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Abstract 

Mast cells (MCs) are major effector cells contributing to allergic conditions. When 

activated, they can release large amounts of active proteases including chymase from 

their secretory granules. Here we assessed the role of the chymase mouse mast cell 

protease 4 (mMCP-4) in allergic airway inflammation induced by house dust mite 

(HDM) extract. mMCP-4
-/-

 mice demonstrated elevated airway reactivity and 

eosinophilia compared to wild type (WT) animals, suggesting a protective role for 

mMCP-4 during the late inflammatory phase of disease. However, mMCP-4 also 

contributed to the sensitization phase, as indicated by higher levels of serum IgE in 

mMCP-4
-/-

 vs. WT mice and higher levels of cytokines secreted by HDM-

restimulated mMCP-4
-/-

 vs. WT splenocytes. In line with a contribution of mMCP-4 

in the early stages of disease, HDM extract directly induced chymase secretion from 

MCs. The elevated airway- and inflammatory responses of mMCP-4
-/-

 mice were 

associated with a profound increase in the levels of IL-33 in lung tissue. Moreover, 

WT MCs degraded IL-33 more efficiently than did MCs lacking mMCP-4. Together, 

our findings identify a protective role of a MC chymase in a physiologically relevant 

model for airway inflammation, and suggest that chymase-mediated regulation of IL-

33 can account for this protective function.  
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Introduction 

Mast cells (MCs)
3
 are key effector cells in allergic conditions such as asthma but they 

are also regarded as regulatory cells, fine-tuning immune responses in various ways 
1
. 

When MCs are activated they may degranulate and thereby release a number of 

preformed compounds from their secretory granules, including bioactive amines, 

cytokines, proteoglycans and various MC-specific proteases, the latter encompassing 

chymases, tryptases and carboxypeptidase A3 
2, 3

. Activated MCs may also respond 

by de novo synthesis of additional pro-inflammatory compounds 
4
.  

 

The MC proteases constitute a major part of the total content of the MC granules. 

Hence, large amounts of proteases are released upon MC degranulation and it is likely 

that they will have a major impact on any condition in which MC degranulation 

occurs 
3
. Out of the various murine chymases, mouse mast cell protease 4 (mMCP-4) 

is considered to be the functional counterpart to the single human chymase 
3, 5

. In a 

recent study, we showed that mMCP-4 has protective properties in an acute model of 

allergic airway inflammation induced by i.p. sensitization followed by intranasal 

challenge with OVA 
6
. However, the exact mechanism by which mMCP-4 dampens 

airway responses is not known. Moreover, it is important to emphasize that the OVA 

model has been questioned in terms of relevance for human asthma 
7, 8

. The aim of 

this investigation was therefore to investigate the role of chymase in a physiologically 

relevant model for asthma, and also to address the mechanism by which chymase 

influences airway responses. 
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House dust mite (HDM) is a prevalent allergen of humans and is a major cause of 

human asthma 
9
. HDM-induced allergic airway inflammation in mice shares many of 

the features of human asthma, including upregulated Th2 cytokines and IgE synthesis, 

lung eosinophilia and airway hyperresponsiveness, and is therefore emerging as a 

physiologically relevant model for human asthma 
10, 11

.  

 

Here we evaluated the impact of mMCP-4 on HDM-induced airway responses. We 

show that the absence of mMCP-4 leads to markedly elevated lung eosinophilia, IgE 

responses, airway smooth muscle (ASM) thickening and elevated airway reactivity at 

high doses of metacholine, indicating a protective role for MC chymase. Further, our 

data suggest that the protective function of chymase mechanistically can be linked to 

effects on IL-33.  
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Results 

mMCP-4 reduces airway reactivity 

To investigate the role of mMCP-4 in HDM-induced allergic airway inflammation we 

used mMCP-4
-/-

 mice 
5
 and wild type (WT) controls. Mice received intranasal doses 

of HDM extract twice weekly for three weeks. Invasive lung mechanics 

measurements were performed 48 h after the last challenge. HDM-treated WT and 

mMCP-4
-/-

 mice both exhibited increased airway reactivity in response to inhaled 

methacholine as compared to PBS-treated controls (Fig. 1A). However, the airway 

reactivity was augmented in mMCP-4
-/-

 mice as compared to WT controls at the 

highest dose of metacholine used (Fig. 1A), suggesting that MC chymase has a 

protective role by preventing excessive airway reactivity. There were no differences, 

regardless of treatment or genotype, in number of MCs in the lung, as determined by 

toluidine blue staining (Suppl. Fig. 1).  

