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Abstract  

A species rich beetle fauna is associated with old, hollow trees. Many of these species are 

regarded as endangered, but there is little understanding of the population structure and 

extinction risks of these species. In this study I show that one of the most endangered beetles, 

Osmoderma eremita, has a population structure which conforms to that of a metapopulation, 

with each tree possibly sustaining a local population. This was revealed by performing a 

mark-release-recapture experiment in 26 trees over a 5-year period. The spatial variability 

between trees was much greater than temporal variability between years. The population size 

was on average 11 adults tree–1 year–1, but differed widely between trees (0–85 adults tree
–1

 

year
–1

). The population size in each tree varied moderately between years [mean coefficient of 

variation (C.V.)=0.51], but more widely than from sampling errors alone (P=0.008, Monte 

Carlo simulation). The population size variability in all trees combined, however, was not 

larger than expected from sampling errors alone in a constant population (C.V.=0.15, 

P=0.335, Monte Carlo simulation). Thus, the fluctuations of local populations cancel each 

other out when they are added together. This pattern can arise only when the fluctuations 

occur asynchronously between trees. The asynchrony of the fluctuations justifies the 

assumption usually made in metapopulation modelling, that local populations within a 

metapopulation fluctuate independently of one another. The asynchrony might greatly 

increase persistence time at the metapopulation level (per stand), compared to the local 

population level (per tree). The total population size of O. eremita in the study area was 

estimated to be 3,900 individuals. Other localities sustaining O. eremita are smaller in area, 

and most of these must be enlarged to allow long-term metapopulation persistence and to 

satisfy genetic considerations of the O. eremita populations.  
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Population variability  



Introduction  

In the last decade, metapopulation models have been commonly considered in conservation 

work (e.g. Hanski and Simberloff 1997), even when it is not known whether metapopulation 

dynamics are of importance (Doak and Mills 1994). One important assumption usually made 

in metapopulation models is that local populations within a metapopulation fluctuate 

asynchronously (e.g. Foley 1997; Hanski et al. 1995). If the dynamics of populations are 

asynchronous, it is unlikely that all populations will suffer extinctions at once. However, 

widespread synchrony in a metapopulation implies that an unfavourable year would affect all 

local populations in a similar way. Therefore, a temporal environmental correlation between 

local populations could severely increase the risk of extinction risks for the metapopulation 

(e.g. Harrison and Quinn 1989; Thomas and Hanski 1997). Studies on populations of aphids, 

moths and butterflies suggest that fluctuations often occur more or less in synchrony over 

areas of 200,000 km
2
 or more (Hanski and Woiwod 1993; Pollard and Yates 1993; Sutcliffe et 

al. 1996). If strong synchrony between populations were a common pattern, it may threaten to 

undermine the theoretical importance of metapopulation dynamics in predicting the long-term 

survival of populations. Several studies on a smaller spatial scale have, however, revealed 

fluctuations which were not synchronous (Kindvall 1996; Thomas 1991). Therefore, there is a 

need for empirical studies to assess the degree of synchrony between local populations, 

especially of rare species as they are of most interest to conservationists.  

Metapopulation persistence increases with the number of interacting local populations 

forming the metapopulation (Hanski et al. 1996). Their persistence is also dependent on 

characteristics of the populations which influence the rate of local colonization (such as the 

dispersal ability) and extinction (such as the local population size and its variability). A small 

population size increases the risk of local extinction due to demographical accidents (e.g. 

Goodman 1987; Pimm 1991) and loss of genetic variation (Frankham 1995a; Saccheri et al. 

1998). Variation through time would also increase demographic risks, because among 

populations with equal mean population size, populations with larger fluctuations become 

small more often (e.g. Wright and Hubbell 1983; Pimm 1991).  

