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Abstract 

Olsson, J. 2000. Modem methods in cereal grain mycology. Doctor's dissertation. 

ISSN 1401-6249, ISBN 91-576-5792-0. 

A simple rapid DNA extraction method, equally suitable for spores and mycelia is 
proposed. Heating samples in NaOH and SDS provides DNA of high purity, suitable for 
Polymerase Chain Reaction (PCR) analysis. For Penicillium roqueforti the detection limit 
was 6 x lo3 conidia and 1 mg (fresh weight) mycelium in the extraction liquid. The 
method proved efficient with Aspergillus jlavus, Fusarium graminearum, Rhizopus 
stolonifer, Eurotium herbariorum, and Cladosporium herbarum, as well. 

An optimised competitive PCR (cPCR) method for quantifying fungal growth in 
cereal grain was developed using experimental design. DNA extraction efficiency was 
quantified by cPCR using primers specific for the internal transcribed spacers (ITS) of the 
ribosomal DNA of P. roqueforti. The proposed method can detect P. roqueforti at levels 
as low as 10' CFU/g grain and at levels higher than lo2 CFU/g grain. Quantification is 
consistent (CV < 8%) and highly correlated with results from traditional dilution plating. 

The possibilities of using an electronic nose or gas chromatography combined with 
mass spectrometry (GC-MS) to quantify ergosterol, colony forming units (CFU), 
ochratoxin A, and deoxynivalenol (DON) in naturally contaminated barley samples was 
investigated. The main volatile compounds of grain with normal odour were 2-hexenal, 
benzaldehyde and nonanal, while 3-octanone, methylheptanone and trimethylbenzene 
were the main volatile compounds of grain with off-odours. Both CFU and ergosterol 
levels could be predicted from data from either GC-MS or electronic nose measurement. 
It was also possible to classify the ochratoxin A level as either <5 or >5 pgkg  cereal 
grain, and estimate the DON level. Samples with ochratoxin A levels below 5 pgkg had 
higher concentration of aldehydes (nonanal, 2-hexenal) and alcohols (I-penten-3-01, 
1 octanol). Samples with ochratoxin A levels above 5 pgkg had higher concentration of 
ketones (2-hexanone, 3-octanone). Pentane, methylpyrazine, 3-pentanone, 3-octene-2-01 
and isooctylacetate were positively correlated with DON, while ethylhexanol, 
pentadecane, toluene, I-octanol, I-nonanol, and 1-heptanol were negatively correlated 
with DON. 

Keywords: electronic nose, GC-MS, quantification, mould, fungi, grain-kernels, 
polymerase chain reaction, competitive PCR, DON, ochratoxin A, CFU, ergosterol, 
fungal volatile metabolites 
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260. 
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of Penicillium roqueforti in cereal grain with competitive PCR. 
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for mycological quality grading of barley grains - determinations using 
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quantification of ochratoxin A and deoxynivalenol in barley grains by 
GC-MS and electronic nose. (Submitted) 

Papers I and I11 are reprinted with permission of the respective publishers. 



Aims 

Man has cultivated cereal grains in order to feed himself and his livestock for 
several thousand years (Reed, 1992). Global production of wheat, the most 
important food crop, currently totals about 550 million metrics tons (MMT) 
annually, of which 100 MMT is traded each year on the international market 
(Morris & Rose, 1996). While the importance of grain moisture content for safe 
storage was recognised early in the last century, 10-20% of harvested cereal grain 
crop is still damaged by microbial growth; the two major causes being improper 
drying and storage procedures (Chelkowski, 1991). Fungi, the leading post 
harvest pathogens, are responsible for both general spoilage, characterised by the 
loss of nutrients and technical quality, and health problems due to the formation 
of mycotoxins and allergenic spores. Grain quality in both international markets 
and the majority of local markets should be analysed. For the most part this is 
done by simply smelling the grain odour. 

The main goal of this thesis has been to develop and evaluate new methods for 
the identification, detection, and quantification of fungi and mycotoxins in cereal 
grains. 

Specific objectives have been to: 

develop a fungal DNA extraction protocol useful with both fungal mycelium 
and spores, 

evaluate extraction methods suitable for a quantitative PCR method of 
detecting fungal growth, 

identify volatile compounds that correlate to either a grain odour class, CFU 
or ergosterol contents, 

investigate if an electronic nose can be used to quantify mould growth in 
naturally contaminated grain, 

evaluate the ability of the electronic nose and GC-MS to quantify 
ochratoxin A and DON in natural grain samples, 

and, 
identify the volatile compounds associated with the mycotoxin contents of 
naturally contaminated cereal grain. 
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Growth and metabolism of grain spoilage fungi 

Fungal growth 
Cereal grain is mainly spoiled by moulds within the genera Aspergillus, 
Eurotium, Penicillium, and Fusarium, i.e. filamentous fungi (Filtenborg et al., 
1996). These have an unique mode of growth in that only the hyphal tip (apex) is 
extended. Through apical extension filamentous fungi can grow towards nutrients 
and penetrate solid substrates (Sietsma et al., 1995; Wessels, 1993; Wessels, 
1994). Enzymes excreted at the hyphal tip degrade substrate polymers such as 
starch and proteins (Fig. 1). The uptake of organic nutrients is an energy- 
dependent process that occurs close to the apex. Fungal mycelium can be thought 
of as a "tube" with a rigid wall consisting of polysaccharides (Heath, 1995; 
Sietsma, et al., 1995), small amounts of proteins, minor amounts of lipids, and a 
cytoplasm that is rich in proteins, lipids, and nucleic acids (Bartnicki-Garcia & 
Lippman, 1982). The hyphal tip is initially highly plastic, but matures into a rigid 
wall less than 1 mm behind the tip (Sietsma, et al., 1995; Wessels, 1986). 

Filamentous fungi are more motile than unicellular bacteria and yeast. The 
effects of this motility are further enhanced by the ability of the organism to 
translocate cytoplasm, water and nutrients from older parts of the mycelia, 
leaving empty hyphae behind (Schniirer & Paustian, 1986). 

The most important genera as regards to grain spoilage fungi are found among 
both ascomycetes and deuteromycetes, the latter producing only asexual spores 
(conidia). 