 

Excessive infiltration of inflammatory cells in BAL fluid from mMCP-4
-/-

 mice 

The magnitude of the inflammatory response can be estimated by the number of 

inflammatory cells recruited into the tissue. Hence, we next characterized the 

inflammatory cells in bronchoalveolar lavage (BAL) fluid. HDM-treated mice 

contained significantly higher number of total cells compared to untreated controls 

(Fig. 1B). The increase in total cell numbers was predominantly reflected by a 

massive increase in BAL eosinophils (Fig. 1C). Significant increases in BAL 

lymphocytes and neutrophils were also observed, whereas the BAL macrophage 

population was not affected (Fig. 1D-F). In accordance with a protective role of 

chymase, higher total numbers of cells were seen in BAL fluid from HDM-treated 
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mMCP-4
-/-

 as compared to WT mice (Fig. 1B). This was predominantly explained by 

effects on eosinophils, with ~5-fold higher numbers of eosinophils found in BAL 

fluid from HDM-treated mMCP-4
-/-

 mice than in WT controls (Fig. 1C).  

 

Enhanced lung tissue inflammation and ASM thickening in mMCP-4
-/- 

mice 

To further assess the role of mMCP-4 in regulating airway responses, we analyzed 

lung tissue sections for signs of inflammation. As shown in Fig. 2A and 2B, HDM 

treatment induced tissue inflammation in the perivascular and peribronchial areas, the 

inflammatory infiltrate mainly being composed of eosinophils. In line with a 

protective role of chymase, HDM-instilled mMCP-4
-/-

 mice exhibited significantly 

higher numbers of tissue eosinophils (Fig. 2C) and % bronchioles surrounded with 

cell infiltrates (Fig. 2D) than did WT controls. Next, we investigated effects on the 

airway smooth muscle (ASM) layer of the bronchi. No baseline difference in the 

thickness of the ASM layer was seen when comparing PBS-treated WT and mMCP-4
-

/- 
mice (Fig. 2E). When WT mice were treated with HDM, there was a statistically 

non-significant trend towards increased ASM thickening. In striking contrast, HDM-

treatment of mMCP-4
-/-

 mice caused a profoundly increased thickening of the ASM 

layer compared to PBS-treated controls (Fig. 2E). Hence, chymase protects against 

remodeling events leading to extensive thickening of the ASM layer in response to 

HDM. PAS staining of lung tissue sections revealed occasional goblet cells in airways 

of PBS-treated mice whereas, after instillations with HDM extract, goblet cells were 

highly abundant (Fig. 2F). However, there was no difference in the degree of goblet 

cell metaplasia when comparing HDM-treated WT and mMCP-4
-/-

 mice (Fig. 2F).  

 

mMCP-4 regulates the IgE response 
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The data above indicate that mMCP-4 has an impact on the late inflammatory phase 

of the allergic lung disease. However, since mMCP-4-positive MCs constitute a 

resident cell population of the lung 
6
, it is conceivable that mMCP-4 can encounter 

HDM antigen at an early stage of the response, thereby potentially influencing the 

sensitization phase leading to IgE production. To address this possibility, we tested 

whether the absence of mMCP-4 affects the levels of serum IgE upon HDM 

treatment. As expected, serum IgE levels were significantly increased in HDM-treated 

WT mice as compared with non-treated control animals (Fig. 3A). Moreover, 

sensitized mMCP-4
-/-

 mice displayed significantly higher serum IgE levels as 

compared to WT mice (Fig. 3A). These results suggest a regulatory role for mMCP-4 

in the early sensitization process.  

