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Studies of Carbohydrate Structure, Properties and Interactions by 
NMR Spectroscopy. 

Abstract 
In this thesis the structure, properties and interactions of different types of 
carbohydrates were investigated by NMR spectroscopy.  

The structures of kappa- (κ) and kappa/mu- (κ/µ) carrageenan oligosaccharides were 
analyzed by studying the hydroxy protons. It was shown that a hydrogen bonding 
interaction is present across the 14 glycosidic linkages of µ-carrabiose in the κµκ 
hexa- and κµµκ octasaccharides. The occurrence of hydrogen bonding in κ/µ-
carrageenan oligosaccharides may suggest that µ-carrabiose units, mostly found in the 
non-helicoidal regions of κ-carrageenans have an underestimated role in the structural 
organization of the κ-carrageenan gel network. 

Hydroxy proton NMR was also used to study the effect of trehalose on the hydration 
and hydrogen bonding in lactose in aqueous solutions. The small effects of trehalose on 
the hydration and hydrogen bonding interaction in lactose were very similar to those 
found for sucrose. The results suggested that, at concentrations below 40% (w/w), it is 
the concentration of hydroxy groups that governs sugar-sugar and sugar-water 
interactions rather than the type of sugar. 

A method using diffusion-edited NMR spectroscopy was developed for solvent 
suppression when determining the mannuronic (M) to guluronic (M) acid ratio in 
alginate polysaccharides. The method could be employed to determine the M/G-ratio at 
temperatures below 50 °C. Through all of the work in the thesis diffusion-edited NMR 
experiments also proved to be practical for studies of biomolecules, to for example 
selectively remove interfering signals from buffer to enable the interpretation of sample 
signals.  

The activities and specificities of four different glycosaminoglycan (GAG) sulfatases 
from the human gut commensal Bacteroides thetaiotaomicron were determined. One of 
the sulfatases, BT3349, was found to be the first bacterial GAG endolytic-O-sulfatase, 
with chondroitin specific GalNAc-4-O-sulfatase activity. The other three enzymes were 
shown to possess strictly exolytic activity, BT3333 as a GalNAc-6-O-sulfatase, 
BT4656 as a GlcNAc-6-O-sulfatase and the third one, BT1596, as a ∆-4-hexuronate-2-
O-sulfatase. 

Keywords: NMR, carbohydrate, polysaccharide, oligosaccharide, sugar, analysis, 
structure, interaction, diffusion, hydroxy proton. 
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Till Tereza 
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1 Introduction 
The work in this thesis centers on carbohydrates and the use of nuclear 
magnetic resonance (NMR) spectroscopy to study their structures and 
properties as well as their interactions with other carbohydrates or 
biomolecules such as proteins. Carbohydrates of different sizes and classes 
have been investigated, from common naturally occurring disaccharides 
through synthesized oligosaccharides up to large polysaccharides, of both plant 
and animal origin. Most of the work has been done within the framework of the 
European Union project PolyModE (POLYsaccharide MODifying Enzymes). 

 
Figure 1. The PolyModE project official logotype and project details. 

1.1 PolyModE 

The overall goal of the PolyModE project was to identify novel polysaccharide 
modifying enzymes to optimize the potential of hydrocolloids for food and 
medical applications. The project was concentrated on six polysaccharide 
classes with high potential for biological and biotechnological applications: 
alginates, carrageenans, chitosans, glycosaminoglycans (GAGs), pectins and 
xanthan gums. These six polysaccharides are all of great commercial interest 
with high current or predicted market value in the multi-billion dollar range. 
Some of these polysaccharides with the most useful properties are often 
produced by a few very specific organisms, so that their supply is extremely 
limited. Their amounts are also continuously reduced due to overutilization and 
climate changes.  
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The aim was thus to identify, analyze and then produce enzymes that can be 
used to increase production of the polysaccharides with the best properties but 
that are limited in natural supply. Further the identification of novel enzymes 
that modify polysaccharides in a non-random manner would also produce 
polysaccharides with new properties and thereby new applications. The main 
focus was on finding enzymes for modification of substitution patterns and 
sequence specific depolymerizing enzymes. 

A part of the project was dedicated to generic techniques for analysis of the 
activity and specificity of the new enzymes and to determine the structures and 
properties of the precursors and of the modified oligo- and polysaccharides. 
The research in this thesis, within the PolyModE project, has been focused on 
structural analysis of carrageenans, alginates and GAGs. 

Besides the increased availability of raw materials and the generation of 
novel compounds with new and improved properties the identification of 
polysaccharide modifying enzymes and the development of methods for their 
use in production could lead to several advantages compared to current 
methods of production: reduction of production costs, reduction of energy 
input and reduction of potentially harmful wastes (PolyModE, 2013).  

1.2 Carbohydrates 

Carbohydrates together with proteins, nucleic acids and lipids constitute the 
four major classes of biomolecules. Of these four, carbohydrates are by far the 
most abundant. Carbohydrates are ubiquitous and serve for example as 
nutrients, play important roles in cellular recognition, bacterial and viral 
infections and they are also important as structural material in cell walls and 
insect and shell fish exoskeletons (Lindhorst, 2007).  

Carbohydrates are very diverse and can exist as mono-, oligo- and 
polysaccharides. Monosaccharides are the smallest carbohydrate building 
blocks and exist as aldoses and ketoses. A monosaccharide can be found in the 
two different enantiomeric forms D and L, based on the absolute configuration 
at the highest numbered chiral center in relation to D-glyceraldehyde. Most 
common are monosaccharides with five (pentose) or six (hexose) carbon atoms 
and they are in an equilibrium between an open form and cyclic hemiacetals, 
formed between the carbonyl group and the hydroxy group on carbon 4 or 5, 
yielding furanoses and pyranoses respectively. Upon cyclization a new 
stereogenic center is formed, called the anomeric center. The hydroxy group at 
the anomeric center can be in either β or α position and because of the 
equilibrium between the open and closed forms the configurations can 
interchange. The 6-membered ring of aldohexose monosaccharides has two 
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distinct forms of the most common conformation, the chair conformation. 
These two forms are 4C1 and 1C4 which indicate whether carbon-1 and carbon-
4 are above or below the reference plane of the chair conformation (Figure 2).  

 
Figure 2. Selected pyranose conformations. Two chair conformations, one half-chair, one boat 
and one skew-boat conformation. 

Different hexoses energetically favor the two forms differently depending on 
the number of non-bonded interactions and the number of exo-cyclic groups in 
equatorial versus axial positions (Kamerling et al., 2007). These different 
preferences for the two forms can also give implications on a macromolecular 
organizational level of polysaccharides, i.e. it can affect helix forming ability 
and in turn also gelling behavior (Draget et al., 2002; van de Velde & De 
Ruiter, 2002; van de Velde et al., 2002). In for example alginates the two 
constituent monosaccharides β-D-mannuronic acid and α-L-guluronic acid 
have the 4C1 and 1C4 conformations respectively leading to different chain 
conformations and gelling behavior. Other important conformations of 
pyranoses are the half-chair (H), boat (B) and skew (S) conformations (Figure 
2). Some monosaccharides have more than two low energy conformations that 
can be observed by NMR in solution. For example iduronic acid have three 
such conformations, these are 1C4, 2SO and 4C1. When internally positioned in 
oligomeric or polymeric GAGs the 1C4 and 2SO conformations are predominant 
(Ferro et al., 1990).  

Disaccharides are dimers of monosaccharides that are formed when the 
hemiacetal moiety of one monomer reacts with any hydroxy group of another 
monomer forming an acetal. The bond linking the two sugars is called a 
glycosidic bond. Disaccharides can be reducing or non-reducing, depending on 
if they have a free hydroxy group on the anomeric carbon or not. Two of the 
most well-known disaccharides are sucrose and lactose. Sucrose and lactose 
are also known to protect and stabilize proteins and other biostructures when 
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they are for example dried or frozen (Crowe et al., 1998; Crowe et al., 1996). 
Another disaccharide usually considered superior to sucrose and lactose in this 
respect is trehalose (Green & Angell, 1989). Many draught resistant, 
anhydrobiotic, organisms are known to accumulate trehalose to protect their 
biostructures (Crowe et al., 1998). Trehalose and sucrose are non-reducing 
disaccharides and lactose is reducing, all with the same molecular formula 
(C12H22O11). They are comprised of α-D-glucopyranosyl-(1↔1)-α-D-
glucopyranoside, α-D-glucopyranosyl-(1↔2)-β-D-fructofuranoside and β-D-
galactopyranosyl-(14)-D-glucopyranose respectively (Figure 3). 

 
Figure 3. Schematic structures of (a) trehalose, (b) lactose and (c) sucrose. 

When two to ten monosaccharides are linked together via glycosidic bonds 
they are termed oligosaccharides, larger structures are polysaccharides 
(Kamerling et al., 2007). Around 4x1011 tons of carbohydrates are 
biosynthesized in nature each year, the majority of this is produced as 
polysaccharides. The best known polysaccharides are the structural 
polysaccharides cellulose and chitin and the energy storage polysaccharides 
starch and glycogen (Lindhorst, 2007). 

The aforementioned diversity of carbohydrates stems from the number of 
possible combinations of monosaccharide units and linkages between them. 
The monosaccharides units can differ in number and position of substituents, 
absolute configuration (D- or L-), anomeric configurations (α or β) and ring 
forms (pyranosides, furanosides). In addition, the carbohydrates can form both 
linear and branched oligomers and polymers.  

1.2.1 Carrageenans 

Carrageenan is the generic name for a family of linear sulfated galactans found 
as structural polysaccharides in red algae (Rhodophyceae). They are composed 
of (1–3) linked β-D-galactopyranose (G) and (1–4) linked α-D-galactopyranose 
(D) which forms the basic repeating unit of carrageenans. There are six major 
classes of carrageenans; mu (µ), kappa (κ), nu (ν), iota (ι), lambda (λ) and 
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theta (θ). Different species of algae produce different types of carrageenan, it 
can also depend on season of harvest and the life cycle stage of the algae 
(Rinaudo, 2008; van de Velde & De Ruiter, 2002; van de Velde et al., 2002). 
The classification divides the carrageenans into groups depending on the 
occurrence of sulfate groups and 3,6-anhydro bridges in the main repeating 
dimeric units (Figure 4).  

