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Induced defence responses in Picea abies triggered by 
Heterobasidion annosum s.l. 

Abstract 
Norway spruce [Picea abies (L.)Karst.] is a key tree species for forest industry in 
Europe and stem and butt rot caused by Heterobasidion parviporum (Fr.) Niemelä & 
Korhonen is one of its major disease problems. The commercial gain using 
improved plant material could be even greater if resistance traits were included in 
the breeding program. The aim of this study was to increase the knowledge of the 
induced defences in response to H. annosum s.l. in Norway spruce bark.  

In this thesis it has been concluded that there is a significant variation between 
genotypes in a full-sib family of Norway spruce. The broad sense heritability was 
found to be 0.11 for fungal growth. A shift in the pathway connecting primary and 
secondary metabolism, as detected by a transcriptional switch of DAHP 
homologues, following H. annosum s.l. inoculation, indicate a possible allocation of 
more carbon to the secondary metabolism. We also found a consistent induction of 
the phenylpropanoid pathway and there was an association between the phenol 
profile and level of resistance. For example, the level of the flavonoid (+)-catechin 
showed temporal variation in genotypes with higher level of resistance. Matching 
changes was found in the transcriptome. The R2R3-transcription factor PaTT2-like 
gene, a putative regulator of flavonoid production, was found to be induced by 
jasmonic acid in bark.  

The responses to H. annosum s.l. have been shown to be non-specific but that the 
magnitude of the response is higher than with other types of challenges. A 
simultaneous up-regulation of genes related to the salicylic acid- and jasmonic acid-
signalling pathway in response to fungal inoculation revealed a closer relationship 
between the pathways than has been observed in many angiosperms. 

Finally, the clonal variation in transcriptional and chemical responses observed in 
this thesis demonstrates variation between genotypes that can be related to different 
levels of susceptibility to H. annosum s.l. and which can be explored for 
improvement in coniferous trees. It also demonstrates some of the potential of using 
modern molecular methods in the breeding practices. 
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1 Introduction 

Forests are the most widespread type of terrestrial ecological system and 
provide important resources for humankind. In Sweden, forest covers 
approximately 56 % of the total land area and in economical terms forestry is 
a very important industry (Fransson, 2010). Swedish forests are dominated 
by conifers, with Norway spruce [Picea abies (L.) Karst.)] and Pinus sylvestris 
making  up more than 85 % of all forest (Fransson, 2010). During the long 
life span of coniferous trees they will interact with a wide range of 
microorganisms both beneficial and harmful. Conifers are able to form very 
close interactions with different mycorrhizal fungi, which requires intricate 
signalling and cross talk from both participants. Conifers have also evolved 
different strategies to defend themselves against attacks from pests and 
pathogens that include a constitutively expressed mechanical and chemical 
defence complemented by an inducible defence (Eyles et al., 2009; 
Bohlmann, 2008; Franceschi et al., 2005). There is a constant arms race 
between plants and pathogens where resistance repeatedly can be broken 
down or acquired. Management of plants by man has interfered with the 
evolutionary balance between hosts and pathogens and in some cases created 
opportunities for previously insignificant pathogens to become large and 
costly problems (Stenlid et al., 2011). The increasing level of damage caused 
by Heterobasidion annosum [(Fr.) Bref.] sensu lato (s.l.) in Swedish forests may 
be an example of this. In this thesis the molecular basis underlying the 
response to H. annosum s.l. in Norway spruce will be addressed. 

1.1 Background 

Norway spruce belongs to the family Pinaceae. The genus Picea includes 
about 34 species (Ledig et al., 2004; Farjon, 1998). Its natural distribution 
ranges across the Pyrenees, Alps and Balkans, northwards to southern 
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Germany and Scandinavia and eastwards through the Carpathian Mountains 
and Poland to the Ural Mountains (Farjón, 1990; Rushforth, 1987). 
Economically the most important conifer tree species in Europe is P. abies. 
One important cause of economic losses in the forest industry is rot by 
fungal pathogens and the major fungal pathogen on Norway spruce is H. 
annosum s.l. Fungal species in this complex cause destruction of wood and 
reduction in tree growth resulting in losses in the order of €790 million 
annually for the European forest industry (Woodward et al., 1998).  

The establishment of H. annosum s.l. infection occurs by basidiospores 
germinating on fresh stumps or wounds on stems and roots. The fungus 
then spreads to other trees through root contacts between neighbouring 
trees. In Norway spruce the fungus usually causes butt and stem rot and 
only seedlings and young trees may die as a result of the infection. Mature 
trees can withstand the infection and the fungus can cause a rot column as 
high as 8-12 m (Bendz-Hellgren et al., 1998). Good forest management and 
stump treatment can reduce the spread of this pathogen. Stump treatment 
involves introducing a biological competitor, Phlebiopsis gigantea (Fr.) Jülich, 
or changing the chemical environment of the wood. A long-term 
investigation of the effects of stump treatment suggests that this is an 
effective method of preventing the establishment of H. annosum s.l. infection 
at uninfected sites. However, in already infested sites a carryover between 
rotations is an important factor for the health of the new generation (Oliva 
et al., 2010a).  

The H. annosum species complex consists of five species causing infection 
in a broad range of tree species, both deciduous and coniferous (Korhonen 
& Stenlid, 1998). Three species are native in Europe: H. parviporum (Fr.) 
Niemelä & Korhonen, with Picea spp. as its main host; H. annosum (Fr.) 
Bref., with Pinus spp. as the  main host; and H. abietinum (Fr.) Niemelä & 
Korhonen, which primarily infects Abies species (Niemelä & Korhonen, 
1998). Two North American species H. irregulare Otrosina & Garbelotto and 
H. occidentale Otrosina & Garbelotto (Otrosina & Garbelotto, 2010) exist 
with some geographic and host preferential differences. Mating 
compatibility studies (Chase & Ullrich, 1990; Korhonen, 1978) in parallel 
with molecular studies (Linzer et al., 2008; Johannesson & Stenlid, 2003; 
Garbelotto et al., 1998; Kasuga & Mitchelson, 1993) have shown that the 
five different species can be separated in two different clades. The Eurasian 
H. parviporum and H. abietinum and the North American H. occidentale 
belong to one clade and the Eurasian H. annosum sensu stricto (s.s.) and the 
North American H. irregulare belong to the other clade. A recent study by 
Dalman et al. (2010) regarding the evolutionary history of the Heterobasidion 
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genera argues that the H. annosum species complex originated in ancient 
Laurasia and then spread via different trajectories resulting in the emergence 
of different species, and that the speciation events occurred after that 
divergence of the host genera. 

 
Figure 1. An overview of tissue types in the stem of Norway spruce. Pictures were kindly 
provided by Jonàs Oliva and The Norwegian Forest and Landscape Institute (microscopic 
cross-section). 

1.2 Overview of plant defences with a focus on conifer defence 

1.2.1 Constitutive defence 

The constitutive defences of plants can be categorized as mechanical or 
chemical. Both types are regarded non-specific and effective against a wide 
range of organisms. The outer bark or the periderm constitutes the first line 
of defence (Fig. 1). This layer has cells that have lignified and suberised walls 
giving strength to the tissue and making it hydrophobic. In addition, there 
are cells containing phenolic compounds and there may be one or more 
layers of cells containing calcium oxalate crystals providing both chemical 
and mechanical resistance (Franceschi et al., 2005).  