 

mMCP-4 affects cytokine release after restimulation of splenocytes 

To further address the possibility that mMCP-4 affects the sensitization towards HDM 

antigens, we assessed whether mMCP-4 can influence the HDM-specific cytokine 

response. To this end, single cell suspensions of splenocytes were restimulated with 

HDM extract followed by measurements of IL-13, IL-17A and IL-6 release. As 

shown in Fig. 3B, splenocytes from HDM-treated mMCP-4
-/-

 mice secreted higher 

levels of IL-13 upon HDM restimulation than did cells from WT mice. It is also 

notable that the extent of IL-13 secretion by HDM-restimulated splenocytes 

correlated significantly with the number of BAL cells (Fig. 3C). Moreover, as shown 

in Fig. 3D, the IL-17A response was significantly higher in splenocytes from HDM-

treated mMCP-4
-/- 

mice vs. WT counterparts. In contrast, the absence of mMCP-4 did 

not have any effects on the secretion of IL-6 (Fig. 3E). Together, these data indicate 
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that mMCP-4 influences the activation state of the T lymphocyte populations reactive 

to HDM.  

 

HDM extract induces MC degranulation and chymase release 

The data above suggest that chymase, in addition to influencing the late inflammatory 

phase of an airway reaction, also may have effects on the sensitization phase. In turn, 

this implies that chymase may be released independently of crosslinking of HDM-

specific IgE bound to the high affinity IgE receptors on the MC surface, e.g. through 

direct effects of the HDM extract on MCs. To evaluate this possibility, we determined 

whether HDM extract could directly induce MC degranulation leading to release of 

chymase. Indeed, exposure of peritoneal cell-derived MCs (PCMCs)
12

 to HDM 

extract caused significant release of both β-hexosaminidase and histamine into the 

supernatant, with no difference seen between WT and mMCP-4
-/-

 PCMCs (Fig. 4A, 

B). Moreover, significant release of chymase activity was seen when WT PCMCs 

were stimulated with HDM extract, and as a positive control also in response to 

calcium ionophore (Fig. 4C). Chymase activity was not detected in corresponding 

supernatants from mMCP-4
-/-

 cells (Fig. 4C), confirming that the chymase activity 

detected was attributable to mMCP-4 and not to other enzymes with overlapping 

substrate specificities. Taken together, these results show that MCs degranulate and 

release chymase in direct response to HDM.  

 

Enhanced IL-33 levels in mMCP-4
-/-

 mice 

To search for mechanisms explaining the protective function of chymase in airway 

reactions, we evaluated the possibility that chymase acts by regulating the levels of 

the pro-inflammatory Th2 cytokines IL-5, IL-13, thymic stromal lymphopoietin 
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(TSLP) and IL-33, all of these cytokines being known to be of importance in the 

development of allergic lung disease 
9, 10

. As shown in Fig. 5A-C, there were no 

differences in the levels of IL-5, IL-13 or TSLP in lung tissue homogenates from WT 

and mMCP-4
-/-

 HDM-treated mice. In contrast, while HDM treatment did not cause 

any increase of lung IL-33 in WT mice above baseline levels, a profound 

accumulation of IL-33 was seen in lungs of HDM-treated mMCP-4
-/-

 mice (Fig. 5D). 

Hence, MC chymase is essential for preventing an accumulation of IL-33 in response 

to HDM.  