This is a study of the populations of a beetle, Osmoderma eremita Scopoli (Coleoptera: 

Scarabaeidae), living in tree hollows. O. eremita and many other species associated with 

hollow trees have relict distributions with small, isolated populations in pasture woodlands 

and old-growth forests (O. eremita: Luce 1996; other species: McLean and Speight 1993; 

Speight 1989). The habitat occupancy (Ranius 2000) and the dispersal rate of marked adults 

(Ranius and Hedin, in press) suggest that the O. eremita populations conform to a 



metapopulation structure, with each tree possibly sustaining a local population and with the 

local populations in a stand of trees interconnected to a metapopulation. O. eremita is listed in 

Annex IV of the European Union Habitats Directive, which sanctions strict protection of the 

species (Anonymous 1992). However, at present it is impossible to determine the 

requirements for the long-term persistence of O. eremita and other species living in hollow 

trees, as basic data on their population ecology are lacking.  

In a living hollow tree, partly decomposed wood inside the trunk is surrounded by 

sound, growing wood, resulting in a continuous nutrient supply for the saproxylic fauna. The 

daily microclimate fluctuations are much smaller in a trunk hollow than at the surface of the 

trunk (Park and Auerbach 1954; Kelner-Pillault 1974). Owen and Gilbert (1989) have 

proposed that saproxylic insects associated with tree hollows have constant population sizes 

as the nutrient supply and microclimate are stable, but in their study on hoverflies, the sample 

size of species living in rot holes was too small to achieve any empirical evidence.  

This study reports the population size of O. eremita in 26 hollow oaks and its temporal 

variability over a 5-year period. The aim of the study was to examine population size and its 

variability, both in single trees and overall, and to assess the synchrony of fluctuations of 

populations in different trees.  

 

Materials and methods  

The species 

O. eremita lives in tree hollows, in Sweden mainly in oaks, Quercus robur L., with certain 

characteristics that affect the microclimate (Ranius and Nilsson 1997). The species inhabits 

trunk hollows containing large amounts of wood mould, which is loose, rotten wood often 

mixed with fungi, fragments of dead insects, and the remains of bird nests. The larvae usually 

construct a cocoon in the autumn after 2 years of development and metamorphosis takes place 

in the spring of the following year. Thus, development normally takes 3 years, but this may 

depend on habitat quality (Tauzin 1994). The adults emerge in July–September and never 

hibernate. In contrast to many other saproxylic beetles they do not visit flowers or sap flows, 

but remain mainly in the tree hollows (Martin 1993; own observations).  

 

The field work  

This study was performed in one of the few remaining landscapes in Northern Europe with a 

high density of old oaks, which is situated in the province of Östergötland, southeastern 

Sweden (Antonsson and Wadstein 1991). In this landscape, a 1.5×2-km core area with the 



highest density of very large trees (Bjärka-Säby; 58 16′N, 15°46′E) was chosen as the study 

area. Here, most hollow oaks are scattered throughout pasture woodlands.  

In the study area, oaks with trunk hollows probably containing large amounts of wood 

mould were searched for, and 112 such trees were found. Adults of O. eremita were captured 

using pitfall traps in 26 of these trees. It was not possible to set traps in the other trees since 

the characteristics of the tree hollows made it impossible, or the trees were on land without 

public access. To be able to set a trap in a hollow, the entrance hole must be wide enough, <5 

m from the ground, and the wood-mould surface not too far from the entrance hole. The traps 

were empty jars placed with the openings at level with the wood-mould surface. If possible, 

traps with a top diameter of 7 cm were used, but in narrow hollows the traps were 5–6 cm 

wide. There was more than one entrance in ten of the 26 studied trees, but in most trees 

trapping was impossible in the smaller hollows. Therefore, usually one trap was used per tree, 

except for two trees in which two traps were set in different hollows. The traps were emptied 

once a day, and then O. eremita was also searched for in the hollows and on trunks. Each 

beetle was given an individual number by marking the elytra with an insect needle in a drill. 

Except for the first year of study, sex was determined according to Hansen (1925). After 

marking, the beetles were released on the surface of the wood mould, and usually the beetles 

immediately began to dig down into the wood mould. When the traps were emptied, 2.7% of 

the beetles were dead. The only discernible injury caused by the handling was that the needle, 

in some cases, pierced the abdomen, causing haemolymph to leak out. Nilsson (1997) has 

carried out a study on a smaller beetle species which shows that this kind of injury has little or 

no effect on survival.  