In the secondary phloem, common defence structures for most conifers 
are polyphenolic parenchyma (PP) cells, cortical resin structures, stone cells 
and calcium oxalate crystals (Hudgins & Franceschi, 2004). PP cells are 
specialised parenchyma cells for synthesis and storage of phenolic 
compounds (Franceschi et al., 1998). At the beginning of each growing 
season a row of PP cells differentiates from the cambial zone giving rise to 
one layer of PP cells each year. The PP cells will mature during following 
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growing seasons, becoming thick-walled round cells containing phenolic 
compounds such as stilbenes and flavonoids. Calcium oxalate crystals can 
also be present in the vacuoles of the PP cells (Hudgins et al., 2003b). The 
PP cells are maintained as living cells and living PP cells that are over 70 
years old have been identified, indicating an important role for this cell type 
(Krekling et al., 2000). 

Resin ducts are tube-like structures lined with thin-walled epithelial 
cells; in Norway spruce, constitutive axial resin ducts are found and radial 
resin ducts expand from the phloem to the secondary xylem. Axial resin 
ducts only occur in low numbers in the xylem (Nagy et al., 2000). The 
composition of the resin includes three structurally diverse classes of 
terpenoid compounds: monoterpenes, diterpenes and sesquiterpenes. In 
Norway spruce, approximately 95% of the resin is composed of mono- and 
diterpenes in approximately equal proportions (Martin et al., 2002). The 
resin can act as a physical defence, immobilising an invading insect (Trapp & 
Croteau, 2001) or may be toxic to the invading organism (Lindberg et al., 
1992). The xylem parenchyma is involved in the production of secondary 
metabolites such as phenolic compounds. The heartwood is impregnated 
with lignans and phenolic compounds, which provides some defence against 
wood rotting fungi (Franceschi et al., 2005). 

1.2.2 Induced defence 

Constitutive defences are likely to have costs that can affect the fitness of the 
plant (Bolton, 2009). This leads to the need for defence mechanisms that 
can be induced upon an attack. The activation of  inducible responses relies 
on recognition of the different organisms (Jones & Dangl, 2006). Plants have 
the ability to recognise a multitude of different microorganisms by 
identifying microbe associated molecular patterns (MAMPs). MAMPs are 
slow-evolving molecular structures unique to microbes (Jones & Dangl, 
2006). One major component of the fungal cell wall is chitin, which is a 
polymer of N-acetyl-D-glucosamine. Chitin and chitin fragments are 
generally viewed as MAMPs (Hamel & Beaudoin, 2010) and can elicit 
defence responses in Norway spruce. (Salzer et al., 1997). There is an 
ongoing arms race between hosts and pathogens; the pathogen can evolve 
different effectors that suppress MAMP-triggered defence responses and the 
host can in turn evolve the ability to recognise these effectors (Jones & 
Dangl, 2006). It has been suggested that although the recognition and 
subsequent reactions can vary in response to different types of pathogens 
(mainly necrotrophic and biotrophic), the overall signalling mechanisms that 
control gene expression after infection have much in common (Katagiri, 
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2004; van Wees et al., 2003). A general induction of available defence 
mechanisms can be an effective tactic so that at least some may have an 
effect on the invading pathogen (Katagiri, 2004). However, there can be a 
trade-off between resistance and fitness because the defence response is 
energy consuming (Oliva et al., 2010b; Bolton, 2009). For example, there is 
a negative correlation between growth and lignin content, which is an 
important feature of the cell wall and as a component for cell wall 
reinforcement during infection (Novaes et al., 2010).  

The induced defences in Norway spruce results in a reinforcement of the 
cell wall through lignifications and suberisation (Woodward & Pearce 1988) 
and de novo production of secondary metabolites such as stilbenes, flavonoids 
and terpenes which are induced in resin ducts, ray parenchyma and PP cells 
(Franceschi et al., 2000; Nagy et al., 2000; Lindberg et al., 1992). Upon 
challenge the constitutively expressed stilbene glucosides are converted to 
free stilbene aglycones, which exhibit greater antifungal activity (Woodward 
& Pearce, 1988). Anatomical changes occur such as an induced additional 
layer of PP cells which is initiated in the phloem and traumatic resin ducts 
(TD) are formed in the xylem (Franceschi et al., 2002). It has been shown 
that a pretreatment with wounding or low levels of inoculum can enhance 
resistance to a fungal pathogen owing to the induction of the defence 
mechanisms mentioned above (Krokene et al., 2003). 

Many of the secondary metabolites in plants are produced via the 
phenylpropanoid pathway (Vogt, 2010). One of the rate-limiting enzymes 
at the entry point of the phenylpropanoid pathway is phenylalanine 
ammonia-lyase (PAL) (Dixon et al., 1996) and it is common for monolignol 
biosynthesis and biosynthesis of flavonoids, stilbenes and lignans (Vogt, 
2010). Most enzymes in the phenylpropanoid pathway belong to gene 
families with multiple members. These genes putatively have both 
specialised and overlapping functions (Shi et al., 2010; Tsai et al., 2006). 
Accordingly, many genes in the phenylpropanoid pathway are induced in 
conifers in response to pathogens and pests (Koutaniemi et al., 2007; Ralph 
et al., 2006; Franceschi et al., 1998).  

Other important features of the induced defence response include the 
production of reactive oxygen species (ROS) and the synthesis of 
pathogenesis-related (PR) proteins (Brosche et al., 2010; Van Loon et al., 
2006). PR proteins include chitinases and glucanases that can act at the cell 
wall of invading fungi (Hietala et al., 2004; Nagy et al., 2004a; Salzer et al., 
1997) and peroxidases that are involved in the process of cross-linking of 
cell wall components and in the production of ROS (Almagro et al., 2009; 
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Nagy et al., 2004b). ROS can also mediate a hypersensitive response (HR) 
resulting in cell death and necrosis (Brosche et al., 2010).  

1.2.3 Signalling and regulation of induced defence responses. 

Even though angiosperms and gymnosperms separated about 300 million 
years ago (Stewart & Rothwell, 1993) there are general similarities in the 
interactions between pathogens and plants from the two divisions. There are 
several connected steps in the induction of defence responses as reviewed in 
Zhao et al., (2005). This includes ion flux increase, production of ROS, 
accumulation of salicylic acid (SA), induction of transcription factors and 
activation of downstream target genes. One of the earliest responses after the 
application of fungal elicitors such as chitin is the release of Cl- and K+ and 
an influx of Ca2+ (Zhao et al., 2005; Salzer et al., 1997; Salzer et al., 1996) 
(Fig. 2). Ion fluxes subsequently induce extracellular production of ROS 
(Lamb & Dixon, 1997). Following the oxidative burst, cells maintain a more 
reducing environment owing to the accumulation of antioxidants such as 
SA which is an important player in the defence signalling of plants 
(Glazebrook et al., 2003; Mou et al., 2003). The increase in the level of 
signalling hormones, together with the change in redox potential initiates 
gene expression through activation of different transcription factors (TF) 
(Spoel et al., 2010). Transcription factors belonging to the ERF, bZIP and 
WRKY families have been linked to a suite of mechanisms that leads to 
defence and stress responses (Singh et al., 2002). Members of the R2R3-
MYB transcription factor family have also been implicated in the regulation 
of plant stress responses, mainly plant secondary metabolism (Vom Endt et 
al., 2002). 

