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Abstract  

Wallentin, C. 2007. Thinning of Norway spruce. Doctor’s dissertation. 
ISSN 1652-6880, ISBN 978-91-576-7328-2   

The objective of this thesis was to investigate volume and quality outcome from different 
thinning strategies in monocultures with Norway spruce. Two different experiments were 
set up at the Tönnersjöheden experimental forest in south west Sweden. In the first 
experiment, the combined effect of spacing and thinning type on timber quality and the 
spacing effect on volume production was investigated (paper I). In the second experiment, 
the initial growth response after thinning was investigated during three growing seasons in a 
33 year old stand after removal of 0, 30- and 60% of the basal area (paper II and III). In a 
survey study, covering southern Sweden, the amount of thinning injuries to stems and 
coarse roots in spruce monocultures thinned with harvesters and forwarders was 
investigated (Paper IV).  
 

The total volume production was rather similar in the three spacings, 246, 226 and 232 
m3 respectively (paper I). The quality of individual trees was to a large extent related to 
diameter at breast height and not to spacing per se. In the second experiment, heavy 
thinning increased soil moisture, light transmittance and soil temperature, and hence the 
nitrogen mineralization. The nitrogen content in the needles and the needle efficiency 
increased after heavy thinning but there were only small effects on those parameters for 
normally thinned plots. The current annual volume production after thinning showed an 
initial drop during the first two growing seasons but was slightly higher during the third 
growing season compared to the unthinned control. Heavy thinning increased resource 
allocation to the stem base. The basal area increment for the largest trees (100-400 stems 
per hectare) increased with increasing thinning intensity (Paper II & III). The risk for 
damage from heavy winds and wet snow showed a linear increase with thinning intensity. 
The frequency of injured trees was high (10-15%).  

 
The main finding is that there is a large “biological window” for silvicultural regimes in 

terms of their effect on total volume production but the thinning regime has a major impact 
of the risk for abiotic and biotic damages. 
 
Key words: Picea abies, volume production, timber quality, spacing, eco-physiology, stem 
form, injuries, storm damages, snow damages   
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Introduction 

If a forest stand contains so many trees that they strongly compete with each other 
for growth resources, such as light, water and/or nutrients, cutting some of them 
may allow the remaining trees to grow faster than they did before the cutting. This 
may or may not improve the stand. According to the Swedish Forest Association’s 
Technical Forestry Vocabulary (Anon., 1994), thinning is defined as: stand 
improvement under extraction of wood. In English vocabulary there is a 
distinction between commercial thinning and pre-commercial thinning. The former 
referring to the profitable removal of trees to improve the remaining stand, while 
the latter refers to early removals of trees that generally has little or no commercial 
value. Pre-commercial thinning in very young stands is sometimes referred to as 
“cleaning”. Here, thinning will be regarded as the removal of trees from a stand in 
order to improve the performance of the remaining trees and generate a net 
income. However, it should be noted that regardless of whether the Swedish or 
English definitions are used, there is no clear boundary between pre-commercial 
thinning and thinning.  
 

Three main features are most important for describing a thinning regime: the 
type, grade and intensity (Assmann, 1970). Thinning type in this context mainly 
depends on whether the cut trees are larger or smaller than the remaining trees 
(thinning from below or thinning from above, respectively), but it may also refer 
to the geometrical pattern of cutting (selective thinning or row thinning). The 
grade of a thinning is a measure of the amount of material removed, and one of the 
best descriptors is the amount of basal area (or volume) removed relative to the 
basal area (or volume) before thinning. However, for comparisons of thinning 
programmes in which several thinnings are done at different times the percentage 
of basal area removed in each cutting is not a suitable descriptor. Therefore, the 
periodic mean basal area (at a given site index and relative to another thinning 
grade) is sometimes used as an indicator of the thinning grade. The periodic mean 
basal area can be calculated using the following formula (Assmann, 1970):  
 

Periodic mean basal area = 
((g1+G1)/2)m1+(g2+G2)/2)m2… .+((gn+Gn)/2)mn)/(m1+m2+…mn) 

 
where: g represents the basal area at the beginning of an observation period, G the 
basal area at the end of that observation period and m is the number of years in 
each period (indicated by subscript 1, 2 ,…., n).  
Thinning intensity consist of two part, timing and frequency. Timing refers to the 
age (or top height) at which thinning commences and frequency refers to mean 
interval between thinning occasions. According to Assmann (1970), an 
“extensive” thinning starts at over 12 m mean height and the average cutting cycle 
is five years or more and a “highly intensive” thinning programme start before 8 m 
mean height and the average cutting cycle is less than three years.  
 

Thinning should never be considered in isolation from other silvicultural 
practices. Possible thinning regimes are heavily influenced by previous steps, such 
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as the regeneration and pre-commercial thinning, and the thinning carried out sets 
the conditions for further thinnings and/or regeneration options. Traditionally the 
following motives for thinning are often highlighted (Andersson, 1911; Wahlgren, 
1914; Juhlin Dannfelt, 1954; Fries, 1961; Anon., 1969; Söderström, 1980).  
 

• To enhance diameter growth of individual trees 
• To improve wood quality of remaining trees  
• To avoid self-thinning   
• To obtain some income early in the rotation period 

 
The focus in this thesis is on issues that have been studied for more than 100 

years. Even in the early days of the Swedish Institute of Experimental Forestry 
Alexander Maass noted that issues related to the effects of initial spacing and 
thinning regimes on production and profitability in Swedish plantations were of 
great concern (Maass, 1904). Many wise words have been written and spoken 
about these matters both before and since then. Why then present yet another 
contribution, another dust collector? Sound decision-making in commercial 
forestry requires relevant knowledge about the biological processes involved and 
the impact of current and future conditions. Each new generation should question 
traditional orthodoxies regarding forest stand dynamics, and hopefully develop 
new knowledge of forest biology, while at the same time retaining previously 
acquired information not disproved. 
 
Plan of this thesis  
In the introduction of this thesis I briefly outline the history of thinning practices 
in Sweden (mostly adopted from Germany and Denmark). The next section 
reviews literature about initial spacing in relation to stem volume production, tree 
properties (wood quality) and profitability. The following part, about thinning, is 
rather similar to that about initial spacing but focuses more on volume production 
and less about wood quality. The effect of increased initial spacing on tree 
properties and wood quality is rather similar to the effect of increased spacing 
after thinning, simply further up the stem. The effect of thinning on wood quality 
also includes the effect of selection.  
 

Thereafter, attempts are made to increase the understanding of the thinning 
reaction. That is the eco-physiological responses to thinning (light, water and 
nutrients). Forestry is almost certain to face serious changes and challenges in the 
future, notably related to potential global climate changes and attempts to 
ameliorate their effects. Such changes are affecting not only the growth of trees 
and stands, but potentially every aspect of forestry, including fundamental 
silvicultural aims and methods (Jarvis, Ibrom & Linder, 2005; Kellomäki & 
Leinonen, 2005; Eriksson, 2006). It has been claimed (Lagergren, 2001) that 
traditional growth and yield models based on empirical data (Eriksson, 1976; Ekö, 
1985; Agestam, 1985, Persson, 1992) with low time resolution (five years) and 
lack of relationships with physical driving variables would be less valuable as 
predictors of growth in the future due to changing environment. However, I 
strongly believe that yield tables, empirical growth models and classical long term 
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thinning experiments gives and will continue to give better guidance for forestry 
practice than short time measurements of changes in eco-physiology in relation to 
different thinnings. However, process-based models could be much useful in areas 
lacking god empirical data (Almeida, Landsberg & Sands, 2004) and the 
combination of conventional models and process-based models might provide 
increased predictive power and flexibility (Landsberg, 2003). To implement 
traditional silvicultural knowledge in a changeable environment, high levels of 
both biological and silvicultural understanding are essential. The combination of 
classical forest production research with tree physiology should provide a valuable 
road map for meeting such future challenges.  
 

The applied Silviculture affects the risk for biotic and abiotic damages. In the 
final section of the introduction I will give background information about the risk 
for storm and snow damages in relation to thinning and initial spacing. The risk 
for root- and butt rot infection (Heterobasidion spp.) in relation to applied 
silviculture is also discussed. Finally, injuries to stem and coarse roots on 
remaining trees after thinning and subsequent rot infection are evaluated.  
     
Historical background  
Thinning in Germany                    
Thinning in young stands to improve the future crop trees was widely adopted, 
and legally required, in some German states, in the 16th century. The following 
two hundred years saw the opposite trend, and thinning in young stands was even 
prohibited in order to encourage wildlife (Schotte, 1912; Brandl, 1992). Thinning 
in even-aged stands is dependent on a silvicultural system with clear-cutting 
followed by plantation or a relatively brief step-wise removal of the old stand 
combined with natural regeneration. Systematic clear-cutting was first adopted in 
Germany based on ideas proposed by Georg Ludvig Hartig (1764-1837) (1795) 
and Heinrich von Cotta (1763-1844) (1817). The main rationale of their system 
was to promote long-term cutting sustainability by obtaining stands with an even 
age class distribution. Thus, Cotta and Hartig, once again advocated thinning, and 
some decades later research plots were established to address questions about 
stand development and volume production (Brandl, 1992). The most influential of 
the German foresters in the 19th century advocated light thinning grades and 
thinning from below (Schotte, 1912). In most cases, only dead and/or suppressed 
trees were allowed to be cut. This, usually expensive, system was questioned in 
the early 19th century by Reventlow in Denmark (Reventlow, 1879; Oppermann, 
1928) and in the late 19th century in Germany by Borggreve (Wallmo, 1897). 
 
Thinning in Sweden 
The history of thinning in Sweden varies in different parts of the country. 
Southern, central and northern Sweden has their own history but there are also 
many connections between them. In the 19th century the industry related to timber, 
pulpwood and other products started to become important, leading to the 
development of a more sophisticated regulatory system. Albeit at a limited scale, 
the clear-cutting system developed in Germany by Hartig and von Cotta (as 
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adapted for Swedish conditions by af Ström; (Wahlgren, 1928; Carbonnier, 1978)) 
began to be applied in southern Sweden in forests owned by the state. However, 
the suitability of the state as a forest owner was questioned. Other important forest 
owners interested in silviculture were larger estates and the mining industry 
(Albertsson, 2000). The silvicultural systems adopted were usually imported from 
Denmark or Germany (Eliasson, 2002). Danish foresters were employed on the 
largest estates in the southern part of the country and German foresters did 
important work in central Sweden (Enander, 2000; Brynte, 2002). The stands that 
developed after clear cutting were usually quite dense, and, if thinned at all, they 
were thinned from below, with removal solely of dead or suppressed trees 
(Sandbladh, 1867; Wallmo, 1897). The principal aim was to maximise volume 
production. The first thinning was often initiated rather late (30-50 year), and the 
time between thinnings were usually 15-20 years (Juhlin Dannfeldt, 1959). This 
thinning programme was similar to that advocated by Georg Ludvig Hartig 
(Eliasson, 2002).  
 

To be economically feasible thinning activities need a market for small sized 
trees. During the 19th century, due to the dependence of various industries, notably 
the iron industry, on charcoal for their production there was a market even for 
small logs (Nyblom, 1959, Olsson, 1993). One of the most important changes, 
with profound implications for thinning in the second half of the 19th century, was 
the establishment of pulp and paper mills. Wood products, iron and steel 
accounted for 60% of Swedish exports, by value, between 1851 and 1855. Pulp 
and paper made negligible contributions, but 30 year later, they accounted for 
around 5% of the export value and a further 30 years later, the figure was almost 
20% (Fridlizius, 1963 as quoted by Björklund, 1988 and Olsson, 1993). Although 
there was a market for small trees and expert opinion recommended thinning 
(Ström, 1822, 1830; Sandbladh, 1867; Georgsson Hjort, 1869) it was generally 
neglected (Carbonnier, 1936). This is illustrated in the investigation by Juhlin 
Dannfelt (1959) based on data from the Swedish National Board of Forestry 
concerning the area thinned in public forests in the year 1878. Only 0.2% of the 
forests were thinned during that year and thinning was not practiced at all in the 
northern part of the country.  
  

Sweden’s share of the world market for chemical or mechanical pulpwood was 
consistently greater than its share of the market for sawn goods during the early 
20th century (Streyffert, 1931). The pulp and paper industry used the same kind of 
small logs as those previously used for charcoal production, and together with 
reductions in the top diameter for logs used as saw timber there was increasing 
interest in thinning (Pettersson, 1955). In the first decades of the 20th century, a 
more active thinning schedule was proposed by Schotte (1912). The first thinning 
was initiated earlier, the thinning grade increased, the time between two 
consecutive thinnings decreased and the cuttings were oriented higher in the 
diameter distribution (Juhlin Dannfeldt, 1959). Thinning programmes in which the 
times between thinnings are short, and the percentage of standing basal area or 
standing volume removed in each thinning is low, are probably optimal for 
maximising the production of merchantable stem wood over a rotation period 
(Pettersson, 1955). However, the economic merits of such a system were debated 
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(Pettersson, 1951). In Sweden, a broader thinning discussion, both biologically 
and economically, evolved in first decades of the 20th century (Andersson, 1911; 
Carbonnier, 1936) and Anderssson (1911) seems to have been the first Swedish 
forester to have discussed thinning in terms not only of volume production, but 
also in terms of “rentability” as formulated by Faustmann (1849) and Preßler, 
1860, and previously discussed by Reventlow in a Danish context (although his 
main thesis were not published until 1879; Reventlow, 1879).   
 

Since reforestation of clear-felled areas in the 19th century was largely 
dependent on natural regeneration under seed trees, direct seeding or planting was 
commenced on a very small proportion of the total forest area (Juhlin Dannfelt, 
1959). However, interest in seeding and planting increased in southern and central 
Sweden during the second half of the 19th century (Thelaus, 1882; Kinman, 1907; 
Kardell, 1997) and this increased interest, and practical experience of, seeding and 
planting, raised discussions about its profitability (Wallmo, 1897). Wallmo (1897) 
advocated transformation of even-aged plantations back to uneven-aged stands by 
continuous thinning from above and an immediate cessation of clear-cutting in 
areas that had not been cut yet. With roots back in the 19th century, there was a 
fierce debate between foresters advocating single-tree selection systems and others 
promoting the clear-cutting system throughout the first half of the 20th century 
(Wallmo, 1897, 1910, Welander, 1910; Welander, 1940; Öckerman, 1996). 
Furthermore, even amongst those who advocated use of even-aged plantations 
there were intense discussions about the optimal thinning method (Schotte, 1912).  
 

Thanks to the newly established Forestry Boards and the Forestry Act of 1903, 
interest in planting and seeding on private forest land increased in Sweden during 
the early decades of the last century, culminating in approximately forty thousand 
hectares per year being planted/seeded in the 1920s (Carbonnier, 1978; Enander, 
2001). In the following 20 years, when economic conditions were less favourable, 
interest in the ideas of Wallmo (1897) increased and seeding and planting was 
reduced (Carbonnier, 1978). This was not due to definitive proof of the superiority 
of single-tree-selection cutting but to the severe economic depression in the 1930s. 
Selective cuttings increased during the Second World War and the increased 
demand for energy resources from the forest led to increased thinning activity in 
private forests (Enander, 2001). The decreased interest in even-aged plantations on 
private land in the south was matched by a similar decline on state-owned land in 
both southern and northern Sweden (Holmgren, 1950; Carbonnier, 1978). There 
was a belief that the situation in northern Sweden in the 1930s (large proportions 
of stands with uneven age class distributions and old stands with low amounts of 
standing volume and low productivity) would lead to a shortage of raw material 
for industrial consumers in the near future (Holmgren, 1933). Therefore, research 
was initiated about the growth reactions of old spruce stands (Näslund, 1942), and 
the need for thinning of younger stands, both to provide raw material and to 
reduce rotation periods, was discussed (Holmgren, 1933).        
 

The battle between believers in clear-cutting systems with even-aged plantations 
and those favouring selective cutting with uneven-aged stands came to an abrupt 
end in the beginning of 1950s. The single-tree selection system was prohibited in 
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the state-owned forests and to a large extent was also abandoned on private forest 
land (Nilsson, 2001), following similar developments in Finland some years 
earlier (Lähde et al., 2002). Although the most intensive debates about forestry 
concerned problems in northern Sweden and early trials with mechanisation of 
forestry work commenced in this area (Streyffert, 1959), the changes in northern 
Sweden were followed by similar changes in the south (Carbonnier, 1978). The 
prohibition of selective cuttings in favour of even-aged plantations, together with 
mechanisation of forestry work, were the most significant changes for thinning 
activities in the second half of the last century.     
   

The level of mechanisation in forestry increased rapidly after the Second World 
War (Leijonhufvud, 1960). Transport from the forests to the industrial consumers 
had previously been dependent on horse and man power in the first steps and 
thereafter on railways or rivers. Furthermore, increasing salaries for forestry 
workers from the mid-1930s (Streyffert, 1959) demanded an increasing level of 
mechanisation. During the 1930s, 1940s and 1950s the road network increased 
substantially and trucks took over the transport from the rivers and lakes (Sjöstedt, 
1959; Sundberg, 1959, 1978). The chain saw took over from the hand saw during 
the 1950s and in the 1960s forest tractors (forwarders) took over most of the work 
previously carried out with horses (Embertsén, 1976; Sundberg, 1978).  
 

Since the machinery introduced for cutting and timber transportation was not 
economically viable for handling timber of small dimensions (Streyffert, 1959) the 
mechanisation favoured clear-cutting over thinning (Nordlund, 1996) and this, 
combined with decreased confidence in the future economic profitability of 
forestry, prompted a sharp decline in the annually thinned area during the 1960s 
and early 1970s (Nilsson, 1974). The economic projections changed later in the 
1970s and for a period a quarter of the annually thinned area was in stands mature 
enough for clear cutting (Olsson, 1986). 
 

The machinery introduced for thinning of stands had negative effects on the 
biological results of thinning. The problems and opportunities associated with 
mechanisation of the thinnings were analysed and discussed. Studies were initiated 
about thinning injuries on remaining trees, damage to the ground and related 
production losses, and on growth and quality following row thinning (Bengtsson, 
1955; Carlsson, 1959; Ågren, 1968, Andersson, 1968; Nilsson & Hyppel, 1968; 
Hedén, 1970; Kardell & Pettersson, 1973; Fries, 1976). However, although the 
importance of these biological problems was acknowledged, the mechanisation of 
thinning was essential for economic reasons, and mechanisation had substantial 
effects on productivity in forestry during the period 1950-1990. The productivity, 
in terms of cubic metres harvested per day work, was 1.4 m3 in 1950 and 10.6 m3 
forty years later (Fryk, 1990). From the beginning of 1990th and onwards the 
mechanisation of forestry work has been almost 100% and harvester and 
forwarders dominates both clear cutting as well as thinning operations (Anon. 
1991; Nordlund, 1996). The introduction of the single-grip harvester in Sweden, 
approximately twenty years ago, drastically changed the profitability of thinnings. 
From then and onwards it has been possible to get a net income even in the first 
thinning.         
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Impact of initial spacing on stem volume production, tree 
properties and profitability 
Growth of individual trees and volume production per area 
Changes in economic conditions in Sweden, including reductions in timber prices 
and increases in labour costs during the 1960s and 1970s, led to planting at wider 
spacings (Anon., 1969; Nilsson, 1978). General reductions in the numbers of 
seedlings planted per hectare in afforestation and reforestation activities in the 
second half of the 20th century also occurred in other parts of Europe (Burschel, 
1981; Kenk, 1990; Kairiūkštis & Malinauskas, 2001; Øyen, Øen & Skatter, 2001). 
Understanding growth and wood quality responses of trees in stands planted at 
different initial densities is crucial for sound economic decisions, and the ideal 
initial spacing depends on a combination of ecological, economic and technical 
factors.   
  
Diameter 
Spacing experiments have consistently shown that breast height diameter increases 
with increases in initial spacing. Between-tree differences in diameter growth 
emerge when the trees start to compete for light, water and nutrients (Nilsson, 
1993) and increase up to the time when the canopy closes (Sjolte-Jørgensen, 1967; 
Zhang et al., 2002). For instance, Lynch (1980), found no significant differences 
in diameter growth up to six metres stand height. The mean diameter of the trees 
in a stand up to the time of first thinning is linearly related to the initial spacing 
(Vanselow, 1942, 1950, 1956; Wiksten, 1965; Haveraaen, 1981; Handler & 
Jakobsen, 1986; Orlic, 1987). At very wide initial spacings (> 3m), the trees 
develop essentially as openly grown trees, with no further increase in diameter 
growth with further increase in initial spacing, as shown for Norway spruce, 
Lodgepole pine and Western white pine by Handler & Jacobsen (1986), Cochran 
& Dahms (1998) and Bishaw, DeBell & Harrington (2003), respectively. The 
differences in mean diameter established by the time of canopy closure are largely 
conserved for the rest of the rotation period, provided that the thinning regime 
applied does not interfere with the trees’ growth (Sjolte-Jørgensen, 1967). This 
implies that relative between-spacing differences in diameter in the early 
development phase decreases with time (Vanselow, 1956; Harms, Whitesell & 
DeBell, 2000).  
 
Height 
For Norway spruce, the mean height is lower in stands with high initial planting 
densities than in sparser stands (Wiksten, 1965; Orlic, 1987; Kairiūkštis & 
Malinauskas, 2001; Øyen, Øen & Skatter, 2001), because the differentiation 
among tree classes is greater, and the percentage of suppressed trees is higher in 
dense plantations (Sjolte-Jørgensen, 1967; Haveraaen, 1981; Handler & Jakobsen, 
1986). However, initial spacing seems to have very little influence on growth in 
top height except in very dense or very sparse stands (Hamilton & Christie, 1974; 
Braastad, 1979; Haveraaen, 1981; Handler & Jacobsen, 1986; Spellmann & 
Brokate, 1991; Pettersson, 1992). On poor soils in harsh climate in northern 
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Sweden it has been found that the top height increases with increasing spacing 
(Nilsson, 1994).  
 
Stem form 
There is a strong correlation between tree size and tree form; the larger a tree’s 
DBH at a given height, the lower the form factor. Thus, the low form factors (or 
strong taper) reportedly associated with sparsely populated stands (Kjersgård, 
1964; Hamilton & Christie, 1974; Handler, 1990) are to a large extent caused by 
differences in tree diameter (Nylinder, 1958; Kairiūkštis & Malinauskas, 2001).   
 
Volume 
Numerous studies on both Norway spruce (Braathe, 1952; Klem, 1952; Kjersgård, 
1964; Wiksten, 1965; Braastad, 1979; Haveraaen, 1981; Handler & Jakobsen, 
1986; Handler 1988, 1990; Johansson, 1992; Pettersson, 1992; Johansson & 
Pettersson, 1996; Øyen, Øen & Skatter, 2001) and other species (Eklund, 1956; 
Lynch, 1980; Kilpatrick, Sandersson & Savill, 1981; Tuyll & Kramer, 1981; 
Cochran & Dahms, 1998; Neilsen & Gerrand, 1999) in which the effects of initial 
spacing have been examined have consistently found that the stem volume 
production per hectare is lower, while the diameter growth of the individual trees 
is enhanced, in widely spaced stands.  
 