 
Figure 4. Schematic representation of the different dimeric units in carrageenan. The 
nomenclature developed by Knutsen et al. (1994) can be found for all monomeric units. 

µ, ν and λ are the biological precursors of κ, ι, and θ respectively. The 
different classes represent idealized dimeric structures, the polysaccharides 
themselves are not totally homogenous (van de Velde et al., 2002). A simple 
nomenclature to describe the complex structures was developed by Knutsen et 
al. (Knutsen et al., 1994) where G denotes a (1–3) linked β-D-galactose and D 
a (1–4) linked α-D-galactose. A represents the existence of a 3,6-anhydro 
bridge and S preceded by a number designates the position of sulfation. Only 
the (1–4) linked α-D-galactose units can have an anhydrobridge (Figure 4). The 
dimeric units in the different carrageenans are called carrabiose or 
neocarrabiose, depending on whether there is a G or a D residue in the 
reducing end (Figure 5). 
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Figure 5. Examples of carrabiose and neocarrabiose dimeric structures. a) µ-β-neocarrabiose, 
b) κ-β-neocarrabiose, c) µ-α-carrabiose and d) κ-α-carrabiose. 

The commercially most important carrageenans are ι, κ and λ, where the two 
former are gelling agents and the latter is a viscosity enhancer (van de Velde et 
al., 2002). Carrageenans are used in, for example, frozen desserts, jellies, 
cottage cheese and sauces. Other areas of use are pharmaceutical products and 
lubricants for the mining industry. The size of commercial carrageenans is 
usually in the range of 400–600 kDa, with a lower limit of use in food products 
of 100 kDa (van de Velde & De Ruiter, 2002).  

The carrageenan polysaccharides are usually extracted from the algae either 
through hot water or hot alkaline extraction. With alkaline extraction there is a 
simultaneous conversion of µ, ν and λ into the gelling anhydro bridge forms κ, 
ι and θ (van de Velde et al., 2002). The mechanisms of gelling differ slightly 
between the different types of carrageenan. It is considered that carrageenan 
gelling starts with that the polysaccharide chains transform from random coil 
structures into helices (double or single) that then aggregate into gels. The 
exact mechanisms for this is however not yet fully understood (Michel et al., 
2006), while it is known that the ionic strength and the salts in solution greatly 
affect the gelling properties of carrageenans. The precursor carrageenans µ, ν 
and λ have reduced, or no, gelling ability due to the 4C1 conformation of the D-
residues which introduce kinks in the polysaccharide chain and hinders helix 
formation which in turn impedes gelling (van de Velde et al., 2002) (Figure 6). 

 
Figure 6. Schematic representation of how the differences in polysaccharide chain conformation 
affect helix formation and gelling behavior of κ- and µ-carrageenan. 
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Structural analysis of carrageenans is important because of the different traits 
of the different types; the right type needs to be used for the right application. 
Interactions and gelling mechanisms are also important to study, to know how 
to develop carrageenans with new properties for new applications, and to 
correlate structures and functions (van de Velde et al., 2002). Enzymes active 
on carrageenans can greatly aid in the analysis of the polysaccharide. 
Carrageenases can be used to depolymerize the polysaccharide at defined 
positions. The resulting oligosaccharides can then be characterized by 
analytical methods (Jouanneau et al., 2010; Guibet et al., 2006). Sulfatases can 
be used to control and analyze sulfation and thus gelling behavior (Prechoux et 
al., 2013). Sulfurylases can introduce the anhydro bridge in D-residues in a 
specific manner without the depolymerizing side effects of alkali treatment 
(Genicot-Joncour et al., 2009). Biological studies of carrageenans are 
important because in the past both positive and negative health effects have 
been associated with carrageenans (Campo et al., 2009). Antiviral and 
antitumor activities have been found (Zhou et al., 2004; Carlucci et al., 1999) 
but studies also show that LMW oligomeric carrageenans can induce 
inflammation, intestinal ulcerations and neoplasms (Tobacman, 2001). 

1.2.2 Alginates 

Alginate is a polysaccharide that is found in brown seaweeds (Phaeophyceae) 
and two families of bacteria, Pseudomonadaceae and Azotobacteraceae. In 
algae alginate is a cell wall structural component, in Azotobacter it is a cell 
wall component of vegetative capsules and dormant cysts and in Pseudomonas 
it is an exopolysaccharide utilized in biofilms. Alginate is a linear copolymer 
that consists of (14) linked β-D-mannuronic acid (M) and α-L-guluronic acid 
(G). In the polysaccharide the M and G residues are arranged in three different 
ways, either as blocks of M or G or alternating M and G (Figure 7) (Haug et 
al., 1966).  

 
Figure 7. Schematic structure of alginate and a representation of possible block-structures. 
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The arrangement of M and G residues vary with the seaweed source and 
harvesting season (Draget et al., 2002). Alginates are easily soluble in water, 
forming gels or viscous solutions, in the presence of M2+ counter ions. They 
have numerous applications in the food industry to ensure proper texture, 
density and stability in dairy products, baked goods and restructured food 
stuffs (Draget et al., 2006). Alginates are biocompatible making them suitable 
for use in biomedical and pharmaceutical areas such as absorbent in wound 
dressings and molds in dentistry (Rinaudo, 2008). Different areas of use 
require different properties of the alginate and its gelling. The physical 
properties of alginates are correlated to the monomeric composition or M/G-
ratio, the M and G distribution and the molecular weight (Stokke et al., 1991; 
Haug et al., 1967b). Alginates of high G-block content gives strong gels in 
presence of Ca2+ ions where the alginates form junction zones by binding to the 
Ca2+ ions, the egg box model (Figure 8) (Grant et al., 1973). Alginates with 
high M-block or alternating structure content form more disordered 
conformations and hence more flexible gels. Commercial alginates vary greatly 
in size, between 32 and 400 kDa, depending on the application, generally 
higher molecular weight alginates give stronger gels (Rinaudo, 2008). Alginate 
with high G content is an excellent replacement for gelatin in many 
restructured foodstuffs, because of its plant rather than animal origin. 

 
Figure 8. Left: Schematic representation of guluronic acid (G) binding to Ca2+ in the egg-box 
model. Right: Overview of the egg-box model. Black circles represent Ca2+ ions and solid lines 
the alginate polymer. 

Alginates with M/G-ratios of 0.5–0.7 are in high demand from industry but can 
be difficult to obtain from natural sources since many seaweed species only 
produce alginates with M/G-ratios around 1.2–1.6. Manipulating the M/G-ratio 
of alginates can be done chemically but requires high temperatures or catalysts 
that yield depolymerized or catalyst contaminated alginates. Enzymatic 
alteration of M/G-ratios is also possible using C5-epimerases that catalyze the 
conversion of M into G in the alginate polymer (Draget et al., 2006; Valla et 
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al., 2001; Ertesvåg et al., 1999). Non-chemical and sequence specific 
depolymerization of alginates can be achieved with lyases (Thomas et al., 
2013; Aarstad et al., 2012; Lundqvist et al., 2012; Ostgaard et al., 1993; 
Romeo & Preston, 1986). C5-epimerases used in combination with chemical 
hydrolysis or sequence specific alginate lyases can generate the substrate 
specificity of the epimerase and also, in the latter case, sequence specific 
oligomers. Since alginates from different algal sources have different M/G-
ratios and show very different properties it is important to be able to determine 
this ratio accurately, to ensure proper characterization of the alginate. This is 
usually done by NMR (Grasdalen, 1983; Grasdalen et al., 1981; Grasdalen et 
al., 1979a; Grasdalen et al., 1977; Penman & Sanderso.Gr, 1972) but IR, near-
IR and Raman spectroscopy are also used (Salomonsen et al., 2008; Sakugawa 
et al., 2004; Mackie, 1971). 

1.2.3 Glycosaminoglycans 

Glycosaminoglycans (GAGs) are a large group of heterogeneous, linear, 
negatively charged polysaccharides that can be divided into five different 
subfamilies: chondroitin, heparin/heparan sulfates, dermatan, keratan and 
hyaluronic acid. Of those five groups the first four are sulfated proteoglycans 
whereas hyaluronic acid is non-sulfated and not attached to any protein. All the 
GAGs have different disaccharide repeating units which both within and 
between the groups can differ in sulfation pattern, meaning that GAGs 
potentially are more information dense than DNA or proteins (Sasisekharan et 
al., 2006). The heparin and heparan sulfate (HS) repeating disaccharide unit is 
(4)α-L-IdoA/β-D-GlcA(14)α-D-GlcN(1) while chondroitin sulfate (CS) 
consists of (4)β-D-GlcA(13)β-D-GalNAc(1). The basic building block 
of dermatan sulfate (DS), which is similar to chondroitin, is made of (4)α-L-
IdoA(13)β-D-GalNAc(1). Keratan sulfate (KS) lacks any hexuronic acid 
and consists of (3)β-D-Gal(14)β-D-GlcNAc(1). The fully unsulfated 
GAG hyaluronic acid (HA) has the repeating unit; (4)β-D-GlcA(13)β-D-
GlcNAc(1). For a detailed view, and possible sulfation patterns, of the 
different GAGs see figure 9.  
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Figure 9. Schematic representation of GAG structures. Sulfate groups can be present at all or 
some of the specified positions.  

GAGs are present in all animals (metazoan) and in some bacteria (DeAngelis, 
2012). In vertebrates they possess structural (connective tissue such as skin, 
cartilage, epithelia etc.) and metabolic functions (regulation of cell growth, 
anti-thrombotic effects, receptor and co-receptor functions). The specific 
functions vary between the different classes of GAGs (DeAngelis, 2012; 
Wight, 1999). GAGs are essential and malfunctions in their biosynthesis or 
regulation can result in a number of diseases such as atherosclerosis, cancer 
and Alzheimer’s disease (Wight, 1999). HA is extensively used in the 
cosmetics and medical industry, CS is emerging as a valuable nutraceutic and 
LMW heparins are used for thrombosis treatment. 