 

To search for the mechanism underlying the IL-33 accumulation, we evaluated the 

possibility that MC proteases could reduce IL-33 levels by proteolytic cleavage. To 

address this, we investigated the ability of WT and mMCP-4
-/-

 PCMCs to reduce IL-

33 levels. As shown in Fig. 6A, IL-33 levels were rapidly reduced by MCs activated 

by IgE receptor crosslinking and this effect was completely blocked by a serine 

protease inhibitor, suggesting that the reduction of IL-33 was due to proteolytic 

degradation. Moreover, the effects on IL-33 were significantly diminished in cultures 

of mMCP-4
-/-

 PCMCs as compared with WT cells. This suggests that MC serine 

proteases degrade IL-33, and that mMCP-4 participates in the process. To provide 

direct evidence for proteolytic effects of chymase on IL-33, recombinant murine and 

human IL-33 was incubated with purified mMCP-4 and human chymase, 

respectively, followed by SDS-PAGE analysis. Indeed, both mMCP-4 and human 

chymase caused rapid and extensive degradation of IL-33, thus confirming that IL-33 

is a good substrate for MC chymase (Fig. 6B). IL-33 degradation was completely 

abrogated when mMCP-4 was pre-incubated with Pefabloc SC, a general serine 

protease inhibitor, verifying that the observed IL-33 reduction is due to proteolysis. 
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Discussion 

Here we show that chymase, i.e. one of the major compounds secreted by activated 

MCs, has a major impact on HDM-induced allergic airway responses. Intriguingly, 

although both clinical evidence and work based on mouse models for asthma support 

an overall detrimental role for MCs in conjunction with asthma 
13-17

, we here 

demonstrate a protective role of one of the compounds secreted by activated MCs, i.e. 

chymase. This finding is in line with a previous study where we showed that chymase 

has a protective function in a model where allergic airway inflammation was induced 

using an OVA-based protocol 6, and also in line with previous findings showing that 

MC proteases including chymase can degrade pathogenic cytokines 18-22. In further 

support for a protective role of chymase, there is clinical evidence showing a positive 

correlation between chymase-positive MCs and preserved lung function in severe 

asthma 
23, 24

 and there is also clinical data suggesting that Th2-high asthma is 

associated with a an intraepithelial MC phenotype with low chymase expression 
25

. 

Collectively, these findings thus argue that MC chymase may have a general down-

regulatory effect on allergic airway responses, independently of species and 

independently of the regimen used for provoking the response. Possibly, this could 

serve as a regulatory mechanism that counteracts the otherwise detrimental actions of 

MCs (and/or other cell types). The net impact of MCs may thus be a result of a 

balance between detrimental and protective actions, mediated by distinct MC-related 

effector mechanisms. Moreover, considering the highly heterogeneous nature of the 

MC populations residing in the lung 
26

, it cannot be excluded that beneficial and 

detrimental activities of MCs can be attributed to phenotypically distinct MC 

populations.  

 



 11 

Our data show that HDM treatment of mice resulted in increased airway reactivity, 

this being in line with previous reports using similar HDM-based models 
10, 11, 27

. 

Moreover, we found evidence suggesting that the presence of chymase protects 

towards excessive airway reactivity at high doses of metacholine. Mechanistically, we 

found that the excessive airway reactivity in mMCP-4
-/-

 mice was accompanied by a 

much more profound thickening of the ASM layer as compared to WT mice, ASM 

hypertrophy being one of the key components of airway hyperresponsiveness 
28

. 

Hence, a likely explanation for the elevated airway reactivity in mMCP-4
-/-

 mice is 

that chymase prevents an expansion of the ASM layer. In addition to the effects of 

chymase on airway reactivity, an important finding was that the absence of chymase 

led to an excessive airway inflammation. In particular, chymase was shown to protect 

from excessive eosinophilia. Hence, the presence of chymase protects from extensive 

manifestations of two of the hallmark features of asthma - increased airway reactivity 

and eosinophilia.  

 

To search for mechanisms operative in the protective effect of chymase in airway 

responses, we hypothesized that chymase may act by proteolytic effects on pro-

inflammatory cytokines. This hypothesis was based on previous studies, mainly from 

in vitro settings, showing that chymase can cleave a variety of cytokines (reviewed in 

3
). Indeed, we show that HDM treatment resulted in a profound accumulation of IL-33 

in lung tissue of animals lacking mMCP-4, while no corresponding IL-33 

accumulation was seen in WT mice. A likely explanation for this finding is that 

chymase controls IL-33 levels by proteolytic degradation of the cytokine. In support 

of this, WT MCs were shown to degrade IL-33 efficiently in vitro whereas MCs 

lacking mMCP-4 had a reduced capacity for IL-33 degradation, and we also showed 
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that purified chymase of both murine and human origin efficiently degrades IL-33. 