In Sweden, the effect of initial spacing on stem volume production in Norway 
spruce stands has been investigated by several authors (Wiksten, 1965; Eriksson, 
1976; Johansson, 1992; Pettersson, 1992, Johansson & Pettersson, 1996).  
Like diameter growth, much of the difference in volume production between 
different initial spacings is established early in the rotation and differences in 
current annual stem volume production between different spacings are small after 
stand closure and the differences in total production between sparse and dense 
plantations diminish with time (Sjolte-Jørgensen, 1967; Handler & Jakobsen, 
1986; Handler, 1988). Most of the stands examined by Pettersson (1992) had 
initial square spacings between 1 and 2.5 m, but stands at 0.75 and 3 m spacings 
were also represented. The reduction in volume production associated with 
increases in initial spacing were found to be minor at densities larger then 2500 
stems per hectare, but to be substantial at densities less then 1000 stems per 
hectare. Pettersson (1992) found that production was 36 m3 (36%) lower with 3 m 
than with 2 m initial square spacing at 10 m stand top height. At 14 m stand top 
height the corresponding difference was 77 m3 or 28%. A similar curvilinear 
relationship between spacing and volume production to that described by 
Pettersson (1992) was also found in a 24-year-old spacing experiment in Germany 
reported by Spellmann & Schmidt (2003). The total volume production with a 5 x 
5 m spacing was approximately half the production with 2.5 m square spacing 
(115 m3 and 213 m3, respectively), while the corresponding difference between 2.5 
m square spacing and 2.5 x 1.25 spacing was only 39 m3. Further effects reported 
by Pettersson (1992) were that height differentiation was lower, and the diameter 
distributions were more skewed towards lower diameters in denser stands. In 
addition, several authors (Kjersgård, 1964; Handler & Jakobsen, 1986; Spellmann 
& Schmidt, 2003) have claimed that most of the extra volume produced in stands 
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with narrow spacing is in small diameter classes. During a whole rotation, 
Eriksson (1976) estimated that the production reductions associated with 
increasing spacing from 1 m to 3 m results in reductions of volume production by 
40-80 m3sk, depending on the site index. The stands with 3 m spacing were also 
poorly represented in the material Eriksson examined. Johansson (1992) found 
that increasing the initial spacing from 1.5 to 2.5 m in 31-year-old stands on fertile 
sites in south-west Sweden (estimated dominant height at 100 years = 36 m) led to 
a reduction in volume production of 42 m3 or 13%, over the rotation. 
 

The total stem volume production and total above-ground standing biomass was 
also examined by Johansson & Pettersson (1996) in a 43-year-old spacing 
experiment on some of the most fertile sites in southern Sweden (estimated 
dominant height at 100 years = 35-38 m), thinned four times with equalised 
cutting (leaving the same basal area in the stand after thinning, independently of 
basal area in each different spacing regime before thinning). The growth losses in 
stands with 2.5 m spacing compared to stands with 1.5 and 1.0 m spacing 
amounted to approximately 100-120 m3, or 15%. Differences between stands with 
2.5 and 2 m initial spacing amounted to approximately 80 m3. Due to the equalised 
cutting the differences in standing above-ground biomass were insignificant, but 
the results indicated a weak tendency for branch proportions of the trees to 
increase with increased initial spacing.  
 
Influence of initial spacing on individual tree properties    
Quality could be defined as: the totality of features and characteristics of a product 
or service that bear on its ability to satisfy stated or implied needs. Although 
quality, according to this definition, could mean almost anything, there has been a 
strong general consensus regarding key quality parameters – and trees with large 
straight stems, small knots and low percentages of juvenile wood (narrow 
innermost year rings) have fetched higher prices than those with the opposite 
characteristics – for a long time. The main products made from Norway spruce 
wood in Sweden are timber for construction, pulp, paper and bio-energy. The 
ways to improve economic returns from the forest are to increase yields, reduce 
production costs and/or increase the value of the produced wood. 
 

An increasing proportion of the forest resource is being transformed from 
naturally generated stands to fast-growing planted stands (Kennedy, 1995; 
Perstorper et al., 1995) and the trees produced in those plantations will have 
significantly lower quality (Johansson, 1997). Although numerous authors, 
considering various tree species, have claimed that the largest disparity in wood 
quality associated with different methods of regeneration are attributable to 
differences between planting and natural regeneration rather than to differences 
between various planting distances (Johansson, 1997; Agestam, Ekö & Johansson, 
1998; Lindström, 2002; Zhang et al., 2002) an increase in initial planting distance 
will further decrease the wood quality (Persson, 1985; Høibø, 1991a; Johansson, 
1997). In a study by Klang (2000a), dense natural generated Norway spruce stands 
were re-spaced (at 1-2 m height) to the same spacing as planted stands (same 
genetic origin) and compared for growth and wood quality after 31-34 years. The 
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mean annual increment (excluding seed trees) was 26% lower in the re-spaced 
stands but fewer trees suffered defects such as spike knots, sharp bends and forked 
stems. Small and in-significant differences were found for diameter of the thickest 
branch, stem straightness, average annual ring width and basic density. 
 

One of the most important quality aspects of a tree is its diameter at breast 
height (MacDonald & Hubert 2002), because larger trees fetch higher prices per 
cubic metre and they are less expensive to cut (Tufts & Binker, 1993; Brunberg, 
1997; Tufts, 1997; Eliasson & Lageson, 1999; Nurminen, Korpunen & Uusitalo, 
2006). As stated in previous section, spacing experiments have consistently found 
diameter at breast height to increase with increased spacing.  
 
Density 
Tree properties in Norway spruce are under strong genetic control (Rozenberg & 
Cahalan, 1997; Hannrup et al., 2004) but it is important to remember that anything 
that affects the physiological performance of a tree, and hence its growth, may 
also affect its wood properties. Wood properties, such as basic density, wood 
structure, juvenile wood content and length and size of branches are all related to 
crown development and growth (Lindström, 1996a, 1996b; Deleuze et al., 1996) 
and thus affected by initial spacing (Johansson, 1997; Mäkinen & Hein, 2006) as 
well as subsequent thinning regime (Bergstedt & Jørgensen, 1997; Pape, 1999a). 
 

Latewood percentage in coniferous decreases with increases in growth rate 
(Nylinder, 1951; Brazier 1980; Cregg, Dougherty & Hennessey, 1988), and since 
the latewood percentage is strongly correlated to basic density (Olesen, 1976; 
Mäkinen, Saranpää & Linder, 2002), increased annual ring width is negatively 
correlated with basic density (Nylinder, 1953; Eriksson, 1966; Olesen, 1976; 
Moltesen, Madsen & Olesen, 1985; Lindström, 1996b; Dutilleul, Herman & 
Avella-Shaw, 1998; Pape, 1999b). Wood density (as a mean value in the stand) 
tends to decrease with wider initial spacing (Klem, 1952; Persson, 1975a; 
Johansson, 1993; Johansson & Pettersson, 1996; Zhang et al., 2002) even though 
trees with identical size, in most cases, had similar density independent of spacing 
(Anon, 1960; Johansson, 1997).  
 
Juvenile wood 
The so-called juvenile or core wood in the annual rings closest to the pith has 
different properties from mature wood (e.g. Boutelje, 1968; Bendtsen, 1978; 
Saranpää, 1994). Compared to mature wood, it generally has low basic density, 
thinner cell walls, larger cell lumens, shorter tracheids, low cellulose contents, 
high lignin contents, large microfibrillar angles and increased spiral grain (Zobel 
& Sprague 1998). Most of those features are considered undesirable for both paper 
and sawn timber production (Danborg, 1994a; Brolin, Norén & Ståhl, 1995; 
Perstorper et al., 1995; Forsberg & Warensjö, 2001). The quality of sawn goods 
may be low if they contain both juvenile and mature wood (Saranpää, 1994). Each 
of these properties gradually changes with increasing age and thus the boundary 
between juvenile and mature wood is not sharp (Harris, 1981; Zobel & Sprague, 
1998; Lindström, 2002). In Norway spruce these gradual changes occur in the 5-
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25 innermost year rings (Boutelje, 1968; Saranpää, 1994; Kliger et al., 1995), 
while according to a literature review published by Lindström (2002), much of the 
wood maturation in Norway spruce takes place in the first 10 growth rings. 
Increased growth at young ages will increase the percentage of juvenile wood in 
the bottom log at a given final diameter (Yang & Hazenberg, 1994; Lindström, 
2002; Zhang et al., 2002). In an investigation of the effects of spacing on ring 
numbers of juvenile wood in two other species of Picea, Yang (1994) found no 
significant difference in this variable between P. mariana trees with square 
spacings of 1.8-2.7 and 3.6 m, but there was a significant difference in P. glauca 
stands; those with the wider spacing having 3-4 more juvenile wood rings than 
stands with the closer spacing. 
 

Increased growth rate, either by increased initial spacing or subsequent thinning 
at any time in a tree’s life, will increase the amount of juvenile wood at some 
position along the stem. To minimize the amount of juvenile wood for a given 
amount of stem volume per hectare in the final cut (assuming the site index to be 
constant and the thinnings applied to have no selection effect) the diameter growth 
rate should be low when the height growth is high, and since height growth peaks 
early in the rotation period (Assmann, 1970) a dense young stand should become 
less dense with increasing age. In addition, the most valuable part of tree, the 
bottom log, should have a low percentage of juvenile wood if the initial density is 
high, the growth rate is enhanced as much as possible in the thinning phase and 
the rotation period is prolonged (Danborg, 1994a; Pape, 1999a; Lindström, 2002).  
 
Branch size and number 
Both for Norway spruce and other species, the diameter of the largest knot in the 
bottom log is one of the most important quality parameters for timber (e.g. 
Kramer, Dong & Rusack, 1971; Persson 1977, Todoroki, West & Knowles, 2001). 
There are numerous national systems for grading the quality of both standing 
timber and sawn goods. Historically, in the best quality trees in Norway spruce, 
the largest dry knots should not exceed 20 mm under bark at 5 m stem height 
(Abetz & Merkel, 1968; Dumm, 1971; Kramer, Dong & Rusack, 1971; 
Andersson, 1974). 
  

Branches live longer in sparse plantations (Merkel, 1967; Johansson, 1992) and 
growth rates of branches; as long as they are vital, follow those of the stem 
(Eklund & Huss, 1946; Nylinder, 1958; Shinozaki et al., 1964; Braastad, 1979; 
Vestøl, Colin & Loubére, 1999). The trees in sparse stands tend to fill the gaps by 
expanding their branches, and since branch length in the upper crown with healthy 
developing buds, independent of tree species, is linearly positively correlated to 
branch diameter (Cannell, Morgan & Murray, 1988; Baldwin et al., 2000; 
Fernández & Noreo, 2006) branch size tends to increase with reductions in initial 
spacing or with increasing thinning grade. The diameter of the largest branch in 
the bottom log of Norway spruce is inversely linearly related to stand density (e.g. 
Kramer, Dong & Rusack, 1971; Handler & Jakobsen, 1986; Spellmann & Brokate, 
1991). In the first and second logs of both Sitka and Norway spruce trees, it has 
been reported that branch size increases upwards along the stem (Merkel, 1967; 
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Brazier & Mobbs, 1993; Kairiūkštis & Malinauskas, 2001; Mäkinen & Hein, 
2006), especially if thinning has been carried out (Abetz & Merkel, 1968; Abetz & 
Unfried, 1983). Thus, the height to the first living branch, which decreases with 
increasing initial spacing (Handler & Jakobsen, 1986), is an important quality 
parameter at the time of first thinning. The branches in the bottom log will 
increase in size if thinning is carried out at early ages as reported for both Norway 
spruce (Madsen, Moltesen & Olesen, 1978; Braastad & Tveite, 2000; Spellmann 
& Schmidt, 2003), and Scots pine (Uri, 1998; Fahlvik, Ekö & Pettersson, 2005a). 
The total number of branches seems to be only moderately affected by initial 
spacing (Nylinder, 1958; Moltesen, Madsen & Olesen, 1985; Handler & Jakobsen, 
1986; Klang, 2000a).    
 
Stem straightness, compression wood and stem cracks 
The quality and yield of sawn wood is strongly influenced by the straightness of 
the tree (Zobel & van Buijtenen, 1989). Increasing the initial spacing increases the 
absolute bow height in the bottom log of Norway spruce trees (Høibø, 1991b). 
Kairiūkštis & Malinauskas (2001) reported that stem straightness increases with 
increases in planting density up to 12500 stems per hectare. However, Johansson 
(1992) found no statistically significant correlation between spacing and 
crookedness in Norway spruce. In Scots pine, increased proportions of straight 
trees with decreased initial spacing have been reported by Prescher & Ståhl (1986) 
and Agestam et al. (1998). Brazier & Mobbs (1993) found correlations between 
the poorer structural performance of logs from widely spaced plantations with 
decreased stem straightness, and increases in the size and number of knots and the 
amount of juvenile wood. In addition, leaning and crookedness in trees lead to an 
increase in the extent of compression wood (Brazier, 1977; Rune & Warensjö, 
2002).  
 

It has been shown that high growth rates in Norway spruce, in combination with 
drought, can lead to stem cracks (Rognerud & Haveraaen, 1984; Persson 1985, 
1994; Grabner et al., 2006; Rössler, 2006). In a 24-year-old spacing experiment 
with Norway spruce in Denmark the percentage of trees with stem cracks was 
around 15% with 3 m spacing while the corresponding figure for 2 m spacing was 
approximately 3% (Persson, 1985). 
 
Final remarks 
Large knots, high juvenile wood contents and low basic density are all correlated 
to low structural performance of sawn wood (Shivnaraine & Smith, 1990; Kliger 
et al., 1995; Norén & Persson, 1997), therefore the structural performance of 
wood tends to be low when it originates from trees that have grown rapidly 
because the site is fertile, the initial spacing is wide, they are intensively thinned or 
a combination of those variables (Schaible & Gawn, 1989; Brazier & Mobbs, 
1993; Danborg, 1994a; Kyrkjeeide, Lindström & Thörnqvist, 1994; Kliger et al., 
1995; Norén & Persson, 1997). 
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Scope to influence timber quality by cleaning, thinning or use of shelter in 
stands with different initial spacings 
In a stand, regardless of initial spacing, there are large variations in the breast 
height diameter of the individual trees. The mean diameter is strongly affected by 
initial spacing but not the kurtosis or skewness of the distribution (Vanselow, 
1942, 1950, 1956; Johansson, 1992; Pettersson, 1992). Therefore, it is interesting 
to know whether some undesirable wood properties related to wider spacings are 
linked solely to the increased growth rate of individual trees or if the spacing per 
se also has an effect (Persson, 1975a; Johansson, 1992; Moberg, 1999). For some 
properties the additional effect of spacing per se is minor, for example the 
diameter of the largest knot in the bottom log (Johansson, 1992; Vestøl, Colin & 
Loubére, 1999; Kairiūkštis & Malinauskas, 2001) and basic density (Persson, 
1975a; Johansson, 1993). For other properties, such as knot content, the spacing 
effect is more important (Persson, 1975a, Johansson, 1997).         
 

For properties that are strongly correlated to DBH, for example the diameter of 
the largest knot, the mean quality in the stand could be enhanced by thinning from 
above (Nordberg & Olsson, 1987; Høibø, 1991a; Eriksson, 1990, 1992). Pape 
(1999c), found that thinning from above increased the mean basic density in the 
stand compared to thinning from below with the same thinning grade and 
intensity. However, there are large between-tree variations in each quality trait at 
each particular spacing (Høibø, 1991b; Klang & Ekö, 2000). Therefore, trees with 
undesirable properties should be cut in thinning independently of diameter (Norén 
& Persson, 1997; Klang, Agestam & Ekö, 2000), and a spacing recommendation 
to promote a certain timber quality might change for either wider or closer spacing 
if other silvicultural “tools” including thinning is taken into consideration 
(MacDonald & Hubert, 2002, Eriksson, 2004).  
 

As stated above, the largest differences in quality for different methods of 
regeneration is not between different planting distances but between planting and 
natural regeneration. It has also been shown that a shelter (high or low) can 
increase the quality of planted seedlings in a similar way to increased spacing 
(Klang & Ekö, 1999; Valkonen & Ruuska, 2003). For coniferous species, quality 
measures such as knot size and lumber strength tend to show sharp changes with 
differences in spacing, due either to differences in planting distances or pre-
commercial thinning, when the density is < 2000-3000 stems per hectare, but 
changes in spacing will have a minor impact on tree properties and quality when 
the density is higher (Malinauskas, 2002; Zhang et al., 2002; Fahlvik, Ekö & 
Pettersson, 2005a). 
 
Plant mortality, advanced regeneration and natural regeneration  
In order to identify and attain a desirable plantation density, the initial number of 
planted seedlings is only one of the factors to consider. Many other factors may 
cause the establishment of plantations to be sub-optimal, and the initial spacing 
may either decrease due to mortality (Andersson, 1976; Petersson & Örlander, 
2003; Petersson, Örlander & Nilsson, 2004) or increase due to advance 
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regeneration (Tirén, 1949; Andersson, 1988) and subsequent natural regeneration 
(Pohtila & Valkonen, 1985; Räsänen et al., 1985; Ackzell, 1992, 1994; Fällman & 
Nenzen, 2005). Natural regeneration could contribute to a significant increase in 
stand density under appropriate management regimes on suitable sites (Kenk, 
1990; Ackzell, 1992; Karlsson, Nilsson & Örlander, 2002) but they may also be 
seen as a problem since they reduce the growth potential of genetically improved 
planted material (Hägglund, 1983). Additional naturally established seedlings may 
help to boost volume production, improve quality, spread risks and increase 
economic returns (Tham, 1988; Lohmander, 1992; Bergqvist, 1999; Valkonen & 
Valsta; Fällman & Nenzen, 2005; Agestam et al., 2006).   
 
Economy  
Although economic issues were not directly addressed in the papers underlying 
this thesis, I believe there is a need for a brief discussion of economic aspects of 
intensity in reforestation programs.   
 

The optimal planting density is dependent on alternative rate of return (“interest 
rate”), planting and logging costs, site conditions, volume production, wood 
quality and other factors (Solberg & Haight, 1991). If planting density is the only 
silvicultural issue considered (no cleaning or thinning is used before final felling) 
and the approach presented by Faustmann (1849) is used, knowledge about 
differences in volume and quality production (including diameter distribution and 
prices), cutting, hauling and transportation costs, together with an interest rate all 
need to be known in order to choose an optimal planting density. However, there 
is a long time lag between decision-making and the final evaluation of the 
outcome of the decisions. Furthermore, even if we had perfect information about 
future prices and costs, the chosen planting pattern affects the conditions for future 
silvicultural decisions regarding, for example, pre-commercial thinning and 
thinning (Fahlvik, 2005), and those regimes also affect volume production and 
profitability (Fahlvik, Ekö & Pettersson, 2005). The number of possible 
silvicultural regimes is almost infinite and very large even if many simplifications 
and assumptions are made. Another important factor to bear in mind is that even if 
perfect calculations are made, based on perfect information, the resulting decisions 
may significantly affect future conditions if applied on a large scale.  
 

Nevertheless, it is important to use net-present-value calculations as a tool 
(among others), while bearing in mind that they are simplifications. If quality 
aspects are taken into consideration than the optimal density in the young stand 
increases (Hyytiäinen, Tahvonen & Valsta, 2005). For various places, times and 
species, a number of authors have claimed that it would be economically 
preferable to decrease the planting density compared to common practice (Häägg, 
1921; Oksbjerg, 1960; Andersson, 1963; Hannelius, 1978; Lohmander, 1994; 
Gong, 1998; Zhou, 1999, Eriksson, 1999; Soalleiro, Gonzalez & Schröder, 2000). 
Generally, high interest rates are associated with low initial spacings and low 
initial spacing is also preferable at low site indices (Hannelius, 1978; Söderström, 
1980; Solberg & Haight, 1991; Zhou, 1999). ). It is important to consider 
economic aspects throughout the whole rotation in the regeneration phase and 
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identify a regeneration method that exploits natural regeneration (Wieslander, 
1986; Fällman & Nenzen, 2005). 
 
Impact of thinning on stem volume production, individual tree 
properties and profitability 
Initial growth responses of individual trees to thinning  
The diameter of a tree that competes with its neighbours for any growth resources 
will generally increase more if some of those neighbours are removed by cutting 
than if they are not, and the more intense the cutting the stronger the diameter 
growth response of the remaining trees will generally be.  
 
Diameter growth and growth of the largest trees in the stand 
Although thinning experiments have consistently found thinning from below to 
increase the mean diameter growth of the remaining trees in the stand there has 
been some debate about the response to thinning of the largest trees (Braastad & 
Eikeland, 1986; Braastad, 2001; Mäkinen & Isomäki, 2004a). In Norway, 
Braastad & Tveite (2001), found that the difference in mean diameter of the 800 
largest trees in intensively thinned stands and unthinned stands after 25 years of 
observation was only 1.2 cm. In the cited Norwegian report the various thinning 
grades and intensities were measured as mean values over time of the distance 
between the remaining trees in relation to top height, and thus comparison of the 
thinning program applied to those applied in other experiments is not 
straightforward. Generally, however, the thinning programs in the cited study 
appear to have been rather light, and the reductions in stem numbers compared to 
the unthinned controls never exceeded 50%. Light thinnings have been reported to 
have a minor influence even on the largest 100-200 largest stems per hectare 
(Slodičák & Novák, 2003). After more than 35 years of observation, Johansson & 
Karlsson (2004) found that the 100 to 400 largest trees in stands repeatedly 
thinned lightly from below showed a diameter increase of 3.1 cm to 3.8 cm 
compared to corresponding trees in unthinned control plots. A single heavy 
thinning from below with the removal of 57% of the basal area yielded similar 
increases, of 3.0-4.2 cm. In a similar, but more long-term experiment Karlsson 
(2006) found that after a 35 year observation period repeated thinnings from 
below resulted in the 100 and 400 largest trees being 5.2 and 4.5 cm larger than 
those in unthinned control stands, respectively. A single heavy thinning from 
below with the removal of approximately 70% of the basal area resulted in 
additional increases in the diameter at breast height of the 100 and 400 largest 
trees of 7.1 cm and 8.2 cm, respectively. In the treatment with a single heavy 
thinning from below the differences in tree dimension are to a large extent caused 
by the growth reaction in the first 10-15 years. The mean growth reaction of the 
100 largest trees during the initial seven years after thinning compared to 
unthinned controls was 5.7 mm per year (Karlsson, 2006). Positive growth 
responses of the largest trees in Norway spruce stands following thinning from 
below have also been reported by Hamilton (1976), Abetz & Unfried (1984), 
Spellmann (1986), Abetz & Feinauer (1987), Kramer & Holodynski (1989), 
Mäkinen & Isomäki (2004a), Herbstritt (2006), Rössler (2006), Skovsgaard 
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(2006) and Slodicak & Novak (2006) (see also table 4 in Paper III) and in stands 
of other tree species by (inter alia) Mitscherlich (1981), Medhurst, Beadle & 
Neilsen (2001), Mäkinen & Isomäki (2004b), Rytter & Stener (2005) and Zhang 
& Oliver (2006).  
 
Diameter distribution  
In addition to knowledge about the response of diameter growth after thinning, the 
stem size distribution of the trees is an important determinant of the commercial 
value of a given volume of timber. The potential end use of trees is dependent on 
stem size (Grøn, 1940; Stevens & Barbour, 2000) but certainly also on other 
features, so prices vary for trees with different diameters. Norway spruce timber is 
better paid per cubic metre for larger top diameters up to an asymptotic level and 
above a certain diameter the price per cubic metre decreases. This implies that, for 
a silviculture regime aiming for clear-cutting, a thinning program that narrows the 
diameter distribution will be economically advantageous since a higher percentage 
of the total volume could be cut at optimum price (Hyytiäinen, Tahvonen & 
Valsta, 2005). Generally, the shape of the diameter distribution curve in the stand 
before thinning is not strongly dependent on initial spacing, which, as argued in a 
previous section, affects the mean diameter, but not the kurtosis or skewness of the 
distribution (Vanselow, 1942, 1950, 1956; Johansson, 1992; Pettersson, 1992).   
 

The diameter distribution of trees in a stand is most strongly affected by the 
thinning programme (Karlsson & Norell, 2005a; Slodicak & Novak, 2006), the 
higher thinning grade and intensity, the higher the proportion of the total volume 
in larger diameter classes (Henriksen, 1961; Hamilton, 1976; Bryndum, 1978). 
 For different thinning programmes in Norway spruce, Karlsson & Norell (2005b) 
found that, in the long run, it was difficult to narrow the diameter distribution by 
thinning, even though the diameter range is tightened directly after each thinning 
from either above or below. However, Danish experiments in Norway spruce 
stands reported by Bryndum (1974, 1978) show that it is possible to narrow the 
diameter distribution with a frequent thinning schedule. The thinning program in 
the studies by Bryndum (1974, 1978) was more flexible and there were more 
thinnings than in the experiment reported by Karlsson & Norell (2005b).    
       