The study of GAGs is a challenge. Their inherent heterogeneity in both 
chain length and sulfation, partly a result of their non-template driven 
biosynthesis, makes it difficult to both isolate and characterize different 
structures. Structural analysis of GAGs have progressed a lot in recent years 
due to great efforts in the development of enzymatic tools for specific 
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depolymerization and modification of GAGs as well as in the development of 
analytical tools and methods (Sasisekharan et al., 2006).  

Important GAG modifying enzymes that can be used for structural analysis 
or chemo-enzymatic synthesis of GAGs are sulfatases, sulfotransferases and 
glycosidases. The biological properties of GAGs, such as heparin, are 
correlated to their structure and sulfation pattern. Identification of new 
enzymes with the ability to add or remove sulfate groups at specific positions 
in a specific residue in a GAG chain will allow in conjunction with 
glycosidases to produce GAGs of defined sizes and with a defined substitution 
pattern. Enzymatically tailored GAGs are of great value for structure-function 
studies or for therapeutic purposes since synthesis of GAGs is laborious and 
difficult and extraction of GAGs from animal sources generally produce small 
amounts of heterogenic GAG mixtures (DeAngelis et al., 2013). The ability to 
tailor or structurally characterize GAGs in vitro is expected to grow, with the 
help of specific sulfatases, increasing our ability to study structure-function 
relationships in detail. It will also help in the production of more specific, more 
functional and potentially novel GAG structures and therapeutics such as 
heparin-drugs (DeAngelis et al., 2013; Pempe et al., 2012). 
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2 NMR Spectroscopy 
NMR is today an indispensable analytical tool for many chemists, physicists 
and biochemists. It all started in the 1940s when the groups of Bloch and 
Purcell observed nuclear magnetic resonance signals for the first time, in water 
and paraffin respectively (Bloch et al., 1946; Purcell et al., 1946). The first 
NMR spectrum that could characterize an organic molecule, ethanol, was 
obtained in 1951 (Arnold et al., 1951). Since then countless structures, of 
small, large, simple and complicated molecules have been analyzed and 
determined, biomolecular interactions have been studied and mapped and 
NMR spectroscopy is still developing. 

The basis of NMR spectroscopy arises from the fact that atomic nuclei, for 
example 1H, with an angular momentum (P) generate a small magnetic field 
and thus possess a magnetic moment (µ). The angular momentum can be 
quantized and given an angular momentum quantum number, I, frequently 
called spin quantum number or spin. The spin and the magnetic moment are 
related through the gyromagnetic ratio (γ). The gyromagnetic ratio is a constant 
for each isotope of each element.  

Nuclei for which the spin quantum number is non-zero are NMR active and 
can in principle be studied by NMR spectroscopy. Nuclei with an odd mass or 
atomic number have non-zero spin quantum numbers. For a I = ½ nucleus, like 
1H, placed in a strong static magnetic field the magnetic moment will align 
parallel (low energy) or anti-parallel (high energy) to the applied magnetic 
field, yielding two energy levels. If the nuclei are then subjected to 
radiofrequency radiation of the proper frequency they will absorb the energy 
and transfer spins from the lower to the higher energy level. When the excess 
energy is dissipated a signal can be observed. The frequency of absorption is 
characteristic of the type of nuclei (1H or 13C etc.) and also depend on the 
applied static magnetic field and the chemical environment of the nuclei. The 
difference between resonance frequencies of nuclei in a molecule are very 
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small and are expressed as the chemical shift (δ), in ppm, compared to a 
reference compound. Homogeneity of the static magnetic field is important. 
Small differences in resonance frequencies can be obscured by linebroadening 
caused by magnetic field inhomogeneity since the resonance frequency of a 
nucleus is also dependent on its spatial location in an inhomogeneous magnetic 
field. (Keeler, 2011; Lambert & Mazzola, 2004; Friebolin, 1991). The 
dependence of the resonance frequency on spatial location in an 
inhomogeneous magnetic field can be exploited in the measurement of self-
diffusion coefficients by NMR (Stejskal & Tanner, 1965). 

2.1 NMR Spectroscopy and Carbohydrate Analysis 

The study of carbohydrates by NMR spectroscopy can involve structure 
determination, conformational analysis and determination of interactions 
between carbohydrates or between carbohydrates and other biomolecules 
(Widmalm, 2013).  

2.1.1 General Techniques and Experiments 

Carbohydrates are a group of compounds with vast structural and chemical 
diversity but with a limited chemical shift dispersion in NMR spectra which 
makes their study by NMR challenging and intriguing.  

The assignments of 1H and 13C resonances to their corresponding protons 
and carbon atoms are usually achieved using a combination of 1D and 2D 
NMR experiments such as homonuclear 1H-1H COSY, 1H-1H TOCSY, and 1H-
1H NOESY or 1H-1H ROESY experiments and heteronuclear 1H-13C HSQC, 
1H-13C HMBC and 1H-13C HSQC-TOCSY. 

1H-1D experiments are usually the starting point of the analysis. These 
experiments give plenty of information despite that most resonances are found 
in the crowded region between ~3.4 and ~4.0 ppm. Well resolved signals are 
usually the anomeric protons (4.4–5.5 ppm) and methyl or acetyl protons (~1.2 
and ~2 ppm respectively). 

The anomeric signals can be used to estimate the number of different 
monosaccharides present in the sample. Other well resolved signals can come 
from the presence of for example sulfurylation or phosphorylation. The 
magnitude of vicinal coupling constants (3JH,H) can provide information about 
the dihedral angles between ring protons (Karplus, 1963) and the peak 
intensities about the relative number of protons making up each signal.  

The next step frequently consists of making use of homonuclear correlation 
experiments such as COSY and TOCSY. These experiments exploit the scalar 
couplings between protons in a molecule; through bond correlations of protons 
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are detected. A COSY spectrum typically shows correlations between geminal 
or vicinal protons although four-bonded correlations may also be seen in some 
cases. TOCSY type experiments show correlations between all protons within 
a given spin system. TOCSY make it possible to simultaneously correlate the 
entire spin system in a sugar residue, depending on the mixing time of the 
experiment and the size of the coupling constants between the different 
protons. COSY and TOCSY experiments normally yield plenty of information 
on the type of monosaccharides present in a sample. Using well resolved 
anomeric, or other, signals as starting points it is often possible to “walk” 
through the bonds of a sugar residue. 

In addition to homonuclear correlations, heteronuclear correlations can be 
used for structure determination. Two commonly used experiments are HSQC 
and HMBC. HSQC experiments correlate 1H atoms with the 13C atoms they are 
directly bonded to. The larger chemical shift dispersion for carbon signals is an 
advantage in structural assignments. HSQC can give a clearer picture of the 
number of different monosaccharides in the sample since the 13C anomeric 
signals appear in a characteristic region between ~90 to 110 ppm. Multiplicity 
edited-HSQC experiments can be used to differentiate CH and CH3 carbons 
from CH2 carbons. The HSQC-TOCSY experiment is a 2D TOCSY 
experiment resolved into the carbon dimension. In HSQC-TOCSY crosspeaks 
are seen between all J-coupled protons in a spin system and each carbon in that 
spin system. The extra dispersion in the carbon dimension can be very 
advantageous when overlap in the proton dimension prevents analysis. HMBC 
experiments are used to identify multiple bond correlations, for example to 
establish the position of quaternary carbons in a structure or to find correlations 
across glycosidic linkages to determine the linkage between adjacent sugars.  

Another way to obtain linkage information is to detect through-space 
correlations. Magnetization can be transferred through scalar couplings but 
also through dipolar interactions (the nuclear Overhauser effect, NOE). The 
NOE arise from dipole-dipole relaxation between spins through space and 
depends on the internuclear distance and molecular motion. The NOE effect 
can be observed for protons up to approximately 5 Å apart. (Wagner & 
Wuthrich, 1979; Gordon & Wuethrich, 1978). Whether to use NOESY or 
ROESY experiments depends on the size of the molecule, on the temperature 
at which the experiment is performed, on the viscosity of the solvent and of the 
strength of the magnetic field. With an increase in molecular size and departure 
from extreme narrowing limit behavior NOE effects become smaller and 
finally negative after passing through zero (Figure 10). To avoid zero or very 
small NOE enhancements the ROESY experiment can be used for small and 
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medium sized molecules since the ROE is always positive and increase with 
molecular size (Bax & Davis, 1985; Bothner-By et al., 1984). 

 
Figure 10. Schematic illustration of the dependence of ROE and transient NOE for a homonuclear 
isolated two-spin system, as a function of the rate of molecular tumbling.  

In this thesis, the experiments mentioned above have been used to obtain 1H 
and 13C assignments. The following chapters describe other NMR methods and 
experiments that have also been used in the thesis. 

2.2 Hydroxy Protons and NMR Spectroscopy 

Carbohydrates are structurally very diverse but the hydroxy group is common 
to all. These hydroxy groups are important since they are involved in 
interactions with other biomolecules and with water. Study of hydroxy protons 
can provide additional NOE constraints for conformational analysis as well as 
information on hydration and hydrogen bonding interactions (Hakkarainen et 
al., 2007; Rohfritsch et al., 2007; Hakkarainen et al., 2005; Bekiroglu et al., 
2004a; Bekiroglu et al., 2004b; Bekiroglu et al., 2003; Bekiroglu et al., 2000; 
Sandstrom et al., 1999; Sandstrom et al., 1998b; Sandstrom et al., 1998a; 
Sheng & Vanhalbeek, 1995; Adams & Lerner, 1994; Bundle et al., 1994; 
Poppe & Vanhalbeek, 1994; Adams & Lerner, 1992; Poppe et al., 1992; Poppe 
& Vanhalbeek, 1992b; Poppe & Vanhalbeek, 1992a; Vanhalbeek & Poppe, 
1992; Poppe & Vanhalbeek, 1991). The first observation of hydroxy protons of 
carbohydrates by NMR was reported in 1976 by Harvey and Symons (Harvey 
et al., 1976).  

In this thesis NMR of hydroxy protons was used to study the structure of κ 
and κ/µ-hybrid carrageenan oligosaccharides as well as the effect of trehalose 
on the hydration and hydrogen bonding in lactose, in papers I and IV 
respectively.  
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2.2.1 Sample Preparation 

Carbohydrates studied by NMR spectroscopy in aqueous solution are usually 
dissolved in deuterated water (D2O). When studying the exchangeable NH and 
OH protons, D2O cannot be used as a solvent because the protons in the sample 
will exchange with the deuterons from the solvent and become invisible in the 
NMR spectra (Figure 11).  