The study was performed over 5 years (Table 1). During two of the years, the trapping 

started before the first adults had emerged, while during the other 3 years adults were present 

on the first day of trapping. The trapping ended when the daily total capture fell below one 

individual, except in 1998, when the trapping ended when two captures per day were 

performed.  

 

Statistical treatment  

Most individuals (85%, confidence limits 72–94%) tended to remain in the same tree 

throughout their entire life (Ranius and Hedin, in press), and therefore the individuals in each 

tree could be viewed as a separate subpopulation. As the traps were set at different positions, 

depending on how the tree hollows were formed, and there could be either one or two traps in 

a tree, there might be differences in “catchability” between trees. Differences in catchability 



larger than expected from sampling errors alone were detected even between years in several 

trees, using a Monte Carlo simulation (unpublished data). Therefore, the population size was, 

as far as possible, estimated for each tree and year separately.  

In a closed population consisting of individuals with equal catchability, the distribution 

of captures between individuals should conform to a Poisson distribution. This is the basis of 

Craig's (1953) model, which was used for population estimations in this study. Craig's (1953) 

model is as follows: log n-log (n-r)=s/n, in which n is the population size, r is the number of 

captured individuals and s is the number of captures. If r and s are known, n can be solved by 

Newton-Raphson's method. The population size estimations were carried out for each tree and 

year separately in the eight trees with the largest number of captured individuals. For the 

remaining 18 trees with smaller samples, all capture data were combined and Craig's model 

was used to yield an estimate of the total population size in these trees. In the estimations, the 

sexes were combined because there was insufficient data to treat females separately for every 

tree. This gave rise to an underestimate, as there were differences in catchability between 

sexes (see Results).  

The population sizes were also estimated for three pooled samples including data 

collected over 4 years (1996–1999, but not 1995, as not all individuals were sexed in that 

year) from all trees which contained only: (1) males, (2) females and (3) both sexes. The 

purpose of this was to estimate the sex ratio and the magnitude of the bias which arises in the 

estimate when both sexes are present.  

In addition, the total number of males in 1996 to 1999, inclusive, for all trees combined 

was estimated using the Jolly-Seber method (Jolly 1965; see also Southwood 1978), in order 

to yield a population estimate from another, independent method and compare this with the 

results from Craig's model. The Jolly-Seber method pre-supposes the catchability to be equal 

for all individuals at a certain moment, but it is allowed to vary in time. In contrast, Craig's 

model, as it was used in this study, allows the catchability to differ between trees. The Jolly-

Sebers' method demands more data than Craig's model, so the latter model alone could be 

used at the per tree level and for females. When using the Jolly- Seber method, the capture 

data was combined for intervals of 3 days to provide enough captures per occasion.  

The population size was considered to be zero in trees where no adults were found in a 

year. This was because it is reasonable to assume that the population is larger when a few 

individuals are captured, as opposed to when no individuals are found at all, as the difference 

in catchability between trees and years does not seem to be so large that it could explain the 

absence of captures in trees in most cases.  



The temporal variability was characterized by the coefficient of variation (C.V.), which 

is the ratio between the SD and mean population size. This is the only measure which can be 

used when there are zeros in the data series (McArdle 1992). The C.V.s were calculated as 

follows: C.V.=(S.D. of population size per year over 5 years)/(mean population size per year). 

This was estimated both for the populations of individual trees, and for the sum of populations 

in all trees and the eight trees with the largest populations.  

For the eight trees, an arithmetic mean of the C.V.s of individual trees, weighted 

according to population size per tree, was calculated as follows: mean C.V. for eight 

trees=[sum of the eight (S.D. of population size per year in a tree over 5 years)]/(mean 

population size per year of the eight trees summed). Computer simulations For each 

population estimate, a set of computer simulations was conducted to obtain the magnitude of 

errors due to random sampling. Each simulation was run as follows:  

1. The number of individuals was equalled with the actual population size estimated 

from field data with Craig's model.  