Not all pathogens elicit the same types of responses and certain responses 
are associated with certain types of pathogens. The two major defence 
signalling pathways are mediated by SA and jasmonic acid (JA)/ethylene 
(ET) which essentially are antagonistic (Robert-Seilaniantz et al., 2007; 
Thomma et al., 1998) and associated with biotrophic and necrotrophic 
pathogens, respectively (Glazebrook et al., 2003) (Fig. 3). However, these 
pathways have several common internodes, which indicate a complex 
network rather than separate pathways (Katagiri & Tsuda, 2010; Tsuda et al., 
2009; Mur et al., 2006). Furthermore, crosstalk between the SA and JA/ET 
pathways with other hormones, including auxin has been demonstrated, 
making the picture even more complex (Kazan & Manners, 2008; Llorente 
et al., 2008; Wang et al., 2007) (Fig. 3). These molecules modulate the 
activity of downstream transcription regulators that control a large set of 
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Figure 2. Scheme of the possible signalling network in the formation of induced conifer 
defence. Based on Zhao et al, 2005 and Salzer et al. 1996. 

different defence genes. For example, SA mediates expression of pathogen 
related-protein 1 (PR1) and systemic-acquired resistance (SAR) through 
activation of the transcription factor NPR1. In an un-induced state, NPR1 
is present as an oligomer in the cytosol (Mou et al., 2003). Redox changes 
induced as a result of SA accumulation leads to conformational changes in 
NPR1 from an inactive oligomer to the active monomer, allowing 
translocation to the nucleus and activation of target gene expression (Mou et 
al., 2003). Spoel et al., (2009) discovered that the ubiquitin / proteasome 
system (UPS)-mediated degradation of NPR1 in the nucleus plays an 
essential role in regulating gene expression during plant immune responses.  

Recent studies have linked the UPS to several aspects of phytohormonal 
signalling and regulation of biotic stress responses (Craig et al., 2009; Spoel et 
al., 2009; Delauré et al., 2008; Dreher & Callis, 2007). The UPS is 
responsible for the degradation of un-needed and damaged proteins and for 
maintaining the balance between enzyme synthesis and degradation. 
Through a three-step cascade (E1 > E2 > E3) proteins are selected and 
directed for degradation by the UPS. Relatively few E1 proteins (2) and E2 
enzymes (37) are present in the model plant Arabidopsis whereas more than 
1400 genes encoding putative E3-ubiquitin ligases have been reported 
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(Craig et al., 2009). E3-ubiquitin ligases are responsible for the final tagging 
of proteins, thereby conferring specificity to the degradation process. Like 
SA-mediated gene regulation, protein hydrolysis via the UPS pathway seems 
to be a prerequisite for activation of JA-responsive genes. In the presence of 
a JA signal the SCFCOI1 complex interacts with the JAZ1 protein, which is 
targeted for degradation via the UPS system. JAZ1 is a repressor and 
therefore, the degradation of JAZ1 leads to transcriptional activation of JA 
responses (Chini et al., 2007; Thines et al., 2007).  

 
Figure 3. Schematic picture of hormonal signalling network in plant defence.  

The schematic is based on Pieterse et al., (2009) Nature Chemical Biology. SA-salicylic acid, 

JA-jasmonic acid, ET-ethylene.  

 
The role of JA and ET as modulators of defence responses is relatively 

well documented in conifers (Krokene et al., 2008; Miller et al., 2005; 
Hudgins & Franceschi, 2004; Zhao et al., 2004; Hudgins et al., 2003a; Zhao 
& Sakai, 2003; Franceschi et al., 2002; Martin et al., 2002). For instance, 
exogenous application of methyljasmonate (MeJA) and ethylene have been 
shown to initiate similar responses as wounding e.g. induction of resin ducts, 
PP cells and the transcription of mono- and diterpene synthases (Miller et 
al., 2005; Hudgins et al., 2004; Hudgins & Franceschi, 2004; Fäldt et al., 
2003; Franceschi et al., 2002; Martin et al., 2002). Genes involved in the 
biosynthesis of ET and their induction by wounding have also been 
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characterised (Ralph et al., 2007; Hudgins et al., 2006). Hudgins and 
Franceschi (2004) showed that the cellular responses induced by MeJA, are 
in turn mediated by ET and that no induction of cellular defences could be 
detected after the application of methylsalicylate (MeSA). The reports of SA 
in conifer defence are rare and the results are not conclusive (Kozlowski et 
al., 1999; Kozlowski & Métraux, 1998). However, Likar and Regvar (2008) 
observed a systemic accumulation of SA in roots and shoots of Norway 
spruce seedlings after inoculation with H. annosum s.s., which suggests a role 
in defence signalling. PR proteins have also been shown to be induced after 
treatment with sodium salicylate (Davis et al., 2002).  

1.2.4 Norway spruce /Heterobasidion interaction 

By being a facultative necrotrophic fungus H. annosum s.l. can live 
nectrotrophically, by killing host tissue but also saprotrophically, surviving 
on dead wood by breaking down lignin and cellulose. Modern silvicultural 
management facilitate the spread of these fungi by creating many new entry 
points such as fresh stumps (Stenlid & Redfern, 1998). The stump surface is 
largely unprotected and basidiospores germinating on a fresh stump escape 
much of the defence systems available to Norway spruce. By growing 
saprophytically in the heartwood, which is depleted of living cells, the 
fungus can extend in the wood without having to cope with host defence 
responses. However, as soon as the fungus comes in contact with the 
sapwood further growth requires a switch to necrotrophic growth and the 
ability to handle host defences such as reactive oxygen species and secondary 
metabolites. Genes involved in detoxification has been shown to be induced 
in this switch between different nutritional mode (Lundén, 2010). H. 
annosum s.l seems to be able to overcome most of the host´s obstacles 
although trade-offs might exist in the switch between saprotrophic and 
necrotrophic growth. A trade-off does seem to exist for the host as well 
because trees with a so-called reaction zone (RZ) had a lower periodic 
increment than infected trees without a RZ (Oliva et al., 2010b; Bendz-
Hellgren & Stenlid, 1997). The RZ is characterised by a high pH and a high 
concentration of phenols (Shain & Hillis, 1971) and functions to 
compartmentalise the decay.  

As a potent wood decayer, H. annosum s.l., destroys large quantities of 
wood. To access nutrients it secretes a wide range of extracellular enzymes 
such as cellulases, hemicellulases, pectinases, laccases and peroxidases 
(Asiegbu et al., 2004; Maijala et al., 2003; Maijala et al., 1995; Karlsson & 
Stenlid, 1991; Maijala et al., 1991). Cell wall degrading activity or MAMPs 
triggers the defence responses in the host and molecular studies of the 
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interactions between the Heterobasidion spp. complex and its host have 
revealed the induction of multiple overlapping defence strategies, as 
described in the sections 1.2.1 and 1.2.2. These mechanisms include (i) 
induction of defence related genes (Adomas et al., 2007; Koutaniemi et al., 
2007; Asiegbu et al., 2003), (ii) production of PR-proteins such as chitinases 
(Fossdal et al., 2005; Hietala et al., 2004), (iii) production of antimicrobial 
compounds such as phenols and terpenes (Johansson et al., 2004; Nagy et al., 
2004b; Johansson et al., 1998; Lindberg et al., 1992), (iv) and  shifts in 
primary and secondary metabolism (Adomas et al., 2007). Similar anatomical 
responses to those induced by wounding have also been reported, with 
induction of TD and PP (Krokene et al., 2003) and papilla formation in 
association with fungal hyphae (Asiegbu et al., 1993).  