Height growth                              
Independent of tree species, initial spacing and thinning generally has stronger 
effect on diameter growth than height growth (Braathe, 1952; Sjolte-Jørgensen, 
1967; Hägglund, 1972; Hamilton, 1981; Lanner, 1985; Huss, 1988; Sharma, 
Burkhart & Amateis, 2002). However, it has been shown that height growth in 
Norway spruce may increase following respacing in very dense stands (Näslund, 
1935; Eklund, 1952; Chroust, 1969). The thinning effect on height growth 
development could be rather confusing if mean stand heights are compared at 
different periods since the time courses of effects of the thinning method applied 
(mainly thinning from below) will depend on the thinning intensity (Eide & 
Langsæter, 1941; Bryndum, 1969, 1978). The real thinning effect on height 
growth should be measured on the same individual trees at each revision. Most 
long-term studies of thinning in Norway spruce stands have found it to have 
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insignificant effects on increase in top height (Bryndum, 1978; Huss, 1990; 
Kuliešis & Saladis, 1998; Laasasenaho & Koivuniemi, 1990; Mäkinen & Isomäki, 
2004c). Forty-four years after the establishment of a Norway spruce experiment in 
Scotland in which thinning with three different thinning grades (B, C and D), 
replicated four times were applied, Hamilton (1976) found significant differences 
in top height growth. The D-thinning grade resulted in a 10% increase in top 
height compared to the B-grade, and the C-grade yielded intermediate values. 
Similar results have been reported by Bryndum (1969), who found a 12% increase 
in top height following D-grade compared to B-grade thinning after 31 years of 
observation. However, reduced top height growth after heavy thinning has been 
reported by Abetz (1976) and Abetz & Unfried (1984). Thinning is reported to 
decrease the initial height growth (in the first 5-10 years) in Scots pine (Valinger, 
1992a), loblolly pine (Yu et al., 2003), lodgepole pine (Brockley, 2005) and red 
alder (Hibbs, Emmingham & Bondi, 1989). It has been reported that top height 
growth of spruce and other tree species declines in the first years following 
thinning, recovers, and then finally exceeds growth in corresponding unthinned 
stands (Näslund, 1942; Harrington & Reukema, 1983; Eriksson & Karlsson, 1997; 
Mitchell, 2000; Valinger, Elfving & Mörling, 2000; Sharma et al., 2006). Thus, 
differences in the length of the observation period following thinning in different 
investigations may explain, to some extent, differences in reported effects of 
thinning on height growth and increase in top height.   
       
Stem form  
Volumes estimations of standing forest timber for sale in the last part of the 19th 
century were inaccurate, the resulting estimates were consistently too low 
(Jonsson 1910) and to meet demands for more fair and accurate estimates of 
timber sales, more knowledge about the stem form of trees was required and 
intensively discussed (Pettersson, 1925; Jonsson 1927). For Swedish conditions, 
useful volume functions for practical forestry and research applications were 
developed by Näslund (1940, 1947) and further refined by Brandel (1990). The 
accuracy of the volume functions developed by Näslund for estimates of volume 
production in thinning experiments was evaluated by Karlsson (1997), who 
concluded that the functions by Näslund overestimated the volume production in 
unthinned stands.    
 
The reason for the problems outlined above in converting DBH and height growth 
to stem volume is related to the stem form of the trees and its changes over time 
due to forestry practices (Myers, 1963; LeBlanc, 1990; Mäkinen, Nöjd & Isomäki, 
2002). Estimates of thinning or spacing responses may be misleading if only 
changes in DBH are taken into consideration (Jonsson, 1910; Curtis, Marshall & 
Bell, 1997; Tasissa & Burkhart, 1997). Stem form also influences the yield of 
sawn timber (Eklund, 1949; Baltrušaitis & Pranckevičienė, 2001).  
 

The form of a tree is closely related to its crown parameters (Larson, 1963; 
Fayle & MacDonald, 1977; Dean, 2004) and the forces applied by winds to the 
crown (Jonsson, 1912; Valinger, 1992b; Jakobsson & Elfving, 2004). Therefore, 
the ring width in young stands, with living branches close to the ground, are likely 
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to be maximal in the lower parts of the trees’ stems (Farrar, 1961). As trees in a 
stand grow they gradually compete increasingly stronger with each other (Nilsson 
& Gemmel, 1993; Skovsgaard, 1997) and consequently the trees’ crowns 
gradually rise (Kramer, 1966; Kantola & Mäkelä, 2004; Mäkinen & Isomäki, 
2004a) and the point along the bole where the growth rate in ring width is 
maximal gradually shifts upwards (Farrar, 1961; Reukema, 1961).  
 

After thinning, increased wind exposure of the lower part of the crown 
combined with increases in crown width after release and reductions in the mutual 
support from neighbouring trees makes the remaining trees more vulnerable to 
wind damage (Persson, 1975b; Nielsen, 2001) and in adaptive responses to this 
new situation a higher amount of growth resources are located in basal stem parts 
(Valinger, 1992b; Mitchell, 2000; Nielsen 2001, Holgén, Söderberg & Hånell, 
2003;  Nielsen & Knudsen, 2004) and/or coarse roots (Jacobs, 1936, 1954; Pryor, 
1937; Johansson, 1941; Eklund, 1952; Urban, Lieffers & MacDonald, 1994). 
Changes in stem form have also been related to water and nutrient availability, 
since increased amounts of water, and reductions in the amount of available 
nitrogen in the soil tend to improve stand form (Larson, 1963; Mead & Tamm, 
1988; Wiklund, Konôpka & Nilsson, 1995). Increases in stem taper (or reductions 
in form factor) after thinning have been reported for numerous species by many 
researchers (Bornebusch, 1933; Hagberg, 1942; Vuokila, 1960a; Farrar, 1961; 
Larson, 1963, 1965; Bryndum, 1969; Barbour, Bailey & Cook, 1992; Mitchell, 
2000; Peltola et al., 2002), but the priority of growth at the stem base and coarse 
roots after release gradually declines with time (Myers, 1963; Thomson & 
Barclay, 1984). Stem form changes after thinning is reported to differ for trees of 
various social positions (Thomson & Barclay, 1984; Arbaugh & Peterson, 1993).  
 

The crop form factor in the so-called Bowmont Norway spruce thinning 
experiment showed small differences after 44 years of light, moderate and heavy 
thinning from below (0.479, 0.478 and 0.461 respectively following B-, C- and D-
grade thinning) (Hamilton, 1976). Stem form measured as the taper between bole 
heights of 1.3 and 6 m has been shown to increase, in both Norway spruce and 
Scots pine, with increasing release in long-term thinning experiments in Sweden 
and Finland (Karlsson, 2000; Mäkinen & Isomäki, 2004a, 2004b; Mäkinen, 
Hynynen & Isomäki, 2005).  
 

In evaluations of the effects of spacing and thinning on stem form it is important 
to consider that larger trees generally have greater stem taper and hence lower 
form factors. A comparison of mean values of form or taper in differently treated 
stands would to a large extent merely be a comparison of the form and taper of 
trees of different sizes. The treatment effect is more interesting when trees with the 
same diameter and height subjected to different treatments are compared. In a 
combined spacing and thinning experiment in loblolly pine stands, Baldwin et al. 
(2000), showed that trees of identical height and diameter had more cylindrical 
lower boles and increased stem taper in the upper part of their crowns in heavily 
thinned stands than in unthinned stands. Bryndum (1974, 1978) showed that there 
were small differences in relative taper for Norway spruce (taper at a given breast 
height diameter) following different thinning treatments. Henriksen (1961) 
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investigated a Sitka spruce thinning experiment in Denmark and concluded that, 
“the relative stem form is largely unaffected by the grade of thinning”. Norway 
spruce has been shown to be a less plastic species than, for example, Scots pine 
(related to differences in shade tolerance) and changes in stem form and branch 
development due to increased or released competition in the former species are 
less pronounced than in the latter (Nilsson & Gemmel, 1993). 
 
Impact of thinning regime on stem volume production 
Basal area vs. volume production 
Before we discuss the effects of different thinning programmes on volume 
production, there is one important aspect to consider. In 1932, Wiedemann 
published data from thinning experiments in beech where the basal area growth 
was higher after heavy thinning than light thinning, but the calculated volume 
production was unaffected over a large range of remaining basal areas. Later, 
numerous studies have shown that the basal area response to thinning is higher 
than the volume growth response (Carbonnier, 1954, 1957; Bryndum 1969, 1974, 
1978; Schober, 1979, 1980) and this effect is especially pronounced for short time 
intervals after heavy thinnings (Carbonnier, 1974; Agestam, 1979; Eriksson, 
1987). It could be argued that differences in height growth or changes in stem 
form could be responsible for these conflicting results. However, Wiedemann 
(1932) claimed that stem volume growth will always differ between any two 
stands, even stands with the same basal area growth, height growth and form 
development. There are numerous ways to calculate volume production in a stand 
(Karlsson, 1998). One of the more simple approaches is to multiply the stand basal 
area by the stand mean height and average form factor (Wiedemann, 1951; 
Carbonnier, 1954; Braathe, 1957; Assmann, 1970; Agestam, 1979) and the 
formula below explains why a thinned and unthinned stand with the same basal 
area and height growth and the same change in form factor will (almost certainly) 
differ in terms of stem volume production.   
 
V = BA x H x F 
 
where: V is volume, BA is basal area, H is height and F is the form factor. The 
volume growth (∆V) for a certain time period can then be calculated as V2-V1, or 
as follows:  
 
∆V = BA x ∆FH + FH x ∆BA + ∆FH x ∆BA  
 
This equation shows that volume growth is not only related to basal area growth 
but also to the actual amount of standing basal area in the stand. The increase in 
volume due to the increment in height and increment or deterioration of the form 
factor is proportional to the standing basal area. Therefore, volume production will 
differ between a thinned stand and an unthinned stand with the same basal area 
growth, height growth and changes in form factor. As long as the form-height 
growth is positive then the differences in basal area growth between the thinned 
and unthinned stands will be more favourable than the differences in volume 
growth. 
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The history of thinning research 
Issues concerning stem volume production following different thinning regimes 
(mostly in Norway spruce and beech) have been studied for more than 100 years. 
The relevant literature published in the first half of the last century was reviewed 
by Møller (1952, 1953, 1954), and Braathe (1957) and some of the works they 
cited still deserve attention from anyone interested in these matters. These studies 
include papers published by: Schwappach (1911), Wiedemann (1932, 1937, 
1951), Vanselow (1943) and Assmann (1950, 1954) for German conditions: 
Badoux (1936, 1939) and Burger (1951) for Swiss conditions; and Bornebusch 
(1933), Eide & Langsæter (1941) and Pettersson (1955) for Danish, Norwegian 
and Swedish conditions. In order to understand the old literature, an introduction 
to the thinning systems applied, at the respective times and places, is required. 
Starting in Germany, forestry research institutions were established in various 
Western European countries, including Sweden in 1902 (Tirén, 1952). Many 
different ways to characterize a thinning were developed. At an international 
conference in Mariabrunn in 1903 a program to harmonize the descriptions was 
adopted. The individual trees were described in detail by their social position, 
health status and stem quality. The different thinning regimes were initially 
divided into three main groups: thinning from below (Niederdurchforstung), 
crown thinning (Hochdurchforstung) and canopy opening (Lichtung). The first of 
these groups was subsequently divided into three levels or grades; A, B and C. 
The A-grade served as a control in which only dead, dying or obviously unhealthy 
trees were cut. The B-grade was a light low thinning and the C-grade a somewhat 
heavier thinning intended to leave trees with good stem form and well developed 
crowns with opportunities to expand in all directions. Two different methods of 
crown thinning or thinning from above were described; light and heavy. Light 
thinning from above was described as a method for young stands, whereas heavy 
thinning from above was intended to rapidly enhance the growth of chosen future 
stems and was seen as a method for older stands (Schotte, 1912).  
 
Later, many experiments also included a heavy or very heavy thinning from 
below, called D-grade (Bornebusch 1933, Hummel, 1947) and/or various 
combinations of the grades over time (Carbonnier, 1954). Most experiments 
carried out according to this system were thinned frequently and lightly. The 
different thinning grades were usually applied over long time horizon. Since fewer 
and more intense thinnings are generally applied nowadays, the thinnings applied 
in those experiments may seem outdated or irrelevant. However, if the mean basal 
area over time is used for comparison, the old experiments may give valuable 
knowledge even today.  
 

Assmann (1970) synthesised the result of some of those old experiments and 
pointed out that for same species on some sites the highest growth of merchantable 
wood (stem and branches > 7 cm in diameter) would be achieved at a somewhat 
lower basal area than the highest possible basal area for the stand. Assmann 
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(1970) called the basal area in the stand that gave the highest basal area production 
the optimal basal area. 
 

Many of the comparisons in old thinning experiments were marred by 
inappropriate statistical designs, but Pettersson (1932) solved that problem for the 
Swedish experiments by using regression analyses (see also Tirén, 1952). 
Pettersson’s analyses focused on volume production solely as a means to facilitate 
optimal economic decision-making. In two large volumes published in 1955 and 
1962 (Barrskogens volymproduktion and Barrskogens värdeproduktion) he 
concluded that maximum value production demand a more heavy and frequent 
thinning programme than would be advisable if the sole target was to maximise 
volume production. The highest amounts of volume production were seen in 
stands with high basal areas before thinning to which a thinning program with 
light thinning grades and short time intervals was applied.   
  

In those early days of forest production research, the kinds of statistical designs 
that we demand today were not applied to the experiments and the thinning 
practices and methods applied also differed. However, they are valuable because 
they followed the stand development over long times. Carbonnier (1959), Wiksten 
(1960) and Fries (1961) examined data obtained in some of those experiments in 
pine and Carbonnier (1954, 1957) studied some of the spruce thinning plots in 
southern Sweden.  
      

Zeide (2001) argues that the paradigm regarding the influence of thinning on 
volume production has shifted several times during the last 250 years. Zeide 
(2001) and Pretzsch (2004), claims that the opinion of the famous French 
philosopher Jean Jacques Rousseau (1712-1778) that “All is well when it leaves 
the hands of the author of all things, everything degenerates in the hands of man” 
(Rousseau, 1762) was a guiding principle for foresters in their thinning activities 
during the late 18th century. This view was to some extent revised by Hartig 
(1795) and Cotta (1828) and the main opinion during the 19th century was that the 
twin targets of high area production and satisfactory dimensions of the logs in the 
final cut were best reached by applying late first thinnings and removing low 
proportions of the basal area in each thinning combined with long rotation periods 
(Schotte, 1912). However, this silvicultural system was questioned, on economic 
grounds by the Danish Forester C.D.F. Reventlow (1748-1827) (Oppermann, 
1928) in the early 19th century (although his main thesis was not published until 
1879 in Danish and 1934 in German). Rewentlow (1879) claimed that volume of 
individual trees and hence value production per area basis could be enhanced 
through heavy thinning. The belief in thinning as a tool for increasing volume 
production increased when early data from newly established thinning 
experiments started to be published and discussed (Schwappach, 1911; Li, 1923). 
The observed possibilities to enhance volume production with thinnings together 
with an aim for larger tree dimensions and shorter rotation implied a movement 
called “Schnellwuchsbetrieb” (Gerhardt, 1925). The opinion that different types of 
cuttings could increase production per unit area was strong (Boysen Jensen, 1921) 
and widely held also in Sweden (Holmerz & Örtenblad, 1886; Wallmo, 1897; 
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Schotte, 1917, 1921 & 1922a; Ronge, 1928; Holmgren, 1933; Sjöström, 1933; 
Näslund, 1935).        
 

However, reported data from numerous thinning experiments later showed that 
the initially positive production per unit area response to thinning later changed to 
a decrease (Carbonnier, 1957; Holmsgaard, 1958; Wiksten, 1960; Bryndum, 
1969). For example, the beech plots investigated by Schwappach (1911) were re-
examined by Wiedemann (1932). His conclusions after 50 years of growth differ 
from those reported after 30 years, and he claimed that volume production is quite 
similar for mean basal areas between 20 and 40 m2. On less fertile soils, the 
growth may be somewhat retarded in denser stands. Furthermore, five years later, 
Wiedemann (1937) published results from similar experiments in Norway spruce. 
The volume production responses to different thinning regimes in Norway spruce 
stands are similar to those in beech stands, and production may be somewhat 
lower in dense unthinned stands (A-grade) than in lightly thinned (B-grade) 
stands. Similar results were obtained in a Danish thinning experiment 
(Bornebusch, 1933) where B- and C-grade thinnings resulted in slightly enhanced 
production compared to unthinned plots. The small or non-existing differences 
between different thinning grades combined with the inappropriate statistical 
design of many experiments led to the results obtained from them being 
questioned and discussed in the scientific literature (Møller, 1952, 1953; 
Holmsgaard, 1958).  
 

In the 1930s a new thinning experiment in Norway spruce with more 
appropriate statistical design, even though, unfortunately, the experiment had no 
unthinned control plots (B, C and D-grades are represented), was started in 
Scotland, the so-called Bowmont experiment. The first results concerning volume 
production in the different thinning regimes from that experiment were published 
by Hummel (1947) and later by MacKenzie (1962), Hamilton (1976) and Kramer 
(1978). The highest stem volume production (> 7cm in diameter) was seen in D-
grade plots. It could be argued that the differences between the thinning grades in 
the Bowmont experiment reported by Hummel (1947) could be explained by the 
use of a 7 cm diameter limit instead of total stem volume. However, even the final 
examinations of the Bowmont experiment found significant differences between 
the grades in favour of more intense cuttings (Hamilton, 1976; Kramer, 1978). 
Furthermore, differences between merchantable volume and total stem volume are 
greatest at early ages and minor in later stages of a stand’s lifetime (Møller, 1933; 
Ekö, Larsson-Stern & Albrektson, 2004). 
 

Møller (1952, 1953, 1954) and Braathe (1957) summarised the literature about 
thinning in even-aged stands from the first 50-100 years of organised thinning 
research and their main conclusion is that it is possible to lower the mean basal 
area by 50% without any significant decrease in volume production. However, this 
conclusion has been questioned by Zeide (2001) and Curtis, Marshall & Bell 
(1997). In long-term thinning experiments in Douglas fir, Curtis, Marshall & Bell 
(1997) showed that the volume production decreases over the whole range of 
applied mean basal area levels (approx 11 – 57 m2/ ha). Curtis, Marshall & Bell 
(1997) argue that studies in Europe, where similar or even increased volume 
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production has been observed after thinning could be explained to a large extent 
by inappropriate statistical design, confusions about merchantable and total stem 
volume production and inappropriate height measurements. The criticisms by 
Curtis, Marshall & Bell (1997) may be valid to some extent, but the indications 
that it is possible to increase (or at least not decrease) volume production by 
thinning are overwhelming and Curtis, Marshall & Bell (1997) misses the most 
fundamental possibility, that different tree species may differ in their responses to 
thinning, especially light demanding and shade tolerant species (Roberts, Long & 
Smith, 1993; Nowak, 1996). The species examined by Curtis, Marshall & Bell 
(1997) is a shade intolerant species.  
 
Difference in thinning response between pine and spruce (shade-tolerant and 
shade-intolerant species)  
Even though this thesis deals with thinning in Norway spruce stands it is important 
to clarify differences in growth response to thinning between pine (a shade-
intolerant species) and spruce (a shade-tolerant species); the two overwhelmingly 
dominant tree species in Sweden (Anon., 2006). A majority of thinning 
experiments in Scots pine in Sweden and Finland have showed that production 
decreases following active thinning in an intensity-dependent manner (Pettersson, 
1955; Carbonnier, 1959; Wiksten, 1960; Fries, 1961; Bucht & Elfving, 1977; 
Eriksson & Karlsson, 1997; Valinger, Elfving & Mörling, 2000; Mäkinen & 
Isomäki, 2004d, Mäkinen, Hynynen & Isomäki, 2005). For stands aged 10-50 
years, spruce reportedly responds to thinning better than pine according to 
Judovalkis, Kairiukstis & Vasiliauskas (2005). However, the site indices of most 
of the material examined in experiments on the responses of pine to thinning have 
been lower than those of most examined spruce stands, and it has been argued that 
pine and spruce stands with similar growth rates prior to thinning would have 
similar reactions to thinning (Jonsson, 1995; Pettersson, 1996). It has been 
showed, in Danish investigations, that the relative volume growth reduction in 
actively thinned stands compared to their unthinned counterpart is lower on more 
fertile sites (Skovsgaard, 1997, 2006). In Norway, the volume growth reduction in 
thinned compared to unthinned stands is more pronounced (in relative terms) for 
stands on northern latitudes with low site indices than in more southerly stands 
with higher site indices (Braastad & Tveite, 2001). Also in Finland, investigations 
of volume production after thinning with different grades in Norway spruce-
dominated stands with low site indices (on peat) have found significant increases 
in growth reductions with increases in thinning grade, in contrast to stands on 
more fertile sites (on mineral soil) (Mäkinen & Isomäki, 2004c; Repola, Hökkä & 
Penttilä, 2006). However, it is still an open question whether the relatively poorer 
growth response in thinned compared to unthinned stands on less fertile sites is 
truly a weaker rather than merely a slower response to thinning (Repola, Hökkä & 
Penttilä, 2006). Pretzsch (2004), reports (in contrast to the discussion above) that 
Norway spruce has a more positive growth reaction to thinning under poor site 
conditions. In some thinning experiments in harsh climates with low site indices, 
the observed growth responses to thinning indicate that production per unit area 
may be even higher in thinned than in unthinned stands (Langsæter, 1941; Eklund, 
1952; Varmola, Salminen & Timonen 2004). Organic nitrogen that was previously 
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tightly bound in the soil may be released after thinning, due to a more favourable 
micro-climate (Bornebusch, 1930, Nahm et al., 2006), and hence increase the 
production per unit area after thinning (Hesselmann, 1925; Langsæter, 1941; 
Øyen, 2001). 
  
Effects of different thinning regimes on stem volume production in long-term 
silvicultural trials in Norway spruce 
The majority of the thinning experiments discussed above were conducted in 
dense stands with short thinning intervals. Nielsen (1990) calls the concept of 
repeatedly thinning dense young stands (5,000-10,000 stems per hectare) over the 
whole rotation period, the traditional Norway spruce stand treatment. A new 
concept for treating Norway spruce stands emerged in Northern Europe in the 
1960s involving lower initial spacing (2,500-4,000 stems per hectare), high 
thinning intensities at young ages and a declining cutting intensity in later stages 
(Burschel, 1981). 
  