2. Captures were randomly distributed between the individuals, until the number of 

recaptures reached the number of recaptures in the field data.  

3. From the figures on the number of captures and number of individuals captured 

generated from the randomized process above, the population size was estimated by Craig's 

model.  

The simulation was repeated 1,000 times, in order to determine the 95% confidence 

limits.  

The C.V.s achieved from the field data reflect not only the actual population 

fluctuations, but also variations of the estimates caused by sampling errors. The C.V.s from 

the field data were compared with the magnitude of the C.V.s expected from sampling errors 

alone by using a Monte Carlo simulation. Each simulation run generated the C.V.s over 5 

years for eight trees with population sizes constant over time, but with variability in 

population estimates due to randomized capturing. Each simulation was run as follows:  

1. The number of individuals in each tree was equalled with the mean of the population 

size estimated from field data over 5 years in that tree, and was kept constant over the 5 years.  

2. For each of the 40 sets of individuals (5 years×8 trees), captures were randomly 

distributed between the individuals, until the quotient between recaptures and number of 

individuals reached the same value as from the field data (recaptures/estimated population 

size) from the particular tree and year.  



3. The number of captures and number of individuals captured, generated from the 

randomized process above, were counted for each of the 40 sets of individuals, and the 

population size was estimated by Craig's model.  

4. From the population estimates, C.V.s (for individual trees, and for the eight trees 

combined) were calculated with the same method as used for the field data.  

The simulations were repeated 1000 times, in order to compare the simulated C.V.s with 

values from field data.  

 

Results  

Population size  

In 5 years, 1,541 captures of 723 individuals of O. eremita were performed (capture data per 

year: see Table 1). Of these captures, 89.0% were performed by pitfall trapping, 8.7% without 

use of traps within tree hollows, 1.7% on trunks of hollow oaks, and 0.6% on the ground 

below hollow oaks. Of 818 recaptures, 812 were carried out in the same tree as the previous 

capture, whereas six took place in a different tree.  

The distribution of captures between individuals showed similarities with a Poisson 

distribution (Table 2), which Craig's model pre-supposes. However, the field data contained a 

higher frequency than expected of males that were captured once or >5 times. This is the 

pattern which should be expected when several subsets differing in catchability are combined, 

and this deviation from the Poisson distribution is smaller when the capture data is divided 

into subsets (trees and years).  

In 3 years, the field work started after the first adults had emerged (Table 1), probably 

5–10 days later, and this may have led to bias in the population estimates. The magnitude of 

this bias was estimated from the data of the 2 years when the first days were also included, by 

leaving out the captures performed during the 10 days following the emergence of the first 

adult. For these 2 years, the population size estimate decreased by 5.2% and 4.6%, 

respectively, when the captures of the 10 first days were deleted (estimated for 26 trees 

overall, males and females combined).  

The time between the first and last capture was approximately equal for male and 

female individuals (Table 3). However, male captures greatly outnumbered female captures 

(Table 2). The sex ratio was determined by estimating the total number of males and females 

in 1996–1999, using Craig's model with capture data of males and females separated, but with 

all trees and years combined. This resulted in a sex ratio near 1:1 (Table 4). Calculating the 

population size with male and female data combined, gave rise to an underestimate; the 



estimate was 25% higher with male and female data separated compared to combined in 

1996–1999. Therefore, the population size was calculated by using the estimates per tree, per 

year and correcting them for differing catchability between sexes (by multiplying the 

estimates by 1.25). The population estimates with male and female data combined (Table 5) 

yielded an average population size of 9 adults tree
–1

 year
–1

, and thus the corrected value is 11. 

The variability in population size between trees was very large (Table 5). The population size 

estimates did not differ between Craig's and the Jolly-Seber method (Table 4).  

 

Temporal variability  

It was only possible to obtain temporal variability data per tree from the eight trees with the 

largest populations. They sustain 94% of the total population, so their influence on the 

temporal variability overall was of utmost importance compared to the remaining trees.  