1.3 Breeding for resistance 

In the Swedish Norway spruce breeding program, the main goals are to 
increase the productivity and improve wood qualities (Karlsson & Rosvall, 
1993). Due to the monoculture cropping of forest trees, we have created 
opportunities and new niches for pathogens that would otherwise be of 
minor importance: the growing problem of Heterobasidion root rot is 
probably an example of this. The international trade of wood products also 
increases the risk of introducing new pathogens to susceptible hosts (Stenlid 
et al., 2011). It is therefore important to consider traits such as resistance or 
reduced susceptibility when breeding forest trees.  

The generation time for Norway spruce is approximately 20-25 years 
and although phytohormones such as gibberellins can shorten the time from 
seedling to first bloom (Högberg & Eriksson, 1994) the breeding cycle is still 
very long compared to other crops. Conventional tree breeding is efficient 
for traits with high heritability, but is less efficient if the heritability is low or 
if the evaluation of the trait is difficult (or very time consuming). The use of 
marker-assisted selection (MAS) has been proposed as a tool to improve the 
efficiency of conventional plant breeding. However it is essential to find 
stable linkage between markers and DNA regions controlling the trait 
(called quantitative trait loci or QTLs). One single recombination event can 
abolish the linkage between the trait that is improved by breeding and the 
marker used to select genotypes. Finding stable linkage also requires a large 
progeny, tested in different environments and at different developmental 
stages (Brown et al., 2003; Asíns, 2002), which makes this a costly process. 
As an alternative, selection can be done directly on the desired alleles of so 
called candidate genes known to control the trait of interest. For example, 
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in Pinus taeda (L.), candidate genes linked to growth and wood density are 
available (Yu et al., 2006; Brown et al., 2003). 

Inheritance of disease resistance in forest trees has been commonly 
explained by polygenic models, where resistance is controlled by many 
genes, each with a small additive effect. However, a few exceptions have 
been described. Resistance to Pissodes strob Peck. in Sitka spruce [Picea 
sitchensis (Bong.) Carr.] has been demonstrated to have a significant genetic 
component with an individual tree heritability of more than 0.4 (King et al., 
1997). In P. taeda a major gene for resistance to Cronartium quercuum (Berk.) 
has been found, which has also been incorporated into the breeding 
program (Wilcox et al., 1996). A genes for resistance to Cronartium ribicola 
(Fisch.) have also been mapped in Pinus lambertiana (Dougl.) (Devey et al., 
1995).  

Experiments where Norway spruce has been inoculated with H. annosum 
s.l. have consistently shown a significant difference in fungal sapwood 
colonisation between different Norway spruce genotypes (Swedjemark & 
Karlsson, 2004; Swedjemark et al., 2001; Swedjemark & Stenlid, 1997; 
Swedjemark et al., 1997; Swedjemark & Stenlid, 1996; von Weissenberg, 
1975). The heritability for fungal growth in these studies have varied 
between 0.09 and 0.35 which is within the same range such as other traits as 
growth capacity, growth rhythm and wood density (Karlsson & 
Swedjemark, 2006). This suggests that there may be some room for 
improving the resistance to H. annosum s.l. in Norway spruce through 
breeding. However, so far little is known about what constitutes the 
difference in susceptibility to H. annosum s.l. and the methods to score the 
relative susceptibility have some limitations. To be able to implement 
resistance trait in the breeding program more knowledge is needed about 
the underlying molecular basis for the traits and the correlation to other 
traits in the breeding program needs to be addressed. 
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2 Objectives 

The overall objective of this thesis was to increase the knowledge of the 
molecular processes underlying the response to H. annosum s.l. in P. abies. 
More specifically, the objectives were to 
 Estimate the genetic variation in susceptibility to H. parviporum within 

a full-sib family of Norway spruce (Paper I). 
 Gain basic knowledge about the specificity of the defence responses in 

Norway spruce to H. parviporum (Paper II, IV).  
 Investigate transcriptional changes associated with induced defence 

responses in Norway spruce to H. parviporum (Paper II, III and IV). 
 Find associations between the induced transcriptome and chemical 

profiles to the level of susceptibility to H.annosum s.l in Norway 
spruce (Paper III).  

 Investigate responses to H. parviporum in Norway spruce related to the 
salicylic acid and jasmonic acid signalling pathways (Paper IV). 
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3 Material and Methods 

3.1 Plant and fungal material 

Spruce material of different ages and genetic background were used in this 
study. In Papers I, II and III, cuttings from a full-sib family that originated 
from the Swedish breeding program were used. The cross was made in 1998 
between the female parent (S21K7622162) and the male parent 
(S21K7621678), which both originated from the forest district Brezno in 
Slovakia. The original seedling (ortet) from which the cuttings were made 
was also included in Paper I. Unrelated spruce plants from a plant nursery 
were used in Papers II and IV. In Paper III, the experiment was carried out 
in a Norway spruce clone trial (S21S842979) established in 1984. The 
following fungal isolates were used: Heterobasidion parviporum (Rb175) in 
Papers I, II and IV, H. annosum s.s. (Sä16-4) in Paper III and Phlebiopsis 
gigantea (Rotstop) in Papers II and IV.  

3.2 Inoculation methods and scoring the susceptibility  

Plants were artificially inoculated: to allow the fungus to enter the plant a 5-
mm circular wound was made with a cork borer through the bark. Wood 
plugs of Norway spruce colonised with H. parviporum or P. gigantea were 
prepared according to Stenlid & Swedjemark (1988) and then attached to 
the wound with Parafilm®.  

To score the relative susceptibility, in Paper I the length of the lesion in 
the bark and the extension of fungal growth in the sapwood were measured. 
To check the fungal extension in the plants, the stems were cut into 5 mm 
thick discs and placed on wet filter paper in an empty Petri-plate. After 7-10 
days incubation at 18ºC, the wood discs taken from the harvested trees were 
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checked for the presence of H. parviporum conidiophores (Stenlid & 
Swedjemark, 1988). 

3.3 Molecular methods 

Several different molecular techniques were used for the analyses in this 
thesis and are described in detail in the separate papers. The purpose of this 
section is to give a brief description of some of the methods used. Many of 
the methods used are based on the polymerase chain reaction (PCR).  

3.3.1 cDNA-AFLP and quantitative PCR  

Both complementary DNA-amplified fragment length polymorphism 
(cDNA-AFLP) and quantitative PCR (qPCR) are methods that can be used 
for analysing differences in steady-state messenger RNA (mRNA) levels. 
Quantitative PCR is a much more sensitive technique with a detection 
limitation of about 1 transcript per 1000 cells (Czechowski et al., 2004). 
However, cDNA-AFLP has the advantage of not requiring prior sequence 
information because it uses adaptors with known sequences for the 
amplification (Bachem et al., 1998). It also enables many different cDNA 
fragments to be screened at the same time.  

