 98% 5 

D. High turn-over 0% 1 20% 2 43% 3 

E. Low turn-over 0% 1 94% 3 100% 9 
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Table 5. Estimated cost-efficiency of increasing the amount of dead wood by (i) biodiversity-

oriented management (includes 3 artificially created high stumps per hectare at thinnings and 

harvesting, 5% of the land retained at harvesting, and that 80% of the snags are preserved at 

harvesting) and (ii) setting aside a forest from Jonsson et al. (in press). The cost is an estimate 

of the present value at the time for final cutting and the amount of dead wood generated in the 

long run. From data for forest stands dominated by Norway spruce typical for three parts of 

Sweden (see Jonsson et al., in press, for details). 

 

 
i) biodiversity-oriented 
management   ii) setting aside a forest   

Part of 
Sweden 

Cost 
(SEK/ha) 

Dead wood 
(m

3
/ha) 

Cost / dead 
wood 
(SEK/m

3
) 

Cost 
(SEK/ha) 

Dead wood 
(m

3
/ha) 

Cost / dead 
wood 
(SEK/m

3
) 

Southern 2201 7.52 290 69528 92 760 

Central 1261 4.93 260 43424 68 640 

Northern 1000 2.36 420 9870 63 160 
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Fig. 1. The two types of landscape scenarios that were analysed: (i) landscape with constant 

conservation efforts, and (ii) landscape with a bottleneck, with a natural increase of dead 

wood without active efforts, and an increase of dead wood speeded up with active efforts. 

Prop. unman. = proportion of the total forest area that was unmanaged, Dead wood / ha = the 

amount of dead wood per hectare over the entire landscape, in relation to the initial amount. 

In all scenarios, the extinction risk was predicted for a 100-year period, 150 to 250 years from 

the starting point. 

  

Fig. 2. Amount of dead wood of Norway spruce suitable for the model species (equal to half 

of the total amount of dead wood, because the other half was considered unsuitable for the 

study species) in relation to stand age of managed forests, used as input in the incidence 

function model. Output from simulations of dead wood dynamics (taking into account forest 

growth, tree mortality, dead wood decay, and destruction of dead wood by forestry 

operations) in Norway spruce forests, managed with traditional or biodiversity-oriented 

methods (Table 3), or unmanaged. 

 

Fig. 3. Extinction risk (% over 100 years) in a landscape with a bottleneck, with the new 

management regime in the long run generating an amount of dead wood equal with a 

landscape with five large reserves (Table 2). With (Fig. 3b) or without (Fig 3a) active efforts 

taken to speed up the accumulation of dead wood. Model species denoted A–E according to 

Table 1. n = 500. 

 

Fig. 4. Occupancy per stand of species A at three different occasions in relation to the amount 

of suitable dead wood. The amount of suitable dead wood was measured at three different 

spatial scales. In the landscape, forestry started during the first 100 years, followed by a 
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constant conservation regime (small reserves on 2% of the area, traditional management in the 

managed forests). n = 500. Amount of suitable substrate measured (i) per stand, (ii) within a 

radius of 500 m, (iii) within a radius of 1,000 m. 
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Fig. 1 
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 Fig. 2 
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Fig. 3a 
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Fig. 3b 
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Fig. 4 
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for >7.5 m3/ha: n = 0. 
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