The temporal variability was very small in the studied trees combined, but greater 

within each tree. The populations in five trees out of eight had C.V.s significantly larger than 

expected from sampling errors alone (P<0.05, Monte Carlo simulations, Table 5). The mean 

C.V. for the populations in the eight trees was 0.51. The C.V. for the eight trees combined 

was 0.16, approximately the same as the C.V. for all 26 trees, which was 0.15.  

The variability between subsequent years and between generations was compared for 

the populations in each tree. The variability between two subsequent years (mean C.V., 0.37, 

n=4) did not differ from the variability between generations (between 1995 and 1998, and 

between 1996 and 1999, mean C.V., 0.53, n=2) (P=0.389, tested with ANOVA, C.V. for each 

tree was the dependent variable, tree and generations/subsequent years were independent 

factors; there was no interaction).  

In each year, the mean temperature was lower than the long-term average during spring 

and early summer. The mean temperature during the time of activity was higher than the 

average in all years but 1998 [July and August: 1995, 17.0°C; 1996, 15.8 C; 1997, 18.7°C; 

1998, 14.3°C; 1999, 16.8 C; mean (1961–1990), 15.8°C. Data from the meteorological station 

of Malmslätt, 20 km from Bjärka-Säby].   

 

Synchrony of variability  

The mean variability per tree was significantly greater than the simulated variability from 

sampling errors alone (C.V., field data, 0.51; median from simulations, 0.30, P=0.008). No 

difference was found in a similar simulation of the variability in eight trees combined (C.V., 

field data, 0.16; median from simulations, 0.14, P=0.334).  



For the eight trees, the synchrony of fluctuations between populations per tree was 

analysed by calculating the Pearson correlation coefficient between a derived value (V) of the 

population size per year in one tree and a derived value of the sum from the remaining seven 

trees. V for the year t was calculated as follows: V(t)=ln [population size+1]t+1-ln [population 

size+1]t.  

This value was used in order to remove the possible autocorrelation which may occur in 

time series. The correlation had a positive tendency for four populations and negative for the 

other four, but no correlation was statistically significant (Table 5).  

 

Constancy in spatial variability  

With a few exceptions, the same six trees sustained the largest populations every year (Table 

5). In six trees, O. eremita was never captured and in 14 trees a few (on average 0–5 O. 

eremita tree
–1

 year
–1

) adults were present each year.  

The variance in the population sizes (ln transformed) between years (for eight trees) was 

larger than the variance between trees (for 5 years) (P=0.031, t-test).   

 

Discussion  

Population size  

If it is assumed that the abundance is equal in trees not studied and in trees studied, then the 

number of O. eremita in 112 hollow oaks with wood mould at Bjärka- Säby is approximately 

1,300 adults year–1. Thus, in the three cohorts, the total number of individuals which will 

emerge as adults is estimated to be 3,900. As trapping was only possible in trees with certain 

characteristics, there might be a difference in the population size between trees with and 

without traps. However, there is no indication whether trees without traps would have larger 

or smaller population sizes; those trees which contained the largest number of beetles did not 

differ from other trees with traps with respect to those characteristics that determined whether 

trapping was possible or not (height of the entrance hollow, how far the wood mould surface 

was from the entrance, and size of the entrance; (unpublished data)). As the population size 

differed widely between trees, there is much uncertainty regarding the population estimate 

when only the number of hollow trees is known. Moreover, there are many trees with small 

hollows (for example woodpecker holes) in the study area which were excluded from the 

estimation of hollow tree density, as it is not known whether they contain enough wood 

mould for O. eremita. If some of these trees are inhabited by O. eremita, the population size is 

larger.  



The sex ratio seems to be 1:1, but there was a strong male bias in the captures. The same 

pattern has also been recorded from pitfall trapping of some other taxa Thomas et al. 1998).  