The cDNA-AFLP technique was used in Paper II to identify the 
transcriptional responses in bark of P. abies to H. parviporum infection 
compared with the response to wounding treatment. The cDNA-AFLP 
method has proven successful as a screening method for differential gene 
expression in studies of interactions with pathogens in non-model organisms 
(Wang et al., 2010; Durrant et al., 2000). In brief, cDNA was synthesised 
from mRNA and then digested with the restriction enzymes EcoR1 and 
Mse1. Adaptors with known sequence were ligated to the fragmented 
cDNA and amplified with PCR using primers complementary to the 
adaptors. The cDNA-AFLP fragments were separated on a polyacrylamide 
gel and differences in the intensity of the bands were interpreted as 
differences in the level of expression. Fragments with different band 
intensities between treatments (i.e. wounded samples and H. parviporum 
inoculated samples), were cut from the gel, re-amplified and sequenced. 
BLAST analysis (Altschul et al., 1990) was performed to find potential 
functions for the sequenced genes. 

In Papers II, III and IV, qPCR was used to examine the differences in 
transcriptional level for selected genes of interest and to verify expression 
patterns with other techniques such as cDNA-AFLP and 454-sequencing. 
Total RNA was isolated as described by Chang et al., (1993). To avoid 



 27 

contamination of genomic DNA, total RNA was treated with DNase1 
(SIGMA) prior to cDNA synthesis and transcript abundance was normalised 
to expression of constitutively expressed genes: phosphoglucomutase 
(Vestman et al., 2010), eukaryotic translation initiation factor 4A (elF4A) 
(Palovaara & Hakman, 2008), elongation factor 1-α (ELF1α) and α-tubulin 
(αTUB) which all showed low variation between samples. The relative 
expression was calculated using REST 2006 (Pfaffl et al., 2002) 

For isolation of full-length cDNA sequences of Norway spruce rapid 
amplification of cDNA ends (RACE), the RT reactions and 5′/3′RACE 
reactions were performed using the SMARTer RACE cDNA amplification 
kit (Clontech) according to the manufacturer’s instructions.  

3.3.2 454 sequencing 

Total RNA was isolated in the same way as for the qPCR analysis. Purified 
mRNA was amplified with the MessageAmpIII kit (Ambion) according to 
the manufacturer’s instruction. Double stranded cDNA of sufficient quality 
was pooled according to genotype and treatment. Two to five μg each of 24 
cDNA samples representing all time points and treatments were submitted 
for template preparation and sequencing on a Genome Sequencer Titanium 
system (Roche Applied Science) at the Centre for Ecological and 
Evolutionary Synthesis (CEES), University of Oslo. Sequence reads and 
quality scores for sequences were obtained from CEES. 

The sequences retrieved were assembled with the sequence assembler 
software Newbler v2.3 and v2.5 (Roche) (www.454.com) with default 
settings for cDNA assembly with the sff-files as input file. The combined 
sequences from all treatments were assembled into the gene-equivalent 
isogroups and and the plausible splice variants, isotigs. For an explanation of 
the terms isogroup, isotig and their connection with contigs see Ewen-
Campen et al., (2011). Contigs were subjected to visual inspection in ace 
format with the software Tablet (Milne et al., 2009).The assembled 
reference file was annotated with the software Blast2GO (Conesa et al., 
2005), where the sequences got annotated to BLASTx homologies, GO 
terms and EC numbers as well as scanned with InterProScan. Furthermore, 
the data set was trimmed for fungal sequences by identification of species 
belonging based on the BLAST homologies with MEGAN (Mitra et al., 
2009). 

Count data of the occurrence of the expressed genes in the individual 
samples were retrieved by aligning individual reads to the isogroups and 
isotigs. The count data were aligned in R and imported into the R-package 
DESeq (Anders & Huber, 2010) and normalized on number of counts and 
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subjected further pair-wise differential expression transcriptome analysis. 
The normalized count data were transformed to homoscedastic data in 
DESeq and clustered with JMP™ by Ward’s hierarchical cluster. The 
contigs annotated into pathways leading to production of terpenes, stilbenes 
and proanthocyanidins were clustered separately.  

3.4 Statistical analysis 

For the analysis of variance in Paper I, the Software Proc GLM (SAS, 1996) 
was used. Phenotypic correlations between traits were estimated as Pearson 
product moment correlations and the Ryan-Joiner test was used to test for 
normality. 

The estimates of broad-sense heritability )ˆ( 2H  were obtained by 
2
P

2
G

2 ˆ/ˆˆ H  where the genotypic variance components is )ˆ( 2
G and the 

environmental variance components is )ˆ( 2
E .  
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4 Results and Discussion 

4.1 The response to Heterobasidion annosum s.l. in Norway 
spruce is an enhanced general defence response 

One of the aims of this thesis was to investigate whether H. annosum s.l. was 
able to elicit specific responses in Norway spruce or if the induced response 
was a generic defence response. Having specific or general induced defence 
responses may have implications in breeding for resistance. In order to 
examine the specificity of the response to H. annosum s.l. comparisons were 
made to the response after wounding (Papers II, III and IV) and P. gigantea 
infection (Papers II and IV). Unlike, for example, Armillaria species 
Heterobasidion annosum s.l. is not able to penetrate spruce bark in the absence 
of wounding (Solla et al., 2002). To enable the fungus to access the 
sapwood, it is necessary to partially remove the bark. This inoculation 
method has frequently been used in other studies (Deflorio et al., 2011; 
Koutaniemi et al., 2007; Fossdal et al., 2005; Hietala et al., 2004; Nagy et al., 
2004b; Krokene et al., 2003). However, when using this procedure an 
induced wound response in the tissue is to be expected and has been 
detected (Deflorio et al., 2011; Krokene et al., 2003; Nagy et al., 2000). H. 
annosum s.l. inoculated samples showed an enhanced reaction although the 
overall pattern of expression was similar between treatments revealing non-
specificity. Treatment with P. gigantea gave in principal an intermediate 
reaction compared with wounding or treatment with H. parviporum. The 
expression pattern for many transcribed derived fragments (TDFs) (Paper II), 
genes in the phenylpropanoid pathway and genes in the biosynthesis of 
proanthocyanidins (PAs) (Papers III and IV) was similar between treatments. 
Correlating changes in the phenol chemical profile between wounding or 
inoculation treatment further adds to this picture (Figs. 3 and 4 in Paper III). 
In addition, genes putatively involved in the SA and JA/(ET) signalling 
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pathways were also similarly expressed after wounding or inoculation and 
only separated by the magnitude of up-regulation (Papers II and IV, Fig. 1 
in Paper IV). 

The enhanced reaction after fungal inoculation is in accordance with 
previous observations where anatomical changes such as induction of TD 
and PP cells was stronger and more rapid after H. annosum inoculation than 
wounding (Krekling et al., 2004). Studies have also shown that fungal 
inoculation enhanced the induction of chalcone synthase (Nagy et al., 
2004b) and PaChi4 (Hietala et al., 2004) compared with wounding. In the 
transcriptome data in Paper IV there were many up-regulated chitinases 
after wounding at 5 and 40 days post treatment (dpi). Given that the up-
regulation was observed after wounding alone, it seems that the induction of 
chitinases is not specifically induced to target fungal hyphae but rather is a 
component of the general defences in Norway spruce. Together with 
similar observation in previous studies (Deflorio et al., 2011; Fossdal et al., 
2005; Hietala et al., 2004), this supports the hypothesis that the induced 
defence in response to H. annosum s.l is a broad non-specific defence 
response. 