The experiments investigated by, for example, Bornebusch (1933) in Denmark 
and Carbonnier (1954, 1957) in Sweden represent the traditional stand treatment 
while the Swedish thinning and fertilization experiment reported by Eriksson & 
Karlsson (1997) and the Finnish series of thinning experiments reported by 
Vuokila (1975, 1980) and Mäkinen & Isomäki (2004c)  represent the more 
modern concept. The outcome of different thinning regimes is related not only to 
the cutting intensities but also to the age of the stands at the start of the experiment 
(Bryndum, 1964; Carbonnier & Johansson, 1975; Preussler & Schmidt, 1989; 
Braastad & Tveite, 2001), the number of growing seasons in the comparison 
(Carbonnier, 1957; Holmsgaard, 1958), the stem number and the basal area before 
thinning (Pettersson, 1955; Baldwin et al., 2000), climate and site index 
(Skovsgaard, 1997, 2006; Braastad & Tveite, 2001; Pretzsch, 2004). European 
experiments in even-aged Norway spruce stands subjected to thinning from below 
are summarized in table 1-3. Even though some of those experiments had been 
precommercially thinned prior to experiment initiation almost all of them could be 
regarded as “first” thinnings.  
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Table 2. Stem volume production in experimental plots thinned with various grades and 
intensities in relation to unthinned control. For description of the experiments see Table 1. 
Extra light thinning = mean periodic basal area compared to unthinned control > 85%, light 
thinning = 85-75%, normal thinning = 75-65%, heavy thinning = 65-55% and extra heavy 
thinning < 55% * merchantable volume ( > 7 cm diameter) 
 
Exp Relative production 

no. Unthinned extra light  light  normal heavy  
extra 
heavy 

              
1 100 106 - 110 98 90 
2 - 100 96 - - - 
3* 100 - 103 102 - - 
4 100 - - 102 - - 
5 100 - 98 96 93 - 
6 100 99 - 99 93 93 
7 100 - - - 90 - 
8 100 - 104 101 98 96 
9 - - 100 103 103 - 
10 100 104 104 - - - 
11* - 100 - 112 111 - 
12 100 102 102 100 96 - 
13 100 96  104 104 - 
14 100 98 95 90 - - 
15 100 - 89 86 - - 
16 100 - 97 97 - - 
17 100 - 98 108 102 - 
18 100 108 109 103 105 - 
19 100 - - 94 97 98 
20 100 - - 109 102 81 
21 100 99 100 - 105 - 
22 100 98 99 - 93 - 
23 100 - 99 97 - - 
24 100 99 - 96 95 - 

 
 
Table 3. Stem volume production during the first period after thinning in experimental plots 
thinned with various strengths in relation to unthinned control. For description of the 
experiments see Table 1 and for definition of thinning grades see table 2 * merchantable 
volume ( > 7 cm diameter), ** on heavy single intervention in the young stand with 60-70% 
basal area removal 
 
Exp Studied Relative production 
no. Period (years) unthinned extra light  light normal heavy extra heavy 
5 10 100 - 98 108 104 - 
8 13 100 113 101 102 107 93 
9 11 - - 100 - 103 - 
10 5 100 110 112 - - 101** 
11* 5 - 100 114 118 - - 
12 4 100 101 102 - - - 
13 8 100 98 107 114 - - 
15 7 100 99  - - - 
19 6 100 - 106 - 98 80** 
20 7 100 - 112 - 93 78** 
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From the data in table 2 it can be concluded that reduction of the periodic mean 
basal area level by 50-60% reduces volume production by less than 10% 
compared to unthinned stands. The “50% rule”, that it is possible to reduce the 
mean periodic basal area by 50%, or do one heavy single intervention in the young 
stand with removal of half the basal area, without any significant production losses 
in shade-tolerant species (e.g. Møller, 1945, Eriksson & Karlsson, 1997) is also 
reported for young Eucalyptus nitens plantations (Medhurst, Beadle & Neilsen, 
2001). Some authors refer to the “50% rule” for net- instead of gross volume 
production (Oliver, 1988; Zhang, Oliver & Powers, 2005). Common beech, due to 
its natural ability to occupy space efficiently by vigorous lateral and vertical crown 
expansion (Pretzsch & Schütze, 2005) might show similar or even better responses 
to thinning than Norway spruce (Bornebusch, 1944; Bryndum, 1987; Pretzsch, 
2003, 2004). Light and moderate thinnings in Norway spruce may even increase 
the volume production compared to unthinned stands, especially in the first 5-15 
years following thinning (Table 3., see also Holmsgaard, 1958; Pretzsch, 2004; 
Judovalkis, Kairiukstis & Vasiliauskas, 2005; Kairiūkštis & Judovalkis, 2005). 
Experiments with one single cutting in the young stand with 60-70% basal area 
removal has been showed to have approximately 10% reduced volume production 
compared to unthinned control after 20 to 30 years (Eriksson & Karlsson, 1997; 
Johansson & Karlsson, 2004). 
 

However, results of the studies by Bryndum (1964) (Lindet skov) and 
Carbonnier & Johansson (1975), indicate that production may be lower if 
differences in thinning grade is applied later in the rotation, in stands already 
repeatedly thinned. Bryndum (1964), reports data from an unreplicated thinning 
experiment started at a mean height of 17 m with light and normal thinning. The 
volume production in the first 15 years following treatment initiation was similar 
but with continuous cutting the production decreased considerably in the more 
heavily thinned plot for the following 17 years. For the whole observation period 
(32 years) the volume production in the more heavily thinned plot was 92% of the 
production in the plot with lower thinning grade. The initial ten year volume 
growth response in a thinning experiment (two blocks) in south west Sweden 
initiated at a dominant height of 15-20 m was reported by Carbonnier & Johansson 
(1975). The thinning grades corresponded to extra light, light and heavy (se Table 
2 for definition of those thinning grades) and the volume production compared to 
the light thinning grade was 93% and 73% in light and heavy thinning 
respectively. Delayed thinnings in very dense stands may also result in slower 
volume growth recoveries in relation to unthinned counterparts than indicated by 
the studies listed in table 1-2 (Preuhsler & Schmidt, 1989).  
 

Studies on volume production after thinning in old stands indicates that their 
productivity will be lower compared to unthinned controls than data from younger 
stands may indicate (Näslund, 1942; Nilsen & Haveraaen, 1983; Nilsen, 1988). 
Nilsen & Haveraaen (1983) investigated thinning in stands on three fertile sites in 
Norway (53-64 years old at breast height) and found that the production decreased 
by 23-53% over a ten-year period after removal of slightly less than 60% of the 
standing volume. In older stands on poor soils with low site indices the growth 
losses amounted to 47% after removal of 58% of the volume (mean values for nine 
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stands). Ten years after selective cutting (removal of the largest trees) with 64% 
basal area removal (from a basal area level of 23 m2/ha) in old-mountain-spruce 
forests the production losses compared to unthinned counterparts amounted to 
54% (Nilsen, 1988). It could be argued that heavy selective cutting should allow 
younger seedlings and small trees to grow and their impact on over storey 
production could be significant (Elfving, 1990), but still minor compared to the 
high level of growth loss. It should also be noted that comparing the results of the 
studies by Näslund (1942), Nilsen & Haveraaen (1983) and Nilsen (1988), with 
those cited in table 1 is not straightforward since the material they examined was 
situated on less fertile soils in a harsher climate and with lower basal area at start 
of the experiment.   
 

Pretzsch (2004) investigated long-term thinning experiments in both Norway 
spruce and beech stands in Germany. The nine spruce plots were, with one 
exception, situated close to the Bavarian Alps and had rather high site indices 
(estimated dominant height at 100 years = 28-36 m). The stands were established 
with initial square spacings between 0.9 and 1.4 m and the different thinning 
treatments (A-, B- and C-grade) were initiated at stand ages of 32-43 years. Mean 
thinning interval was six years. At the last inventory, the oldest stands were over 
140 years old. The growth in stem volume is given as merchantable volume (7 cm 
minimum top diameter). Pretzsch (2004) claims that the growth of Norway spruce 
follows a unimodal optimum pattern (c.f. Langsæter, 1941; Assmann 1970) that is 
dependent on the site index and ontogenetic stage. A 50% reduction of stand 
density in young stands may increase the current annual stem volume production 
by up to 10%, but at the same time the stand is transported “earlier in an advanced 
allometric stage, so that the potential to react on thinning with transgressive 
growth subsides prematurely”. Thinning with both B- and C-grades resulted in 
higher current annual growth during the first two decades after treatment 
initiation. Growth continued to be superior following the B-grade treatment 
compared to the A-grade treatment over the whole observation period, but the 
growth rate under C-grade thinning dropped to 95-100% of that under A-grade 
thinning from 50 years of age onwards. Long-term thinning experiments in 
Lithuania (Judovalkis, Kairiukstis & Vasiliauskas, 2005) also showed increases in 
periodical annual volume growth in young stands of all species investigated, 
including spruce. The data indicate that it is possible to increase production by 
thinning young (10-20 year old) Norway spruce stands by 30%, but older stands 
(60-70 years) become more productive if they are left to grow without cuttings. 
The thinning degree at which the volume growth is maximized is approximately 
20% (volume removal) for young stands and <10% for stands between 40-50 
years old. This variation may be due to differences in crown architecture and 
physiological canopy features between old and young spruce stands, since Falge et 
al. (2000), found that transpiration and photosynthetic rates are lower in older 
trees, due to limitations in the scope for individual tree crowns to expand into 
spaces with high light availability. The hypothesis that the optimal stand density, 
expressed by basal area, for growth may increase with increasing age has also 
been raised and discussed for even-aged plantations of Eucalyptus marginata 
(jarrah) by Stoneman et al. (1996). 
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From the studies cited above, it seems reasonable to conclude that older stands 
should be thinned less intensively than young stands to avoid production losses. 
Heavy cutting with 60-70% basal area removal in a single heavy intervention in a 
young stand should result in small growth losses compared to unthinned stands 
even in the initial 5-7 years after the treatment (Carbonnier, 1974; Eriksson & 
Karlsson, 1997; Paper III), but such intense cuttings in older stands will almost 
certainly result in considerable initial production losses.  On the other hand, too 
early thinnings (before canopy closure), reduce stand growth compared to later 
thinnings (Braastad & Tveite, 2000, 2001). 
 

Slodicak, Novak & Skovsgaard (2005), reported results from a Norway spruce 
thinning experiment in the Czech Republic. The experiment was part of the 
European stem number experiment (Anon, 1977), which differs markedly from 
most of the studies cited above due to its more practical approach, the aim being to 
establish thinning experiments close to contemporary management principles 
including mechanised forestry work. The stand was established at very dense 
spacing (8775 plants per hectare), but was respaced to 2500 stems per hectare 
eight years later. The treatments were unthinned control and four different 
treatments with partially or fully mechanised selective thinning. All treatments 
were replicated twice. Mechanised thinning in this context does not mean that 
machinery was used in the stands, but that the thinning regimes were applied in a 
geometrical pattern that would allow for use of machinery. The first thinning 
(from below), carried out in 1978 at 10 m top height, removed 40% of the basal 
area, in three out of four actively thinned plots. In one treatment additional 
thinning was carried out at 12.5 and 15 m top heights with slightly less than 20% 
basal area removal in each thinning. Two other plots that were also thinned for the 
first time at 10 m top height, were thinned a second time at 20 top height and a 
third time at 22.5 m (13 and 20 years after the first thinning) with 17 and 13% 
basal area removal in each thinning, respectively. The difference between those 
two treatments was that 3.5 m wide strip-roads were included in one, and 5 m 
wide strip-roads in the other. The last treatment was a selective crown thinning 
that was delayed until an economically viable thinning was possible (extraction of 
63 m3 ha-1 with a minimum diameter of 12 cm at breast height). This treatment 
was followed by a rather intense thinning three years later (removal of 54 m3 ha-1) 
and a final thinning two years before the last growth evaluation. The delayed 
thinning regime resulted in the highest extraction volume, but the lowest total 
production. The stand volume production in the three treatments thinned in 1978 
was similar. Compared to unthinned controls, where total production amounted to 
753 m3 per hectare, the actively thinned plots showed 14-23% losses in 
production. Less than 5% of total production in the unthinned stand was lost due 
to natural mortality.           
 

There are interesting reports from other countries in the same experimental 
series (Eriksson, Johansson & Karlsson, 1994; Skovsgaard, 2006; Dreyfus & 
Oswald, 2006). In an analyse of all the experiments in the series Herbstritt et al. 
(2006), developed growth equations for the unthinned treatment and the early 
cuttings with 3.5 m extraction roads. The difference in volume production between 
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unthinned plots and actively thinned plots increased with time and amounted to 
10-17% at 25 m top height.     
 

Except for the studiy by Repola, Hökkä & Penttilä (2006), none of the thinning 
experiments cited above were situated on peatlands (histosols). Therefore, since 
the reaction to thinning on drained peatlands may differ from responses on upland 
sites, a thinning experiment on drained peatland was laid out in southern Sweden 
in 1988. Data from the first 12 years of observation were presented by Landström 
(2000). Three treatments (unthinned control, 20% basal area removal and 50% 
basal area removal) were replicated three times. The average stem volume growth 
per hectare was enhanced by 36% following the light thinning compared to 
unthinned controls. However, there was no significant difference in stem volume 
growth per hectare between the heavily thinned and unthinned control stands.  
 
The effects of strip-roads 
Use of machinery may lead to soil compaction (Wästerlund, 1992; Landford & 
Stokes, 1995) and injuries to the fine root system (Ågren, 1968; Wästerlund, 1983, 
Nadezhdina et al., 2006). This may lead to production losses. Kardell (1978) 
investigated growth losses due to soil compaction and root injuries after use of 
machinery on a fertile spruce site in south-eastern Sweden. The growth losses 
during a ten-year period after thinning accounted for 5 to 15 m3 production 
reduction depending on the severity of the damage. In some cases, a minor soil 
disturbance has been reported positive for production (Fries, 1976; Murphy & 
Firth, 2004) explained with increased rate of nitrogen mineralization (Kardell & 
Nilsson, 1986). Furthermore, thinning injuries (bark and cambium removal) on 
stems and coarse roots are reported to cause growth losses (Isomäki & Kallio, 
1974; Huse, 1978a; Andersson, 1987). 
 

As well as reductions in volume growth due to disturbance by machinery in the 
stand per se, further losses may occur in mechanised systems because the thinning 
grade in the road zone is high, the spatial pattern of remaining trees is uneven, site 
utilization is less efficient than in manually treated stands, and the choice of trees 
is inevitably sub-optimal in strip-road thinnings (Elfving, 1985; Pettersson, 1996). 
Most of the long-term thinning experiments cited in table 2, involved selective 
thinnings in which the removed trees were manually cut and removed out of the 
plots with minimal use of machinery. Compared to strictly selective thinning, row 
thinning or cutting of strip roads combined with selective thinning reportedly 
reduces volume growth (Andersson, 1969; Gallagher, 1976; Bucht, 1981; 
Spellmann, 1986; Pretzsch, 1995) but for Norway spruce the growth differences 
between selective thinning and row thinning for a given thinning grade is reported 
to be small (Niemistö, 1989; Eriksson, Johansson & Karlsson, 1994; Mäkinen, 
Isomäki & Hongisto, 2006).  
 

Although volume production is maximal if the trees in a stand are regularly 
distributed (Pretzsch, 1995), line thinning investigations have shown that the 
spatial distribution in early thinning is relatively unimportant (Elfving, 1985). In 
pine and spruce stands established in 1.5 m square spacings, Elfving (1985) 
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investigated the effects of a 50% basal area removal in the first thinning either as 
row thinning with cutting of two adjacent rows or selective thinning. The width of 
the strip-roads, was 4.5 m. Since the trees to be left in the selective thinning were 
marked in all plots before decisions were made regarding the treatments, it was 
possible to separate the effects of reduced selectivity and the effect of unexploited 
road area on production rate. The selected trees showed 6% higher growth than 
average trees of the same diameter, and losses in volume growth for row cutting 
compared to selective cutting amounted to only 4%. The conclusion was that most 
of the losses in production due to strip roads could be attributed to lower 
selectivity in the thinning rather than to uneven patterns of remaining trees.  
 

Kramer & Holodynski (1989) investigated the effects of several different 
systematic and semi-systematic thinnings in a 28-year-old Norway spruce stand on 
a site of the highest fertility class in Germany, unfortunately unreplicated. The 
stand was established at 1.5 m square spacing and there were approximately 
3,500-4,000 stems per hectare in the stand with a top height of 13 m and basal area 
of 30 m2 at the time of first thinning. There were four different treatments: 
thinning of every 9th and 10th rack combined with selective thinning between the 
racks, thinning of every 9th and 10th rack in two opposite directions, thinning of 
every 5th and 6th row and an unthinned control. The first thinning removed 33-
35% of the basal area. A selective thinning was conducted five years later, 
followed by a low thinning after another six years. The mean basal area was 
approximately the same for all actively thinned treatments and averaged 71% of 
the basal area in the control plot over the whole 15-year observation period. There 
were small differences between the strictly geometrical treatments and the 
combination of strip-road thinning and selective thinning. The volume production 
over the first five-year period was 10% lower for the actively thinned treatments 
compared to unthinned controls and 7% lower for the whole 15-year observation 
period.   
 

Staland & Andersson (2002) investigated a thinning experiment in south-east 
Sweden, mainly focusing on the total economic outcome from combinations of 
row and selective cuttings with 10, 15 and 25 m strip road distances (each giving 
the same total basal area removal), followed by two further thinnings. They found 
no differences in volume production over a 16-year observation period after the 
first thinning.     
 
Spellmann & Schmidt (2003) claim that the edge trees after strip-road cutting 
compensate for most of the loss of productive land area and as long as the thinning 
is moderate, with only 20-30% lower basal area than unthinned counterparts, the 
volume production will be only slightly lower, but generate superior assortment 
structure and higher financial returns.  
 

In the previously cited study by Slodicak, Novak & Skovsgaard (2005), and the 
German (Baden-Württemberg) version of the same experiment (Herbstritt 2006), 
reductions in volume production, over 22 and 20 year observation periods, 
respectively, of 3% were found if the strip-roads used in the first thinning were 
widened from 3.5 to 5 m. After 17 and 16 years observation periods in the 
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Swedish and Danish members of the same experiment (Eriksson, Johansson & 
Karlsson, 1994; Skovsgaard 2006), the corresponding losses were 6% and 9-12% 
(depending on site index), respectively. Similar production losses, 12%, have also 
been reported for a similar experiment in Austria (Rössler, 2006) at a total stand 
age of 46 years.      
 

Given the same thinning intensity, the reported differences between selective 
and geometrical thinning are rather small. Other factors affecting the timber 
quality and risks for abiotic and biotic damage may be more important. However, 
apart from reductions in the height to the first living branch for edge trees and, 
hence, increases in branch sizes in the lower part of the stem (Eriksson, Johansson 
& Karlsson, 1994), the quality of the trees closest to strip-roads, as long as they 
not injured (c.f. Fröding, 1992), seems to be similar or even better than that of 
trees in the interior of the stand, since they tend to be larger, although the stems 
are slightly less symmetrical (Mäkinen, Isomäki & Hongisto, 2006; Skovsgaard, 
2006). Development of asymmetric crowns for edge trees might also be of concern 
for wood quality (Skovsgaard, 2006).   
  

Many authors have considered the risks for increases in snow and storm damage 
due to the stand opening with strip-roads (Pettersson, 2003; Gardiner et al., 2005). 
Two growing seasons after thinning in a Cryptomera Japonica stand, Satoo, 
Moroto & Ushiyama (1971) reported a doubled snow damage frequency in row 
thinning compared to selective thinning. On the other hand, the amount of snow 
damages, thirteen year after thinning, in an experiment with row and selective 
thinning in Scots pine, was similar (Bucht & Elfving, 1977). Persson (1975b) 
reports a slight tendency for increased amount of storm damages in row thinnings 
with Norway spruce but in the big European stem number experiment in Norway 
spruce (Herbstritt et al., 2006), neither of the different experiments reports any 
significant increase in either snow- or wind damage frequency if strip roads were 
widened from 3.5 to 5 m.     ‘ 
     
Thinning method 
As well as thinning intensity, the effects of relative thinning intensity in different 
diameter classes, the thinning type, on volume production and economic returns 
have been examined. The thinning quotient is a good descriptor of thinning type, 
which has been defined in several ways, but all of the definitions describe the 
relationship between the size of cut stems and remaining stems or the size of stems 
before cutting. The Swedish National Board of Forestry, SVS, (Anon., 1998) 
defines the thinning quotient as the quadratic mean diameter of thinned trees 
divided by the quadratic mean diameter of remaining stems. As discussed earlier, 
the main thinning method in Sweden and Europe during the last 200 years has 
been thinning from below. In the comparative thinning studies conducted by most 
research institutions so-called “crown thinning” was also included. Crown 
thinning is intermediate between thinning from below and thinning from above 
(Carbonnier, 1978; Anon., 1998). Even if crown thinning and thinning from above 
should be regarded as different thinning methods, comparisons between crown 
thinning and low thinning could to some extent help clarify certain issues relevant 
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to the relative merits of thinning from below and above, especially since the more 
extreme treatment of thinning from above is quite rare. Theoretically, it could be 
argued that removal of the largest trees in a stand equates, to some extent, to 
removal of the best producers. However, not all differences between neighbouring 
trees in a stand are related to genetic differences. Small differences in site fertility 
in a stand or random sub-lethal calamities could give rise to initial differences 
between trees with the same genetic capacity for high growth in the stand. Such 
initial differences could be amplified by asymmetric competition, leading to 
substantial differences at the time of thinning (Nilsson, 1993). The selection effect 
includes both a genetic and an environmental component. Concerns about 
decreasing growth arising from repeated removal of the largest trees in the stand 
were raised in the early 20th century (Welander, 1910; Wahlgren, 1914) and 
intensively discussed in the 1940th (Andrén, 1992). Even later there has been 
discussion about the risk for growth losses due to negative genetic selection after 
repeated thinning from above (Jäghagen & Albrektson, 1989). Although thinning 
from above removes a larger proportion of the genetically superior trees than 
thinning from below, the removal of large trees has positive growth aspects. It has 
been shown that a retained cubic metre of trees in a small diameter class has 
higher stem volume production than a retained cubic metre of a large diameter 
class (Eide & Langsæter, 1941; Braathe, 1952; Mäkinen & Isomäki, 2004a). The 
difference between gross primary production and net primary production is higher 
for older, higher and thicker trees (Cannell, 1989). For tall, mature trees with large 
diameters, the difference between gross primary production and net primary 
production is probably larger than for smaller trees, even though their age per se 
has no effect (Eklund, 1952). 
 

In practical experiments the difference in volume production between 
conventional thinning from below and thinning from above has been found to be 
small and insignificant. Compared to thinning from below, given the same basal 
area removal in each cutting, Eriksson & Karlsson (1997) found a slight growth 
reduction (6%) in Norway spruce stands after repeated thinning from above. 
Similar results (3% growth reduction following thinning from above) have been 
reported from a thinning experiment in the southernmost part of Sweden (Kardell, 
1998). Based on the oldest thinning experiments in Sweden, Pettersson (1955) 
concluded that, for Scots pine, thinning from below was superior to thinning from 
above. In Germany (Schober, 1979, 1980) compared crown thinning and thinning 
from below in a 60 year-old stand with initial basal area > 55 m2 ha-1 over a 60-
year period, and found volume production was 7% lower following the crown 
thinning. Carbonnier (1954) claims that volume growth reduction is generally 5% 
lower after crown thinning than after low thinning with the same mean basal area. 
 

A thinning experiment in south east Finland with two replicates of thinning from 
below and crown thinning, followed for 28 years (started at age 30), showed that 
thinning form below had 3-10% higher volume growth. However, the proportions 
of volume removed in thinnings were slightly higher (3-8%) in the plots treated 
with crown thinning (Vuokila, 1960b).     
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After an observation period of 22 years, Abetz & Feinauer (1987) compared the 
results of intensive thinning from above, intensive thinning from below and no 
thinning in two overcrowded Norway spruce stands with 15.5 and 24.5 m top 
heights, respectively, at the start of the experiment. In the actively thinned plots 
cuttings were carried out in 1962, 1971 and 1977. In the stand with the lower top 
height, the first thinnings from above and below removed 31 and 36% of the basal 
area, respectively. The second thinning removed all trees in a 2.5 m radius around 
400 selected crop trees, resulting in basal area removal of 52 and 29%, 
respectively. The basal area removals in the third thinning were approximately 
25%, and conducted as low thinning in both treatments. Over the whole 
observation period the growth losses associated with the thinning from above and 
below, compared to no thinning, were 30% and 12%, respectively. For the stand 
with a top height of 24.5 m at the start of the experiment the general thinning 
patterns were similar. The percentage basal area removal was only given for the 
first thinning and amounted to 32 and 28% in the thinning from above and below, 
respectively. The mean basal area for the whole observation period compared to 
unthinned control plots was 69% in plots thinned from above and 84% in plots 
thinned from below. Compared with the unthinned control plots, the growth was 
enhanced by 9% after thinning from below but decreased by 16% after thinning 
from above. However, the cuttings were more intense in thinning from above in 
the second and third thinnings and one could argue that the differences between 
the two actively thinned plots was not due to the differences in thinning methods 
but to the differences in thinning grades (Vuokila, 1970; Eriksson, 1992; Smith, 
2003).  
 