 

Temporal variability  

The constancy in size of the total O. eremita population differs considerably from that of 

many other insect populations, which display large fluctuations of 10– 1,000 times between 

generations [e.g. gyrinids (Nürnberger 1996), aphids (Dixon 1990), spruce budworm 

(Royama 1984) and lygaeids (Solbreck 1991). There are also insects which show moderate 

variability (hoverflies: Owen and Gilbert 1989, dragonflies: Crowley and Johnson 1992, some 

butterflies: Pollard and Yates 1993, carabid beetles: Luff 1982), which vary with the same 

magnitude as for O. eremita per tree, but more than for O. eremita for all trees combined. 

Comparing the results of variability studies is however somewhat dubious, as the C.V. not 

only reflects the population dynamics that are typical for the studied species, but is also 

influenced by population size and the temporal and spatial scale of the study. This is because 

temporal variability is always more or less overestimated due to “contamination” with spatial 

variation (McArdle 1992; Stewart- Oaten et al. 1995) and sampling error (Link and Nichols 

1994; Mönkkönen and Aspi 1997), and is correlated with the size of the population (McArdle 

et al. 1990).  

Pimm and Redfearn (1988) have pointed out that the variability in population size 

increases when more generations are included in the calculation. The normal life cycle of O. 

eremita is probably 3 years, and this means there were three different cohorts in 1995–1997, 

and the offspring from 1995 and 1996 emerged in 1998 and 1999, respectively. Theoretically, 

there may be factors which increase as well as factors which decrease variability between 

cohorts compared to between parents and offspring. For example, moths with a life cycle of 2 

years consistently show very large fluctuations between cohorts in subsequent years but 

smaller fluctuations between parents and offspring, probably due to fluctuations in parasitoid 

abundance (Mikkola 1976). However, the population sizes of cohorts that are produced close 

in time could also be positively correlated as they are partly affected by the same 

environmental conditions (Gaston and McArdle 1994). In this study on O. eremita, none of 

these factors were strong enough to give rise to any difference in variability between cohorts 

compared to between parents and offspring.  

Populations living in more stable habitats are less variable (Oghushi and Sawada 1981; 

Wolda et al. 1992), and this could explain the narrow fluctuations of the O. eremita 

populations. The nutrient supply might be constant for O. eremita as wood continuously 



decomposes inside a trunk hollow. The microclimate inside a trunk is stable and not very 

sensitive to weather fluctuations. Many insect populations are affected by weather (e.g. 

Kingsolver 1989; Solbreck 1991; Pollard and Yates 1993; Whittaker and Tribe 1998) or 

parasitoid abundance (Mikkola 1976) over large areas. In contrast, the populations of O. 

eremita fluctuated yearly in each tree rather independently of each other, even though the 

weather conditions varied between years similarly for all the trees studied.  

 

Asynchrony in variability  

The strongest evidence for the fairly independent fluctuation of populations in each tree is that 

the Monte Carlo simulation revealed that there were no statistically significant fluctuations 

overall, although there were fluctuations at the tree level. In a metapopulation consisting of 

local populations fluctuating independently of each other, the metapopulation variability 

decreases with spatial scale because local fluctuations tend to cancel each other out when they 

are added together (Murdoch et al. 1985). Another effect, giving the same result, is that the 

sampling error becomes larger when the sample size is smaller (Link and Nichols 1994; 

Mönkkönen and Aspi 1997), and this might be a reason for smaller fluctuations overall in 

many cases. The Monte Carlo simulations showed that also in this study we should expect a 

larger C.V. at the tree level than for the population combined due to sampling errors; 

however, not as large a difference as there was in the field data.  

Only half of the populations showed a tendency to fluctuate positively with the total 

population size in the remaining seven trees. This is also an indication of asynchrony, but it is 

difficult to determine the influence of sampling errors in this kind of analysis.  

 

Constancy in spatial variability  

The variability was much larger between trees than between years. At the time scale studied, 

the spatial variability pattern mostly persisted between years, mainly due to moderate 

variability of population size per tree. This suggests that the population dynamics are 

determined by factors which are stable in time but variable between trees, e.g. microclimate or 

nutrient supply.  