Fungal metabolism 
Primary metabolites are produced from metabolic pathways involved in the 
essential life processes of fungi (Campbell, 1984). These metabolic pathways e.g. 
glycolysis and the citric acid cycle are found in all eukaryotes. Fungal secondary 
metabolites have a more restricted distribution and are often specific for 
individual genera, species, or even strains (Campbell, 1984; Larsen, 1994). 
Secondary metabolism is not directly involved in normal growth and is, thereby, 
regarded as non-essential for the survival of the fungus (Campbell, 1984). 
Examples of fungal secondary metabolites are antibiotics commonly used in 
medicine, such as penicillin and griseofulvin, as well as mycotoxins (Bennett, 
1995). Mycotoxins constitute a diverse range of compounds from different 
precursors and pathways that are grouped together based on their toxicity to 
higher animals and humans. Some mycotoxins are produced by only a few fungal 
species, while others are produced by a large range of species from several 
genera (Smith et al., 1984). 
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Figure 1. Schematic representation of a fungal hyphae tip, showing the release of 
enzymes, amylases in this case, at the tip (apical region) and the uptake of small soluble 
nutrients such as mono- and disaccharides further back from the tip. Glucose is then used 
as substrate for production of both primary and secondary metabolites from which some 
volatile fungal metabolites are formed. 

Volatile fungal metabolites 
Fungal volatile metabolites can be products of both primary and secondary 
metabolism. These volatiles can be used as spoilage indicators, as well as they 
are important flavour compounds in many fermented foods (Janssens et al., 1992; 
Kinderlerer, 1989). 

A simplified overview of the biosynthesis of some important volatile fungal 
metabolites is presented in Figure 1. Fungi take up glucose and metabolise it to 
pyrovate and then further to Acetyl-coenzyme A. Acetyl-CoA is the main 
precursor in the metabolism of fatty acids and mono- and sesquiterpenes (Fig. l), 
and addition to being the most important precursor in biosynthesis of volatile 
fungal metabolites (Larsen, 1994). Schnurer et al. (1999) listed 2-methyl-l- 
propanol, 3-methyl-butanol, 1-octene-3-01, 3-octanone, ethyl acetate, 3-methyl 
furan, 2-methyl-isoborneol, and geosmin as the most commonly reported fungal 
volatile compounds. Nevertheless, compounds such as 3-methyl- 1-butanol, 
1 octen-3-01 and 3-octanone can even be found in grain with normal odour. The 
concentrations are generally below the odour threshold and, therefore, do not 
influence the odour profile of sound grain (Jelen & Wasowicz, 1998). 

Although the profile of volatile metabolites remains unchanged, the relative 
abundance of different fungal metabolites has been found to vary with the growth 
stage of the fungus (Borjesson, 1993). Substrate composition and environmental 
factors such as water activity (a,), pH, atmospheric composition, and temperature 
can have a great influence on both the qualitative and quantitative production of 
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volatile metabolites. Conditions that favour growth generally also favour the 
production of volatile metabolites (Borjesson, 1993). 

Larsen and Frisvad (1995) investigated the volatile compounds produced by 
132 isolates of 25 terverticillate Penicillium for species classification. The 
relative amounts of the 131 detected volatiles were analysed by average linking 
clustering (UPGMA) and were clearly separated for practically all species 
investigated. The results agree with previous classifications of Penicillium, which 
have been based on the chemotaxonomy of biosynthetic families of non-volatile 
secondary metabolites. Larsen (1997) has also showed that volatile metabolites 
profiles can be used to identify fungi in mixed communities, at least on agar 
plates. 

It should be remembered that yeast and bacteria, both of which are commonly 
found on cereal grain, also produce volatile compounds. Bacteria and fungi share 
many metabolic pathways and, consequently, they are expected to produce 
similar volatile metabolites (Garraway & Evans, 1984; Gottschalk, 1986). 

Mycotoxin production in cereal grain 
The fungi commonly associated with grain are commonly divided into field and 
storage fungi (Lacey & Magan, 1991; Pitt & Hocking, 1997). The most important 
species under field conditions are Alternaria alternata, Aspergillus jlavus, 
Fusarium- and Cladosporium-species, while Penicilliumaurantiogriseum, 
P. viridicatum, P. verrucosum, P. hordei, A. candidus, A .  flavus, and Eurotium 
species are important storage moulds (Frisvad, 1994; Pitt & Hocking, 1997; 
Samson et al., 1996). Factors that influence growth, such as substrate 
composition, temperature, a,, pH, atmosphere, redox potential, and microbial 
competition, also influence mycotoxin production (Frisvad & Samson, 1991). For 
many fungi the conditions that are required for mycotoxin production are more 
limiting than the range over which growth can occur (Frisvad & Samson, 1991; 
Lacey & Magan, 1991). 

Penicillium-species are more common in temperate climate zones, such as that of 
Scandinavia, while Aspergillus-species prefers tropical climates (Frisvad & 
Samson, 1991; Pitt & Hocking, 1997). A.$avus, A. parasiticus, and possibly 
A .  nomius are capable of producing aflatoxins, cyclopiazonic acid, and, 
eventually even maltoryzin and 3-nitropropionic acid (Frisvad, 1994). In 
temperate climates ochratoxin A from P. verrucosum and the trichothecenes from 
varius Fusarium species are the most important mycotoxins (Frisvad, 1994). 

Ochratoxin A has been detected both in grain samples and in swine and human 
blood (Breitholtz et al., 1991; Holmberg et al., 1991; Holmberg et al., 1990; 
Olsen et al., 1993). Both seasonal and geographical variation in ochratoxinA 
contamination of grain have been observed (Breitholtz, et al., 1991; Holmberg, 
et al., 1991; Holmberg, et al., 1990). The same contamination is known to occur 
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naturally in barley, rye, wheat, oats, rice, and corn in countries with temperate 
and hot climate such as Europe, Canada, Bulgaria, Turkey, USA, Japan, and 
Australien (reviewed by Frisvad, 1994). Ochratoxin A has immunotoxic, 
nephrotoxic, teratogenic, and carcinogenic properties (Krogh, 1987; Kupier- 
Goodman & Scott, 1989). The fungi usually associated with ochratoxinA are 
P. verrucosum and A .  ochraceus (Frisvad, 1994; Pitt & Hocking, 1997; Samson, 
et al., 1996). 