In uneven-aged mature stands, crown thinning or thinning from above may even 
increase growth compared to thinning from below with the same thinning intensity 
(Näslund, 1942; Lundqvist et al., 2007). In a Danish experiment started in an older 
(77-year-old) previously thinned stand with a rather low site index, thinning from 
above increased the production over a ten-year investigation period compared to 
thinning from below even though the cutting intensity was higher in the former 
(Madsen, 1979). In a Danish investigation by Møller & Holmsgaard (1947) the 
volume growth after thinning from above, “free thinning” and thinning from 
below was investigated. No differences in growth rate were found over a 12-year 
post-thinning period. In experiments in Finland, established in stands previously 
thinned from below, thinning from above was found to give slightly higher 
production in pine stands, similar production in spruce stands and lower 
production in birch stands compared to thinning from below (Vuokila, 1970). 
Hynynen & Kukkkola (1989) detected no significant differences in basal area 
growth, volume growth or yield of commercial wood five years after application 
of thinning from below, above and selection thinning in spruce and pine stands as 
long as the basal area after thinning was the same in all thinning regimes. In a 
Norway spruce experiment established in a 46-year-old stand, followed over 21 
years, no differences in volume production, production of saw timber or economic 
returns were found between thinning from below and above with the same 
periodic mean basal area. The volume increment in pine was enhanced after 
thinning from above and the growth of birches per unit area was favoured after 
thinning from below (Mielikäinen & Valkonen, 1991).  
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Self thinning 
To summarize the effects of thinning intensity and method on volume growth per 
unit area, Norway spruce seems to have a large “biological window”, within 
which variations seem to have fairly minor effects on production. A further 
variable that should be taken into account when estimating (or comparing) volume 
production is the volume of trees that have died due to self-thinning. In most 
cases, dead wood is unusable and hence the total merchantable yield for different 
thinning programmes may differ if they result in significantly different volumes of 
dead trees (Skovsgaard, 1997). Self-thinning occurs due to competition between 
trees in the stand and it may be argued that estimates of losses due to self-thinning 
should not include losses due to snow and/or heavy winds (Karlsson, 2005). There 
is a limit for the amount of biomass that can be accumulated in a stand (Tadaki & 
Shidei, 1959; Yoda et al., 1963; Skovsgaard, 1997; Pretzsch & Biber, 2005) and it 
has been claimed that the net stand production, in basal area or volume, reaches a 
peak at intermediate stand densities (Waring, Newman & Bell, 1981). The 
competition in a stand may be either asymmetric (one-sided) or symmetric (two-
sided) (Cannell, Rothery & Ford, 1984; Weiner & Thomas, 1986; Firbank & 
Watkinson, 1987). Asymmetric competition means that large trees affect smaller 
ones in larger proportions than indicated from their size alone and this effect is 
often attributed to competition for light, while symmetric competition emerges 
when nutrients and/or water, instead of light, is the limiting factor (Nilsson, 1993). 
According to Shinozaki et al., (1964), Valinger (1990) and Nilsson (1993), the 
allocation to stem growth is relatively higher in suppressed trees than in more 
dominant trees and after a certain time the retarded crown will be insufficient to 
provide the tree with the carbon it “requires” so it will die (Boysen Jensen, 1921). 
Therefore, self-thinning occurs most frequently in unthinned stands and among the 
smallest trees (Ford, 1975; Kramer & Jünemann, 1985; Valinger, Lundqvist & 
Brandel, 1994; Eriksson & Karlsson, 1997; Mäkinen & Isomäki, 2004c). Based on 
data from a previously reported long-term thinning and fertilization experiment in 
Norway spruce, Eriksson & Karlsson (1997) showed that the early percentage 
losses from self-thinning in the unthinned stands they examined in southern 
Sweden increased from 11% at stand ages of 30-35 years to 21% at stand ages of 
50 to 55 years. Thirty years after the initiation of a thinning experiment in Norway 
spruce in south-east Sweden in which 56% of the standing volume was removed in 
a single intervention the growth losses compared to unthinned controls averaged 
30 m3 ha-1 while losses due to self-thinning in the unthinned stand averaged 41 m3 
ha-1 (Persson, 1986). It is apparent from above cited studies by Persson (1986) and 
Eriksson & Karlsson (1997), together with many other thinning investigations 
(Carbonnier, 1954, 1964; Bergstedt & Jørgensen, 1997; Braastad & Tveite, 2001; 
Slodičák & Novák, 2003) that regimes with active thinning generate higher 
merchantable yields than thinning free regimes due to the losses caused by self 
thinning, snow damages and damages by heavy winds in unthinned stands.  
 
The effects of thinning on wood properties 
It is more appropriate to discuss different wood properties, and the effects of 
thinning on them, rather than quality per se (Perstorper et al., 1995; Pape, 1999a). 
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Wood properties are under strong genetic control (Rozenberg & Cahalan, 1997; 
Hannrup et al., 2004), but growth rates of individual trees and tree properties are 
highly correlated and since thinning and spacing affect the growth rate of the 
remaining trees thinning clearly affect tree properties through its effects on growth 
rates. In addition, thinning also affects tree properties through the selection and 
removal of trees with undesirable tree properties (Pape, 1999a; Klang, Agestam & 
Ekö, 2000). The effect of increased thinning intensity on various tree properties, 
such as knot size, basic density, juvenile wood content, and compression wood in 
the part of the tree above the base of the crown is similar to the effect of increased 
initial spacing. There are indications that fast growing trees have larger spiral 
grain than trees that grow more slowly (Danborg, 1994b). Large spiral grain is 
considered as a problem when timber is used for construction and therefore 
thinning from below with high thinning grades will lower the timber quality in this 
respect (Pape, 1999d; Säll, 2002). For the bottom log, with some exceptions, the 
increased diameter growth after thinning will in most cases bee positive for the 
timber quality. Generally, the influence of thinning on tree properties is higher in 
the regeneration and re-spacing phase (cleaning) of a rotation and near the end of 
the rotation than during the time of commercial thinning (Klang 2000b). The 
quality of a stand is also generally maximised by frequent thinnings in each of 
which small amounts of basal area are removed (Kubler, 1988).    
 
Economic considerations 
The main rationale for thinning a stand is based upon the idea that it will increase 
growth of individual trees and produce more valuable timber and hence improve 
financial return. The volume and quality production associated with different 
thinning regimes has a major impact on the overall economic return. However, 
there is a trade-off between maximal volume production and maximal profitability 
in forestry (Pettersson, 1962; Riitters, Brodie & Kao, 1982; Cao et al. 2006). 
Thinning involves a trade-off between the best biological results and demands for 
cost-efficient use of machinery and manpower (Olsson 1986).  
 

There is an almost infinite variety of possible silvicultural programmes. 
However, the economic superiority of thinned compared to unthinned alternatives, 
especially with increasing alternative rate of return (“interest rate”) has been 
shown in numerous studies concerning Norway spruce in the Nordic countries in 
the last 70-80 years (Bornebusch, 1933; Carbonnier, 1954, 1957; Bryndum, 1978; 
Valsta, 1992; Bergstedt & Jørgensen, 1997; Hyytiäinen & Tahvonen, 2002; Cao et 
al., 2006), but in Norway, the widely held belief in the positive effect of thinning 
on economic returns has been questioned (Eid & Eriksson, 1991, Solberg & 
Haight, 1991; Braastad, 2001).  
 
Eco-physiology and thinning related to climate change and 
carbon sequestration 
Light, water and nutrients 
For practical foresters it may be sufficient to know that the stem volume 
production associated with different thinning programmes is quite similar over a 
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whole rotation period (Table 1.). However, for purely scientific and (probably) 
practical reasons it is also important to elucidate the physiological factors that 
influence stem volume production. The key factors include light, nutrients and 
water, and the key issues to elucidate include the processes whereby trees 
construct their production apparatus (needles), and the effects of different 
silvicultural regimes on these processes (Aussenac, 2000). Essentially, resources 
absorbed by the roots and current needles (with the assistance of the sun) are used 
to grow more biomass, including more needles and roots. That is a simple 
statement, but it is important to remember in order to understand the growth 
responses of individual trees, as well as the stand, after thinning. Since 
physiological responses for different stimuli are rather similar among tree species 
and changes in physiology due to thinning in Norway spruce is rather unknown 
this section will refer to different coniferous and broad-leaved species.   
 
Light 
The biomass production of various crops has been shown to be linearly related to 
the amount of photosynthetic active radiation (PAR) intercepted (Monteith 1977) 
and this also holds for both stands of trees (Linder 1985, Cannell et al., 1987, 
Bergh, Linder & Bergström, 2005) and individual trees (Brunner & Nigh, 2000).   
 

The size of the canopy is usually described by the leaf area index or LAI (leaf 
area per unit ground area, m2 m-2) and the value of LAI, and its structure, 
determine the amount- and efficiency of the stand’s biomass production (Boysen 
Jensen, 1921; Waring, 1983; Cannell, 1989; Long & Smith, 1992; McCrady & 
Jokela 1998). Light interception, and hence production, is non-linearly related to 
needle mass and LAI, the volume growth in even-aged plantations increases with 
increasing LAI-value, up to an asymptotic level and than eventually even 
diminishes with further increase (Linder 1985; Long & Smith 1992; Beets & 
Whitehead, 1996). Since light interception, and hence production, is non-linearly 
related to LAI, the initial growth response to thinning depends on whether the 
cutting is carried out before or after the stand reaches the asymptotic level of LAI 
(canopy closure). Early thinning, referred to as pre-commercial thinning or 
cleaning (Fahlvik, 2005), and carried out before canopy closure reduces the 
growth quite substantially compared to later thinnings (Ruha & Varmola, 1997, 
Braastad & Tveite, 2000, 2001), but if the thinning is carried out at the asymptotic 
level of leaf area, the reduction in productivity will be lower than the reduction of 
LAI.  
 

The needle efficiency, light use efficiency or growth efficiency (ε) describes the 
amount of above-ground- or stem-volume production per absorbed unit of light, or 
the ratio of annual photosynthesis to annual intercepted radiation (Waring, Thies 
& Muscato., 1980; Brix, 1983, Sheriff, 1996; O’Hara et al., 1999). The ε-term has 
been used to describe thinning reactions (Waring, Newman & Bell., 1981; 
Lavigne, 1988). The growth of individual trees and the light use efficiency at stand 
level decreases with increasing LAI (Waring, Newman & Bell, 1981; Binkley & 
Reid, 1984; Oren et al., 1987; Roberts & Long, 1992; Velazquez-Martinez, Perry 
& Bell, 1992; Utschig, 2002). In the first growing season after thinning, the lower 
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parts of the crowns of the retained trees will be exposed to a higher amount of 
PAR than before thinning and thus will partly compensate for the photosynthetic 
capacity (needle biomass) lost in the thinning (Ginn et al., 1991; Lavigne, 1991; 
Hale, 2001, 2003; Shibuya et al., 2005). That is as long as the trees does not 
experiences thinning stress due to the abrupt changes in light regime for needles 
adopted to less intense light (Boysen Jensen, 1921; Stålfelt, 1935; Harrington & 
Reukema, 1983; Aussenac, 2000; Skuodienė, 2001; Lagergren & Lindroth, 2004).  
 

Recovery of LAI after thinning is also most pronounced in the lower part of the 
crown (Medhurst & Beadle, 2001, Yu et al., 2003). Thinning hampers the 
abscission of the lower branches and since height growth is not strongly affected 
by the thinning grade the crown length increases more with time in thinned than in 
unthinned stands (Hummel, 1947; Kramer, 1966; Kantola & Mäkelä, 2004). Trees 
allocate a higher proportion of their assimilated carbon to canopy development in 
widely spaced stand (Bernardo et al., 1998) and after thinning the remaining trees 
occupy the created space through expansion of their crowns. According to 
Judovalkis, Kairiukstis & Vasiliauskas (2005), Norway spruce crowns expand 
markedly in the second year following thinning, and the rate of expansion declines 
thereafter, but are still clearly detectable after five years. If the needle efficiency 
(or light use efficiency) is not changed by the applied thinning regime then the 
production differences between thinned and unthinned stands will be totally 
dependent on leaf area and canopy structure. Many authors have found increases 
in needle efficiency following thinning (van Laar, 1976; Brix, 1983; Velazquez-
Martinez, Perry & Bell, 1992; Stoneman et al., 1996; Blevins et al., 2005) while 
others have not (O’Hara, 1989; Lavigne, 1991; Waring, Jarvis & Taylor, 1991; 
Valinger, 1993; Beets & Whitehead, 1996). West & Osler (1995), studying four 
year post thinning growth response in Eucalyptus regnans, found no increase in 
leaf efficiency on a site that developed a vigorous understorey after thinning while 
on one site with little understorey there was an effect.   
 
Water 
Shortage of soil water reduces the diameter growth of trees (Zahner, 1968; 
Aronsson, Elowsson & Forsberg, 1978; Alavi, 1999). Throughfall is negatively 
correlated to stand density and the amount of foliage (Stogsdill et al., 1989, 1992; 
Johnson, 1990; Nadkarni & Sumera, 2004) and varies according to the nature of 
the precipitation (Calder, 1996; McJannet & Vertessy, 2001). In addition, due to 
higher amount of leaf area, unthinned stands have higher transpiration rates 
(Bréda, Granier & Aussenac, 1995; Alavi & Jansson, 1995) and higher 
interception losses (Alavi & Jansson, 1995) than their unthinned counterparts. 
Therefore, thinning increases soil moisture in the residual stand. This conclusion is 
supported by various empirical observations (Brix & Mitchell 1986; Donner & 
Running 1986; Aussenac & Granier 1988; Cregg, Dougherty & Hennessey, 1988; 
Bréda, Granier & Aussenac, 1995; Sword, Haywood & Andries, 1998; Thibodeau 
et al., 2000). The increased soil water level in thinned stands reduces water stress 
for the individual trees (Stoneman et al., 1996; Misson, Nicault & Guiot, 2003), 
although the positive effect of increasing soil moisture on growth at stand level 
could be questioned in areas with high precipitation. However, as shown by Alavi 
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(1996, 2002) even areas with high precipitation have occasional water shortages 
that may have a negative impact on tree growth.   
 
 
 
Nutrients 
Most forest stands in the temperate region, including Sweden, are nitrogen limited 
(Tamm, 1991, Gundersen & Bashkin, 1994). However, on fertile sites in the 
southernmost part of Sweden growth in Norway spruce stands after canopy 
closure may be limited by K and P rather than N (Persson, Eriksson & Johansson, 
1995; Thelin, Znotina & Rosengren, 2000). A high proportion of the total amount 
of nitrogen in the forest is tightly bound in organic molecules and a limited 
percentage (<1%) of the total nitrogen pool is available for the trees (Lundmark, 
1986).  
 

In long-term thinning experiments in Norway spruce stands evaluated after 
approximately twenty-five to thirty years, the accumulation of nutrients (N and P) 
in the forest floor decreased with increased thinning grade according to Wright 
(1957), and Vesterdal et al. (1995), and this conclusion is supported by the results 
of experiments in the Czech Republic reported by Slodicak, Novak & Skovsgaard 
(2005). Increased accumulation of nutrients in unthinned compared to thinned 
stands of Ponderosa and Radiata pine has also been reported (Wollum & Schubert 
1975, Carey, Hunter & Andrew, 1982). The decreased total amount of nutrients in 
the forest floor after thinning could be attributed to higher net mineralization rates 
(Wright, 1957). It is also possible that reductions in litter fall after thinning affect 
the nutrient status in the top soil (Novák & Slodičák 2004, Grady & Hart, 2006). 
However, in stands that are growing well the effect of thinning on litter fall is not 
long lasting and disappears after canopy closure (Roig et al., 2005).  
 

The opening of the canopy after thinning (Johansson 1986) increases the amount 
of light and thermal radiation reaching the ground (Carbonnier 1933, Fairbairn 
1961, Son et al., 2004) and consequently increases soil temperatures (Ronge, 
1928; Ångström 1937, Sword, Haywood & Andries, 1998). Higher soil 
temperature and increased soil moisture after thinning provides more favourable 
conditions for decomposing soil micro-organisms and soil fauna (Bornebusch, 
1930; Castin-Buchet & Andre, 1998, Thibodeau et al., 2000), which may promote 
conversion of tightly bound nutrients in the soil into more readily available forms 
and thus improve soil productivity and increase stand volume growth (Tamm, 
1920; Hesselman 1925, Langsæter, 1941; Wang, Simard & Kimmins, 1995; Paul 
& Clark, 1996; Øyen 2001; Slodicak, Novak & Skovsgaard, 2005). 
  

For various tree species, including Norway spruce, it has been reported that the 
nitrogen concentration in the needles (or leaves) increases after thinning 
(Carbonnier, 1954; Velazquez-Martinez, Perry & Bell, 1992; Wang, Simard & 
Kimmins, 1995; Thibodeau et al., 2000; López-Serrano et al., 2005). Thirty years 
after thinning in Norway spruce stands in Belgian Ardennes, the nitrogen 
concentration in current year needles was significantly decreased compared to 
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unthinned control (Jonard, Misson & Ponette, 2006). Needle nitrogen 
concentration is related to site fertility (Thelin et al., 2000) and increases in the 
nitrogen content of the needles after thinning increase their net photosynthetic rate 
and light use efficiency (Wang, Simard & Kimmins, 1995; Beets & Whitehead, 
1996; Sands, 1996). The increased production rates of individual trees with 
increasing nitrogen concentrations in the needles levels off at values of 1.5 to 1.6 
% N (Sikström et al., 1998).     
 

The possible additional amount of available nitrogen in thinned stand may not 
benefit the trees if the cutting is so intense that the forest floor is invaded by plants 
with a high N-demand (Kardell, 1978; Knoche, 2005). Harvesting residues left 
after thinning and decomposition of fine roots (Romell, 1938) could change the 
C/N ratio in the soil and since the mineralization rate is related to both the carbon 
content and the C/N ratio of the soil (Colin-Belgrand et al., 2003), and plants 
compete for nitrogen with micro-organisms (Kaye & Hart, 1997, Thibodeau et al., 
2000) the thinning effect on the amount of released inorganic nitrogen over time is 
complex and may vary for short and long time perspectives. Some studies (cited 
above) have found indications that nitrogen mineralization increases after 
thinning, while others have found thinning to have no effects on these variables 
(Formánek & Vranová 2003) or even inverse effects (Thibodeau et al., 2000; 
Grady & Hart, 2006).  
 
Climate changes and carbon sequestration 
Since the middle of the 19th century the use of fossil fuels for energy production 
has led to sharp increases in CO2 levels in the atmosphere that will, it is believed, 
increase global temperatures and change the local climate, including temperature 
and precipitation patterns (Sonesson, 2004). Such changes may have profound 
direct consequences for forestry, and indirect consequences due to global, national 
or local policy responses. In some regions, for instance, stand productivity might 
increase due to elevated temperature and CO2, while in other regions stand 
productivity might be much more strongly limited by water availability than they 
are now (Zheng et al., 2002; Berg et al., 2007). Temperatures increases may also 
increase the risks for injuries due to heavy winds because the ground is less 
extensively frozen (Nilsson et al., 2004). Spruce is regarded as being particularly 
sensitive to predicted climate changes (Jacobsen & Thorsen, 2003; Nilsson et al. 
2004; Kellomäki & Leinonen, 2005; Tatarinov et al., 2005; Briceño-Elizondo et 
al., 2006). 
 

In addition, forests may be used in attempts to alleviate the climate changes by 
increasing the amount of carbon stored in them or using them more intensively for 
bioenergy production. Forests in boreal and nemo-boreal regions are important 
sinks for carbon and the amount of carbon stored in them is to some extent 
dependent on the management regime in several ways (Eriksson, 2006; Hyvönen 
et al., 2007). The soil carbon pool is generally greater than the above-ground 
component in boreal forest ecosystems, but the accumulation of soil carbon is 
positively correlated to above-ground biomass production and increases in the 
above-ground carbon stock are, of course, also preferable in the CO2 sink context. 
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In addition, thinning has been shown to reduce the amount of carbon stored in the 
humus layer (Piene & van Cleve 1978, Carey, Hunter & Andrew, 1982; Vesterdal 
et al., 1995). However, according to Skovsgaard, Stupak & Vesterdal (2006), the 
decreasing amount of carbon in the humus layer is counterbalanced by an 
increasing amount of carbon in the upper (0-30 cm) mineral soil, resulting in no 
effect of thinning on total soil carbon.   
 

Thinning may be an important tool to meet new climatic challenges in at least 
two ways. Increasing thinning intensity could increase the soil water content and 
thus ameliorate the negative effects of increased drought (Lagergren, 2001; 
Misson, Nicault & Guiot, 2003). In addition, intensive thinning in young stands 
may also provide scope to reduce the rotation age and hence to switch more 
rapidly to a different, better-adapted tree species in the coming rotation if 
necessary. More generally, thinning may also provide greater flexibility, which 
may be valuable in several respects, not all of which are readily predictable 
(Jacobsen & Thorsen, 2003). 
 
Risks and calamities in relation to silvicultural regime   
Since differences in volume growth for different applied thinning programmes in 
Norway spruce are minor, and could be regarded as negligible over a rotation 
period (table 2), other factors are more important for the final economical result. 
The silvicultural system, especially the thinning regime, affects the risks for 
injuries by snow and heavy winds (Persson, 1972; Brüchert, Becker & Speck, 
2000; Gardiner & Quine, 2000), root rot and other biotic injuries (Vollbrecht, 
1994). Taking the risks for butt rot, windthrow, snow damage and/or fire into 
account will affect the optimal choice of silvicultural regime in terms of financial 
returns (Thorsen & Helles, 1998; Möykkynen, Miina & Pukkala, 2000; 
Möykkynen & Miina, 2002; González, Pukkala & Palahí, 2005). Potential 
financial returns will be overestimated if risks are not taken into account.  
 

Norway spruce is generally considered to be highly susceptible to damages from 
heavy winds, compared to Scots pine and various broadleaved species for example 
(Wahlgren, 1914; Jakobsen & Rasmussen, 1953; Prpic, 1969; Peltola et al., 2000; 
Valinger et al., 2006). However, if the heavy wind strikes at times before the 
leaves have fallen, the injuries to broadleaved species may be as high as for 
conifers (Anon., 1969; Nilsson et al., 2004). After a detailed scrutiny of the 
outcome from the heavy storm that affected Sweden in 1969 combined with an 
impressive literature review Persson (1975b) concluded that Norway spruce trees 
are more often felled by wind than Scots pine trees, not (as is often claimed) 
because of their shallow root systems, but because of the differences in the sites at 
which the two species are generally dominant. 
 
Risk for damages by snow and heavy winds 
Thinning 
The risk for snow damage is highest in young stands and the risk for wind damage 
is highest in older stands (Persson, 1974; Chroust, 1987; Kuboyama & Oka, 
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2000). Wind damage is a more stochastic phenomenon than damage by snow 
(Jalkanen & Mattila, 2000). Most authors agree that recently thinned stands, 
independent of tree species, are in danger for damages from heavy winds 
(Kollberg, 1961; Leibundgut, 1969; Bradley, 1970; Harrington & Reukema, 1983;  
Laiho, 1987; Valinger & Lundqvist, 1992; Nielsen & Knudsen, 2004), especially 
old stands that have been heavily thinned (Sjöström, 1932; Jacobs, 1936; Anon., 
1954; Persson, 1975b; Abetz & Unfried, 1984; Chroust, 1987; Nielsen 2001).  
  