In Paper IV, we tried to separate the responses close to the point of 
inoculation from the responses induced by the invading fungal hyphae by 
analysing gene expression in samples distal to the wound and this analysis 
revealed some differences. In the inoculated samples, a stronger and, with 
time, increased response was observed for genes in the phenylpropanoid 
pathway as well as for the PR1 genes and LOX, which are related to SA and 
JA signalling, respectively. The pattern of induction after wounding alone 
did not differ much between samples harvested at 3 or 7 dpi in the samples 
distal to the wound. PR1 was the gene that showed the largest induction in 
the distal samples at both 3 and 7 dpi (Fig 1 in Paper IV). Induction of the 
R2R3-MYB transcription factor PaMYB14, which is known to be 
responsive to JA (Bedon et al., 2010), was also induced in the distal samples 
at 3 and 7 dpi (Table 1 in Paper IV). Attempts to follow the spatial changes 
in defence gene expression have previously shown that there is a substantial 
difference in expression levels in tissues at the wound site and in tissues 
spatially separated from the wound site (Deflorio et al., 2011; Hietala et al., 
2004). Differences in gene expression have also been localised to different 
specialised tissue types within the bark of P. glauca (Abbott et al., 2010). 
However, the signalling mediating defence responses proximal and distal to 
the wound site have not been investigated. Our results clearly show an 
induction of genes putatively involved in both JA and SA signalling in 
samples distal to the wound after wounding and inoculation, indicating a 
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transported signal from the point of inoculation. Since there was no visible 
lesion in the distal sample at 7 dpi but a relatively large induction of 
defence-related genes such as LOX and the PR1 gene, we hypothesise that 
the increased reaction in H. parviporum inoculated samples was due to the 
advancing fungal infection. However there seems to be some signals 
transfusing from the point of the wound to the more distal samples because 
a down-regulation of LURP1 and ASC was observed after wounding or P. 
gigantea inoculation. 

MAMPs such as chitin can be recognised by Norway spruce, which 
initiates a defence response (Hebe et al., 1999; Salzer et al., 1996). Host-
derived molecules such as cell wall fragments, created by the activity of 
enzymes produced by the fungus, can also elicit a defence reaction 
resembling the reaction initiated by MAMPs (Hématy et al., 2009; 
Hückelhoven, 2007). Although the level of induction induced by P. gigantea 
inoculation was intermediate compared with wounding or H. parviporum 
inoculation in samples close to the wound, the reaction to P. gigantea 
inoculation was more similar to wounding in the distal samples at 7 dpi 
(Table 1 in Paper IV). P. gigantea is mainly a saprotrophic fungus living on 
dead wood and freshly cut stumps. Hence, in our system it is possible that 
the fungus has the ability to sustain itself by living on dead tissue close to the 
wound, consequently eliciting a stronger reaction than wounding. The 
stronger reaction after fungal inoculation was in accordance with previous 
studies where atomically changes such as induction of TD and PP cells was 
shown to be stronger and faster in H. annosum inoculation than mock 
inoculation (Krekling et al., 2004).  

4.2 The signalling pathways of salicylic acid and jasmonic acid in 
Norway spruce defence may be interconnected  

The involvement of jasmonic acid and ethylene is relatively well 
documented in conifer defence (Krokene et al., 2008; Miller et al., 2005; 
Hudgins & Franceschi, 2004; Zhao et al., 2004; Hudgins et al., 2003a; Zhao 
& Sakai, 2003; Franceschi et al., 2002; Martin et al., 2002). However, 
reports of the role of SA have been rarer (Likar & Regvar, 2008; Hudgins et 
al., 2006; Davis et al., 2002; Kozlowski et al., 1999). Interestingly, in our 
cDNA-AFLP screening (Paper II), one of the most induced TDFs was 
similar to the SA-mediated PR1 gene. This TDF was recovered as many as 
11 times indicating its abundance in the data set. In Arabidopsis and tobacco, 
PR1 gene expression is particularly responsive to salicylic acid and is 
therefore often used as a marker for the salicylic acid-dependent SAR 
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response (Ryals et al., 1996). In a further investigation (Paper IV), the 
parallel induction of SA- and JA-mediated genes was confirmed. PR1, in 
addition to the putative SA-mediated genes LUPR1 and NPR1 was up-
regulated in both wounding treatment and inoculation with H. parviporum 
together with JA- and ET-responsive genes such as LOX, JAZ, JAR1, 
MYC2 and ACS (Fig. 3) (Fig 1 and Table 1 in Paper IV). The observation 
of up-regulated SA-mediated genes after wounding suggests that this 
signalling pathway is part of a general defence response in Norway spruce 
and that its role in induced defence might have been overlooked. Likar and 
Regvar (2008) showed that free SA can accumulate in H. annosum s.l. 
inoculated Norway spruce seedlings. However, it seems that accumulation 
of free SA can be induced in response to MeJA treatment (Kozlowski et al., 
1999). In Paper IV, Norway spruce seedlings showed an induction of both 
PR1 and LURP1 after exposure to MeSA or MeJA (Fig. 2 in Paper IV). 
Two interpretations are possible: either MeJA itself induced transcription of 
PR1 and LURP1 or MeJA by inducing an accumulation of SA, as seen in 
Kozlowski et al., (1999), initiated transcription of PR1 and LURP1. In 
angiosperms the JA/ET and SA signalling pathways are generally 
antagonistic (Robert-Seilaniantz et al., 2007; Thomma et al., 1998). 
However, our data fit better with the theory presented by Katagari and 
Tsuda (2010): they proposed that the outcome of plant immunity may be 
determined by how a shared signalling network is used rather than being 
dependent on the existence of specific signalling pathways. Is seems that the 
antagonism observed between the different pathways observed in 
angiosperms (Glazebrook, 2005) does not fully hold for Norway spruce. 

4.3 Involvement of the ubiquitin / proteasome system in 
regulating the defence responses in Norway spruce. 

Analysis of the proteome of induced bark of Sitka spruce has revealed 
changes in the proteome as early as 2 h after treatment with Pissodes strobi 
(Lippert et al., 2007). Much of the early responses are due to post-
transcriptional modifications but de novo synthesis of proteins can be initiated 
rapidly by degradation of repressor proteins through the ubiquitin / 
proteasome system (UPS). Recent studies have linked the UPS to a number 
of aspects of hormone signalling and regulation of biotic stress responses 
(Craig et al., 2009; Dreher & Callis, 2007). For example, JAZ1 is a repressor 
of transcriptional activation of JA responses and when JAZ1 is degraded via 
the UPS the repression of the transcription factor MYC2 is released and JA 
responses are initiated (Chini et al., 2007; Thines et al., 2007) (Fig. 3). The 
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jasmonate-resistant 1 proteins (JAR1) catalyses the conjugation of the amino 
acid isoleucine and JA and JA-Ile promotes the interaction between the 
SCFCOI1 E3-ubiquitin ligase complex and the JAZ protein (Thines et al., 
2007). In Paper II, an up-regulated TDF with similarities to JAZ1 was 
found and JAR1 and MYC2 were up-regulated after wounding and 
inoculation (Paper IV), underlining the importance of the JA signalling 
pathway and the similarities with the defence signalling in angiosperms.  