The trichothecene mycotoxin DON is produced by several fungal genera, but the 
genus Fusarium being the most significant (Smith, et al., 1984). Eriksen and 
Alexander (1998) reported the field fungi F. culmorum and F. graminearum to be 
the most prominent DON producing Fusarium species with the relative 
dominance of these two species dependent on the temperature. The 
trichothecenes are cytotoxic, phytotoxic, antifungal, in addition to their 
insecticidal properties (Ciegler, 1979). 

Mycotoxin formation has been correlated with the presence of certain fungal 
volatiles. Zeringue et al. (1993) studied headspace volatiles from aflatoxigenic 
strains and nonaflatoxigenic strains of A .  flavus and found that the aflatoxigenic 
strains produced several CI5H24 compounds that the nonaflatoxigenic strains did 
not. The synthesis of trichothecenes and trichodiene, and other volatile 
sesquiterpenes, was correlated in both wheat kernels inoculated with Fusarium 
species (Jelen et al., 1997; Jelen et al., 1995) and in incubated grain spikes with 
natural Fusarium head blight infestation (Jelen et al., 1997). Pasanen et al. 
(1996) used toxigenic and nontoxigenic strain of P. verrucosum and found that 
ketones consisted of more than half of the microbial volatiles produced by the 
toxigenic P. verrucosum strain, whereas more alcohols were formed by the 
nontoxigenic strain. 

Detection and quantification of spoilage fungi 

In Sweden, as well as in many other countries, grains are checked for off-odours 
at granaries upon delivery (Borjesson et al., 1996; Magan, 1993; Stetter et al., 
1993). The rational being that off-odours often indicate past or ongoing microbial 
deterioration, and that off-odours can make the grain and products less palatable 
(Borjesson, et al., 1996). Grain inspectors smell the grain and classify the odour 
of the grain as either "normal", "musty", "mouldy", "acid", "sour'', "burnt", or 
"foreign", while the intensity of the off-odour is graded as being weak, 
pronounced, or strong (Borjesson, et al., 1996; Jonsson et al., 1997). In many 
countries this odour check is the primary criterion for determining fitness for 
consumption (Jonsson, et al., 1997). Nevertheless, the odour check lacks 
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objectivity since there are individual differences in the perception of intensities 
and types of odours (Seitz & Sauer, 1991; Smith et al., 1994). Furthermore, 
inhalation of fungal spores can induce allergic reactions and exposure to fungal 
volatile metabolites can cause various disease symptoms (Larsen et al., 1998; 
Rylander, 1986; Walinder et al., 1998). Although smelling grain samples directly 
does not agree with current working environment regulations, it is still used as it 
is the only "standardised" method that can determine odour and the occurrence of 
fungi in a couple of minutes. 

GC 

HPLC-chromatogram 

Figure 2. Overview of methods to detect fungal growth in grain (wheat) kernels. Volatile 
fungal compounds can be used to detect and quantify fungal infection and amount of 
produced mycotoxins. These volatiles can be detected by gas chromatography, an 
electronic nose or a human grain inspector. The DNA from the kernel can be purified and 
the PCR technique can be used to amplify fungal specific sequences. By homogenizing 
grain kernels in a diluent and spreading on agar, the number of fungal colony forming 
units from mycelium fragments and conidia can be determined. Fungal specific markers 
such as ergosterol and mycotoxins can be chemically extracted, separated, and quantified 
using an HPLC. 
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The need for alternative methods to evaluate the mycological quality of grain is 
obvious and has been the driving force behind the work presented here. Figure 2 
summarises the different techniques that have been used in this thesis work. 

Dilution plating (CFU) and direct plating 
The dilution plating or colony forming unit (CFU) method is the most commonly 
used technique for the examination of food and feedstuffs (Jarvis et al., 1985). It 
is performed by homogenising the sample, making 10-fold dilutions and surface 
spreading on agar plates. The agar plates are incubated at 25°C for 5-7 days 
(Thrane, 1996; Akerstrand, 1995). The choice of mycological media is very 
important for the final result. There are only a few widely accepted media, 
among them DG18 (Hocking & Pitt, 1980) and DRBC (King et al., 1979), 
although there are several more selective media for certain specific types of fungi 
such as acidophilic, xerophilic, proteinophilic etc. (Frisvad, 1983; Pitt et al., 
1983; Samson, et al., 1996). Counting the number of CFU remains the most 
common method for monitoring fungal infection in grain. Nonetheless, it 
provides a poor estimate of fungal biomass (Pitt, 1984), as CFU results depend 
more on whether the fungi have sporulated than on actual biomass production 
(Schnurer, 1993). 

For mycological examination of particulate hard foods such as grains and nuts, 
direct plating is considered to be a more effective technique than dilution plating. 
For enumeration of fungi actually invading the hard food, surface sterilisation 
before direct plating is considered essential. This is performed by shaking the 
sample in 0.4% chlorine, rinsing it with sterile water, and transfering individual 
particles to agar plates (Thrane, 1996; Akerstrand, 1995). 

Fungal specific chemical markers 
Fungal biomass can be determined by chemical extraction of ergosterol or chitin, 
the specific fungal marker substances. The fungal cell wall consist mainly of 
polysaccharides (Cabib et al., 1982), chitin (p-1,4-linked N-acetylglucosamine) 
and P-1,3-@-1,6-glucan of the major wall polysaccharides (Gooday, 1995). 
Chitin occurs in all true fungi (Bartnicki-Garcia & Lippman, 1982), as well as in 
other groups of organisms such as insects, nematodes, crustaceans, protozoa, and 
diatoms (Gooday, 1990). 

Ergosterol on the other hand, is a fungal-specific membrane lipid (Weete, 1980). 
Seitz et al. (1977) pioneered a HPLC method for quantification of ergosterol that 
has become widely used for estimating the degree of fungal infection in grain and 
other plant materials. 

A correlation between ergosterol content and hyphal length and CFU for 
nonsporulating fungi on synthetic agar substrate (Schnurer, 1993), as well as 
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between ergosterol and CFU in grain has been reported (Schnurer & Jonsson, 
1992). One drawback to this method is that ergosterol content does not increase 
in relation to sporulation, whereas the number of CFU does (Schnurer, 1993). 
Furthermore, ergosterol and chitin can not be used to identify species. Neither 
does it indicate mycotoxin production nor can it distinguish between pre- and 
post-harvest invasion. 