Although thinning in young stands with mean heights < 10-12 m gives low wind 
damage risk (Werner & Årmann, 1955), because of good development of the root 
system and increased soil anchorage of the remaining trees (Nielsen & Knudsen, 
2004), the best way to reduce the risk for heavy wind damage at any given point is 
probably to leave the stand completely unmanaged without thinnings. Unthinned 
stands with high degrees of stocking have been shown to resist heavy storms well 
(Sjöström, 1932; Bornebusch, 1937; Werner & Årmann, 1955; Lohmander & 
Helles, 1987; Vollbrecht, Gemmel & Elfving, 1994; Bergstedt & Jørgensen, 1997; 
Skovsgaard, 2006). However, to obtain the desired value from the forests without 
thinnings, it is important to establish the stands with wide initial spacing or to 
apply early pre-commercial thinning to improve stand stability (Anon., 1969; 
MacKenzie, 1976; Skovsgaard, 1997; Nielsen, 2001; Achim, Ruel & Gardiner, 
2005). The no-thinning option has been adopted in stands at high risk for damage 
by wind and snow, or where it is not possible to obtain a profit from early 
selective thinnings (Skovsgaard, 1997; Cameron, 2002). Since it is well known 
that the increased risk for injuries due to heavy winds directly after thinning 
decreases again with time (Bradley, 1970; Persson, 1975b; MacKenzie, 1976; 
Nielsen & Knudsen, 2004), some authors have claimed that it is possible to 
increase stands’ resistance to storms by early, heavy thinnings (Hütte, 1970; 
Bergstedt & Jørgensen, 1997; Nielsen et al., 2004). Nielsen & Knudsen (2004) 
investigated a Norway spruce stand thinned at approximately 16 m height with a 
75% reduction of stems and found that the remaining individual trees doubled 
their stability in the first five years after cutting, but the increased risks for storm 
felling at stand level due to reductions in support from neighbouring trees and 
increased wind speeds exceeded this effect. Thus, as is often the case, silvicultural 
measures that could influence the stability of individual trees and stands generally 
have conflicting effects (Nielsen et al., 2004).       
  

Reductions in stand density, either by increased initial spacing or thinning, 
affects diameter growth more than height growth (Lanner, 1985; Huss, 1988; 
Slodicak & Novak, 2006) and thus lead to reductions in the trees’ height to 
diameter (H/D) ratios (Tuyll & Kramer, 1981; Spellmann & Brokate, 1991; 
Mitchell, 2000; Slodicak & Novak, 2006; Mäkinen & Hein, 2006). A low H/D 
ratio is often used as an indicator of good tree stability (Kramer, 1976; Cremer et 
al., 1982; Spellmann, 1986; Valinger & Fridman, 1997; Nielsen, 2001; Slodičák & 
Novák, 2004; Valinger et al., 2006). Prpić (1969) found that windthrow in 
Norway spruce was related to slenderness, tree form and relative crown length. 
The lower the values of those parameters, the greater the tree stability. It has been 
claimed that H/D ratios < 80 should be targeted to minimize the risk for damages 
due to heavy winds (Prpić, 1969; Burschel & Huss, 1987; Abetz & Klädtke, 2002) 
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and snow (Päätalo, Peltola & Kellomäki, 1999). Schütz et al. (2006), report that in 
heavy storms (average maximal  wind speed > 45 m s-1) reductions in H/D ratios 
and the time since the last thinning did not have any significant effects on the risks 
for windthrow and stem breakage. The same was found for a thinning experiment 
in Norway spruce in Denmark and Skovsgaard (2006), claim that “the analysis of 
h/d-ratios and similar stability indicators is of little practical relevance.     
 

Dense stands with high degrees of stocking have high risks of snow damages 
(Hesselman, 1912; Schotte, 1916; Spellmann, 1986; Valinger, Lundqvist & 
Brandel, 1994; Slodičák & Novák, 2004; Rössler, 2006) and even though newly 
thinned stands are at risk for snow damages (Schotte 1916, 1922b; Chroust, 1987) 
increased spacing in young stands and repeated thinnings over a long time gives 
the trees well-developed crowns and low H/D ratios, which decrease the risk for 
snow damages (Schotte, 1916; Chroust, 1987; Päätalo, Peltola & Kellomäki, 1999; 
Braastad & Tveite, 2000; Kato & Nakatani, 2000). Except in the first few years, 
thinning from below decreases the risk for snow damages (Hesselman, 1912; 
Persson, 1972; Bryndum, 1976; Spellmann, 1986; Huss, 1990; Zhang & Oliver, 
2006), while thinning from above or crown thinning is reported to increase the risk 
(Schotte, 1916; Amilon, 1926; Persson, 1972; Valinger, Lundqvist & Brandel, 
1994). Thinning from above also increases the risk for storm damages since the 
removed trees are those best adapted to resist heavy winds (Welander, 1940; 
Persson, 1972; Madsen, 1979; Nielsen et al., 2004).   
 
 
Initial spacing 
According to Gardiner & Quine (2000) the differences in injury levels after 
different thinning regimes is more important than differences due to initial 
spacing. However, Nielsen (2001) claims that reductions in initial spacing 
decrease the root development in a way that affects the stability over the whole 
rotation.  
 

As argued previously, lowering the H/D ratio either by increasing initial spacing 
or early cuttings has been tested as a potential way to improve stand stability 
(Bornebusch, 1933; Vollbrecht, Gemmel & Elfving, 1994; Nielsen et al., 2004). 
Heavy thinnings to relative basal areas between 35-45% of unthinned 
counterparts, commencing early in the rotation period leaving an intact green 
crown have been shown to decrease damages due to heavy winds (Bergstedt & 
Jørgensen, 1997; Nielsen, 2001). 
 

Fewer planted trees per hectare imply fewer thinnings and a shorter rotation 
period, which help reduce risks for storm injuries (Lohmander & Helles, 1987). 
Moreover, the increased planting distance per se, regardless of the thinning regime 
applied, will lower the risk for injuries due to heavy winds (Blackburn & Petty, 
1988; MacCurrach, 1991; Gardiner & Quine, 2000) and snow (Braastad, 1979; 
Kramer, 1980).  
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Thinning  
One of the major threats to Norway spruce plantations in southern Sweden is root- 
and butt rot (mainly Heterobasidion spp.). Around 15% of mature Norway spruces 
in Sweden are reported to be infected by this fungus (Euler & Johansson, 1983; 
Stenlid & Wästerlund, 1986). Infected trees are less valuable both as sawn timber 
and pulp wood (Björkman et al., 1949), and further losses will occur due to 
decreased growth (Henriksen & Jörgensen, 1953; Bendz-Hellgren & Stenlid, 
1995, 1997). Root rot was not a major concern of the studies underlying this thesis 
but a thesis entitled “thinning of Norway spruce” must at least briefly discuss the 
connections between root rot and thinning since thinning is considered the major 
infection route for Heterobasidion spp (Korhonen et al., 1998; Berglund, 2005).  
 

The connection between thinning grade and incidence of root rot is well known 
(Bornebusch, 1937; Henriksen & Jörgensen, 1953; Molin, 1957; Bryndum, 1964; 
Venn & Solheim, 1994). Heavier and repeated cuttings have been shown to 
increase the amount of butt rot in the final stand (Vollbrecht & Agestam, 1995, 
Vollbrecht & Jørgensen, 1995). So far, however, I have not seen any studies or 
discussions about whether it is preferable to apply a single heavy cutting or two 
less heavy cuttings giving the same mean periodic basal area over time, in order to 
minimise the level of root rot. Some Danish experiments (Bryndum, 1964, 1969) 
indicate that root rot is heaviest following D-grade cutting, and its incidence is 
lower following so-called L-grade thinning (“wind break cutting”). We know that 
heavier and repeated cuttings increase the risk for windthrow, a single heavy 
cutting in early development stages is better, in terms of the overall risk level than 
repeated, but less intense, cuttings over the whole rotation (Nielsen, 1990). An 
interesting issue is whether or not this also applies to the risk for heavy attacks by 
root rot. Fresh stumps are highly susceptible to root rot infections, which often 
spread to the dead or dying root system (Rishbeth, 1949; Brandtberg, Johansson 
Seeger, 1996; Berglund & Rönnberg, 2004) and may subsequently spread further, 
via root contacts, to standing trees (Rishbeth, 1951; Molin, 1957). The most 
important route for root rot infection in an even-aged plantation is believed to be 
either the above mentioned pathway or via infected roots and stumps in the 
previous stand to the newly established generation of trees (Rönnberg & 
Jørgensen, 2000).  
 

Superficial injuries to stem and roots caused by logging machines or game may 
also provide entry points for Heterobasidion spp., as long as the wounds are fresh 
(Hagner, 1965; Nilsson & Hyppel, 1968; Isomäki & Kallio, 1974; Roll-Hansen & 
Roll-Hansen, 1980a). That pathway is however reported to be quite insignificant 
in comparison to other possible infection routes (Redfern & Stenlid, 1998). Other 
rot fungi could also be important contributors to the overall rot infection rate if the 
stand is heavily damaged by game or logging machines (Kohnle & Kändler, 
2007). Thinning injuries to stems and roots and associated problems with 
discoloration and/or decay will be addressed later in this thesis. Root- and butt rot 
increases the risk of storm damages (Jakobsen & Rasmussen, 1953; Bryndum, 
1964; Bazzigher & Schmid, 1969; Vollbrecht, Elfving & Gemmel, 1994, Cermák, 
Jankovský & Glogar, 2004).  

Risk for infection by root- and butt rot 
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Initial spacing 
Wider initial spacing when replanting previously root rot-infected forest land has 
been found to reduce the frequency of butt rot in the maturing stand (Due, 1960; 
Høibø, 1991b; Venn & Solheim, 1994; Johansson & Pettersson, 1996). However, 
in the cited studies there were interactions between the effects of initial spacing 
and thinning regimes (a more frequent thinning schedule is needed in denser 
stands). A possible explanation of the lower butt rot frequency in plantations with 
wide initial spacing is that there are likely to be fewer root contacts between 
infected and uninfected trees (Korhonen et al, 1998). Therefore, even experiments 
with mixed stands could help elucidate whether a wider initial spacing per se 
could reduce butt rot frequency. Studies in mixed stands with spruce and pine 
(Lindén & Vollbrecht, 2002) have found lower butt rot frequencies in the spruces 
than in monocultures, which may, hypothetically, be due to the longer distance 
between the spruces, the species with the highest risks for infection.  
 
Injuries to stem and roots from logging machines 
The positive aspects of thinning may be jeopardized if the thinning is not done 
with sufficient knowledge and care. Previously mentioned risks for introducing 
root rot to a stand and the enhanced risk for storm felling are important aspects to 
consider. Further usually directly detectable, negative effects on the stand of 
thinning may include site damage and soil disturbance due to forestry traffic 
(Kardell, 1978; Wästerlund, 1992; Wilpert & Schäffer, 2006; Nadezhdina et al., 
2006) and injuries to stem and roots in the remaining trees (Andersson, 1980; 
Fröding, 1992; Vasiliauskas, 2001). Although thinning, regardless of how it is 
done, may damage the residual stand, it was the increased mechanisation of 
forestry after the Second World War that, in Sweden at least, prompted 
investigations of injuries to the stems and roots of the remaining trees after partly 
mechanised thinning (Bengtsson, 1955; Carlsson, 1959). The structural 
transformation of society in the 1970s also affected the forestry sector; rising 
salaries accelerated mechanisation and the development of new systems for clear 
cutting and thinning. Increased use of machinery in the stands combined with a 
forestry law stipulating that the frequency of injured trees should not exceed 5% 
led to a need for more detailed information about injury levels in thinned stands. 
The injury levels associated with the use of different machines and thinning 
systems were investigated in a number of studies in Sweden (Kardell, Drakenberg 
& Dehlén, 1977; Boström, 1978; Arvidsson & Spahr, 1980; Eriksson, 1981; 
Fröding, 1982, 1983, 1992), Norway (Sellæg, 1974; Huse, 1978b) and Finland 
(Kärkkäinen, 1969a, 1969b; Hannelius & Lillandt, 1970; Sirén, 1981, 1982, 1986, 
Imponen & Sirén, 1983) and attempts were made to find correlations between 
injury frequencies and site types, machinery systems, tree species, cutting seasons 
etc. 
 

Of all machinery systems used in forestry twenty years ago, the cut-to-length 
system using harvester and forwarder was to become the most widely utilised in 
Sweden by the late 1980s (Anon., 1991, Nordlund, 1996) and it has continued to 
dominate.  The majority of studies on cut-to-length systems using harvesters and 
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forwarders in the Nordic countries have reported injury frequencies of around or 
below 5% (Table 1, paper IV).  
 

Compared to reported injury levels associated with the cut-to-length system with 
harvester and forwarder in the United States (usually 25-46%) (Bettinger & 
Kellog, 1993; Youngblood, 2000; Camp, 2002; Heitzman & Grell, 2002), the 
reported injury levels after thinning in the Nordic countries are low. However, 
similar results to those reported in the Nordic countries can also been found in the 
literature from the United Sates (McNeel & Ballard, 1992; Landford & Stokes, 
1995). High injury rates for other types of thinning systems have also been 
reported (Kelly, 1983; Ostrofsky, Seymour & Lemin 1986; Cline et al., 1991; 
Nichols, Lemin & Ostrofsky, 1994; Bragg, Ostrofsky & Hoffman, 1994; Egan, 
1999; Matzka, 2003) and the cut-to-length system using harvester and forwarder is 
considered advantageous since it generally gives better silvicultural results and 
similar productivity, but disadvantageous due to the high initial investments 
required (Tufts & Binker, 1993; Landford & Stokes, 1995, 1996). A study of 
thinning with a cut-to-length system using harvester and forwarder in five pine 
stands in Poland found an injury level of 7.8% (Gapšyte, 2003). In permanent 
Norway spruce experimental plots in Germany (Baden-Württemberg), the total 
injury level caused by yarding and felling was 27%, and the accumulated 
percentage of injuries in 61-80 year-old Norway spruce stands obtained from data 
in the Federal forest inventory (Baden-Württemberg) was 30% (Kohnle & 
Kändler, 2007). All systems for mechanised thinning seem to injure the remaining 
trees, but cut-to-length systems with harvester and forwarder are generally 
considered to have relatively low negative effects on the stand.  
 
Negative impact of thinning injuries 
Even though the dominant rot fungi invading Norway spruce are Heterobasidion 
spp. (Kallio & Norokorpi, 1972; Kallio & Tamminen, 1974; Stenlid & Wästerlund 
1986), which seldom invade stem and root injuries (Redfern & Stenlid, 1998), a 
high incidence of stem and root damages are followed by invasion of other rot 
fungi, e.g. Stereum sanguinolentum (Alb. et Schw.: Fr.). Kohnle & Kändler 
(2007), found that 93% of Norway spruce trees with injuries from felling or 
yarding were infected by rot at the basal cross-section while 51% of uninjured 
trees were affected. Stereum sanguinolentum (Alb. et Schw.: Fr.) is the most 
common fungus infecting artificially created wounds (blazing wounds) (Ekbom, 
1928; Roll-Hansen & Roll-Hansen, 1980a, 1980b, 1981; Solheim and Selås, 1986; 
Solheim, 1987), thinning wounds (Huse, 1978a; Ali El Atta & Hayes, 1987; Koch 
& Thongjiem, 1989; Vasiliauskas, 1998) and bark peeling wounds caused by 
game (Vasiliauskas, Stenlid & Johansson, 1996; Vasiliauskas, 1998; Čermák, 
Glogar & Jankovský, 2004). The fungi micro-flora in wounds is reviewed by Huse 
(1978a) and Roll-Hansen & Roll-Hansen, 1980a, 1980b).      
 

The risk for infection and spread of discoloration increases with the size of the 
injury (e.g. Pawsey & Gladman, 1965; Isomäki & Kallio, 1974; Vasiliauskas, 
Stenlid & Johansson, 1996). If the damage extends into the wood fibres the risk 
for infection and spread of discoloration is further enhanced (e.g. Pawsey & 
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Gladman, 1965; Meng, 1978; Roll-Hansen & Roll-Hansen, 1980b). For roots, the 
risk of fungal infection increases when the point of damage is close to the stem 
(Hagner et al., 1965; Nilsson & Hyppel, 1968; Schönhar, 1979; Koch & 
Thongjiem, 1989) and the spread of decay is higher in large roots (Hagner et al., 
1965). The risk for rot infection varies between locations (Roll-Hansen & Roll-
Hansen, 1981; Solheim & Selås, 1986; Hennon & DeMars, 1997) and the time of 
the year when the injury occurs (Roll-Hansen & Roll-Hansen, 1980a, 1980b; 
Solheim & Selås, 1986; Solheim, 1987; Vasiliauskas, Stenlid & Johansson, 1996). 
It is also affected by the presence of other fungi or bacteria that may protect the 
tree from more severe rot fungi and the effectiveness of the tree’s own defences 
(Kallio, 1974; Hennon & DeMars, 1997; Vasiliauskas & Stenlid, 1998).    
 

Huse (1978a) showed that injuries larger than 50 cm2 are often infected by rot 
fungi, while smaller injuries are infected less frequently. However, discoloration 
of the wood due to bacteria or other fungi was detected in all injuries. Nilsson and 
Hyppel (1968) investigated ten-year-old injuries in the lower part of the stem and 
the coarse roots after mechanised soil scarification. Major rot attack was present in 
100% of the injuries in the lower parts of the stem, regardless of whether they 
were superficial or deep enough to reach the fibres (however, only four injuries 
were investigated). Root injuries 0-50 cm from the stem were severely infected by 
rot in all cases when injuries were deep, but only 13% of the superficial injuries in 
roots led to major rot infection. In addition, 30% of the scars were infected by rot 
to a limited extent. For injuries between 50-100 cm from the stem the risks for 
infection were low; less than 20% of the deep injuries at that distance led to major 
rot infection. It has been claimed that injuries smaller than 10 cm2 do not become 
infected by rot fungus (Meng, 1978). However, Roll-Hansen and Roll-Hansen 
(1980a) found that up to 15% of 10 cm2 large stem injuries were infected by 
Stereum sanguinolentum (Alb. et Schw.: Fr.) When infections with other rot fungi 
were included, the total infection rate in this small class of injuries was almost 
doubled. In another study by Roll-Hansen & Roll-Hansen (1981) 15% of root 
injuries with sizes between 4-90 cm2 became infected by Stereum sanguinolentum 
(Alb. et Schw.: Fr.) and there were no significant size-related variation in 
frequencies within this range. Pawsey and Gladman (1965) studied injuries to 
stem and roots ranging in size from 6.5 cm2 to over 2000 cm2, and found an 
infection rate by important rot fungus slightly higher than 9 % for Norway spruce. 
Although bigger injuries had a higher amount of infected scars, there was no 
minimum size for injuries with rot fungus. Leinss (1991) found infection rates as 
high as 22% in injuries smaller than 10 cm2. Solheim and Selås (1986) studied 
artificially created stem injuries between 80-400 cm2 in size and found, two years 
after the injury events, that almost 60% of the trees were infected by at least one 
rot fungus. According to a literature review by Vasiliauskas (2001), 60-100 % of 
wounds inflicted on trees will lead to staining and/or decay.     
 

The annual growth rate of Stereum sanguinolentum (Alb. et Schw.: Fr.) in stems 
of Norway spruce is reported to be between 5 and 75 cm per year with an 
approximate mean value of 30 cm per year (see Vasiliauskas, 2001 for literature 
review). Similarly to the risk of infection, the growth rate of the fungus is also 
dependent on the size and severity of the damage (Hagner et al., 1965; Ali El Atta 
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& Hayes, 1987). The rate of decay is less pronounced in roots (Kärkkäinen 1971) 
and not all root injuries infected with rot fungi will reach the trunk (Björkhem et 
al., 1974; Roll-Hansen & Roll-Hansen, 1981; Kardell, 1986). Even if small 
injuries become infected by rot fungi (Pawsey and Gladman, 1965; Roll-Hansen & 
Roll-Hansen, 1980a; Koch & Thongjiem, 1989; Leinss, 1991), the extent of decay 
may be limited since the wound closure rate is high for small injuries (Aufsess, 
1978; Neely, 1979) and further fungal development after wound closure is limited 
(Löffler, 1975; Roll-Hansen & Roll-Hansen, 1980b). Stem injuries smaller than 15 
cm2 will have some effect on tree quality, but root injuries of this size will 
probably have very little effect.  
 

The economic losses due to poor quality and the amount of wood that becomes 
unusable because of rot following thinning wounds depend on how many bottom 
logs are destined for pulpwood rather than timber production. Such losses may 
also include production losses (Isomäki & Kallio, 1974; Huse, 1978a; Andersson, 
1987). However, the trees that would have become infected by root rot from 
nearby stumps or trees regardless of stem and/or root injuries should not be 
included when summing injury-related losses. Furthermore, root injuries will only 
cause quality losses if subsequent infection by a rot fungus spreads to the stem. 
However, stem injuries will reduce the quality of the log even without infection by 
severe rot fungus (Blomqvist, 1984; Shigo, 1984; Warkotsch, 1988; Han et al., 
2000; Vasiliauskas, 2001), although if an injury is situated at either end of the log 
it is possible to reduce the length of the log without reducing its grading. Earlier 
studies with harvester/forwarder systems have shown that most stem injuries are 
located near the ground (Fröding, 1992; Bettinger & Kellog, 1993; Sawaguchi, 
Shishiuchi & Kikuchi, 2000; Heitzman & Grell, 2002; Suadicani & Nordfjell, 
2003). However, such length reduction is only possible if decay has not spread 
from the injuries, and thus the actual number of possible length reductions will be 
lower than the frequency of injuries near the ground may suggest.        
 
 

Objectives 
The objective of this thesis was to investigate volume and quality outcome from 
different thinning strategies in monocultures with Norway spruce. Questions 
investigated were: 
 

1. How will the combined effect of initial spacing and thinning regime 
affect timber quality?     

 
2. How is the initial growth response, after different thinning grades, both at 

tree and stand level, related to light, water and nutrients? 
 

3. How is long term production affected by different thinning programmes?  
 

4. How are risks for biotic and abiotic damages related to different thinning 
programmes?   
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Summary of the papers 

Paper 1 
Numerous studies have explored the relationships between initial planting density, 
growth and wood quality. For Swedish conditions, these variables have been 
thoroughly studied in stands with spacings between 1- and 2.5 m, but few 
investigations have been extended to initial square spacings of 3 m. It is well 
known that differences in volume production between different initial spacings 
emerge, to a large extent, in the first part of the rotation period (up to the time of 
canopy closure) and thereafter the relative differences between total production in 
dense and sparse spacings diminishes. Similar trends have been observed in 
comparisons of quality traits. However, since many of the most important quality 
traits are strongly correlated to the growth rate of individual trees, and to a lower 
extent to the spacing itself, comparisons of the mean quality in stands with 
different spacings may be misleading. Different initial spacings occasion different 
thinning programmes and it is important to consider all silvicultural measures over 
a rotation period in attempts to identify systems that provide acceptable volume 
production, quality parameters and low reforestation costs. In addition, the 
selection methods used in thinning operations will also affect the cost-
effectiveness of cutting activities and influence the quality of the remaining stand. 
  

The objective of the study reported in Paper I was to examine the combined 
effects of the initial planting density and the thinning method used in the first 
thinning on volume production and quality. More specifically, a conventional 
silvicultural regime, giving 1800-2400 stems at the time of first thinning (mainly 
from below) was compared with a regime involving sparse spacing, 1400 stems 
per hectare, and thinning from above, to assess whether the latter silvicultural 
regime could provide acceptable quality in the remaining stand. 
 
Material and methods 
The experiment was conducted in two fertile stands (G 32) at Tönnersjöheden 
experimental forest in south-western Sweden (latitude 56º 40’N, longitude 13º 
10’E). The stands were planted in 1971 with 2.0, 2.5 and 3.0 m square spacings. 
Each stand was divided into two blocks. Before thinning in winter 2004, 6, 8 and 
12 plots with 10 m radii were laid out in 2.0, 2.5 and 3.0 m initial spacings, 
respectively. Four additional plots were laid out in the 3 m spacing since we 
hypothesised that volume production and quality would be least homogeneous in 
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the stands with the sparsest spacing. One block with 2 m spacing had been thinned 
earlier and had to be excluded from the study. For the 2 and 2.5 m spacings, both 
thinning from below and thinning from above were applied, whereas in the 3 m 
spacing, thinning from above and a no-thinning regime were used. The aim was to 
remove the same percentage of basal area in each treatment (approximately 30%). 
However, the thinning removed a significantly higher percentage of basal area in 
the 3 m spacing compared to the 2.5 and 2 m spacings (40, 32 and 28%, 
respectively). 
 