Interestingly, recent studies have strongly implicated IL-33 as a key cytokine 

regulating Th2 responses. For example, i.p. administration of IL-33 in mice results in 

a Th2 cytokine response and increased levels of blood eosinophils, as well as 

enhanced IgE-levels 
29-32

. Further, IL-33 has been linked to asthma due to its ability to 

provoke airway reactivity when administered in vivo 
33

 and is emerging as a potential 

target in the treatment of asthma 
34, 35

. Together, we may thus propose that the 

protective effect of chymase on airway inflammation and on airway reactivity may be 

explained, at least partly, by effects on IL-33. Considering the central importance of 

IL-13 for allergic lung responses, it was somewhat unexpected that HDM treatment 

did not lead to increased tissue levels of IL-13. However, earlier studies have shown 

that an increase in IL-13 is only seen at early time points after initiation of the 

immunization protocol 
10

, whereas we used a longer immunization scheme.  

 

In non-activated MCs, chymase is stored within the secretory granules. To have an 

impact on any extracellular process, it thus needs to become exocytosed. During an 

allergic response, this will most likely be accomplished by crosslinking of antigen-

specific IgE present on the MC surface. Accordingly, chymase is expected to have 

effects predominantly at the late inflammatory phase of the response towards HDM 

immunization, i.e. at a stage when HDM-specific IgE is prevalent. However, an 

intriguing finding in this investigation was that the absence of chymase resulted in 

increased serum IgE levels in response to HDM treatment, and also in an exaggerated 

cytokine response of HDM-restimulated splenocytes. This indicates that chymase, in 

addition to influencing the inflammatory phase, also can have an impact on the 

sensitization stage of disease. Further, this implies that chymase may become 
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exocytosed by mechanisms independent of HDM-specific IgE. Indeed, we show that 

HDM extract has direct effects on MCs, leading to exocytosis of chymase. 

Potentially, chymase exocytosed upon direct contact of MCs with HDM may thus 

have the ability to affect the initial immune response to HDM, for example by acting 

proteolytically on IL-33 or, alternatively, directly on antigens present in the HDM 

extract. Importantly, although our data indicate that chymase is exocytosed through a 

direct effect of HDM extracts on MCs, we cannot exclude additional mechanisms of 

early chymase exocytosis are operative in vivo, for example mediated by effects of 

cytokines such as IL-33 
36

.  

 

In summary, this study suggests that mMCP-4 is released by MCs in the local 

environment in response to HDM (Fig. 7). mMCP-4, which is stored as an active 

enzyme, can thus directly act in the inflammatory process and can also be involved in 

regulating the initial immune response to HDM antigens. The results presented here 

suggest that IL-33 is one of the prime targets for exocytosed chymase, and that the 

absence of chymase leads to an excessive accumulation of IL-33 and thereby to 

exaggerated airway responses.  
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Methods 

Mice and model of allergic airway inflammation. mMCP-4
-/-

 mice 
5
 backcrossed to 

C57BL/6J strain for 13 generations and WT littermate controls were used. Eight week 

old male mice were lightly anesthetized with isoflurane and instilled intranasally with 

3 μg HDM extract from species Dermatophagoides farinae (Greer Laboratories, 

Lenoir, NC), dissolved in 30 µl PBS, on days 1, 4, 8, 11, 15 and 18. Control mice 

were instilled with PBS intranasally. All animal experiments were approved by the 

local ethical committee. 