An electronic nose was able to predict ergosterol and CFU contents both in wheat 
kernels infected with P. roqueforti (Schniirer, et al., 1999), and in naturally 
infected barley samples as well (111). 

Molecular techniques 

Polymerase chain reaction (PCR) 
Fungi have been identified on the basis of morphological characteristics which is 
often difficult and requires highly skilled personnel. This method is also time- 
consuming since fungal cultures have to be grown for one to two weeks before 
identification is feasible. The food industry often demands answers in minutes, 
an impossible request for the traditional mycological techniques. It is often 
important to determine whether a certain fungus might have been growing in a 
raw material before it was killed by processing, e.g. heat treatment. Since the 
traditional CFU method requires culturing of the fungi, fungal contents from 
dead material can not be estimated. PCR technique offers much faster 
alternatives to standard identification procedures since fungal DNA can be 
extracted from food samples without incubation. Killed fungi can also be 
detected which might be an additional advantage (see above). The technique 
offers effective detection of fungal genus or species if a suitable set of primers is 
used. Some common amplification targets have been 18s rDNA (Fletcher et al., 
1998; Kappe et al., 1998), the internal transcribed spacer (ITS) region of the 
ribosomal genes (Pedersen et al., 1997)and mitochondria1 DNA (Smith et al., 
1996), as well as genes coding for specific proteins (Niessen & Vogel, 1997). 

DNA amplification efficiency depends heavily on sample preparation since 
various components can inhibit the rate or extent of the reaction. Food containing 
high levels of fat and protein has been reported to inhibit PCR (Lantz et al., 
1994; Rossen et al., 1992) as well as factors from plant tissue, soil and sediments 
(Wilson, 1997). Rossen et al. (1992) tested various concentrations of substances 
used for DNA extraction such as detergents, NaOH, and alcohols, and found that 
these compounds could have an inhibitory effect on the PCR, the size of which 
depends on the amount used. The DNA extraction methods used should render 
14 



DNA of high purity, while retaining insignificant amounts of PCR-interfering 
compounds. Most of the published methods for fungal DNA extraction have been 
developed using mycelium grown in liquid culture. This is very different from 
the natural environment with a solid substrate like cereal grain, where spores also 
are produced. 

Paper I describe a fast and efficient method for DNA extraction from both fungal 
spores and mycelia from various food- and feed-born fungi. Since the number of 
amplified gene copies per genome equivalent of conidia or mycelium mass can 
differ, it is diffucult to compare the efficiency of different DNA extraction 
protocols. Notwithstanding, the NaOWSDS method seemed more efficient than 
the methods described by Ferreira and Glass (1996) and Xu and Hamer (1995). 
The detection limit was found to be less than 15 conidia in the PCR reaction or 
5 X lo3 conidia in the original 500 p1 sample (Figure 5 ;  paper I). For mycelium 
the detection limit was found to be 0.25 pg fresh weight per PCR reaction 
(Fig. 6, I). 

Quantitative polymerase chain reaction 
It is often of interest to quantify the degree of fungal contamination. PCR can 
become quantitative by either comparing the amount of product with an external 
standard (Cross, 1995), or by using an internal standard (competitor DNA; 
(Wang et al., 1989). Use of an external standard involves comparing the intensity 
of a PCR band against standard curve. The use of external standard has the 
drawback that small variations during sample preparation will multiply during 
the amplification process. To overcome sample variation an internal standard that 
is competitive to the sample DNA can be used. The competitive DNA and target 
DNA share primer-binding sites and is distinguished from the target by size. It is, 
however, important that the competitor DNA is properly constructed so the 
amplification efficiency of both the target and competitor is equal through the 
entire PCR process (Zimmermann & Mannhalter, 1996). This makes the 
construction and validation of the competitive PCR assay time-consuming. 
Quantitative measurements are also most accurate when the ratio of competitor 
and target templates is equal, and when the PCR process is in the exponential 
phase (Arnold et al., 1992). 

During the last years, new techniques called real-time methods have been 
developed for clinical use. The use of fluorophores is common to most of these 
methods and is described in detail by Boysen et al. (2000). These methods rely 
on fluorescence detection to monitor and quantify in real time. The instrument 
runs the cycle until the emission is strong enough for detection. The number of 
cycles that necessary for detection is used to calculate the initial amount of target 
DNA. 
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A protocol for quantitative extraction of fungal DNA from grain was proposed in 
11. An internal standard with primer-binding sites identical to the 
Penicillium roqueforti specific PCR-primers described by Pedersen et al. (2000) 
was used. DNA extraction efficiency was optimised using statistical design of 
experiments (Lundstedt et al., 1998). Ten factors were varied in a screening 
design (Fractional Factorial Resolution 111) and the numbers of rDNA copies 
were used as response (11). In design of experiments, the invested factors are 
varied simultaneously around the center-point experiment. The objective in 
screening designs is to find important factors, while it in optimisation is to 
optimise the response (Lundstedt, et al., 1998). Among the ten factors, only SDS 
concentration, sonication time, and freeze drying had significant effects on the 
extraction efficiency (Fig. 3,II). A central composite face-centered (CCF) design 
was adopted that allowed the SDS concentration and sonication time to vary, 
while the rest of the factors were fixed. Based on the results from the CCF 
design, an optimised quantitative DNA extraction protocol is proposed (11). 

Analyse of volatile compounds 

Headspace analysis 
There are several sample preparation techniques for volatile analysis such as 
steam and vacuum distillation, dynamic headspace, static headspace, and direct 
injection (Snyder, 1995). In static headspace, the sample is placed in a vessel and 
the opening is sealed (Fig. 3). The volatile compounds from the sample will then 
form an equilibrium with the headspace. The headspace can then be withdrawn 
with a gas tight syringe, and sample is injected into a Gas chromatograph (GC) or 
an electronic nose. Since only small amounts of gas can be injected into a GC, 
volatile compounds are often concentrated in a cold trap, on an adsorbent or in 
liquid before injection. This concentration step is not common in electronic nose 
measurements, but at least one manufacturer of electronic noses uses an 
adsorbent technique to concentrate volatiles before injection onto the gas sensor 
array. Tenax TA and Chromosorb 102 are the most commonly used adsorbents 
for sampling and quantitative analysis of fungal volatiles (Sunesson et al., 1995). 