 
Figure 11. The exchange of hydroxy protons for deuterons when a sugar is dissolved in D2O. 

Instead H2O, or solvents without exchangeable deuterons, has to be used to 
study hydroxy protons. The use of H2O as the solvent is usually not sufficient 
to make the hydroxy protons visible and their rate of exchange with water has 
to be lowered. Normally this is achieved by adjusting the pH to 5.5–7 by 
addition of small amounts of HCl or NaOH. To minimize the release of 
impurities, like borate ions, from glassware the NMR sample tubes are soaked 
in 50 mM phosphate buffer (pH 7) for at least one hour (Adams & Lerner, 
1992), and subsequently rinsed with deionized water. Further reduction of the 
rate of exchange is achieved by lowering the sample temperature to below 0 
°C. Sub-zero temperatures of aqueous samples are possible by using highly 
concentrated solutions or super-cooling (Batta & Kover, 1999; Poppe & 
Vanhalbeek, 1994). However, the most common strategy to avoid freezing of 
the sample is to add 10–15% of an organic solvent such as acetone or 
methanol. This mixture permits the temperature to be lowered to about –15 °C 
without the sample freezing, the exact temperature depending on the 
concentration of the sugar. The NMR spectra before and after careful sample 
preparation are shown in Figure 12. 
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Figure 12. Spectra of κ-neocarrabiose before (top) and after cleaning of NMR tube and pH 
adjustement (bottom). 

The effects of small amounts of the relatively weak hydrogen bond donor 
(CD3)2CO (Gomide Freitas et al., 1999) on hydroxy proton chemical shifts and 
solvation have been assessed. Another study showed that chemical shifts of 
hydroxy protons were relatively insensitive to different sample conditions such 
as pH or the concentration of acetone in water (Adams & Lerner, 1994). In 
dicarboxylic acids it has been shown that even in 90/10% (CD3)2CO/H2O 
solutions the amount of water was sufficient to allow for full solvation of the 
intramolecularly hydrogen bonded species (Lin & Frey, 2000). Also, in β-
cyclodextrin hydroxy proton chemical shifts and coupling constants were the 
same in both 95/5% H2O/D2O and 85/15% H2O/(CD3)2CO (Bekiroglu et al., 
2003).  

2.2.2 Suppression of the Water Signal 

The huge water signal can be efficiently suppressed by pulsed-field gradient 
(PFG) experiments such as WET (Smallcombe et al., 1995; Ogg et al., 1994), 
WATERGATE (Liu et al., 1998; Sklenar et al., 1993; Piotto et al., 1992) and 
excitation sculpting (Hwang & Shaka, 1995). Water presaturation cannot be 
used because hydroxy protons exchanging with water will also be saturated. 
WATERGATE, or variants thereof, and excitation sculpting are incorporated 
into many nD experiments.  
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2.2.3 Hydroxy Proton NMR Parameters  

There are a number of hydroxy proton NMR parameters that can give 
information on the structure, conformation, hydrogen bonding interactions and 
hydration of carbohydrates.  

Chemical shifts (δ) and chemical shift differences (∆δ) 
The chemical shifts of hydroxy protons in aqueous solution are usually found 
between 5.5 and 8.5 ppm, a well isolated region of the NMR spectra downfield 
from the aliphatic protons. By comparing the chemical shifts of the hydroxy 
protons in an oligosaccharide with those from its corresponding 
monosaccharides the chemical shift difference is obtained, ∆δ (∆δ = δoligo – 
δmono). The chemical shift difference can be used as a conformational probe to 
study hydrogen bond interaction, hydration and spatial proximity to other 
hydroxy protons, ring oxygen or bulky substituents (Bekiroglu et al., 2004b; 
Ivarsson et al., 2000; Sandstrom et al., 1998b). Hence a positive ∆δ indicates 
that the hydroxy proton in an oligosaccharide is downfield shifted compared to 
the shift in the monosaccharide and this reflects spatial proximity to another 
hydroxy proton. A negative ∆δ indicates spatial proximity to non-protonated 
O5 oxygen or to a bulky substituent and is attributed to a reduced hydration of 
the hydroxy proton in the oligosaccharide compared to the hydration in the 
constituent monosaccharide. Hydroxy protons involved in hydrogen bonding 
should be deshielded (Poppe & Vanhalbeek, 1994) but in strongly hydrated 
systems such as carbohydrates it appears that the chemical shift of a hydroxy 
proton is a balance between downfield shifts due to hydrogen bonding and 
upfield shifts due to reduced hydration (Bekiroglu et al., 2004b). 

Vicinal JCH,OH coupling constants 
Coupling constants between hydroxy protons and aliphatic ring protons can be 
used to determine H-C-O-H dihedral angles. According to the Karplus equation 
derived for hydroxy protons vicinal coupling in the order of 5.5 ± 0.5 Hz 
indicates conformational averaging with free rotation for the hydroxyl group 
around the C–O bond (Fraser et al., 1969). A hydroxy proton with a 3JCH,OH 
that significantly deviates from 5.5 ± 0.5 Hz would indicate restricted rotation 
around the H-C-O-H bond which in turn can be an indication of involvement in 
a hydrogen bonding interaction. 

Temperature coefficients (dδ/dT) 
The chemical shifts of hydroxy protons that are only hydrogen bonded to the 
solvent have marked temperature dependence due to changes in mobility of the 
solvent molecules. The chemical shifts of other hydrogen-bonded hydroxy 
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protons are less affected by temperature due to the decreased interaction with 
solvent. The dδ/dT is obtained by measuring the chemical shifts of the hydroxy 
protons at several different temperatures, usually in the range –15 to +15 °C. 

Hydroxy protons that are strongly solvated generally have large absolute 
values of temperature coefficients, above 10 ppb/°C, while hydroxy protons 
involved in strong intramolecular hydrogen bonds are expected to have 
absolute values of dδ/dT below 3 ppb/°C (Kroon et al., 1994; Poppe et al., 
1992; Poppe et al., 1990a). For trisaccharides in aqueous solution │dδ/dT│ of 
4 ppb/°C and lower have been reported (Sandstrom et al., 1998b; Poppe et al., 
1992) and for sugars in DMSO solution 3 ppb/°C has been taken as an 
indication of involvement in a strong hydrogen bond interaction (Poppe et al., 
1990b) Temperature coefficients above 5 ppb/°C can be indicative of weak 
hydrogen bonding interactions given that other NMR data also corroborate the 
interaction.  

Rotating frame nuclear Overhauser effect (ROE) 
When studying hydroxy protons ROESY experiments are used to distinguish 
between crosspeaks due to dipolar relaxation and chemical exchange. 
Crosspeaks due to chemical exchange will have the same sign as the diagonal 
peaks while those due to dipolar relaxation will have the opposite sign (Davis 
& Bax, 1985). Chemical exchange between hydroxy protons can be an 
indication of spatial proximity of hydroxy groups and have been used to 
identify weak hydrogen bonding interactions in sucrose (Sheng & Vanhalbeek, 
1995). 

Other NMR approaches that can be used to investigate hydrogen bonding 
and hydration in carbohydrates are determination of rate of exchange for 
hydroxy protons with water (Kumar et al., 1981; Jeener et al., 1979), line 
width analysis of hydroxy proton signals (Langeslay et al., 2012), deuterium-
induced differential isotope shift, analysis of JC,OH coupling constants (Zhang 
et al., 2009) and determination of 1H, 2H or 17O relaxation rates of water and 
sugar protons (Aroulmoji et al., 2012). Since these approaches were not used in 
the thesis, they will not be further discussed. 

2.3 Diffusion and NMR Spectroscopy 

It has been possible to study diffusion, or random translational motion of 
molecules in solution by NMR since the early days of the technique (Carr & 
Purcell, 1954; Hahn, 1950). The possibility to study translational motion is due 
to the fact that nuclear spins can be spatially encoded through the use of 
magnetic field gradients. The first measurements used continuous gradients but 
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as shown first by Stejskal and Tanner (1965) pulsed field gradient NMR (PFG-
NMR) is advantageous in many ways (Figure 13). Some of these advantages 
are: no line broadening because the gradient is off during acquisition, smaller 
diffusion coefficients can be measured since the use of larger gradient is 
possible, the time period for diffusion measurement is well defined which is 
important for accuracy and measurements of restricted diffusion (Price, 1997).  

 
Figure 13. Simplified description of the pulsed field gradient spin echo sequence and the spatial 
encoding of spins. The situation for non-diffusing or slow-diffusing molecules is described by the 
left hand part of the figure. Faster diffusion is described by the right hand part of the figure. 
Figure adapted from Price (1997). 

Basically, the translational movement of a molecule between two gradient 
pulses is detected. The gradients are applied during the defocusing and 
refocusing parts of a pulse sequence. Slow-moving molecules will experience 
almost the same field strength at both times and become refocused and signal 
intensity will therefore decay slowly. Fast-moving molecules will on the other 
hand experience many different magnetic field strengths during the course of 
the experiment and thus display incomplete refocusing and rapid signal decay 
(Figure 13). The attenuation of the signal in the spin echo can be used to 
calculate the diffusion coefficient of a molecule when the gradient pulse 
duration, amplitude and the delay between the pulses are known. The 
differences in translational motion of different molecules can be used for 
spectral editing (Liu et al., 1996) resolving or discriminating between signals 
from molecules of different sizes at different experimental conditions. Spectral 
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editing can also include solvent suppression where the sizes of the solvent and 
solute molecules differ enough in size (Esturau & Espinosa, 2006; Giernoth & 
Bankmann, 2005; van Zijl & Moonen, 1990).  

In the early 1990s the idea of using translational motion as an extra 
dimension in a NMR spectrum was realized with the advent of diffusion 
ordered 2D NMR spectroscopy (DOSY) (Morris & Johnson, 1992). DOSY 
experiments separate molecules according to their diffusion coefficients in the 
second diffusion dimension (Figure 14). The applications of DOSY are 
numerous and include mixture analysis (biofluids and compound libraries etc.), 
hydrophobicity separation, compartmentalization analysis, molecular 
association analysis and ligand screening (Johnson, 1999).  