 

Measurement of airway reactivity. Forty-eight hours after the final instillation, mice 

were anesthetized with pentobarbital sodium (50 mg/kg) (Sigma-Aldrich, St Louis, 

MO), tracheostomized and intubated to a small animal ventilator (FinePointe, Buxco, 

Winchester, UK). Mice were mechanically ventilated at 160 breaths/min with a tidal 

volume of 0.25 ml. Prior to measurements, mice were shortly ventilated to reach an 

acclimatization baseline. Lung function was assessed with a dose-response curve to 

increasing doses of aerosolized methacholine (2 - 16 mg/ml; Sigma-Aldrich) via the 

tracheal cannula. Lung resistance (RL) is shown as % change from baseline. Results 

were pooled from five separate and matched experiments.  

 

BAL and lung tissue sampling and homogenization. BAL fluid was collected as 

previously described 
37

. Cytospin slides were prepared and the % of leukocyte 

populations was determined after May Grünwald/Giemsa staining. For cytokine 

measurements, the right lung lobes were frozen on dry ice and stored at -70°C. Lung 

tissue was homogenized in HBSS containing protease inhibitor cocktail (Roche 
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Diagnostics, Mannheim, Germany) at a concentration of 50 mg lung tissue per ml 

buffer. The homogenates were centrifuged at 800 x g at 4°C for 8 min, and 

supernatants were collected for cytokine measurements using ELISA. 

 

Histology. The left lung lobe was preserved in 4% paraformaldehyde, paraffin-

embedded, sectioned and stained with hematoxylin and eosin (H&E) as previously 

described 
6, 38

. The extent of tissue inflammation around the primary bronchi was 

evaluated by blinded counting of eosinophils. In addition, broncho-vascular units 

containing cell infiltration were counted and results are shown as % per individual. 

Thickness of the airway smooth muscle (ASM) layer around similar size bronchi 

(diameter range 500 – 650 m) was measured with a Nikon Microphot-FXA 

microscope using the 10x objective lens (Bergström Instrument AB, Stockholm, 

Sweden) and Eclipse Net software (version 1.20, Developed by Laboratory Imaging, 

Prague, Czech Republic) on H&E stained sections. ASM layer thickness was 

measured every 30 μm around the primary bronchi and average thickness was 

calculated. For periodic acid Schiff (PAS) staining, slides were deparaffinized, 

hydrated, oxidized in 0.05% periodic acid for 5 min, washed in H2O, stained with 

Schiff’s reagent (Sigma-Aldrich) for 30 min, washed in H2O for 3 min and 

counterstained with Mayer’s hematoxylin for 30 sec. MCs were identified by 

toluidine blue staining 
39

. 

 

Restimulation of splenocytes. Restimulation of splenocytes was performed as 

previously described 
40

. 48 hours after the last intranasal instillation, spleens were 

collected and mechanically dispersed followed by passing of the tissue through a 

nylon filter. Red blood cells were eliminated by lysis. Splenocytes were seeded (4 x 
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10
6
 cells/ml, 1 ml/well) into a 24-well plate and were stimulated with 20 μg/ml HDM 

extract for 72h. ELISA was used to measure release of cytokines into the cell culture 

supernatant.  

 

Generation and degranulation of peritoneal cell derived MCs. Peritoneal cell-

derived MCs (PCMCs) were established according to a previously described protocol 

12
. IgE anti-TNP (BD Biosciences Pharmingen, Stockholm, Sweden) was added to 1 x 

10
6
 PCMCs at 1 g/ml followed by incubation over night at 37C. Cells were washed 

three times and resuspended in DMEM supplemented as described above. OVA-TNP 

was added (0.4 μg/ml final concentration). For calcium ionophore-mediated 

degranulation, A23187 (Sigma-Aldrich) was added (2 µM final concentration). 

Mouse recombinant IL-33 (PeproTech, London, UK) was added at 2 ng/ml 

immediately after stimulation with IgE anti-TNP. To block serine protease activity, 1 

mM Pefabloc SC (Pentapharm LTD, Basel, Switzerland) was added 10 minutes prior 

to MC activation. Supernatants were collected 0, 20, 40 and 60 min after stimulation.  