We used technical air (80% N2, 20% 0,) to obtain a stabile reference atmosphere 
for measurements with both the electronic nose and when adsorbing volatile 
compounds from grain to adsorbents (I11 and IV) for GC-MS analysis. Figure 2 
in I11 shows how the volatile compounds from a grain sample were adsorbed 
onto an adsorbent. A detailed description of the electronic nose measurements 
can be found in I11 and Borjesson, et al. (1996). 
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headspace 

Figure 3. The principle of static headspace (left) and dynamic headspace (right) from 
grain kernels that have been placed in different types of vessels to generate of headspace. 

In the dynamic headspace technique volatiles are swept away from the sample 
with an inert gas. As opposed to static headspace, dynamic headspace will never 
reach equilibrium since the volatiles are steadily forced from the sample chamber 
to the adsorbent as described above. Dynamic headspace is the method of choice 
when compounds of low concentration or low volatility are to be analysed 
(Przybylaki & Eskin, 1995). 

In 111, each grain sample was split into three subsamples, which were then 
analysed three times each with the electronic nose. The idea was to obtain large 
amounts of data for evaluation, model derivation, and interpretation and 
validation of these models. Nevertheless, when a PCA model was developed for 
the sensor signals from the measured grain samples, we found that the scores for 
tl decreased for each sample measurement (Fig. 4). Seitz (1995) reported that the 
amounts of total volatiles from five consecutive purges of a wheat sample were 
nearly uniform in size. The composition of the volatiles was slightly changed, 
however, and the first purge contained the largest amounts of low molecular 
weight compounds. It is most likely that the electronic nose easier detect low 
molecular weight compounds. That is why only the first measurement (average 
of the three subsamples) was used for further modelling. 
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Figure 4. The scores of the PC 1 (tl) plotted against measurement order. The 
measurements obtained with the electronic nose in paper I11 were sorted by measurement 
order and a PCA were performed. 

Gas chromatography with mass spectrometer (GC-MS) 
Several techniques are available for the analysis of volatile compounds such as 
spectrometry, gas chromatography, and gas sensor arrays. Spectrometry methods 
such as FT-IR and NIR can be used to analyse complex gas mixtures such as 
smoke gases (Pottel, 1996). They can also be used to detect kernels of corn 
infected with mycotoxigenic fungi (Gordon et al., 1998) or to predict scab, 
vomitoxin, and ergosterol (Dowel1 et al., 1999). Recently, mass spectrometric 
(MS) technology has also been used to analyse volatile compounds since this 
technique can accommodate both qualitative and quantitative determination. 

The GC consists of an injector, a column located in an oven, and a detector. A 
carrier gas (inert gas) flows through the column. When a mixture of volatile 
compounds is injected into a GC the different compounds will be separated in the 
column and, given that the mixture is completely resolved, detected one after 
another. Several factors affect the degree of separation such as column 
parameters (length, diameter, material, etc.), oven temperature, and carrier gas 
(flow, gas). Flame ionization detection (FID) is probably the most commonly 
used detector for GC, although it does not give any structural information about 
the detected compounds. The most important detection method for identification 
purposes is mass spectrometry (MS) (Larsen, 1994). 
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Electronic nose 

Over the last twenty years there has been a rapid expansion in the development of 
gas sensor arrays. Gas sensors are chemical sensors that transduce a chemical 
state into an electrical signal. The signal is used as input in pattern recognition 
system in order to recognise different volatiles and odours. The integrated system 
of gas sensor array and pattern recognition is often called "electronic nose" 
(Gardner & Bartlett, 1994). 

The first electronic nose, developed by Persaud and Dodd (1982), was based on 
three chemoelectronic sensors and the same architecture that most systems use 
today. The most important part of an electronic nose is the sensor array, which 
can differ in composition between the different manufacturing companies. 

The usefulness of electronic noses has been investigated in numerous products 
such as food, beverages, packaging, cosmetics, cars etc. and for broad range of 
applications: quality control of raw and manufactered products, shelf life 
investigations, microbial pathogen detection, and environmental studies 
(reviewed by Schaller et al., 1998). 

Gas sensors 
A particular odour have a highly complex composition and consist of several 
hundred different molecules. Electronic noses similar to the human nose, consist 
of arrays of sensors with broad overlapping sensitivity towards a range of simple 
volatile organic molecules (Pearce, 1997; Pearce, 1997). This is maintained by 
combining several types of sensors into a sensor array. 

The electronic nose used in I11 and IV was developed and manufactured by 
S-SENCE, Linkoping, Sweden. It contained 5 MOSFET sensors in two different 
capsules held at 140°C and 175"C, 6 metal oxide sensors (Taguchi; Figaro Inc., 
Japan) and one optical CO2 sensor. These three sensor types are described in 
more detail below, while some other common sensor types are described only 
briefly. 

Metal Oxide Semiconductor Field Effect Transistor (MOSFET) sensors 
The ability of palladium to react to small amounts of hydrogen was discovered 
over 20 years ago by Lundstrom et al. (1975) which led to its use as a gate metal 
in MOSFET sensors (Fig. 3.. A MOSFET sensor consists of three layers; a 
doped silicon as a substrate, a metal insulator (- 100 nm SOz) and a catalytic 
gate metal layer (e. g. Ir, Pt, Pd). The catalytic metal layer can be either dense 
(thick) or discontinuous (thin), meaning that the layer will contain holes and 
cracks. By using different catalytical metals (Ir, Pt, Pd), varying the thickness, 
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and operating temperature of the device, a variety of molecules can be detected 
(Lundstrom et al., 1990). 

Figure 5. Schematic MOSFET structure with a thick (dense) catalytic metal layer 
(modified from Eklov (1999). 

The basic principle for MOSFET sensors with a thick (dense) catalytic metal 
layer is that when volatile compounds containing hydrogen reach the surface of 
the catalytic metal layer they react (dehydrogenate), and hydrogen atoms are 
released. The hydrogen atoms diffuse through the metal layer to the metal-oxide 
interface, as shown in Figure 6 (Lundstrom et al., 1989). The adsorption of 
hydrogen atoms at the interface give rise to a dipole layer. This is in equilibrium 
with the outer layer of adsorbed hydrogen and, hence, with the concentration of 
hydrogen containing volatile compounds. The raised dipole layer will introduce a 
voltage drop in the characteristic current-voltage (I-V) curve of the sensor. This 
voltage drop is measured as a sensor signal. When using a discontinuous layer it 
is believed that other electrical polarisation phenomena can also contribute to the 
voltage shift (Eklov, 1999). 