 
Figure 14. Two examples of DOSY spectra. a) Trehalose and methyl-β-D-glucose in D2O at 30 
°C. b) Lactose in D2O at 0 °C. 

PFG-NMR was used in papers II and III for solvent suppression and spectral 
editing purposes. In paper IV, PFG-NMR was used to study the diffusion of 
water and disaccharides in binary and ternary solutions.  

2.4 Saturation Transfer Difference NMR Spectroscopy 

Saturation transfer NMR has for a long time been used to characterize the 
binding in ligand-receptor complexes. Carbohydrate-protein binding was 
analyzed already in the late 1970s (Akasaka, 1979). However the concept of 
saturation transfer difference NMR (STD NMR) as a means for screening of 
compound mixtures and for epitope mapping is relatively new and was realized 
in the late 1990s (Mayer & Meyer, 2001; Maaheimo et al., 2000; Klein et al., 
1999; Mayer & Meyer, 1999). The development was partly driven by a need 
and a will to non-invasively and relatively fast analyze ligand binding to 
proteins from mixtures of ligands.  
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STD NMR is based on the selective saturation of the macromolecule NMR 
signals. The saturation spreads through all the macromolecule NMR signals via 
spin diffusion, which is particularly effective in macromolecules, like proteins, 
with tightly dipole-dipole coupled protons. Then, if one ligand out of a mixture 
is bound to the macromolecule under the conditions of fast exchange the 
saturation is transferred to that ligand through intermolecular saturation 
transfer. When the ligand is released from the macromolecule, the transferred 
saturation can be detected in solution. The resulting spectrum is then subtracted 
from a spectrum where the macromolecule signals have not been saturated and 
consequently not the ligand either. This gives a difference spectrum only 
showing the signals from the ligand that was bound to the macromolecule. The 
protons in closest contact to the macromolecule will receive most saturation 
and will yield larger signal in the difference spectrum which makes it possible 
to map the binding epitope of a ligand at the atomic level (Mayer & Meyer, 
2001). The principle is schematically described in figure 15. 

 
Figure 15. Schematic description of the STD NMR experiment and its use in epitope mapping. 
Figure adapted from Mayer & Meyer (2001). 

Very low amounts of the macromolecule (low µM range) are required since it 
is the ligand, usually in 50 to 100-fold excess, which is detected. Knowledge of 
the macromolecule structure or isotope labeling of it is not needed and there is 
no upper size limit for the macromolecule. Ligands with dissociation constants 
in the high mM to nM range (10-3–10-8 M) can be studied and binding 
constants can be obtained. The STD scheme can be incorporated into NMR 
experiments, such as COSY, TOCSY, NOESY and HSQC. Drawbacks include 
difficulty to differentiate between strong and non-binders since they both give 
no signals in an STD spectrum. However this problem can be solved by 
performing a competition study with a known weak binder. Also extra care has 
to be taken to ensure full saturation when the macromolecule is small (Claasen 
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et al., 2005; Meyer & Peters, 2003; Mayer & James, 2002; Mayer & Meyer, 
2001; Klein et al., 1999; Mayer & Meyer, 1999). STD NMR was used in paper 
III to study the binding between a GAG sulfatase enzyme and a synthetic 
substrate. 

2.5 Specific Aims 

In the first project the structural implications of having µ-residues in κ-
carrageenan oligosaccharides were investigated. 
 

The aim of the second project was to find a reliable method for measuring 
the M/G-ratio on intact alginate samples in solution. Such a method should 
require limited sample preparation and be applicable to the screening of large 
sample sets.  
 

The third project was aimed at identifying novel bacterial sulfatases and 
determining the specificity of these enzymes against different types of GAG 
oligo- and polysaccharides.  
 

In the fourth project, the effects of trehalose and sucrose on the hydration 
properties and hydrogen bonding of lactose were investigated.  
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3 Results and Discussion 
This chapter of the thesis is a summary of the results found in papers I–IV. 
Some results not presented in the papers are also introduced and discussed. 

3.1 Paper I: NMR Study on Hydroxy Protons of κ- and κ-/µ-
Hybrid Carrageenan Oligosaccharides: Experimental 
Evidence of Hydrogen Bonding and Chemical Exchange 
Interactions in κ/µ Oligosaccharides 

The structure and properties of carrageenans greatly depend on the type of 
carrageenan. κ-Carrageenan is a gelling polysaccharide whereas its biological 
precursor, µ, is non-gelling. κ-Carrageenan exists as a mixture of κ and µ-
carrageenan since it is biosynthesized from µ-carrageenan. The mixture of κ 
and µ-carrageenan hampers helix-forming ability and in turn the gel-forming 
capacity. From a perspective where consistency in gelling is a key factor, 
understanding the structure-function relationships is important. The in vivo 
transformation of µ into κ-carrageenan is performed by sulfurylase enzymes 
and in vitro by hot alkali treatment. The incorporation of the 3,6-anhydrobridge 
into the D-residues stabilizes the 1C4 chair conformation and thus the gelling 
abilities of the carrageenans. The lower jelling ability of µ-carrageenan stems 
from the 4C1 conformation of the D-residues that causes kinks in the 
polysaccharide chain that impede helix formation and subsequent gelling.  

The structures of κ and κ/µ oligosaccharides produced by enzymatic 
digestions of carrageenans from cultivated Kappaphycus alvarezii were 
recently solved by NMR spectroscopy (Jouanneau et al., 2010).  
  



36 

In this study, unusual downfield shifts of the anomeric protons of the D-
galactose-6-sulfate sugar (H1_D6S1) were observed when one µ-neocarrabiose 
unit was positioned between two others. We hypothesize that such a downfield 
shift could originate from differences in hydrogen bonding interactions for the 
different oligosaccharides. To evaluate this hypothesis a study of the hydroxy 
protons by NMR spectroscopy was performed.  
The κ and κ/µ-carrageenan oligosaccharides and their constituent mono 
saccharides shown in figure 16 were investigated.  

 

 
Figure 16. Structures of the mono- and oligosaccharides 1–10. 

The chemical shifts (δ), chemical shift differences (∆δ), temperature 
coefficients (dδ/dT), NOEs and chemical exchange of hydroxy protons were 
measured to gain insight into hydrogen bonding and hydration. Due to broad 
hydroxy proton signals and spectral overlap the coupling constants, 3JCH,OH, 
could be measured only for compounds 1, 2 and 8. The spectral overlap and 
broad signals in the larger oligosaccharides precluded the measurement of 
hydroxy proton exchange rates with water. The assignments of proton 
resonances were made using 1H-1D, DQF-COSY and TOCSY 2D spectra as 
well as previously recorded data (Jouanneau et al., 2010; Knutsen & 
Grasdalen, 1992). The hydroxy proton resonances being in a well isolated 
region of the NMR spectra were used for the assignment of H5 and H6 whose 
assignment could not be obtained previously (Figure 17). 

                                                        
1. H1 describes the proton attached to carbon 1 of that sugar, D describes the type of sugar, 6 

and S after D indicates a sulfation at position 6 of that residue. A number in parenthesis at the end 
specifies the number of that monosaccharide in the oligosaccharide chain, counting from the 
reducing end. 
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Figure 17. Part of a TOCSY spectrum of κκκκ 4 showing the possibility to assign aliphatic 
proton shifts of sugars through correlation to hydroxy protons.  

For the κ-oligosaccharides there was no experimental evidence of the existence 
of strong hydrogen bonding interactions. The absolute values of ∆δ of the 
hydroxy protons in the oligosaccharides were small (< 0.2 ppm) indicating 
hydration similar to that in the constituent monosaccharides. Most hydroxy 
protons had large negative temperature coefficients (Figure 18). No 
interresidual NOEs between hydroxy protons or between hydroxy protons and 
aliphatic protons were found. Only the negative ∆δ and slightly lower dδ/dT of 
all OH2_G4S compared to those of OH2_DA might reflect reduced hydration 
due to spatial proximity to the ring oxygen of DA. A hydrogen bond between 
OH2 of G4S and O5 of DA has indeed been found in the crystal structure of 
neocarrabiose and by simulations using MM force fields (Bosco et al., 2005; 
Stortz & Cerezo, 2003; Ueda et al., 2001; Stortz & Cerezo, 2000; Lamba et al., 
1990).  
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Figure 18. ∆δ and dδ/dT for κ-carrageenan oligosaccharides 1–4. Only data for the β-anomeric 
forms are shown. 

In the κ/µ-oligosaccharides 5–7, OH2_G4S at the reducing end and 
OH2_G4S(3) had negative ∆δs (~ - 0.2 ppm), whereas those with one or two 
D6S residues as neighbors had ∆δs close to zero. The OH2 and OH3 of D6S 
had consistently smaller |dδ/dT| than the other hydroxy protons (Figure 19). In 
the hexasaccharide κµκ, 5, a crosspeak due to chemical exchange was 
observed between OH2_G4S(5) and OH3_D6S(4) in the ROESY spectra. In 
the octasaccharide κµµκ, 6, chemical exchange between OH2_G4S(5) and 
OH3_D6S(4) and between OH2_G4S(7) and OH3_D6S(6) was observed 
(Figure 20).  
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Figure 19. ∆δ, dδ/dT and chemical exchange for hydroxy protons in κ/µ-carrageenan 
oligosaccharides 5–7. Only data for the β-anomeric forms are shown (n.d.: not determined). 

Comparison of the proton NMR spectra of κ and κ/µ hexa- and octasaccharides 
revealed significant downfield shifts of OH2_G4S(5) and (7) in κµκ and κµµκ 
compared to the corresponding protons in the κ-oligosaccharides (Figure 21). 
OH2_G4S(1) and (3) had on the other hand negative ∆δs as in the κ-
oligosaccharides. OH2_G4S(3) had a larger negative ∆δ in the κ/µ sugars 
suggesting that a 3-linked D6S(4) residue reduces hydration of OH2_G4S(3) or 
that OH2_G4S(3) is in closer proximity to O5 of D6S(4) than O5 of DA.  
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Figure 20. Part of the TOCSY spectra of (a) 5, showing the chemical exchange crosspeaks 
between OH2_G4S(5) and OH3_D6S(4); (b) 6, showing the chemical exchange crosspeaks 
between OH2_G4S(7) and OH3_D6S(6) as well as between OH2_G4S(5) and OH3_D6S(4); (c) 
7, showing two chemical exchange crosspeaks, one between the signals from OH2_G4S(9) and 
OH3_D6S(8) and the other one between the overlapping signals from OH2_G4S(5), (7) and 
OH3_D6S(4), (6).  