In addition, E3-ubiquitin ligases with similarities to PUB23, ATL6 and 
Xerico, which are all induced by MAMPs (Libault et al., 2007), were isolated 
in Paper II. In tomato the orthologue LeATL6 is assumed to be mediated by 
a JA signal that, in turn, may activate an ethylene-mediated signalling 
pathway. Furthermore, in Arabidopsis, PUB22/PUB23/PUB24 are highly 
induced after treatment with the MAMPs flg22, chitin and elf18 (Trujillo et 
al., 2008; Libault et al., 2007; Serrano et al., 2006). Data suggest that 
PUB22/PUB23/PUB24 are negative regulators of the oxidative burst 
(Trujillo et al., 2008). A necrotrophic pathogen such as H. parviporum can 
actually be assisted by the cell damage caused by an oxidative burst and the 
subsequent HR (Govrin & Levine, 2000). The observed up-regulation of a 
gene putatively involved in limiting the oxidative burst may indicate an 
attempt to prevent an HR response by the host (Fig. 1 in Paper II).  

4.4 Carbon allocation into flavonoid biosynthesis is important for 
resistance in Norway spruce 

The secondary metabolites synthesised through the phenylpropanoid 
pathway contribute substantially to the health of plants and they all derive 
from precursors from the shikimic acid pathway (i.e phenylalanine) 
(Herrmann, 1995). The modification of a limited set of core structures 
results in an array of different substances such as lignin, flavonoids, stilbenes 
and tannin that are synthesised by several different routes (Vogt, 2010). The 
first enzyme in the shikimic acid pathway is 3-deoxy-D-arabino-
heptulosonate 7-phosphate synthase (DAHP). Surprisingly, in Paper II we 
observed down-regulation of a TDF with similarities to DAHP after 
inoculation with H. parviporum. However, further analysis of two additional 
DAHP genes found in Norway spruce revealed a significant shift in 
transcript abundance, where PaDAHP1 was down-regulated and PaDAHP2 
was up-regulated. This is consistent with data from the transcriptome 
analysis in Paper IV and in agreement with previous studies that showed 
that, PaDAHP2 was up-regulated in conifers in response to both wounding 
(Ralph et al., 2006) and inoculation with H. annosum (Adomas et al., 2007). 
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The shift in DAHP expression may imply reallocation of carbon flow from 
protein synthesis to secondary metabolism. 

Flavonoids have been shown to be relevant in the defence against 
pathogens and pests. For example, there seems to be a correlation between 
reduced susceptibility to the pathogenic fungi and accumulation of (+)-
catechin in Norway spruce clones (Brignolas et al., 1998; Brignolas et al., 
1995). In Paper III, an examination of the phenol profile in the bark of 
clones with different levels of resistance to H. annosum s. was preformed. 
The aim of the study was to find correlations with the level of resistance to 
differences in the chemical and transcriptional profile after wounding or H. 
annosum s.s. inoculation. In samples harvested at 5 dpi, a striking reduction 
in the level of the flavan-3-ol (+)-catechin was observed. However, at 15 
dpi the level of (+)-catechin was comparable to the level of the controls 
(Fig. 4 in Paper III). Given that a decrease in soluble catechin is often 
observed in the later phase of wounded or infected Norway spruce bark 
while the tannin capacity of the tissue increases, it has been hypothesised 
that catechin, among other phenolic compounds, is converted to insoluble 
products such as proanthocyanidins (PA) (Schmidt. et al., 2005; Brignolas et 
al., 1995). The induction of (+)-catechin was preceded by an induction of 
genes in the PA pathway such as DFR, LAR, ANS and ANR, which were 
observed in both the transcriptome data and the qPCR analysis. The genes 
involved in PA biosynthesis were also analysed in Paper IV, confirming the 
induction seen in Paper III. 

Many of the genes in the monolignol pathway have previously been 
shown to be up-regulated in response to H. annosum s.s. (Koutaniemi et al., 
2007). In our studies, genes in the first steps of the phenylpropanoid 
pathway (PAL and C4H) showed up-regulation in response to wounding 
and H. annosum s.l. inoculation (Papers II, III and IV). However, genes 
directly involved in monolignol formation, for example, CCR and CAD 
did not show a corresponding up-regulation (Paper III). These observations, 
together with the observed induction of genes in the flavonoid biosynthesis 
and PA pathways, suggest that a greater proportion of the metabolites are 
allocated to other downstream pathways such as the flavonoid pathway. 
Similar results have been observed in poplar hybrids in response to the 
biotrophic pathogen Melampsora medusae Thüm (Miranda et al., 2007). This 
might indicate that the flavonoid pathway and PA biosynthesis is prioritised 
in the defence response.  

In the cDNA-AFLP screening we recovered a TDF with similarities to 
the R2R3-MYB transcription factor TT2 (Paper II). Over-expression of the 
orthologue MYB134 in poplar resulted in an induction of genes associated 
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with PA biosynthesis, in addition to a plant-wide accumulation of PAs 
(Mellway et al., 2009). In Arabidopsis, the regulation of PA production has 
also in part been assigned to TT2 (Nesi et al., 2001). After recovering the 
full-length cDNA sequence a phylogenetic analysis was performed 
(Supplementary material Fig. 2 in Paper IV), that indicated that the TDF 
was homologous to the TT2/MYB134 gene. The PaTT2-like gene was 
consistently up-regulation in response to both wounding and H. parviporum 
inoculation in our studies (Papers II, III and IV). This shows that the 
PaTT2-like gene is a stress-induced transcription factors and that it may be 
responsible for the observed induction of DFR, LAR, ANS and ANR (Fig. 
6 in Paper III, Table 1 and Fig. 3 in Paper IV). The PaTT2-like gene was 
also up-regulated in response to exposure to MeJA but not to MeSA (Fig. 2 
in Paper IV), suggesting that JA is involved in regulating the induction of 
this transcription factor and subsequently the induction of PA biosynthesis in 
Norway spruce. 

4.5 Variation in susceptibility to Heterobasidion annosum s.l. 
and the potential for breeding for resistance 

The relative susceptibility to H. parviporum was investigated in a full-sib 
family of Norway spruce by inoculating a set of 252 cloned progeny from a 
controlled cross (Paper I). Four ramets of each progeny were used, and to 
score the relative susceptibility, lesion length in the inner bark and fungal 
growth in the sapwood were measured. Among the progeny significant 
differences were found for fungal growth in the sapwood (p<0.0005) and 
the broad sense heritability (H2) was 0.11. Previous experiments with clones 
of Norway spruce have shown that disease development is partly genetically 
controlled (Swedjemark & Karlsson, 2004; Swedjemark et al., 1997) and the 
H2 values found in other studies using the same isolate of H. parviporum 
range between 0.09 and 0.35 (Karlsson et al., 2008; Swedjemark et al., 2001; 
Swedjemark et al., 1999; Swedjemark & Stenlid, 1997). The previous tests 
have been performed on cuttings of genetically unrelated Norway spruce 
material. The data from Paper I showed that the genetic component for 
susceptibility to H. parviporum can be detected even within a full-sib family 
of Norway spruce where the parents were not prior tested for resistance to 
H. annosum s.l. The approximately normal distribution of the mean values 
for fungal growth indicates that the response to H. parviporum infection is a 
quantitative trait under polygenic control. The aim was to use the data from 
this inoculation study for QTL-mapping. The construction of a genetic map 
for the 252 full-sib progeny has been a part of this thesis work. However, 
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because the map has not been completed this work will not be discussed in 
this thesis.  