OHOHOHOHOHOH 

metal 

Insulator ~ 1 
Semi- 
conductor 

Figure 6. Detection principle for a MOSFET sensor with a thick film of the catalytic 
metal, in this case Pd. (from Eklov (1999) with permission from T. Eklov). 
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Metal Oxide Sensors (MOS) 
MOS are based on different kinds of semiconducting metal oxides (Gopel & 
Schierbaum, 1995) and are the most common sensors used in electronic nose 
systems. Both oxidising and reducing molecules, such as C02, 0 2 ,  CH,, and H2 
can be monitored by MOS sensors (Gopel, 1996). 

oxidising ambient 

Q2 0, *2 electron depletion 
at surface and 

grain boundaries 
U 

high resistance 

reducing ambient 

electron rich surface 
and grain boundaries 

U 
low resistance 

Figure 7. Principle for MOS sensor operation. (With permission from P. Mktensson, 
NST, Linkoping). 

When oxygen reaches the surface of the grain boundaries oxygen ions are formed 
as the electrons close to the surface of the grains react with O2 (Fig. 7). This leads 
to a decreased conductivity since these electrons contribute to the conductivity of 
the grains. In a reducing ambient, the oxygen ions react with the reducing 
compounds, which in turn causes a decrease of the conductivity since the 
concentration of electrons at the surface of the grains increases. The sensitivity 
profile of these sensors can be modified by changing the oxide microstructure, by 
addition of different dopantskatalysts to the oxide or by exchanging the oxide. 
The sensor's operating temperature is also important, since it may affect different 
gas sensing properties (Gopel, 1996). 

Optical sensors 
Optical sensors can detect a large number of compounds. In most sensors a light 
source excites the molecule, and the resulting signals are registered in a number 
of ways; as reflectance, absorbance, optical thickness, flourescence, or 
chemiluminiscence (Wolfbeis et al., 1991). The Gascard C02 monitor used in I11 
and IV is based on optical absorption at a C02 specific wavelength. This device 
is particularly useful in biological systems where C02 is an important indicator 
of biological activity, especially as a first indication of microbiological growth 
and activity. 
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Other common gas sensors 
Conducting polymer sensors are derived from aromatic or hetero-aromatic 
polymers which have been doped with ions into the polymer matrix. By changing 
the structure of the polymer, the organic materials, and the dopants sensitivity 
towards many organic ocmpounds is obtained (Eastman et al., 1999). 

Two types of oscillating sensors have been used in electronic noses. By varying 
the sensing layer sensitivity profiles for different volatile compounds can be 
obtained. Quartz micro balance (QMB) sensors consist of a single quartz crystal 
with a gold layer evaporated on the top of both sides of the crystal. The sensing 
layer is then placed on the gold layer and can consist of materials similar to those 
used in surface acoustic wave (SAW) sensors (see below). Adsorption of 
molecules onto the sensing layer will in both SAW and QMB sensors results in 
increased mass and changed viscosity of the sensing layer (Persaud & Travers, 
1997). The SAW sensor consist of a strip of piezoelectric material with the 
adsorbing layer in the middle. SAW sensors are usually operated as delay lines 
by having both input and output transducers. The delay between launching and 
receiving the wave depends on wave velocity (Eklov, 1999). The sensing layer 
can be made up of polymers, biomolecules, metals, or supramolecular structures 
(Gopel & Schierbaum, 1997). 

Feature extraction 
Sample preparation for measurement with electronic noses is commonly 
performed as headspace analysis, which is accomplished by placing the sample in 
a flask and sealing it with a septum. To eliminate variation due to changes in the 
air composition and humidity in the lab, the air in the flask is replaced with a 
reference gas such as technical air, which is sometimes humidified to a specific 
level. In on-line applications the set-up of the electronic nose sampling interface 
to the reactor can differ slightly (Bachinger et al., 1998; Bachinger et al., 2000). 

A measurement cycle starts and ends with exposure of the gas sensor array to the 
reference gas. The purpose of using the reference air is twofold; to remove 
volatile compounds from the test gas in the system, and to provide a stable 
reference for the sensor signals. The baseline value (Fig. 1, 111) for MOSFET 
sensors varies considerably. Since the sensor signals extracted from the sensor 
curve are related to the baseline, drift can be compensated nevertheless (Eklov, 
1999). 

An example of a typical sensor response curve from a MOSFET sensor is shown 
in Figure 1, 111. From the curve five signals, response height, on- and off- 
derivatives, and on- and off-integrals, are calculated. The electronic nose model 
used in (Schniirer, et al., 1999) was only able to extract the response sensor 
signal (Figure 8). Even so, we were able to predict ergosterol and CFU in wheat 
grain inoculated with Penicillium roqueforti. Eklov et al., (1997) showed that the 
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response signals were approximately similar when a Pt MOSFET sensor was 
exposed to either 50 ppm hydrogen or 50 ppm ethanol, while the shape of the 
response curves were highly different (Fig. 8). Consequently, it might be 
important to extract several sensor signals from each response curve. 

-50 ppm hydrogen 
--50 ppm ethanol 

time [s] 

Figure 8. An example for a Pt MOSFET sensor exposed to pulses of ethanol or hydrogen 
in technical air. (after Eklov, et al. (1997). 

The results published in I11 show that all five types of calculated sensor signals, 
response, on and off derivatives, and on- and off-integrals, were important to get 
a maximum separation between grain samples with normal and off-odours (Fig. 
5c-d, 111). When only the response signals from the 16 sensors were used, the 
two classes (normal and off-odours) again could not be separated. 