The downfield shift of OH2_G4S(5) and (7) in compounds 5–6 compared to in 
compounds 3–4 is due to a different chemical surrounding with a D6S residue 
as its closest reducing-end neighbor instead of DA as in the κ-oligosaccharides. 
This together with the exchange crosspeaks discussed above suggests a 
transient hydrogen bonding interaction between OH2_G4S and OH3_D6S. The 
lower temperature coefficients of OH2 and OH3 of D6S can probably be 
explained by reduced interaction with water because of the spatial proximity to 
the 4-sulfate group and to the ring oxygen of G4S respectively. Such 
interactions have been predicted by MM3-calculations (Stortz, 2006), and these 
NMR data on hydroxy protons give the first experimental evidence that 
hydrogen bonding interactions can exist, at least transiently, in water solution.  

 
Figure 21. 1H 1D NMR spectra (a) and (b) show the downfield shift of the OH2_G4S(5) signal in 
5 (b) compared to in 3 (a). Spectra (c) and (d) show the downfield shift of the OH2_G4S(5) and 
OH2_G4S(7) signals in 6 (d) compared to in 4 (c).  
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There is one hydrogen bond in κµκ and two hydrogen bonds in κµµκ but 
comparison of the NMR data in the two compounds suggest that the 
interactions are not stronger in the larger oligosaccharide. For the 
decasaccharide κµµµκ, 7, signal overlap precludes the unambiguous 
determination of whether three or only two of the OH2_G4S–OH3_D6S 
interactions are present. Examination of the crosspeak intensities in the 
TOCSY spectra suggested that only one of the pairs OH2_G4S(5), (7) and 
OH3_D6S(4), (6) have chemical exchange. If this is the case, the downfield 
shift observed for H1_D6S(6) could tentatively be attributed to the loss of a 
hydrogen bond and the subsequent increase in flexibility. On the other hand, 
the almost identical chemical shift and very similar temperature coefficients 
indicate similarities instead of differences in the structure. Faster exchange 
process in the larger κµµµκ oligosaccharide cannot be excluded. Different 
exchange processes in compounds 5–7 could mean that chemical exchange 
interactions between the OH2_G4S and OH3_D6S hydroxy protons might be 
present along all the oligosaccharide chain in κµµµκ as well. 

Gelation is based on intermolecular hydrogen bonds in large polymers 
while the NMR data presented here only shows intramolecular hydrogen bonds 
in oligosaccharides. However, it cannot be excluded that what is observed at 
the oligosaccharide level is also present in the larger polymers. Thus, transient 
hydrogen bonding interactions in µ-carrageenan may be of importance for the 
macromolecular structuring properties of κ-carrageenan. Jouanneau et al. 
(2010) showed that the three main distributions of µ-carrabiose in the native κ-
carrageenan were µ, µµ and µµµ. It is likely that most of the µ-carrabiose units 
in κ-carrageenan are excluded from helical regions and in turn from the 
junction zones formed upon gelling. The intrachain bonding found in µ-
carrabiose may then implicate that the fractions between the junction zones do 
in fact possess a certain structure and might play a role in the organization of 
the κ-carrageenan gel network.  

3.2 Paper II: Application of Diffusion-Edited NMR Spectroscopy 
for Selective Suppression of Water Signal in the 
Determination of Monomer Composition in Alginates 

As described in the introduction, the physical properties of alginates such as 
gel properties and viscosity are largely correlated to the monomer composition 
(M/G-ratio), the block distribution and the molecular weight. Therefore, access 
to methods for accurate determination of the M/G-ratio is important and NMR 
spectroscopy is one of the most effective tools. Determination of the M/G-
ratio, and also of the diad and triad composition, is done by integration of the 
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signals in the anomeric region of the 1H spectrum. These signals are relatively 
well resolved and are characteristic for H1 and H5 of G and M residues in 
different surroundings as can be seen in figure 22.  

 
Figure 22. Anomeric region of a 1H NMR spectrum of an alginate polysaccharide. Formula for 
calculation of monomeric fractions: FM, fraction of M residues; FG, fraction of G residues; I, 
integral. Assignments were taken from Salomonsen et al. (2009a). 

Sometimes, however, the high viscosity of alginate samples does not allow the 
acquisition of highly resolved NMR spectra. A frequently used solution to this 
problem is to partially hydrolyze the alginate to lower the molecular weight 
and in turn the viscosity. This is however time consuming and it can also lead 
to sample alteration compared to the intact sample since different glycosidic 
linkages in alginate have different rates of hydrolysis (Salomonsen et al., 2008; 
Holtan et al., 2006; Grasdalen et al., 1979b; Smidsrod et al., 1969; Haug et al., 
1967a; Haug et al., 1966; Smidsrod et al., 1966). Different approaches have 
been proposed to overcome this problem including 1H high-resolution magic 
angle spinning (HR-MAS) NMR of alginates suspended in D2O and 13C cross-
polarization MAS (CP-MAS) NMR of alginate powders. Both these techniques 
have successfully been used to analyze the M/G-ratios of alginates 
(Salomonsen et al., 2009b). Many laboratories are however not equipped with 
HR-MAS or CP-MAS probes. Additionally, temperatures of 80–90 °C have to 
be used to move the water signal away from the region containing the signals 
used for the M/G-ratio calculation and not all HR-MAS probes can be operated 
at such high temperatures. We have therefore investigated the possibility of 
using standard high resolution liquid NMR probes where the use of high 
temperatures does not pose a problem and thereby the water signal can, if 
needed, be moved away from the diagnostic signals.  

In order to lower the sample viscosity the sample concentration is lowered 
which in turn makes the water signal become several orders of magnitude 
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larger than the alginate signals. This leads to baseline and dynamic range 
problems that may preclude a correct M/G-ratio determination. Therefore, 
water suppression is necessary. Commonly used water suppression techniques 
such as presaturation or those based on pulse field gradients lack selectivity 
and resonances that overlap with the solvent signal will also be suppressed. It 
has also been shown that water presaturation affect the signal intensity of the 
signals in the NMR spectra of alginates, leading to significant errors in M/G-
ratio analysis (Salomonsen et al., 2009a) (Figure 23).  

 
Figure 23. Comparison of different water suppression techniques applied on sample 01 (Table 1). 
(a) single pulse 1H NMR spectrum, (b) presaturation (zgpr), (c) NOESY presaturation 
(noesygppr1d), (d) WATERGATE (zggpw5) with a too short pulse interval (d19 = 400 µs), (e) 
WATERGATE (zggpw5) with optimum pulse interval (d19 = 700 µs), (f) diffusion-edited (BPP-
LED). All spectra were obtained at 70 °C. 

An alternative approach is to use a diffusion-filtered NMR experiment that 
eliminates the water signal while retaining the signals of interest. This 
approach exploits the higher diffusivity of water molecules relative to the 
larger solute molecules.  

The bipolar gradient pulse pair longitudinal eddy current delay pulse 
sequence (BPP-LED) (Wu et al., 1995) was used (Figure 24). In this 
experiment the magnetization is kept longitudinal during the diffusion period 
and the eddy current delay, and the relaxation losses are dictated mainly by the 
longitudinal relaxation T1 instead of T2. In a first step, five alginate samples 
with representative M/G-ratios and viscosities were chosen from a set of 20 
(Table 1), in order to establish sample preparation and data processing 
procedures as well as to evaluate different experimental temperatures. The 
diffusion parameters, ∆ (diffusion delay) and δ (gradient pulse duration), were 
determined empirically since the molecular weights of the alginates were 
unknown and because of the large variation in sample viscosities. 

For temperatures between 15 and 65 °C the water signal fully or partially 
overlapped with the signals between 4.4 and 5.2 ppm used for M/G-ratio 
determination.  
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Figure 24. Schematic representation of the BPP-LED pulse sequence (Wu et al., 1995). The 
figure is adapted from Dehner and Kessler (2005). 

Accurate determination of M/G-ratios could be achieved for many samples at 
temperatures as low as 30 °C and at 50 °C it was possible for all types of 
alginate samples, regardless of high or low viscosity or high or low M/G-ratio 
(Figure 25).  

 
Figure 25. Anomeric region at 50 °C of a) 1H NMR spectrum, sample 01, b) diffusion-edited 
spectrum sample 01, c) 1H NMR spectrum, sample 17, d) diffusion-edited spectrum, sample 17, e) 
1H NMR spectrum sample 20, f) diffusion-edited spectrum, sample 20. ∆ = 50 ms, δ = 2.0 ms. 

For the development of a general protocol, a temperature of 70 °C was chosen 
to have the water signal upfield of the signals of interest for M/G-ratio 
calculation. Diffusion-edited spectra were obtained for 20 different alginate 
samples with varying M/G-ratios and viscosities (Table 1). Two sets of 
samples were recorded manually at 600 MHz and one set of samples was 
recorded at 400 MHz using a sample changer and the automation software 
ICON-NMR.  
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Table 1. Values for M/G-ratios and viscosities. M/G-ratiosa determined by FTIR. Viscosityb 
(mPa·s) determined on 1% solutions at 20 °C and 60 rpm using a Brookfield LVT. Sets 1, 2 and 3 
are three separately prepared sample sets. The M/G-ratios were calculated from 1H NMR spectra 
acquired at 70 °C with the BPP-LED pulse sequence using ∆ = 50 ms and δ =1.3 ms. A minimum 
of 3 experiments per sample and sample set were run.  