In our study we have come across some interesting variation between 
genotypes. In Paper III clones previously defined as more or less susceptible 
were used (Karlsson & Swedjemark, 2006). Clones 2405 and 7398, which 
were both considered as less susceptible clones showed differences in gene 
expression. One major difference was the observed level of induction: for 
example at 15 dpi the PAL genes were down-regulated in the wounded 
material in clone 7398 whereas they remained slightly up-regulated even at 
28 dpi irrespective of treatment in clone 2405 (Fig. 6 in Paper III). Also the 
pattern of extractable (+)-catechin in bark differed between the clones. 
Between 15 and 28 dpi the free (+)-catechin level dropped significantly in 
7398 whereas no drop in (+)-catechin level was seen in 2405 in wounded 
samples (Fig. 4 in Paper III).  

The major goals in the Swedish breeding program for Norway spruce are 
to increase the productivity and to improve wood quality (Karlsson & 
Rosvall, 1993). The commercial gain achieved by using improved plant 
material could be even greater if resistance to pathogens was included in 
breeding programmes. In selecting more resistant genetic material for 
breeding it is essential that there is no negative correlation with growth 
traits. In an earlier assessment of the material used in Paper III there were no 
significant genotypic correlations between tree size and infection by rot 
fungi (Karlsson & Swedjemark, 2006). However, a negative correlation 
between stress treatments and growth has been indicated in studies on 
MeJA-treated Norway spruce trees where the radial sapwood growth was 
reduced by up to 30% (Krokene et al., 2008). A negative correlation 
between tree lignin content and growth has also been established in several 
tree species (Novaes et al., 2010; Kirst et al., 2004). Oliva et al,. (2010b) 
showed that Norway spruce trees that formed a reaction zone (RZ) in 
response to decay grew less than trees with decay but without a RZ. The 
high level of secondary metabolites in the RZ implies that high levels of 
carbon resources are allocated to this zone. The shikimic acid pathway 
connects primary and secondary metabolism (Herrmann, 1995) and, 
therefore, the more carbon allocated into the shikimic acid pathway the less 
is left for growth. The shift in the expression of DAHP genes in Norway 
spruce under normal growth conditions and after H. parviporum inoculation 
highlights the importance of this pathway in carbon allocation. To date 
there has been little research directed at understanding how plants recruit 
energy for the defence response (Bolton, 2009). However, work with 
tobacco plants transformed with antisense constructs of CAD and CCR has 
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shown that manipulations of the carbon flow in one pathway in the 
secondary metabolism will have substantial effects on the partition of carbon 
between the primary and secondary metabolism (Dauwe et al., 2007). When 
selecting material for breeding, the genotypic ability to balance the 
allocation of energy to growth and defence may be important aspects to 
consider. However, to address the growing problem of H. annosum s.l. rot, 
choosing more resistant material with slightly less growth potential may turn 
out to be the most cost beneficial.  
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5 Conclusion and Future prospects 

The overall aim of this thesis was to provide basic knowledge about the 
induced defences in Norway spruce in response to H. annosum s.l. infection. 
The transcriptional changes that occur after H. annosum s.l. inoculation have 
been investigated using three different methods and in several different plant 
materials. Although the comprehensiveness of the methods differs the trends 
were similar. Several mechanisms have been highlighted as potentially 
important features in defence against this H. annosum s.l., including the 
induction of the phenylpropanoid- and proanthocyanidin pathways, and the 
observed shift in the shikimic acid pathway. Furthermore, the transcription 
factor PaTT2-like gene can be important for regulating the production of 
PAs.  

In Paper I we showed that there is significant variation between full-sibs 
within a Norway spruce family in the response to H. parviporum infection. 
The broad sense heritability (H2) was found to be 0.11 for fungal growth, 
which was within the expected range. The parents of the full-sib Norway 
spruce family were not tested for their relative susceptibility to H. parviporum 
before the cross. It is possible that a cross between parents with different 
levels of resistance would give a higher H2 and provide a good mapping 
population for QTL mapping of traits relevant to resistance to H. 
parviporum. In connection to the Norway spruce genome sequencing project 
an initiative for association mapping of several traits, including resistance 
traits, has been taken. A scoring of the relative susceptibility to H. annosum 
s.l. will be conducted in the mapping population with the potential to 
reveal genetic regions important for defence against this pathogen.  

In Paper III, correlation between the constitutive phenol profile and the 
level of resistance to H. annosum s.l was found for a 30-year-old Norway 
spruce material. Changes in the chemical profile could also be related to 
observed changes in the transcriptome. The material in Paper III is an 
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obvious target for further investigations. More genotypes with different 
levels of resistance are available with several clones per genotype. They 
could be used to investigate the span of transcriptional variation both within 
and among genotypes. The sequenced genomes of Norway spruce should 
facilitate a survey of the promoter regions to couple transcriptional variation 
to defences in those regions. If correlation exists between those parameters 
the signature in the promotor region could work as a genetic marker for 
selection. Given that this clonal trial is included in the Swedish breeding 
programme and is beeing repeated at different locations in Sweden it should 
be possible to correlate differences in resistance to growth traits to evaluate 
this relationship more thoroughly. The plant material used in Paper III 
could possibly also provide potential parents for a cross between genotypes 
that are more and less susceptible to H. annosum s.l. 

In this study, the difference found between the induced wound response 
and the response triggered by H. annosum s.l. was quantitative rather than 
qualitative. This implies that the response to H. annosum s.l. is a broad non-
specific response (Papers II, III and IV). Adomas et al., (2008) did find some 
differences in the induced response after challenging pine seedlings with 
different types of fungi (i.e a pathogenic, a saprophytic and a mutualistic 
fungus). However, reciprocal inoculation of roots and shoots with 
Gremmeniella abietina (Lagerberg) Morelet and H. annosum s.s. indicated a 
more organ specific defence than pathogen specific (Adomas & Asiegbu, 
2006). A general induced defence controlled by several genes may have 
implications for breeding for resistance because polygenic resistance traits are 
generally more durable than major gene resistance traits (McDonald & 
Linde, 2002). 

The induction of SA-related genes such as PR1 and LURP after 
wounding and inoculation together with the observation that MeJA and 
MeSA could both induce those genes, implies a closer relationship between 
the SA and JA signalling pathways in Norway spruce than that observed in 
angiosperms (Papers II and IV). We know little of the defence signalling 
architecture in conifers but our data suggest a potential role for SA-
dependent signalling that needs to be further dissected. Transgenic NahG 
plants, which are unable to accumulate salicylic acid, may be helpful tools in 
evaluating the relationship between SA and JA in Norway spruce and in 
determine how these signalling pathways contribute to the resistance to H. 
parviporum. 

Looking at the transcriptome only shows the picture on one side of the 
coin. Observation of up-regulated E3-ubiquitin ligases in Paper II highlights 
the importance of post-translational regulatory mechanisms and, several of 
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the TDFs found have a documented involvement in the defence response. 
To get a more comprehensive picture of the regulatory changes that occur 
in Norway spruce in response to stress an integration of studies of 
transcriptional changes and changes in the proteome is needed. The whole 
genome sequence of Norway spruce should facilitate protein identification. 

Finally, the clonal variation in transcriptional and chemical responses 
observed in Paper III provide some clues as to what may constitute the 
difference between siblings in Paper I. Palle and co-workers (2011) have 
elegantly shown how differences in the transcript profile can be correlated 
with the population structure. This study not only demonstrates a large 
variation in the natural population that can be explored to improve 
coniferous trees in plant breeding programmes but also some of the potential 
of using modern molecular methods in breeding practices. 
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