 

Species preservation  

Fragmentation and decline of habitats with old trees have caused O. eremita and other beetles 

dependent on hollow trees to become confined to small sites without connectivity (McLean 

and Speight 1993; Luce 1996; Ranius 2000). According to the minimum viable 



metapopulation size concept, the persistence of a metapopulation increases with the number 

of patches sustaining local populations (Hanski et al. 1996). As a rule of thumb at least ten 

occupied patches are needed for the long-term survival of a metapopulation (Hanski 1997). 

This study indicates that only a minor fraction of the trees with wood mould sustain large 

populations of O. eremita, and there- fore an assemblage of some tens of hollow trees might 

be needed for metapopulation persistence.  

The persistence of a metapopulation is generally facilitated by decreasing distances 

between habitat patches, as this promotes colonization and rescue effect (Hanski 1994). This 

may not always be the case, however, as synchrony between local populations tends to 

decrease the persistence of the metapopulation. Therefore, if asynchrony increases with 

distance, it may not be optimal to concentrate the habitat patches, but to maintain a distance 

between patches which exceeds the range within which the population fluctuations are 

correlated (Kindvall 1996). A decreased distance between local populations increases 

synchrony for some insects, at least on a large-scale level (Thomas 1991; Hanski and Woiwod 

1993; Sutcliffe et al. 1996), but not for others (Kindvall 1996). The results from this study 

suggest that there is no strong synchrony of O. eremita populations even within a stand of 

trees. Therefore, it seems to be the best strategy to preserve assemblages of hollow trees as 

large and concentrated as possible, to promote the longterm survival of O. eremita.  

Inbreeding depression is usually of minor importance when the effective population size 

exceeds 50 individuals, but this differs considerably between populations, dependent among 

other things on the history of the population (Lande 1999). To retain a potential for 

evolutionary adaptations to environmental changes, the population size must be much larger; 

theoretical studies have predicted that an effective population size of 500–5,000 is required 

(Frankham 1995a; Lande 1995; Lynch 1996). As the O. eremita population in the present 

study area (Bjärka-Säby) was estimated to 3,900 individuals, and the effective population size 

normally is much lower than the censused population size (Frankham 1995b), it might have a 

somewhat reduced evolutionary potential. Most populations of O. eremita inhabit localities 

which are much smaller, and there the genetic effects may have a considerably larger 

influence on the population viability.  

It has been argued that local extinctions and colonizations in metapopulations of rare 

and declining species are usually consequences of successional changes of the habitat 

(Thomas 1994). Also the habitat of O. eremita, hollow trees, changes successively and has a 

limited duration. Therefore, to maintain an O. eremita metapopulation in the long run, it is not 

enough to preserve existing hollow trees, but new hollow trees must be continuously 



established within the dispersal range of the species. In areas with hollow trees, on principle 

three measures may be taken for the long-term survival of O. eremita and other threatened 

saproxylic beetles (Ranius and Jansson 2000): (1) maintain the quality of existing trees, e.g. 

by continued/resumed grazing of pasture woodlands to avoid forest regrowth, (2) prolong the 

life-time of existing trees by carefully removing trees in the surrounding which compete for 

nutrients, water and sunshine, (3) allow new trees to be established and speed up their ageing. 

Even within the existence of a tree hollow there is a successive change of the habitat 

characteristics which probably influence its suitability for O. eremita. However, it is not 

possible to understand the dynamics of the habitat quality in more detail yet, as studies over 

very long periods are required.  
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Table 1  

Capture data of O. eremita per year. Starting date The date when the first adult was captured 

in the field, Ending date date when the last individual was captured, Captures total number of 

captures in the 26 trees of the study, Captured individuals total number of individuals 

captured in the 26 trees of the study 

 