Sample M/G-
ratioa 

Viscosity
b 

Set 1 Set 2 Set 3 Sets 1,2 and 3 

Avg 
M/G SD Avg 

M/G SD Avg 
M/G SD Avg 

M/G SD 

01 0.4 50 0.4 0.06 0.4 0.06 0.4 0.06 0.4 0.06 
02 0.5 340 0.5 0.04 0.5 0.02 0.4 0.08 0.5 0.07 
03 0.4 170 0.4 0.05 0.4 0.03 0.4 0.05 0.4 0.05 
04 0.4 55 0.5 0.08 0.4 0.02 0.4 0.01 0.4 0.05 
05 0.4 75 0.4 0.02 0.5 0.02 0.4 0.05 0.4 0.05 
06 0.4 420 0.4 0.02 0.4 0.03 0.2 0.06 0.4 0.11 
07 0.5 240 0.5 0.01 0.5 0.03 0.4 0.12 0.5 0.09 
08 0.7 540 0.7 0.02 0.7 0.05 0.6 0.09 0.7 0.06 
09 0.6 370 1.2 0.10 1.2 0.07 1.1 0.10 1.1 0.10 
10 0.7 450 0.7 0.01 0.7 0.02 0.6 0.12 0.6 0.06 
11 0.7 270 0.7 0.03 0.7 0.04 0.6 0.02 0.7 0.04 
12 0.9 390 0.8 0.05 0.8 0.04 0.7 0.16 0.8 0.08 
13 0.9 360 0.9 0.01 0.9 0.02 0.8 0.08 0.9 0.06 
14 1.2 760 1.1 0.05 1.0 0.03 1.0 0.19 1.0 0.13 
15 1.3 9 0.9 0.06 1.2 0.01 1.1 0.07 1.1 0.12 
16 1.3 500 1.3 0.01 1.3 0.03 1.1 0.08 1.2 0.10 
17 1.5 64 1.6 0.06 1.6 0.11 1.4 0.05 1.5 0.11 
18 1.5 1400 1.1 0.07 1.1 0.05 1.0 0.12 1.0 0.09 
19 1.8 420 2.1 0.07 2.1 0.05 1.8 0.08 2.0 0.15 
20 1.7 1140 1.7 0.10 1.9 0.11 1.5 0.18 1.7 0.20 

 
The M/G-ratios were in good agreement with those obtained by FTIR (Table 
1). The standard deviations (SD) within triplicates and between sample sets 
were generally low, below 0.1. Previously published SDs determined on 
commercially available alginates (Salomonsen et al., 2008) correlate well with 
the SDs for M/G-ratios of sample sets 1 and 2 in table 1. For samples with 
extreme values more specific diffusion parameters can be used.  

Diffusion-edited NMR as a solvent suppression technique is not limited to 
alginates but is also useful for studying other biopolymers. It was for example 
found very useful for selectively removing several interfering signals from 
buffer (Paper III) to enable interpretation of sample signals. Since diffusion-
edited NMR can be used for water suppression in the analysis of alginates at 
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temperatures below 50 °C, it permits the use of probes that cannot be used at 
high temperatures such as cryoprobes or certain HR-MAS probes.  

3.3 Paper III: The First Bacterial Glycosaminoglycan 
Endosulfatase Reveals Novel Metabolic Pathways in the 
Prominent Human Gut Symbiont Bacteroides 
thetaiotaomicron 

To identify novel sulfatases that would modify the sulfation pattern of GAGs 
with the goal of producing new sulfated oligosaccharides with new therapeutic 
properties, Bacteroides thetaiotaomicron, a GAG degrading bacteria, present in 
the human gut was investigated. Eleven sulfatases induced in presence of host 
glycans were cloned, expressed and tested for sulfatase activity. As a first step 
in the biochemical characterization of the enzymes, the activity as a generic 
arylsulfatase was assayed using the chromogenic pNP-S as a substrate. Only a 
few of the eleven enzymes were found to be active against this substrate (Paper 
III, supplementary information, Table 1). Four of the eleven in vivo induced 
enzymes were induced in vitro in presence of GAGs (Benjdia et al., 2011; 
Martens et al., 2008). Two of the in vitro induced enzymes, BT1596 and 
BT3349, hydrolyzed pNP-S making them authentic sulfatases while two 
others, BT4656 and BT3333, were not. The activity of the four enzymes was 
further tested towards a broad variety of sulfated substrates using various 
analytical techniques. These substrates were polymeric GAGs such as heparin 
and chondroitin (Figure 9), a synthetic library of chondroitin disaccharides 
with various sulfation patterns (Figure 26), mixtures of unsaturated 
disaccharides obtained by the action of lyases on CS and HS polymers as well 
as monomeric substrates and saturated and unsaturated oligosaccharides 
(Figure 33). 



47 

 
Figure 26. Structures of the CS disaccharides 11–17 in the synthetic library (Lubineau & 
Bonnaffe, 1999) used for testing sulfatase activity.  

Sulfatase BT3349 identified as a bacterial endo-4-O-sulfatase 
When incubated with polymeric shark chondroitin BT3349 was the only 
enzyme capable of removing sulfate from CS. Analysis of the 2D COSY, 
TOCSY and HSQC NMR spectra of the polymer before and after addition of 
BT3349 clearly showed that upon addition of the enzyme all the signals 
corresponding to H4 of GalNAc sulfated at the C4 position were suppressed 
demonstrating that the enzyme was hydrolyzing all 4-sulfate groups of the 
GalNAc4S units in the polymer chain (Figure 27).  

 
Figure 27. 2D TOCSY (a) and HSQC spectra (b) comparing polymeric CS before (red) and after 
(black) incubation with BT3349. In the HSQC spectrum the shifts of signals from H2/C2, H3/C3, 
H4/C4 and H5/C5 are visualized by the light blue arrows. 
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BT3349 desulfated not only CSA, mainly monosulfated at C-4 of GalNAc but 
also other types of CS chains such as CSB, CSD and CSE with various degrees 
and positions of sulfation (Figure 4A, B Paper III).  

The extent of desulfation varied for the different substrates, depending on 
the sulfation pattern. Mono 4-O-sulfated chains were essentially completely 
hydrolyzed but sulfation at positions other than C-4 as well as epimerization of 
the hexuronate unit affected the accessibility of the enzyme (Figure 4A and C 
in Paper III). As distribution of sulfate groups in different chain types is 
heterogeneous, analysis at chain level gives a semi-quantitative indication of 
the impact of modification surrounding the target sulfate group. 

Screening of BT3349 towards a library of chondroitin disaccharides (Figure 
26) showed that disaccharides with sulfate groups in the 4-position of GalNAc 
were also substrates for the enzyme. Comparison of the NMR spectra of the 
disaccharide GlcA-GalNAc4S6S (Figure 26, compound 14) before and after 
addition of BT3349 showed that the signals at 4.8 and 4.9 ppm corresponding 
to H4-GalNAc4S6S disappeared, demonstrating desulfation at position 4 of 
GalNAc and thus confirming the high specificity for the C-4 position (Figure 
28).  

 
Figure 28. Comparison of 1H 1D NMR spectra of GlcA-GalNAc4S6S before (a) and after (b) 
incubation with BT3349. The characteristic signals of H4(α/β) of GalNAc4S6S at 4.9 and 4.8 
ppm disappear upon incubation with the enzyme. 

4,5-Unsaturated hexuronate (∆) disaccharides obtained from the different types 
of CS by hydrolysis with lyases were also substrates for BT3349. They were 
therefore further used to determine the influence of sulfate groups in position 
C-2 of the hexuronate sugar and position C-6 of the galactosamine on the 
efficiency of the enzyme. The results showed that GalNAc 6-O-sulfation only 
slightly affects the activity, whereas ∆ 2-O-sulfation hampered BT3349 
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activity significantly. Sulfation at all three possible positions rendered the 
substrate even less accessible to the enzyme (Figure 4D, Paper III). 

Identification of two 6-O-sulfatases 
Since BT3333 was found to be inactive towards polymeric CS (Figure 29) and 
HS as well as towards both saturated and unsaturated disaccharides an exolytic 
mechanism of the enzyme was suspected.  

 
Figure 29. 1H 1D NMR spectra of polymeric shark CS alone (a) and incubated with BT3333 (b).  

BT3333 was found to be active towards GalNAc-6-O-sulfate but not towards 
GlcNAc-6-O-sulfate making the enzyme a strict exolytic N-
acetylgalactosamine-6-O-sulfatase (Figure 2B, Paper III).  

 
Figure 30. Diffusion-edited NMR spectra of heparin alone (a) and incubated with BT4656 (b). G 
denotes protons from GlcNAc and I from IdoA. Intensity differences for IdoA signals I1 and I5 
can be corrected by addition of EDTA to the incubated sample.  

BT4656 was found to be inactive against heparin/HS (Figure 30) and CS 
polymeric substrates. BT4656 was also assayed for sulfatase activity towards 
HS disaccharide substrates with either a hexuronate or a 4,5-unsaturated 
hexuronate residue in the non-reducing end but no activity was found. The 
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enzyme was assigned 6-O-sulfatase activity from a UV-based assay involving 
the chromogenic substrate 6-O-sulfo-GlcNAc-O-pNP. The assay was designed 
so that BT4656, 6-O-sulfo-GlcNAc-O-pNP and β-N-acetylglucosaminidase 
were incubated together and the release of pNP was monitored at 405 nm. β-N-
acetylglucosaminidase is only able to cleave the pNP moiety if the 6-O-sulfate 
group has been hydrolyzed. The 6-O-sulfatase activity and role of BT4656 as 
an exolytic N-acetylglucosamine-6-O-sulfatase was corroborated by NMR 
analysis (Figure 31). 

 
Figure 31. Parts of 1H 1D NMR spectra of 6-O-sulfo-GlcNAc-O-pNP in presence of BT4656 
before (a) and after (b) desulfation. Action of the enzyme results in an upfield shift of the H6 
signals, indicative of desulfation. Unassigned signals are from buffer.  

In an attempt to identify the interactions between BT4656 and this substrate, 
STD NMR experiments were performed. Large STD signals, evidence of 
binding, were observed (Figure 32).  

 
Figure 32. Part of the 1H NMR spectra of 6-O-sulfo-GlcNAc-O-pNP alone (a), incubated with 
BT4656 (b) and part of STD spectrum of 6-O-sulfo-GlcNAc-O-pNP incubated with BT4656 (c).  