Data evaluation 

A standard statistical analysis of data using the univariate procedure, is to 
calculate an average for each variable and a standard deviation for each class of 
observation. Subsequently, some kind of test for the class separation for that 
variable is made. The procedure is repeated until all the measured variables have 
been checked. This kind of statistic analysis works well on "long and lean" data 
matrices where many observations have been measured for few variables. 
Standard assumptions that have to be made are that the measured variables are 
independent of each other, are exact (contain little noise) and that the noise is 
randomly distributed. This is seldom the case since instruments such as GC, NIR, 
and electronic nose provide the user with 100-1000 variables or more, and these 
variables are often correlated. The costs of the reference analysis can at the same 
time be so high that only a few samples are actually analysed. A data matrix 
containing few observations (N) and several variables (K) necessitates the use of 
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multivariate methods such as Principal Component Analysis (PCA) and Partial 
Least Squares (PLS). The advantages of these techniques is that they can deal 
with data matrixes of almost any size (N>>K, N<<K, and N-K), multi- 
collinearity, noise they are robust to noise in both X and Y data, extract the 
information and save the noise in a separate matrix, and can handle missing data 
as long as the data are not missing in some systematic pattern). Additionally, 
PCA and PLS provide many informative diagnostic and graphical tools. 

Multivariate analysis 

Principal Component Analysis (PCA) 
In PCA, the measured variables are transformed into a new set of variables, 
called Principal Components (PC) (Wold et al., 1984; Wold et aZ., 1987). Since 
the different PC's are not correlated to each other, PCA can handle multi- 
collinearity, and dimensionality is reduced at the same time. The advantages to 
this is that every measured object (sample) and variable can be studied 
simultaneously and that the important information is extracted in only a few PC's 
(usually 2-4). 

The geometric principle of PCA can be described as follows. Assume that 
interest is on studying how the first twenty samples (ten normal and ten with off- 
odours) described in table 1 in I11 are correlated to each other. The variables 
CFU, ergosterol, and water content (K = 3) of these twenty barley samples are 
used. Each variable represents one co-ordinate axis, together forming a 
multidimensional space (here three dimensional, Fig. 9). The samples are then 
plotted onto the variable space according to the results from the analysis. 

water content r water content 

log CFU log CFU 

Figure 9. A K dimensional (K = 3) variable space were the first sample from table 1 
paper I11 has been plotted (left figure). Each sample is represented by one point in a three 
dimensional space. PC1 is calculated to capture the maximum variance direction in the 
data (right figure). 



The first PC is then computed in the variable space so that the distance for each 
sample to PC 1 will be minimised. PC 1 is subsequently the line that best 
approximates the data in a "least squares sense". PC 2 is then computed 
orthogonally to PC1 and improves the approximation of the data as much as 
possible; describes the second largest variance direction in the data set. PCl and 
PC2 together define a 2D space into the variable space. The observations can be 
projected down into this reduced dimension sub-space and be visualised. The 
score plot (Fig. 10 left figure) shows how the samples are related to each other, 
while the loading plot (Fig. 10 right figure) shows how the variables relate to 
each other. 
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Figure 10. Example of a score plot (t2 vs tl; left) and loading plot (p2 vs pl; right) based 
on the first 20 samples and the three variables shown in table 1 of paper 111. 

For each PC, R2- and Q2-values are computed. R2 is a measure of the amount of 
variation explained by the respective PC. R2 can take values between 0 and 1. Q2 
is a measure of the predicted variation after cross-validation for that PC. RZCum 
and Q2cum are the cumulative value for R2 and 4 2  values, respectively, summed 
over all PC's. 

For a given model (set of variables), R2cum and Q2cum values close to 1 are 
desirable since it means that the particular set of variables adequately explains 
the variation in the data. For a satisfactory model, both RZcum and Q2cum should be 
above 0.8 and not separated from each other by more than 0.2 or 0.3. Since 
biological data often contain a lot of noise, models with Q2Cum values > 0.4 are 
considered satisfactory and QZCum values > 0.6 are regarded as excellent. 

Multivariate methods like PCA and PLS are sensitive to scaling. Scaling is an 
integral part of data pre-processing. The most common transformation is to unit 
variance and no scaling. In unit variance each variable is first divided with the 
standard deviation for that variable and then mean-centred. This will give all 
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variables equal opportunities of influencing the data analysis. If the variables 
with large variation are known to be important, it is often better to use no scaling 
since it will allows variables with large variation to influence the result more 
than variables with small variation (Eriksson et al., 1999). 

Classification using pattern recognition (PARC) techniques 
When the data contains classes, pattern recognition (PARC) techniques can be 
used to classify samples. PARC is often described as a procedure for formulating 
rules of classification (Albano et al., 1981). Asymmetric data and SIMCA are 
two examples of situations where PARC can be used. 

SIMCA classification (Soft Independent Modelling of Class Analogy) can be 
used to visualise the distance between the classes (Albano, et al., 1981; Coomans 
et al., 1983; Sjostrom & Wold, 1980). In SIMCA classification a PC model is 
made for every class. For each sample, the distances to the two models is 
computed and plotted along with the class membership limit (critical distances). 
The result can be visualised in a Coomans plot (see Fig. 4a-b, 111). In I11 one of 
the goals was to investigate if the volatile compounds detected by a GC-MS and 
the electronic nose could be used to classify grain samples as having either 
normal or off-odour. For both GC-MS and the electronic nose one PC model was 
developed for normal odour and one for off-odours. Coomans plots were used to 
visualise if the samples were classified as normal, off-odour, none of these 
classes, or both. The results showed that the electronic nose misclassified three of 
the 40 samples, compared to six samples misclassified when using GC-MS data 
(Fig. 4a-b, 111). 

A special case of PARC is the asymmetric case exemplified in Figure 1, IV. 
Asymmetric data are commonly found in medical diagnosis (one disease vs. all 
others), chemical structure determinations (one type of structure vs. all others), 
biomedical applications (biological active compounds vs. inactive compounds), 
and quality control (good vs. all types of inferior) (Albano, et al., 1981; Sjostrom 
& Wold, 1980; Thelin et al., 1995). We found in IV that samples with an 
ochratoxin A concentration < 5 pgkg could be assigned to the same group, based 
on similarities in volatile metabolite profiles. The defined class is tight and forms 
a well-defined tolerance volume. In contrast, the grain samples with ochratoxin A 
> 5 pgkg were scattered around the tight class. By performing a PC model on the 
tight class, and estimate the distance to the model for new samples, these can be 
classified as either belonging to the tight or the diffuse class (IV). 