 

Chymase activity. PCMCs were washed twice and resuspended in HBSS at a density 

of 1 x 10
6
 cells/ml and placed in triplicates (100 μl/well) in a 96-well plate. HDM 

extract was added at a final concentration of 200 μg/ml. A23187 (2 μM final 

concentration) was used as a positive control for PCMC-degranulation. Chymase-like 

activity was measured using a fluorogenic substrate (Suc-Ala-Ala-Pro-Phe-AMC), 

according to manufacturer’s instructions (Bachem, Weil am Rhein, Germany). The 

reaction was allowed to proceed for 2 h in RT and fluorescence was measured at 360 

nm (excitation) and 460 nm (emission) every 10 min using a FARCyte microplate 

reader (Amersham Biosciences, Uppsala, Sweden).  
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IL-33 degradation. Human chymase (Sigma-Aldrich, Stockholm, Sweden; 100 ng) 

or purified mMCP-4 (1 ng) 
41

 were incubated at 37°C with recombinant human 

(PeproTech) or murine (PeproTech) IL-33 (1 µg/lane) in PBS (total volume 20 µl). At 

different time points, 5 µl of 5 x SDS-PAGE sample buffer was added, followed by 

SDS-PAGE (12 % gels) and visualization of protein bands by Coomassie staining.  

 

ELISA and β-hexosaminidase release assay. Concentrations of total IgE in serum 

were measured using ELISA (Bethyl Laboratories, Montgomery, TX). ELISA was 

used to determine the levels of IL-5, IL-6, IL-13, IL-17A, IL-33 and TSLP, according 

to manufacturer’s instructions (eBioscience, San Diego, CA). Histamine release was 

measured with ELISA (EA31; Oxford Biomedical Research, Oxford, MI). Release of 

β-hexosaminidase was determined as previously described 
39

.  

 

Statistical analysis. Statistical significances were calculated by Student’s t-test for 

differential counting and ELISA; Mann-Whitney U test for histology; two-way 

ANOVA for airway reactivity measurements. GraphPad Prism 4.0 (GraphPad 

Software Inc., San Diego, CA) was used for all statistical analyses. All values are 

displayed as means ± SEM and p-values < 0.05 were considered to be significant. 
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Figure legends 

 

Figure 1  Increased airway reactivity and airway inflammation in HDM-challenged 

mMCP-4
-/-

 mice. WT and mMCP-4
-/-

 mice were treated with HDM-extract as 

described in Materials and Methods. Control mice were treated with PBS. (A) Forty-

eight hours after the last HDM instillation, lung resistance (RL) to increasing doses of 

aerosolized methacholine was determined. The results from each group represent 

means + SEM: *P < 0.05; ***P < 0.001 vs. corresponding values for PBS-treated 

mice, (*) P < 0.05 vs. HDM-treated WT mice (two-way ANOVA). Data were 

obtained from five independent experiments. (B-F) Number of cells in BAL fluid: 

total cells (B), eosinophils (C), lymphocytes (D), macrophages (E), neutrophils (F). 

Data are shown as mean ± SEM (n = 10 for controls; n = 16 for HDM-treated mice). 

*P < 0.05; **P < 0.01; ***P < 0.001 (Student’s t test). Data were obtained from seven 

independent experiments. 

 

Figure 2  Histology of lungs after HDM treatment. (A-B) H&E-staining showing 

representative histology of primary bronchi (A) and small airways (B) from HDM-

treated WT and mMCP-4
-/- 

mice and control groups. (C) Blinded quantification of 

lung eosinophils (H&E staining). (D) % infiltrated small airway, as determined by 

blinded analysis. (E) Quantitative analysis of ASM thickness (H&E-staining). (F) % 

PAS
+
 cells in airways. Data in C-F are shown as mean values ± SEM (controls; n = 3 

- 4 and HDM; n = 8 - 14) from 3 independent experiments. *P < 0.05; **P < 0.01; 

***P < 0.001 (Mann-Whitney U test and Student’s t test). 
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Figure 3  mMCP-4 affects the sensitization stage. (A) Concentrations of total IgE 

were measured with ELISA in sera from HDM-treated mice and PBS-treated controls. 