Year  Starting  Ending  Captures  Captured  

 date  date   individuals  

1995  21 July
a
  25 August  283  165  

1996  27 July  7 September  223  109  

1997  14 July
a
  25 August  314  142  

1998  21 July  2 September  464  162  

1999  8 July
a
  15 August  257  145  

Sum    1,541  723  

 

a
 Adults present on the first day of field work 



Table 2  

The captured O. eremita individuals divided into groups according to how many times they 

were captured. Frequencies of males and females from the field data of 1996–1999 (not all 

individuals were sexed in 1995), and the frequencies expected from the Poisson distribution  

 

No. of  Males   Females 

captures 

 Field  Poisson  Field  Poisson 

 data  distribution  data  distribution 

0  –  39  –  224 

1  160  94  132  127 

2  81  112  29  36 

3  48  89  6  7 

4  27  53  4  1 

5  28  25  0  0.1 

6  20  10  0  <0.1 

7 7  3  0  <0.1 

8  8  1  0  <0.1 

9  4  0.3  0  <0.1 

10  1  <0.1  0 <0.1 

>10  3  <0.1  0  <0.1 

Sum  387  426  171  395



Table 3 

The recaptured O. eremita individuals in 1996–1999, divided into groups according to the 

time elapsed between the first and last capture  

 

Days  Males  Females 

1–9  138  27 

10–19  67  8 

20–29  20  3 

30–39  2  1



Table 4  

Estimates of the population size for 4 years (1996–1999), total with confidence limits  
 

 

Population  Method  Population  Confidence 

subset   size  limits 

Males
a
  Craig  426  410–441 

Femalesa  Craig  395  319–493 

Combined sexes
a
  Craig  658  633–688 

Males,  Craig  569  – 

with correction
b
 

Males
c
  Jolly-Seber  584  – 

 

a
 From a pooled sample including all trees  

b
 Data corrected for different catchability between sexes. The population sizes for every tree 

(see Table 2) was summed, divided by 2 (as the sex ratio was 1:1) and multiplied by 1.25 (to 

correct for the bias which arise when sexes are combined)  

c
 Males estimated by the Jolly-Seber method from a pooled sample including all trees 



Table 5  

Population size (Pop.; i.e. the number of adults per tree and year estimated by Craig's model, 

without correction for differences in catchability between males and females) with 95% 

confidence limits. Coefficient of variation (C.V.)=SD/mean population size for 5 years and 

significance level of the C.V. in relation to a Monte Carlo simulation with temporal variability 

caused by sampling errors alone  

 

 1995   1996   1997   1998   1999   1995–1999 

 Pop.  95%  Pop.  95%  Pop.  95%  Pop.  95%  Pop.  95%  Mean
a
  C.V.  Corr. 

  Limit   Limit   Limit   Limit   Limit    coeff.
b
 

Trees  38  7–93  18  13–21  90  80–99  101  97–104  94  77–111  68.2  0.55**  –0.458 

 79  64–93  55  48–61  36  21–56  90  43–155  80  29–146  68.0  0.32  –0.116 

 41  30–52  59  10–148  42  13–96  11  6–18  29  3–107  36.4  0.49  –0.688 

 19  12–26  16  13–17  11  11–11  10  9–10  21  14–30  15.4  0.31**  0.031 

 38  25–54  22  4–51  0  –  3  3–7  8  8–8  14.2  1.11**  –0.068 

 11  7–12  4  4–4  9  8–9  22  3–80  10  4–22  11.2  0.59  0.597 

 6  5–6  0  –  2  2–2  4  4–4  6  6–6  3.6  0.72*  0.868 

 3  3–3  1  1–1  0  –  0  –  13  8–15  3.4  1.62*** 0.184 

Sum  235   175   190   241   261   220.4  0.16 

(eight trees) 

Sum  21   11   13   7   10   12.4 

(remaining 

18 trees) 

Sum  256   186   203   248   271   232.8  0.15 

(26 trees) 

 

*P<0.05; **P<0.01; ***P<0.001; 
a
Arithmetic mean of the population size 1995–1999; 

b
Pearson correlation coefficient (corr. coeff.) between population size per year in the tree and 

the other seven trees (ln transformed and with autocorrelation considered; see Results)  