Partial Least Squares (PLS) 
PLS is a regression extension of PCA, since PLS take into account two blocks of 
variables designated X and Y (Hoskuldsson, 1988; Sjostrom et al., 1983). The Y 
block may consist of a single response (variable) or several. In PLS two co- 
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ordinate systems, one for the X block and one for the Y block are performed. 
This means that each sample corresponds to one point in the X space and one in 
the Y space. As in PCA, a vector is computed, but in PLS it is tilted so that it 
reflects the information in the X-block that is of relevance for prediction of the 
response. This means that in PLS the PC’s are computed to maximise the 
covariance between X and Y space. This is done by finding a weight, c, that can 
be multiplied by the score, t, to estimate y. The geometry of PLS has been 
described by (Phatak & DeJong, 1997). 

It is important to remember how PC 1 is computed in PCA and PLS. In PCA PC 
1 is computed so it explains the largest variation in the data. Nevertheless, it is 
not certain that the maximum variation directions coincide with the maximum 
separation of classes. An example of this can be seen in Figure 3a-b (111). By 
constructing dummy variables and using a PLS based technique called PLS 
discriminant analysis it is possible to rotate the PC so that it focuses on class 
separation (Sjostrom et al., 1986). 

Other methods 
There are several other data evaluation and pattern recognition techniques in use 
such as cluster analysis, Nearest neighbour classification, System identification 
methods, Fuzzy models, Genetic algorithms. Artificial neural networks (ANN) 
are frequently used to handle sensor signals (Bachinger, et al., 1998; Brezmes 
et al., 1997; Borjesson, et al., 1996; Eklov et al., 1998; Gibson et al., 1996). 

An ANN consists of an input layer, one or several hidden layers, and an output 
layer (Fig. 11). The basic unit is called neuron and consists of the input weight 
(wjk), a summation function, and a transfer function. Several transfer functions 
exist, but the sigmoid function is the most frequently used since it supports non- 
linear models as well. Data presented to the network through the input layer are 
transferred to the hidden layer. The signals are then propagated to the output 
layer, which produces an output from the model. The output is then compared 
with the appropriate calibration value, and weights, which are free parameters, 
are adjusted so the model will fit the data. 
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Figure 11. The architecture of a feed forward ANN with input layer, a hidden 
layer, and an output layer. The hidden layer and the output layer contain a 
summation and a transfer function (modified from (Eklov, 1999). 

The advantage of A N N s  are their adaptability and non-linearity, while the 
disadvantage is that it requires large data sets which are often difficult to obtain. 
The major drawback however, is that ANN models lack a complete theoretical 
basis, and can conceivably be difficult to analyse. 

Sensitivity, speed, and economics of grain 
mycology methods 

Figure 12 illustrates a "guestimate" of time to detection for the methods 
presented here. 

P roquefortr conidia 

a CFU 

0 1 

, 
2 3 4 5 days 

Figure 12. Estimate of the earliest time to detection for the methods described in the 
thesis, assuming growth of a single Penicillium roqueforti conidia. 

Both CFU and ergosterol are used today to determine the level of fungal 
infection in cereal grain samples. The advantage of CFU is that this method is 
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established and used world-wide. Nevertheless, the method requires 5-7 day 
incubation, and skilled technicians for interpretation of the results. The ergosterol 
analysis is also time consuming and requires access to a HPLC system. The 
sensitivity is somewhat higher than CFU. 

cPCR shows much higher sensitivity than both ergosterol and CFU. The 
instrument is on the other hand expensive and since the technique often requires 
several primer pairs to be used, the cost per analysis might be quit high. 
However, a large number of samples can be analysed per day. The technique also 
offers a possibility to detect dead mycelium or spores. The major drawback is 
that the result is highly depending on the DNA extraction method. 

Analysis of volatiles using GC-MS the highest sensitivity, but requires sample 
preparation, i.e. use of adsorbents, and time for evaluation of the data. It can on 
the other hand detect and quantify every single compound. This can not be done 
with the electronic nose. The sensitivity is also lower for the electronic nose, and 
calibration against other methods have to be done, but no sample preparation is 
needed. 

Concluding remarks 

Detection of fungal volatile metabolites for evaluation of the mycological quality 
of cereal grains has been main topic of this thesis work. The investigation have 
proved that both an electronic nose and GC-MS systems can be used to predict 
ergosterol, CFU, ochratoxin A, and DON contents, as well as to differentiate 
between normal and off-odours in naturally infected barley samples (111, IV). 
Further validation of these detection techniques requires investigations of a large 
number of samples from all the major cereal crops. This would provide a better 
understanding of the natural variation in grain volatile metabolites. Although the 
electronic nose has proved valuable in the studies reported here, little is known 
about the sensitivity of the gas-sensors to different volatile molecules, in 
particular with regard to combinations of volatiles. The construction of a 
headspace system with a split injection system, enabling simultaneous injection 
if volatile compounds to both an electronic nose and a GC-MS system, would 
facilitate such studies. 

Furthermore, much more knowledge about the physiology and metabolism of 
grain spoilage fungi is needed. Volatile metabolites produced by the most 
common grain associated fungi, both in single culture and in mixed communities 
on cereal grains, needs to be identified. The relationship between mycotoxin 
formation and the metabolism of volatiles has only just been touched upon. From 
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a practical point of view the adsorption and desorption of fungal volatiles to 
grains also merits further studies. If these metabolites could easily be removed by 
passing an airstream through the grain, active manipulations that would hide 
mould problems could potentially occur in the grain handling chain. 

Amplification of fungal DNA with PCR provides an alternative method for 
estimation of fungal infection in grain kernels. We have developed a fast and 
simple method for extraction of DNA from both fungal spores and mycelium (I) 
and a quantitative DNA extraction protocol for cereal grain (11). Compared to 
ergosterol detection, molecular methods have the advantages that they can detect 
specific genera or species by using different primer sets, while the ergosterol 
content only estimate the level of fungal infection. 

An important aspect concerning the introduction of novel detection methods is 
that they have to be included in government regulations in order for the industry 
to see the necessity of using them. Specified CFU limits for cereal grains are part 
of national regulations today, while a legislation establishing maximum PCR 
product levels, volatiles concentrations, or sensor responses is somewhat difficult 
to envision. 

In spite of what is said above, the sensor technology is developing rapidly, as are 
the statistical tools for data evaluation. Through clever combinations of 
knowledge of biology, technology (IT, sensor, hardware), and mathematical tools 
the near future will see the development of user-friendly, fast, and economic 
instruments for determination of fungal contamination, to the benefits of farmers, 
the grain industry, and the society at large. 
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