Results are expressed as mean ± SEM (n = 3 - 9). Data were pooled from two 

independent experiments. (B-E) Increased production of IL-13 and IL-17A by 

restimulated splenocytes from HDM-treated mice. Forty-eight h post last intranasal 

HDM instillation, single-cell suspensions of splenocytes were prepared. Splenocytes 

were restimulated with HDM extract (20 μg/ml) for 72 h. Release of IL-13 (B), IL-

17A (D) and IL-6 (E) was determined by ELISA. Results are expressed as mean ± 

SEM (n = 3 – 7). (C) Depicts a significant positive correlation between number of 

recovered BAL cells and IL-13 levels in HDM-restimulated splenocyte cultures. *P < 

0.05; **P < 0.01; ***P < 0.001 (Student’s t test). 

 

Figure 4  HDM extract causes MC degranulation. PCMCs were stimulated with 

HDM extract for 1 h and the % -hexosaminidase release (A) and concentration of 

histamine (B) in culture supernatants were determined. (C) Chymase-like activity 

after HDM-stimulation of PCMCs was determined using a fluorescent substrate (Suc-

Ala-Ala-Pro-Phe-AMC). Chymase-like activity is shown as raw fluorescent units 

(RFU) per h Calcium ionophore (A23187) was used as a positive control for MC 

degranulation. Results are shown as mean ± SEM (n = 3). *P < 0.05; **P < 0.01; 

***P < 0.001 (Student’s t test).  

 

Figure 5  Elevated IL-33 levels in HDM-treated mMCP-4
-/-

 mice. WT and mMCP-4
-/-

 

mice were treated with intranasal doses of either 3 μg HDM extract (HDM) or PBS on 

days 1, 4, 8, 11, 15 and 18. Cytokine levels in lung homogenates were measured by 

ELISA 4 h post last intranasal administration. Results are shown as means ± SEM (n 
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= 3 - 8). *P < 0.05 (Student’s t test). Data were pooled from three independent 

experiments. 

 

Figure 6  mMCP-4 contributes to IL-33 degradation in vitro. (A) WT and mMCP-4
-/-

 

PCMCs were subjected to FcεRI crosslinking (IgE/Ag) in the presence of exogenous 

IL-33. Experiments were performed with or without addition of a serine protease 

inhibitor (Pefabloc SC). IL-33 levels in the supernatants where measured after 20, 50 

and 120 min using ELISA. Data are shown as % residual IL-33 compared with time = 

0; expressed as means ± SEM (n = 3). *P < 0.05; **P < 0.01; ***P < 0.001 (Student’s 

t test). (B) mMCP-4 or human chymase were incubated with murine or human IL-33, 

respectively. At the time points indicated, reactions were terminated followed by 

SDS-PAGE and staining with Coomassie. As a control to verify that IL-33 was 

reduced through proteolysis, mMCP-4 was incubated for 60 min with a general serine 

protease inhibitor (Pefabloc SC; final concentration 2 mM) prior to experiments.   

 

Figure 7  Schematic presentation of the effects of MC chymase on airway responses. 

HDM entering the tissue may directly activate MCs leading to chymase secretion. 

Alternatively, chymase may be secreted in response to IL-33. Exocytosed chymase 

can regulate IL-33 levels by proteolytic degradation of the cytokine. Potentially, this 

may modulate IL-33-mediated effects on airway responses, including dampening of 

IL-33-mediated recruitment of eosinophils and IL-33-mediated stimulation of Th2 

responses leading to IgE production. 
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Suppl. Fig. 1. Numbers of MCs in lungs of control and HDM-
treated WT and mMCP-4-/- mice, as determined by staining of lung 
tissue sections with toluidine blue and counting of total numbers of 
MCs/section. MCs were predominantly located in the vicinity of 
bronchi.  
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