On every plot, all trees were callipered at breast height and height was measured 
on sample trees. The height and height to the first living branch of sample trees 
was measured. The diameter of the largest branch in one of the three whorls 
closest to breast height was measured as well as the number of branches with 
diameters ≥10 mm in those whorls. The frequencies of stem defects such as double 
stems, spike knots and stem cracks were registered. Additional data were collected 
from a total of 104 cut sample trees covering the diameter distribution in all three 
spacings. Each sample tree was cut into two logs, each approximately 4 m long, 
and graded according to the Swedish grading system by a professional grader. The 
grading system divides logs of Norway spruce into four classes where quality 1 is 
the best quality and quality 2 refers to logs with living branches (not bottom logs). 
Since quality class 1 (highest quality) is rare the main boundary of interest in the 
present study was the one between classes 3 and 4. It seems reasonable to assume 
that logs graded in quality 3 and 4 will largely remain in their given quality class 
until final felling while the quality of logs graded in quality 2 (second log) with 
living branches will change as the height to the first living branch increases. After 
grading, a stem disc was taken at 1.3 m stem height and year rings were measured. 
A crookedness index, calculated as bow height divided by log length, was 
calculated for each log. The height of the callipered trees was predicted using 
Näslunds height curve (Näslund 1936) that was fitted for the cut sample trees. 
Thereafter, stem volume for each tree was calculated with Brandels volume 
function (Brandel 1990) using measured diameter and estimated height. 
 
Results 
Increased spacing resulted in trees with larger breast height diameters and larger 
knots. The average diameter of the thickest branch in the 2 and 2.5 m spacings was 
similar (15.7-16.2 mm), but it was significantly higher in the 3m spacing (19.6 
mm). The diameter of the thickest branch for trees with the same DBH was 
increased in the 3 m spacing but the effect of spacing per se was rather small. The 
number of branches was slightly, but insignificantly, affected by initial spacing. 
From the sampled stem discs it was clear that the main growth differences between 
the treatments were declining. Increased spacing increased the crookedness index, 
but the crookedness was strongly related to DBH. The grading of the logs was also 
clearly dependent on the trees’ diameter at breast height, for instance all the trees 
graded as quality 4 were relatively large. The volume production up to the time of 
first thinning was 236, 206 and 222 m3 per hectare in the 2.0, 2.5 and 3.0 m initial 
spacings, respectively; these differences were not statistically significant. Thinning 
from above significantly affected the mean DBH in all three treatments and hence 
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the wood quality. Neither the mean diameter at breast height nor the average 
diameter of the thickest branch was significantly different after thinning from 
below in the 2 and 2.5 m spacings, and the 3 m spacing after thinning from above. 
The percentage of logs graded as quality 3 was still higher after thinning in the 
denser spacings with thinning from below compared to the 3 m spacing with 
thinning from above, but the differences had diminished.     
    
 

Papers II and III 
The long-term growth responses of Norway spruce stands to thinning is well 
known but the initial growth responses and the reasons for them are seldom 
investigated and discussed. The aim of the studies described in Papers II and III 
was to examine the initial growth responses of Norway spruce to thinning in 
relation to needle mass, light, nutrients and water. A heavy storm (“Gudrun”) on 
the night between the 8th and 9th of January 2005 destroyed the original 
experimental plan, but also provided opportunities to investigate the growth and 
resource allocation in more detail.   
 
Material and methods 
The experimental stand (2.5 ha) was located at the Tönnersjöheden experimental 
forest in south-western Sweden (latitude 56º 40’N, longitude 13º 10’E) and was 
planted in June 1973 with 4-year-old bare-root seedlings at regular 2.0 x 2.0 m 
spacing. Before thinning in February 2002, the stand density was 2260 trees ha-1, 
the basal area was 33.6m2ha-1 and the dominant height was 16.4 m, with little 
variation between the plots. Norway spruce accounted for more than 99% of the 
basal area before thinning. The thinning from below was done using harvester and 
forwarder. Three growing seasons were included in the study. The experiment was 
replicated four times with three treatments (in total twelve 22 x 20 m plots, each 
containing 11 rows of trees. The treatments were unthinned, normal thinning (30% 
basal area removal), and heavy thinning (60% basal area removal). In each thinned 
plot all trees in the middle row were cut, the area thus cleared was used as a strip-
road and selective thinning was carried out between the roads. All harvesting 
residues were placed in the roads. (See Figure 1 for a map of the stand and the 
plots).  



 
 
Figure 1. Description of experimental design. The first number in the plots refers to block 1 
to 4 and the second number refers to the treatment (1 = control, 2 = normal and 3 = heavy 
 

All trees were numbered and callipered at breast height before thinning and after 
each growing season. Band-dendrometers were installed on trees covering the 
diameter range for each treatment to measure growth during each year (weekly 
during the growing season). Before initiation of growth in 2002, 12 trees were 
felled for biomass analyses. After the heavy storm in 2005, a total of 53 trees 
covering the diameter range for each treatment were taken for biomass 
calculations and estimations of volume growth. The litter fall was collected and 
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included in the total above-ground production calculations. In addition to 
estimates of needle mass, LAI and light transmission were measured (data were 
presented for both the first and third growing seasons). The soil water content 
integrated over the first 50 cm of the soil profile was measured weekly during the 
growing season. Soil temperature and the amount of inorganic nitrogen released in 
the top soil were also measured. Temperature data were given only for the first 
and third growing seasons. Data on inorganic nitrogen (NH4

+ and NO3
-) contents 

and mineralization were collected three times each year at two-month intervals, 
starting in spring. The nitrogen content in the needles three years after thinning 
was analysed.   
 

Results      
Both normal and heavy thinning resulted in significant initial volume growth 
retardations. In the first growing season following heavy and normal thinning the 
volume growth amounted to 47 and 68% respectively of the growth in the 
unthinned control treatment. The volume production in the second growing season 
was still lower in thinned plots, but less markedly, and the differences in this 
respect between normally thinned and control plots were not significant. In the 
third growing season the growth was not significantly different between normally 
and heavily thinned plots, but it was significantly higher in normally thinned than 
in unthinned plots. Mean growth values in the normally and heavily thinned plots 
over the whole post-thinning period amounted to 90 and 74% of unthinned control 
levels, respectively. There was no growth reduction related to the cutting of strip 
roads following either normal or heavy thinning. On the contrary, in the heavily 
thinned plots, volume growth per hectare in the parts of the plots including the 
road and one tree row on either side was twice as high as in the three innermost 
rows. This may have been, partial at least, because the harvesting residues in strip 
roads led to increased release of inorganic nitrogen, and the soil water contents 
were slightly higher in the strip-roads in both the normally and heavily thinned 
plots than in the controls. The soil water contents were similar in unthinned and 
normally thinned plots (excluding the roads) but they were higher in the heavily 
thinned plots, especially in dry periods.      
 

The trees in the heavily thinned stands allocated a higher proportion of their 
stem growth to their most basal parts, thereby increasing the taper between breast 
height and the stem base. However, there were no thinning-related changes in stem 
form in the middle stem section, but a slight reduction in taper above the crown 
base. The overall stem form of the trees was not significantly altered by thinning. 
The total above-ground biomass production of branches increased following 
thinning. The amount of new needles produced during the study period was higher 
in unthinned than in thinned plots, but the canopy needle mass in the heavily 
thinned plots shifted towards that of their unthinned counterparts due to increased 
longevity of the needles. After thinning in 2002, the needle mass in the canopy 
layer was reduced by 25 and 59% in the normally and heavily thinned plots 
compared to the unthinned controls. After three growing seasons the needle mass 
in the normally and heavily thinned plots amounted to 77 and 71%, respectively, 
compared to the unthinned controls. The amount of new needles produced in the 
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control plots equalled the needle losses. The nitrogen content in the needles 
increased with increasing thinning grade.   
 

In the third growing season, the stand growth efficiency (volume or above 
ground biomass production per unit needle mass or unit of absorbed light) 
calculated on the basis of needle mass, LAI or light transmittance, was higher in 
the heavily thinned than in the normally thinned and unthinned control plots.          
 

The relative basal area growth was affected by both the treatments and the initial 
basal area of the individual trees. In the control and normally thinned plots, the 
relative basal area growth of the largest trees was greater than that of the smaller 
ones. Trees in the heavily thinned plots had similar growth rates regardless of their 
initial size. The mean growth response of the 100-400 largest trees over three 
growing seasons in the normally thinned plots was the same as in the control, but 
growth was significantly higher in the heavily thinned plots.  
 
Storm and snow damage (Papers I, II and III) 
The trees in both the combined spacing and thinning experiment (Paper I), and the 
thinning experiment with different thinning intensities (Papers II and III) 
described in this thesis sustained injuries due to the heavy storm on the night 
between the 8 and 9th January of 2005. Further injuries due to wet snow, in March 
2005, were recorded in the latter experiment. There was one growing season 
between the thinning and storm felling in the spacing experiment and three in the 
thinning intensity experiment. According to Anon. (2005) the maximal wind 
speeds as a mean value for 2-3 seconds at 10 m height above ground was 32.5-35 
m s-1 during the storm.     
 

The injuries were categorised as follows: uninjured, leaning, heavy leaning, up-
rooting and stem breakage. The difference between leaning and heavy leaning was 
subjectively determined, depending on whether the tree concerned was believed to 
be cut in the cuttings following the storm or not. In the final evaluation, injured 
trees were defined as trees that were heavily leaning, up-rooted or had broken 
stems.  
 

In the thinning experiment (Papers II and III) there was a strong linear 
relationship between thinning intensity and storm injuries. The frequencies of 
snow injuries in March (calculated as percentages of remaining trees) were also 
strongly correlated with the thinning intensity (data not shown) and hence the total 
damage percentage remained linearly correlated with thinning intensity (Fig. 2). 
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Figure 2. Damage by wind and snow in relation to removed basal area in thinning (%) three 
years prior to the storm. 
 

Clear differences in the types of storm damage sustained in the normally thinned 
plots compared to the heavily thinned plots appeared. The amount of stem 
breakage was almost negligible in the former (less than 5%) while 24-50% of the 
stems were broken (mean, 36%) in the latter. 
 

In the combined spacing and thinning experiment the percentage of wind 
damaged trees varied from 6-26% in the different treatments. The highest damage 
level was recorded in 3 m spacing with thinning from above. It was indicated that 
thinning from below had lower injury levels than thinning from above. In 2 m 
spacing, 6.7- and 12.7% of the trees were damaged in thinning from below and 
above respectively. Corresponding values in 2.5 m spacing was 6.2- and 11.5%. 
The percentage of damaged trees in the unthinned plots (3 m spacing) was 7.8%.     
 

It has been reported that trees with strongly tapering stems are more stable than 
less tapered trees (Prpić 1969; Cremer et al. 1982; Valinger & Fridman, 1997). 
This was confirmed in the thinning experiment (paper II and III). Since additional 
diameter measurements were conducted at 6 m stem height on sample trees it was 
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possible to correlate stem taper between 1.3 and 6 m with damage risk. This was 
done only in the normally thinned plots (in total 67 trees). All 67 trees were 
regarded as independent observations. High tapers were found to be associated 
with low risks for storm injuries and low total (snow and wind) damage risks. The 
mean taper for damaged and un-damaged trees (only wind damages) was 0.73- 
and 0.83 mm m-1 respectively (p=0.025). The corresponding values including 
snow injuries were 0.73 and 0.84 mm m-1 (p=0.012). Since larger trees had a 
higher stem taper the connection between damage resistance and tree form may be 
hypothetically related to the trees’ size instead of their taper. This hypothesis was 
valid to some extent, but since the ratios between the mean diameters of damaged 
and undamaged trees were 0.99 after the storm, and 0.96 after accounting for 
damage caused by both the storm and snowfall, the effect of tree size on damage 
seems to be minor. Stem taper between breast height and 6 m stem height was a 
better predictor of storm damage than the often used height to diameter ratio (H/D-
value). The H/D value (only wind damages) for damaged and un-damaged trees 
was 95 and 91 but the difference was not significant (p=0.213).  
 

The injured trees in normally thinned and unthinned plots were re-measured one 
and two growing seasons after the storm and snow injuries were recorded (the 
heavily thinned stands were excluded from the comparison). The basal areas in all 
plots were further diminished by sampling trees for the biomass analyses. The 
basal area level in autumn 2004 and at the start of the growing season in 2005, 
after injuries and cutting, on each previously unthinned or moderately thinned plot 
together with the basal area and volume growth during 2005 and 2006 are shown 
in table 4. The volume growth in 2005 and 2006 was estimated as follows.  I 
assumed that the changes in form height following each treatment during 2005 and 
2006 were the same as in the growing season prior to storm felling, and then 
calculated the stem volume growth using the formula: 
 
V = BA x ∆FH + FH x ∆BA + ∆FH x ∆BA  
 
Where: V is volume, BA is basal area under bark and FH is form height. 
 

The basal area in the buffer zone after damages and cuttings (see Paper II and III 
for details) compared to the net plot was on average 3.5% higher in the control 
plots and 19.8% higher in the moderately thinned plots. Volume growth in the 
control plots was clearly lower during the two years following the heavy storm in 
winter 2005 than in the preceding years. The heavy drop in volume growth in the 
normally thinned plots (compare data in table 2 and figure 2 in Paper II with Table 
4 in this thesis) is not surprising, but it should be noted that the rapid growth 
recovery observed in the first two growing seasons following the thinning in 2002 
was not repeated following the storm-induced reduction in stem numbers. 
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Table 4. Basal areas at the start of the growing season in 2005 and both basal areas and 
volume production in 2005 and 2006.    
  

Treatment plot 

Basal 
area in 

Autumn 
2004 

(m2/ha) 

Basal 
area in 
Spring 
2005 

(m2/ha) 

Basal 
area 

growth 
during 
2005 

(m2/ha) 

Volume 
growth 
during 
2005 

(m3/ha) 

Basal 
area 

growth 
during 
2006 

(m2/ha) 

Volume 
growth 
during 
2006 

(m3/ha) 
Unthinned 
 11 34.2 30.5 0.66 9.4 0.73 10.1 

Unthinned 
 21 35.0 33.0 0.45 8.1 0.66 9.9 

Unthinned 
 31 37.7 29.0 0.83 10.5 0.73 9.9 

Unthinned 
 41 35.0 27.2 0.83 10.2 0.80 10.2 

Normally 
thinned 12 26.9 14.7 0.65 8.3 0.64 8.6 

Normally  
Thinned 22 27.0 13.3 0.67 8.3 0.69 8.7 

Normally 
thinned 32 28.2 7.8 0.41 5.0 0.42 5.3 

Normally 
thinned 42 27.5 6.0 0.21 3.0 0.29 3.8 

 
Compared to the control plots the volume growth in the normally thinned plots 

averaged 66% in the first growing season after the storm and 67% in the second. 
The decreased volume growth in the control plots in 2005 and 2006 could be 
attributed to reductions in basal area and clustered stem losses, unfavourable 
climatic conditions and/or storm-injuries to roots. The climatic conditions during 
the two years following the storm were less favourable than average due to low 
precipitation (Ulf Johansson, pers. comm..), but it seems reasonable to assume that 
the growth reduction in the control plots was to some extent related to root injuries 
and storm recovery. The presence of a negative growth effect due to storm-
induced root damage is also supported by the lack of a thinning response in 
normally thinned plots compared to unthinned controls in 2005 and 2006.  
          
Paper IV 
In Sweden, mechanisation of forestry activities began in the 1950s and although 
the machines were initially mostly used in clear cuttings they were later used in 
thinnings as well. Disturbance by the machinery used in thinnings increased the 
amount of injuries to the stems and coarse roots of remaining trees and numerous 
thinning systems were evaluated in terms of this risk during the 1970s and 1980s. 
However, apart from for a country-wide investigation conducted by the National 
Board of Forestry in 1997 (Anon. 1998), the only large-scale survey in which 
injuries to stem and coarse roots after thinning with a cut-to-length system using 
harvesters and forwarders were assessed was performed in the late 1980s 
(Fröding, 1992). No large-scale surveys focused entirely on Norway spruce 
stands.  
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The aims of the study reported in Paper IV were to estimate the injury levels to 
stem and coarse roots of remaining trees after thinning with a cut-to-length system 
using harvesters and forwarders in even-aged Norway spruce plantations in 
southern Sweden and to investigate correlations between injury levels, stand 
parameters, thinning season and the machinery used. Furthermore, the importance 
of machinery-related injuries with respect to risks for rot infection and reductions 
in quality was assessed in a literature review. 
 
Materials and methods 
The stands investigated in this study were stands that had been thinned in routine 
operations in southern Sweden, randomly selected from forestry company 
databases. The material was divided into stands that had been subjected to early 
and late thinnings, the former defined as a thinning in which strip-roads were 
established. The total number of stands in the study was 33, 21 of which had been 
subjected to early thinnings and 12 to late thinnings. All of the stands were 
situated on fertile sites. Data on each stand were collected in a sample plot survey. 
Each sample plot started from one edge of one strip-road and extended across it, 
perpendicular to the direction of the road, into the forest either to the edge of the 
next strip road or the edge of the stand, if there were no intervening roads. The 
widths of the plots were always 10 m.  
 

In order to detect all injuries the slash material in each plot was removed. An 
injury was defined as removal of the bark and cambial layer, exposing the 
sapwood. Injuries to coarse roots situated further than 70 cm from the stem and to 
roots smaller than 2 cm in diameter were not counted. The injury frequency was 
presented as the percentage of trees with injuries relative to the total number of 
trees left after thinning. Since injuries smaller then 15 cm2 are disregarded in 
inventories by the Swedish National Board of Forestry we calculated frequencies 
of both all injuries and injuries larger than 15 cm2.  
     

Silvicultural data, such as the basal area and number of stems before and after 
thinning, thinning quotient etc. were collected in the forest and additional 
information on machinery mass and thinning season were given by the forestry 
companies or contractors. 
 
Results 
In the early and late thinned stands, the total injury levels were 9.8% and 14.8%, 
respectively, while the corresponding frequencies for injuries larger than 15cm2 
were 5.8 and 10.8%. The difference in injury frequencies between early and late 
thinnings was due to significantly higher frequencies of root injuries following the 
latter. The injury level was significantly higher amongst trees adjacent to strip 
roads compared to trees in the interior of the stand. Most of the injuries were 
small, and the total injured area in trees with stem injuries averaged 30 to 40 cm2, 
regardless of whether they were in early or late thinned stands. Corresponding 
values for root injuries were 70 and 110 cm2, respectively. 
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Previously unthinned stands with high initial stem numbers and large basal areas 
were at higher risk of injury in the thinning operation. Thinning during winter 
reduced the amount of root injuries in early thinnings. Stem injuries in late 
thinnings were significantly negatively correlated to the width of the strip roads.  
   
 

Discussion 

Combination of initial spacing and thinning regime 
Numerous studies, including paper I, have shown that increased initial spacing 
results in trees with larger breast height diameters and larger knots (Sjolte-
Jørgensen, 1967; Handler & Jakobsen, 1986, Johansson, 1992). It is also well 
known that other quality variables (stem cracks, basic density) are related to 
growth rates early in the rotation period (Persson, 1985; Johansson, 1997). At a 
given diameter at final cut, increased growth when the stand was young gives a 
larger proportion of juvenile wood in the bottom log (Pape, 1999c) and juvenile 
wood is undesired for different kinds of end uses (Danborg, 1994a; Brolin, Norén 
& Ståhl, 1995; Forsberg & Warensjö, 2001). Hence, decreasing the mean diameter 
in thinning might be an important measure for improving stand quality. 
 

Diameters in the stand are inevitably lower after thinning from above than after 
thinning from below, by definition. The scope to increase the timber quality by 
thinning from above in sparse stands is dependent on the correlations between 
different quality traits, diameter at breast height, the diameter distribution and 
spatial distribution of large trees (c.f. Persson, 1975a, Johansson, 1992; Klang, 
Agestam & Ekö, 2000). The results of paper I showed that it is possible to achieve 
similar quality in the remaining stand with 3 m initial spacing and thinning from 
above as with 2 and 2.5 m initial spacings and thinning from below. However, this 
was to some extent related to the more intense first thinning in the sparse stands. 
The volume growth up to the time of first thinning was also higher in this study 
than expected from previous, larger-scale studies (Handler & Jacobsen, 1986, 
Pettersson, 1992, Fahlvik & Nyström, 2006). Given a lower standing volume at 
the time of first thinning, there would have been less scope for improving stand 
quality by thinning from above. Quality traits with weak or negative correlations 
to DBH include (inter alia) double stems, spike knots and forks. Since those 
quality reducing-features, are usually related to injuries to the leading shoot, due 
to, for example frost, or game browsing (Bergqvist, 1998; Langvall, 2000) the 
competitive status of trees with such injuries may be adversely affected by 
asymmetric competition with their neighbours (Nilsson, 1993), and thus be more 
frequent in smaller than in large diameter classes (Pettersson, 2003). 
 

Decreasing the initial spacing compared to standard would reduce establishment 
costs and could increase the net financial returns at first thinning since the trees 
would be larger, especially if thinning from above was applied. Such a 
silvicultural regime (wide initial spacing and thinning from above) seems to give 
acceptable quality in the stand left after thinning as long as the quality traits are 
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strongly correlated to the diameter per se (e.g. branch diameter, density, juvenile 
wood content and stem straightness). Given the same thinning intensity in the first 
thinning the volume growth in even-aged young Norway spruce stands after 
thinning from above, or crown thinning, is reported to be equal to, or slightly 
inferior to, thinning from below (Carbonnier, 1954; Vuokila, 1960b; Hamilton, 
1976; Vuokila, 1977; Schober, 1979, 1980, Eriksson & Karlsson, 1997). 
Furthermore, increasing the initial spacing reduces the risks for infection by root 
rot (Due, 1960, Venn & Solheim, 1994; Johansson & Pettersson, 1996) and 
damage by both snow (Braastad, 1979; Kramer, 1980) and heavy winds 
(Blackburn & Petty, 1988; MacCurrach, 1991; Gardiner & Quine, 2000). Use of 
increased initial spacing with fewer thinnings should also decrease the total 
amount of thinning injuries to stems and coarse roots during the rotation (Paper 
IV). However, a negative aspect of wide initial spacing is the decreased level of 
freedom for future silvicultural treatments, especially thinning programs, which 
also has adverse economic implications (Lohmander, 1992)     
 

The most common damaging agent for planted Norway spruce in southern 
Sweden is the pine weevil (Hylobius abietis (L.)) (Petersson, 2004; Wallertz, 
2005). The frequency of pine weevil damage could be predicted using information 
on the insecticides and/or mechanical agents, mechanical site preparation 
techniques and shelterwood that may have been applied (Petersson & Örlander, 
2003). In almost all replanted clear-cut areas additional seedlings, originating from 
either advanced regeneration from previous rotations or newly naturally 
established seedlings, will be present (Tirén, 1949; Andersson, 1988; Karlsson, 
2001). Frequencies of additional seedlings originating from natural regeneration 
(mainly birch) could also be modelled using information about the size of the 
regeneration area, seed sources on the clear-cut and in its vicinity, and site 
preparation methods that may have been applied (Karlsson, 2004). Hence, since 
both losses and gains of trees can be predicted, to some extent at least, 
regeneration treatments together with pre-commercial thinning should bee used as 
a unity in order to form the new stand. If Norway spruce is the desired species, 
additional natural regeneration may represent either an additional burden at the 
time of pre-commercial thinning or a measure to increase stocking and hence 
opportunities to improve volume production, wood quality and financial returns 
(Tham, 1988, Lohmander, 1992; Bergqvist, 1999; Valkonen & Valsta, 2001; 
Fällman & Nenzen, 2005; Agestam et al., 2006).  ). Since it has been shown that it 
is possible to grow birch and spruce together (Lindén, 2003; Fahlvik et al., 2005), 
and in many ecological respects this is preferable to cultivating pure monocultures 
of spruce (Thelin, 2000; Brandtberg, 2001), it seems reasonable to reduce the 
amount of planted trees per hectare at sites where high levels of seedlings could be 
predicted to establish naturally. Although care should be taken in any attempt to 
modify current silvicultural practices on the basis of the results presented in Paper 
I, they surely highlight the need to reconsider optimal initial spacings in relation to 
subsequent activities, such as pre-commercial thinning and thinning. 
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Thinning response 
Since trees in a stand compete with each other for growth resources (light, water 
and nutrients) their individual growth is hampered. Thinning changes the 
competition and consequently the growth rate of the remaining trees. The thinning 
response could be defined as the difference in growth between a tree growing in a 
thinned stand and a tree of identical size and age, subject to identical competition 
from neighbours but growing in an unthinned stand (Pukkala, Miina & Kellomäki, 
1998). According to Jonsson (1995) the thinning response could also be defined as 
“the difference between the actual growth and the growth that would have 
occurred if the forest had not been subjected to thinning”. It is also important to 
define whether “growth” refers to increments at breast height, total stem volume 
growth or total production above or below ground (amount of assimilated carbon).      
 
Thinning response of individual trees  
The competition for light is obvious in a dense spruce forest on a fertile site. 
Initially after thinning the remaining trees will receive higher light levels in the 
lower parts of their crowns and hence increase their production (Ginn et al. 1991, 
Hale, 2001, 2003). The gaps created in the canopy by thinning (Johansson, 1986) 
are gradually filled through crown expansion of the remaining individual trees and 
the production rate of the trees is gradually increased. Since thinning responses 
have been recorded even in stands that are not limited by light (Varmola, Salminen 
& Timonen, 2004) decreased competition for nutrients and/or water may clearly 
also explain some of the thinning response by individual trees (Romell, 1938; 
Aussenac, 2000).  
 

In the first growing season, the trees in the heavily thinned stands (Papers II & 
III) showed a moderate positive response to thinning (Figure 4. in Paper II and 
figure 4. in Paper III). If the enhanced growth rate at breast height was not a result 
of changes in resource allocation, as indicated solely by the observed stem form 
changes in the trees (Figure 2. in Paper III), this immediate response could 
probably be attributed to changes in light conditions in the lower part of the 
individual tree crowns. Since the amount of new needles is determined in the 
preceding year, the amount of new needles during the first growing season was not 
increased in the thinned stands. However, the needle litter fall per unit basal area 
was lower in the thinned compared to unthinned plots during the first year and 
therefore the tree crowns were slightly larger at the beginning of the second 
growing period. Due to the increased light levels throughout the crown, the new 
needles produced in the second and third growing seasons were probably sun 
needles, and hence for a given needle weight the canopy layer was more effective 
in the heavily thinned plots during the second and third growing seasons than in 
unthinned stands (Figure 3. in Paper III). 
 

Decreased competition for water in the heavily thinned stands (Figure 5. in 
paper II) might also have allowed the trees to continue their growth for a longer 
time in dry periods than trees in the control plots (Lagergren, 2001; Misson, 
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Nicault & Guiot, 2003). However, this hypothesis was not supported by the band-
dendrometers measurements (Figure 4. in Paper II). 
Moisture, temperature, mineral concentrations, and gaseous atmospheres are 
primary effectors of root system development (Zobel, 1989). Increased soil water 
content has been shown to be positively related to root growth (Kätterer et al., 
1995; Sword, Haywood & Andries, 1998) and even though the optimum 
temperature for root growth varies with the species and genotype, stage of 
development, and supply of soil moisture and oxygen (Kozlowski, Kramer & 
Pallardy, 1991), there is an increasing growth rate of roots with increasing soil 
temperature for the temperature range most common in nemoral and boreal forests 
(Teskey & Hinkley, 1981; Lahti et al., 2005).  
 

Expansion of the root system together with an increased amount of inorganic 
nitrogen in the soil and higher mineralization rates (in the strip roads) lead to 
higher uptake rates of nutrients, which in turn induce crown expansion and hence 
growth. It is also possible that increased amounts of soluble inorganic nitrogen 
released in the root zone, especially for trees adjacent to strip roads, decreases 
their need for expansion of the root system and hence their allocation of biomass 
to stem wood could be enhanced. It has been argued that increased amounts of 
nutrients should reduce the need for fine root growth and increase allocation to 
shoot growth (Cannell, 1989; Sheriff, 1996, Bartelink, 1998). However, this 
hypothesis, that biomass accumulation favour shoots when trees are grown with 
high resource availability, was rejected in a study by Coyle & Coleman (2005). 
The few studies that have investigated allocation to fine roots after thinning 
suggest that the roots act as a similar or even stronger sink for fixed carbon then 
before thinning (Santantonio & Santantonio, 1987a, 1987b; Beets & Whitehead, 
1996, López, Sabate & Gracia, 2003).   
 

The competition between trees in a stand may be either symmetric (two-sided) 
or asymmetric (one-sided). Symmetric competition means that all trees grow in 
relation to their size and asymmetric competition means that the growth of large 
trees is only slightly affected, or not affected at all, by small trees, while the 
growth rates of the smaller trees is slower than expected from their size alone 
(Cannell, Rothery & Ford, 1984; Weiner & Thomas, 1986; Firbank & Watkinson, 
1987). The asymmetry of competition increases when the main limiting growth 
factor is light, while symmetric competition generally occurs on sites limited by 
water and/or nutrients (Nilsson, 1993). It was argued in Paper III that the response 
to thinning of the largest trees in the heavily thinned stands implies that the post-
thinning growth of intermediate and small individual trees was not entirely limited 
by their competition for light. This conclusion was further supported by the data 
on the growth reactions of the trees adjacent to strip-roads in the heavily thinned 
plots (Table 2 and Figure 3 in Paper II). The production per unit area in the strip-
road zone was twice as high as further in the stand in the third year following 
thinning, mostly due probably to the increased availability of nitrogen from the 
harvesting residues left on the roads. It has been claimed that fertilization on sites 
with high site indices will have little or no effects on growth (Møller, Scharff & 
Dragstedt, 1969; Stone, 1986; Sikström et al., 1998) and the lack of response to 
fertilization observed in a large-scale thinning and fertilization experiment in 
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spruce stands in southern and middle Sweden has also been attributed to this 
(Eriksson & Karlsson, 1997, Eriksson, 2006). However it has been shown that 
nutrient optimization (mainly added nitrogen) in young Norway spruce stands on 
sites with high site indices in southern Sweden has resulted in a 60% increase of 
production per unit area (Bergh et al., 1999; Bergh & Linder, 2006). Taken 
together, the results from Bergh et al. (1999), Eriksson & Karlsson (1997), 
Eriksson (2006) and Paper II indicate that increasing the amount of nutrients 
(nitrogen) in stands with low leaf area indices increases the production per unit 
area simply by increasing the rate of LAI (or crown) expansion.  
 
Thinning response at stand level 
 Although most long-term thinning experiments have found small differences 
between actively thinned and unthinned stands (Table 1) numerous investigations 
have shown that thinning in young stands could stimulate the volume production 
per unit area in the first 5-15 years after thinning (Table 3., see also Pretzsch, 
2004; Judovalkis, Kairiukstis & Vasiliauskas, 2005). However, short-term 
thinning reactions at stand level must be negative since the canopy layer in the 
stand must either increase in size, effectiveness, or both, before growth can be 
increased. The initial decrease and subsequent recovery of LAI over time after 
thinning is of great interest. However, after canopy closure, neither the basal area 
reduction after thinning and light transmittance (Hale 2001, 2003), nor the 
relationship between decreasing LAI and decreasing light absorbance is linear 
(Linder 1985; Long & Smith 1992). Thus, even without any growth response in 
LAI in thinned stands, the losses in volume production will be smaller than the 
proportion of needle biomass lost due to increased irradiance of needles that were 
previously shaded (Ginn et al., 1991; Peterson et al., 1997). Intensive cutting will 
lead to production losses since the initial drop in needle biomass must at least 
partly recover to pre-thinning levels before volume production can recover.   
 

Bradley (1963) hypothesised (and showed with data from a thinning experiment 
in Corsican pine) that the short-term drop in volume production following thinning 
is subsequently compensated for by increased production per unit area compared 
to unthinned control plots. This growth pattern, an initial drop followed by a peak 
that levels out during the first 5-10 years after thinning (Figure 3), is supported by 
data reported by Lynch (1980) on the basal area production per unit area during 
the first six years following thinning, and to some extent by the results in Paper II, 
although the total production per unit area was only followed for three years. The 
growth was already higher in the third growing season, albeit not statistically 
significantly higher, in the heavily thinned plots compared to the unthinned 
controls.  



 
 
Figure 3. Hypothesised pattern of current annual increment in the first five to ten years after 
thinning of different grades (freely after Bradley, 1963).   
 

The increased production per unit area at short- or intermediate time scales has 
been called “Wuchsbeschleunigung” or “growth quickening effect” (Dittmar, 
1959; Assmann, 1961, 1970). How is it then possible that removal of a certain 
amount of effective members from a tree population leads to increased growth per 
unit area? The increase of individual trees can be explained by reduced 
competition for growth resources, but what about increases in production per unit 
area? It could be argued that the increased amount of nutrients from harvesting 
residues is a resource that is used to rebuild the production “equipment” (roots and 
needles) to post-thinning levels rather than to increase production per unit area. 
However, as long as thinning is carried out from below, the needles destined to 
become harvesting residues will have been accumulated over a long time on trees 
with small production capacities. The needles on each tree have developed over 
approximately five years, and this nitrogen resource is supplied as harvesting 
residues and released over a shorter time than it was accumulated, together with 
nitrogen release from decomposition of fine roots, then used to produce sun 
needles on trees in improved light conditions. Furthermore, there may be a surplus 
of growth resources resulting from increased soil activity, and hence release of 
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inorganic nitrogen bound in the soil due to increases in soil temperature and 
moisture (Bornebusch, 1930; Wright, 1957; Aussenac, 2000; Øyen, 2001). 
 

In addition to this physiological explanation of the thinning reaction in terms of 
volume growth per unit area, a further effect is provided by stem selection in the 
thinning (Assmann, 1970, Elfving, 1985). However, evaluating the selection effect 
is not straightforward. The competitive status of a tree has both genetic 
components and components related to differences in micro-site conditions and 
small-scale calamities (browsing, frost, fungi infections) affecting the tree in 
question or its neighbours. Selection of the genetically superior producers implies 
thinning that strictly removes the smallest trees. It is of course possible that some 
small trees have better growth-related genetic traits than neighbouring large trees, 
but are situated on less fertile micro-sites or have been damaged by browsing or 
frost, but it is difficult or impossible to distinguish such trees from those that are 
genetically inferior during a thinning. The other possibility for increasing growth 
after thinning through selection is to look for trees showing “bad growth”, i.e. 
trees that are descending in diameter rankings, this is to a large extent dependent 
on the health status (or adverse changes in the health status of a tree’s closest 
neighbours). If it is possible to identify trees that are decreasing in the rankings 
there will be scope for a positive selection effect.  
 
To summarize; a lower growth reduction compared to the amount of volume 
removed could be explained by the following considerations: 
 

1. Removal of a certain needle mass (or basal area) does not imply a linear 
reduction in capacity to intercept light. 

2. Leaving harvesting residues in the stand after removing trees will result 
in a rapid increase in available nitrogen, which may increase needle 
efficiency. Increases in soil microbial activities and the release of tightly 
bound inorganic nitrogen could further enhance this effect. 

3. Improved water status of the soil may allow the remaining trees to grow 
longer during dry periods. 

4. If the trees removed in thinning account for a higher proportion of the 
total standing volume than the proportion of total production for a few 
years prior to thinning then the selection effect will be positive. 

 
The “Wuchsbeschleunigung” or “growth quickening effect” might therefore be 
explained as a short-lived phenomenon in cases where the positive effects of 
increased nutrient status exceed the initial growth reduction.  
 

Risks and calamities  
The main implication of the results presented in Paper I, II and III, together with 
previous reports concerned with production related to initial spacing and thinning 
in even-aged Norway spruce plantations is that there is a large “window of 
opportunity” for silvicultural regimes in terms of their effects on total volume 
production. For different possible thinning programmes this “window of 



 75 

opportunity” includes choices regarding thinning intensity and form, time of first 
thinning, geometrical pattern and number of thinnings or thinning interval 
(Carbonnier, 1966; Bryndum, 1978; Eriksson & Karlsson, 1997, Pretzsch, 2004, 
Mäkinen, Isomäki & Hongisto, 2006). The practical implications of this large 
“biological window” are that the silvicultural regime applied to Norway spruce 
stands should not focus on volume production but on the present, and predicted, 
economic situation and risks. A sound economically-based silvicultural regime for 
even-aged plantations of Norway spruce should ideally incorporate:  low initial 
investment costs for all measures (including soil preparation, planting and pre-
commercial thinning); satisfactory volume production; low risks for root rot, 
thinning injuries to stems and coarse roots, storm and snow damage, and mortality 
due to self-thinning; and production of large, high quality stems. However, 
optimal conditions for any one of these features will be far from optimal for 
others. Therefore, silvicultural planning must define and balance conflicting goals.  
 
Thinning injuries 
Paper IV in this thesis shows that thinning has a negative impact on the remaining 
stand due to a large amount of injuries to stems and coarse roots. Given the mean 
injury levels detected, and a thinning program, starting with 2500 stem ha-1, with 
three thinnings in each of which 30% of the basal area is removed (random cutting 
of previously injured trees), the percentage of trees with injuries larger than 15 
cm2 at final felling would be 27%. Based on available literature concerning rot 
establishment and growth in various kinds of injuries it was proposed in Paper IV 
that 1-4% of the trees in the final felling will have been affected by advanced 
decay due to such injuries. Additional quality losses from healed wounds and 
staining should also be expected. However, the scientific literature regarding risks 
for infections in stem and root wounds is problematic to evaluate, for several 
reasons.  
 

Firstly, how relevant are reported infection levels for different geographical 
locations to conditions in southern Sweden? Previous investigations on infection 
rate in thinning injuries in Sweden were limited to the central part of the country 
and almost solely focused on infections in root wounds (Nilsson & Hyppel, 1968, 
Lundeberg, 1972). Older Swedish literature also dealt with blazing wounds from 
practical timber marking (in central or northern part of the country) but those 
damages were generally larger and deeper than thinning wounds (Ernberg, 1907; 
Nordfors, 1923; Ekbom, 1928; Silvén, 1944). Vasiliauskas, Stenlid & Johansson 
(1996), Vasiliauskas & Stenlid (1998) and Vasiliauskas (1998) showed that risks 
for fungal infections of game wounds and the fungal flora in the wounds were 
quite similar in central Sweden and Lithuania, so since most studies in northern 
and middle Europe have found Stereum sanguinolentum to be the most important 
wound invader it seems reasonable to consider as many investigations as possible 
from Europe in attempts to estimate lower and upper limits for invasion 
frequencies of the types of wounds considered in Paper IV.  
 

A second problem is related to the fact that in studies of risks for infection and 
spread of rot fungi in wounds of different sizes there is usually little knowledge 
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about the sizes of the initial wounds. Koch & Thongjiem (1989) found that the 
sizes of small original wounds (8-100 cm2) were increased by 555 % after 2.5 
years, because of bark necrosis surrounding the initially exposed wood. Hence, it 
is possible that reported infection levels have been substantially underestimated in 
numerous investigations, especially for small injuries. However, we know that 
small injuries, to both stems and coarse roots, heal quite quickly and further fungal 
development then ceases. 
 

The negative impact on the residual stand and future income of the injuries is 
not so great that radical changes should be made to a silvicultural system that has 
other substantial advantages (Boström, 1978; Kallio 1984), but it is always 
advisable to minimize their abundance. 
 
Root- and butt rot caused by Heterobasidion spp. 
Although they were not investigated in the studies this thesis is based upon, 
assessments of thinning in Norway spruce stands in southern Sweden should 
always consider the risks for introducing and increasing the spread of root rot 
(Heterobasidion spp.) associated with thinning activities (Vollbrecht & Agestam, 
1995; Berglund, 2005). Both the number of thinnings and the thinning intensity 
are related to the spread of butt rot (Vollbrecht, 1994), but it would be of great 
practical value to know whether the overall risk for spreading root rot, given the 
same periodic mean basal area, is highest with one early heavy thinning or with a 
more frequent thinning schedule in which smaller amounts of basal area are 
removed in each thinning. Theoretically, the probabilities that thinnings will be 
sub-optimal, and introduce root rot, will be greater with a frequent-thinning 
schedule than with a single thinning, and there will also be greater scope to apply 
measures for preventing Heterobasidion spp. infection either by using protective 
agents (Berglund, 2005) or by thinning in winter (Brandtberg, Johansson & 
Seeger, 1996) with a single thinning.     
 
Damages due to heavy winds and snow 
The strong relationship between thinning grade and storm and snow damage 
observed in the thinning experiment reported in Papers II and III has been 
previously documented in Norway spruce stands and stands dominated by other 
tree species, both in Sweden (Persson 1972, 1975b) and abroad (Cremer et al. 
1982, Lohmander & Helles 1987). It is also well known that recently thinned 
stands are most sensitive to storm injuries (Persson 1975b, Laiho 1987, 
Lohmander & Helles 1987).  
 
Persson (1972) investigated a newly established thinning experiment in Norway 
spruce with seven different blocks located in different parts of southern Sweden 
that suffered heavy storms in either 1967 or 1969, for up to three growing seasons 
after thinning. In the treatments with thinning from below, the thinning grades 
ranged from unthinned controls to 70% removal of basal area with intermediate 
thinning grades of 20% and 40%. The plots in which 70% of the basal area was 
removed lost a further 21% of their remaining basal area in the storms, while the 
losses following the 0 to 40% thinning treatments were less then 1%. Injuries due 
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to wet snow showed an opposite tendency, with injury frequencies being lowest 
following the heaviest thinnings. The cited author concluded that there was an 
inverse correlation (albeit very weak) between snow injuries and thinning 
intensity. 
 

The general relationship between thinning intensity and risks for snow damages 
is not as clear as for storm injuries. Unthinned stands are generally believed to be 
at higher risk for snow injuries than thinned stands. However, in the first years 
after thinning even snow injuries are reported to be more frequent in thinned 
compared to unthinned stands.   
 

It is important to consider the total injury level over a whole rotation period, and 
to adjust all silvicultural options accordingly to find the best combination of 
reduced risks and satisfactory production of desired forest products (Persson, 
1975b; Cameron, 2002; Gardiner et al., 2005). In even-aged Norway spruce 
plantations in southern Sweden subjected to different thinning regimes, the total 
amount of damage from both wind and snow during a 25-year period was highest 
in unthinned stands, although the between-treatment differences were not 
significant according to a study by Valinger & Pettersson (1996). Investigations 
from the same experimental series reported by Valinger & Pettersson, (1996) after 
the heavy storm that affected southern Sweden on the night between the 8th and 
9th of January 2005 detected no statistically significant differences in damage rates 
related to different thinning programmes, amongst either spruce or pine stands 
(Valinger et al., 2006). Over a longer time period the unthinned stands may also 
sustain as high levels of snow and wind injuries as heavily thinned stands, and 
additional losses from self-thinning are more frequent in dense stands. It is also 
important to consider variation in damage occurrence due to geographic location, 
topography and site conditions (Valinger & Fridman, 1999; Kuboyama & Oka 
2000; Zhu et al. 2006; Olofsson, 2006).  
 

To minimize damage due to snow and heavy winds in a silvicultural system that 
includes cuttings, pre-commercial thinning (provided it is done well) can enhance 
subsequent stand stability, and thus help minimize damage due to snow and heavy 
winds later in the rotation period (Anon, 1969; Nielsen et al., 2004; Achim, Ruel 
& Gardiner, 2005). Reduced competition between individual trees in early phases 
of stand development increases root growth and hence the stand stability over the 
whole rotation period (Nielsen, 2001; Nielsen et al., 2004). The earlier the 
cuttings, the shorter the time the stand will start to recover pre-cutting levels of 
stability (Sjöström, 1932; Nielsen, 2001) and the greater the stand stability will be 
(Jacobs, 1936; Werner & Årmann, 1955; Hütte, 1970; Kramer, 1979; Cameron, 
1982; Rössler, 2006). Cutting in an old, dense and previously unthinned stand will 
be most hazardous (Sjöström, 1932; Jacobs, 1936; Anon., 1954; Persson, 1975b; 
Abetz & Unfried, 1984; Chroust, 1987; Nielsen 2001). Nielsen (1990) claims that 
in order to obtain a stable stand with a flexible rotation length, the number of trees 
at 6 m height should not be higher than 2,000-3,500 stems per hectare and no 
thinning should be applied in the expected last third of the rotation period. 
Delaying the first thinning, in order to increase the volume of merchantable 
volume and dimension of individual trees (Huuskonen & Hynynen, 2006) and 
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hence the economic returns (Valsta, 1992; Pukkala et al., 1998; Hyytiäinen & 
Tahvonen, 2002), will enhance the risk of wind damages. 

 Practical implications  
A silvicultural system with wide initial spacing and no thinning will be preferable 
to minimise risks for storm felling, injuries from logging machines (obviously 
since no thinning is carried out) and butt rot. However, this system will be less 
favourable in other respects since timber quality and production are likely to be 
lower and there will be no income before final felling. A silvicultural system with 
wide initial spacing and thinning from above might combine the advantages of 
sparse stands with the avoidance of losses from a no-thinning regime. Most stands 
at thinning age are also too dense for application of a non-thinning system since 
dense stands are sensitive to snow injuries (Hesselman, 1912; Schotte 1916; 
Chroust, 1987) and additional losses from self thinning (Hynynen, 1993; Eriksson 
& Karlsson, 1997, Skovsgaard, 1997). Given the need for thinning, the thinning 
regimes with the lowest overall negative associations with root rot, stem and root 
injuries and damage due to wind and snow seem to be regimes with early and 
heavy thinnings. Early and heavy thinnings should also be preferable in stands 
with large variation in timber quality. In these stands trees of lower quality should 
be removed to favour the trees of better quality as early as possible. However, 
heavy thinnings might results in large variation in annual ring width and increased 
spiral grain (Danborg, 1994b; Pape, 1999d; Säll, 2002). Additionally, early 
thinnings with high grades and intensities will reduce the freedom to choose 
between different thinning programmes later in the rotation. 
 
Further research  
The initial area volume growth response after thinning with different grades needs 
further study. The theoretical figure (Figure 3.) initially presented by Bradley 
(1963), should be investigated in field experiments. Investigations on volume 
production per unit area in each year following thinning at different intensities 
should not be evaluated by standard volume functions, so such investigations 
should include destructive sampling at the end of the period of interest 
(approximately 10 years) or alternatively be based on volume measurements of 
standing trees at regular intervals.   
 

For practical foresters the findings that initial spacing and thinning grade in 
young even-aged stand of Norway spruce does not have a major affects on total 
volume production seen over a whole rotation are of great practical value. 
However, there is limited knowledge about the effects of differences in thinning 
grades applied at later stages in the rotation period, and more specifically how 
intense cuttings can be applied without causing significant growth losses. 
        

The strong response of trees adjacent to strip roads after thinning observed in 
the studies reported in Papers II and III suggests that additional nutrient (nitrogen) 
supply might increase growth even on sites with high site indices. This conflicts 
with results from experiments in which the effects of combinations of thinning and 
fertilization were examined in Sweden (Eriksson & Karlsson, 1997; Eriksson, 
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2006). However, the lack of a nitrogen response observed in the cited studies may 
have been due to limited removals in each cutting. There is a need for more 
knowledge about growth responses to fertilization in combination with heavy 
thinnings. It is also important to evaluate wind damage in such experiments since 
the combination of fertilization and heavy thinning increase such damage (Laiho, 
1987; Valinger & Lundqvist, 1992).  
 

The Nordic and European literature concerning rot infection in thinning injuries 
on Norway spruce is complicated to evaluate. Investigations of the effects of small 
injuries, up to 50 cm2, both on coarse roots and stems, on timber quality and risk 
for rot infection is absent in southern Sweden and needs to be examined.   
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