The largest enhancement was seen for H4, H2, H3 and the N-acetyl group. H5 
and H6 showed the weakest STD effects. STDs to the phenyl protons of pNP 
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were also observed. The buffer did not bind the protein and consequently no 
signals from the corresponding protons were observed in the STD spectra 
indicating that the effects observed were due to true saturation transfer. 

Identification of an exolytic 2-O-sulfatase 
BT1596 showed no activity against polymeric HS. The activity of BT1596 was 
then investigated by incubating the enzyme with a heparin hexasaccharide 
(Petitou et al., 1988) as well as with the hemisynthetic ultra-low molecular 
weight heparin AVE5026 (Figure 33). AVE5026 has an average MW of around 
2400 Da and with a degree of sulfation being about 2.0 per disaccharide unit 
(Viskov et al., 2009). In the hexasaccharide, only ∆ is sulfated at the 2-O-
position while in AVE5026 both ∆ and the internal IdoA residues are partially 
2-O-sulfated (Figure 33).  

 
Figure 33. Schematic structures of AVE5026 (18, top) and hexasaccharide (19, bottom). 
Compounds are present as Na+-salts.  

Comparison of the 1H and 13C signals for the hexasaccharide before and after 
incubation with BT1596 showed chemical shift differences for the signals 
H1/C1 to H4/C4 at the non-reducing end (Figure 34). The large upfield shifts 
of H2 (0.84 ppm) from 4.64 ppm to 3.80 ppm together with the carbon upfield 
shift of circa 4 ppm (not shown) proved desulfation at this position. The 
changes in chemical shifts for the other signals are also characteristic of 
desulfation at the 2-position (Guerrini et al., 2002; Pervin et al., 1995). 
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Figure 34. 1H 1D NMR spectra of hexasaccharide (19) before (a) and after (b) incubation with 
BT1596.  

To confirm the exolytic character of the enzyme its activity was tested towards 
AVE5026. NMR analysis of the AVE5026 oligosaccharides before and after 
incubation with BT1596 demonstrated that the enzyme is exclusively 
hydrolyzing the sulfate ester from the 2-position of the non-reducing end of all 
oligosaccharides present in AVE5026 making it a ∆-4-hexuronate-2-O-
sulfatase (Figure 35).  

 
Figure 35. Superimposition of 1H-13C HSQC spectra of AVE5026 alone (black and green) and 
incubated with BT1596 (red and blue) showing the large shifts experienced by the carbons and 
protons of the non-reducing end residue upon desulfation at position 2. The spectra also show that 
internal IdoA2S remains sulfated. Spectrum (a) displays the anomeric region and spectrum (b) the 
H2 to H6 region.  

The desulfation is specific for the non-reducing end since the signals for 
internal IdoA2S did not show any significant changes in chemical shift (Figure 
35 and 36). A desulfation at C2 of IdoA2S would have resulted in a chemical 
shift change for the corresponding H2 proton from 4.32 ppm to 3.8 ppm 
(Pervin et al., 1995). Further the intensity of the H1-IdoA2S signal was the 
same before and after enzyme addition indicating no desulfation. BT1596 
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desulfated at the 2-position on the non-reducing end, invariably of the 
oligosaccharide size. 

 
Figure 36. Superimposition of part of TOCSY spectra of AVE5026 alone (black) and incubated 
with BT1596 (red). No significant changes are observed in chemical shifts of internal IdoA2S H2 
and H3. 

BT1596 was also tested for sulfatase activity against an array of unsaturated 
HS and CS disaccharides. All types of 2-O-sulfated compounds were substrate 
for the enzyme independently of their hexosamine unit and additional sulfation 
(Figure 2B, Paper III). To verify that 4,5-unsaturation of the non-reducing end 
hexuronate was required for desulfation BT1596 was incubated with a 
saturated synthetic octasaccharide (Figure 37) and analyzed by NMR. No signs 
of desulfation were observed (Paper III, supplementary information, Figure 5).  

 
Figure 37. Schematic structure of the synthetic octasaccharide (20), the compound is a Na+-salt.  

In view of these results a degradation pathway of GAGs by sulfatases from B. 
thetaiotaomicron could be tentatively proposed (Figure 6 in Paper III). B. 
thetaiotaomicron has the possibility to desulfate polymeric CS on the 4-
position before degradation by GAG lyases into oligosaccharides and 
subsequently further desulfation and degradation can take place. Polymeric 
heparin/HS on the other hand are first degraded into oligosaccharides that are 
then desulfated, further degraded and finally additional desulfation occur. 
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3.4 Paper IV: NMR Study on the Interaction of Trehalose With 
Lactose and its Effect on the Hydrogen Bond Interaction in 
Lactose 

Disaccharides like sucrose and trehalose are known for protecting 
biomolecules such as proteins and membranes from freezing, heating, 
desiccation and osmotic shock (Sampedro et al., 2001; Sampedro et al., 1998; 
Iwahashi et al., 1995; Leslie et al., 1995; Hottiger et al., 1994). Four 
hypotheses, not necessarily mutually exclusive, have been proposed to explain 
the stabilizing effect of trehalose: (1) the water replacement hypothesis 
(Allison et al., 1999), (2) the water entrapment or preferential hydration 
hypothesis (Belton & Gil, 1994), (3) the high viscosity hypothesis (Sampedro 
& Uribe, 2004; Green & Angell, 1989) and (4) the water destructuring effect 
mechanism (Lerbret et al., 2005a; Lerbret et al., 2005b; Branca et al., 1999a; 
Branca et al., 1999b). 

Since the bioprotective properties of the sugars are thought to involve the 
hydroxyl groups and their interactions with water, it was investigated if and 
how the hydration and hydrogen bonding interaction in lactose (Figure 3) was 
affected by addition of trehalose or sucrose. For this the chemical shifts (δ), 
chemical shift differences (∆δ), coupling constants, (3JCH,OH), temperature 
coefficients (dδ/dΤ) and rotating frame nuclear Overhauser effects (ROE) of 
the hydroxy protons of lactose alone in solution and in the presence of 
trehalose or sucrose were measured over a large range of concentrations. The 
NMR data for trehalose and sucrose alone in solution were also collected. The 
experiments were performed in a 90/10% H2O/(CD3)2CO solvent mixture. The 
diffusion of water, lactose and trehalose in binary and ternary systems was also 
investigated over a large range of concentrations and temperatures using 
DOSY. 

In water/trehalose and water/lactose binary systems the sugars have similar 
diffusion properties at low temperatures (< 40 °C), while at high temperatures 
and high concentrations the lactose diffusion rate was slightly higher. At low 
sugar concentrations water had the same diffusion in both systems and over the 
entire range of temperatures while for high sugar concentration the diffusion 
rate of water was lower with trehalose for temperatures above 45 °C, in good 
agreement with previous results (Ekdawi-Sever et al., 2003; Iannilli et al., 
2001; Rampp et al., 2000; Magazu et al., 1999). In water/trehalose/lactose 
ternary systems both sugars had similar diffusion properties at all temperatures 
and concentrations investigated.  

The presence of a weak hydrogen bond between OH3 in glucose (GlcOH3) 
and O5’ in galactose (GalO5’) in supercooled lactose has been deduced from 
the decrease in the chemical exchange rate of GlcOH3 as well as from the 
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small value of its 3JCH,OH (3.1 Hz) (Poppe & Vanhalbeek, 1994). For sucrose, 
under supercooled conditions, the existence of a transient hydrogen bond 
between the GlcOH2 and FruOH1’ groups was evidenced from the chemical 
exchange observed between GlcOH2 and FruOH1’ (Sheng & Vanhalbeek, 
1995). For trehalose, the 3JCH,OH and 2,3JC,OH of the hydroxy protons, measured 
in 97/3% H2O/D2O solvent at −3 °C, suggested that no intramolecular 
hydrogen bonding interactions were present (Batta & Kover, 1999).  

 
Figure 38. 1H 1D NMR spectra of the hydroxy proton region of (a) trehalose, (b) sucrose, (c) 
lactose, (d) glucose and (e) galactose at −5 °C in 90/10% H2O/(CD3)2CO. Notice the large upfield 
shifts of GlcOH3(α/β) in spectrum (c) compared to spectrum (d). 

The data obtained in this work for lactose, trehalose and sucrose were in good 
agreement with those previous studies. The hydroxy protons in lactose had 
small |∆δ| (< 0.2 ppm) with the exception of GlcOH3(α, β) which had |∆δ| of 
0.4 ppm (Figure 38) indicating spatial proximity to GalO5’ and in agreement 
with the hydrogen bond between GlcOH3 and GalO5’. In trehalose, a ∆δ of 
+0.21 for OH2 suggested proximity to another hydroxy group. According to 
previous simulation studies this might reflect an inter-residue, direct or water 
mediated, interaction with OH6 or a water bridged interaction between the two 
OH2 groups across the glycosidic linkage (Verde & Campen, 2011; Nunes et 
al., 2010; Engelsen & Pérez, 2000; Conrad & de Pablo, 1999; Liu et al., 1997). 
In sucrose the |∆δ| values were below 0.06 ppm.  
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In trehalose chemical exchange between OH3/4 and OH6 as well as 
between OH2 and OH6 were observed (Figure 39). Due to the symmetry of the 
molecule it was not possible to discriminate between intra- or interresidual 
interactions. According to simulation data from literature OH3/4–OH6 
interactions can occur both intra- and inter-residually while OH2–OH6 
interaction only occurs inter-residually (Sapir & Harries, 2011; Conrad & de 
Pablo, 1999; Liu et al., 1997). In lactose only weak intraresidual exchange 
crosspeaks within galactose were observed (Figure 39).  

 
Figure 39. ROESY 1H NMR spectra at –5 °C of (a) lactose 203 mg/mL and (b) trehalose 206 
mg/mL. 

In sucrose chemical exchange of hydroxy protons was observed between 
GlcOH2 and FruOH1’ (Figure 40). In addition, a weak exchange was also 
observed between GlcOH2 and FruOH3’ at high sugar concentration. The 
existence of both interactions at high concentration implies that two 
interconverting conformers exist in solution (Davies & Christofides, 1987).  

 
Figure 40. ROESY 1H NMR spectrum at –5 °C of sucrose 202 mg/mL, mixing time 80 ms. 

In the trehalose/lactose/water ternary system the temperature coefficients 
decreased by ≤ 1ppb/°C when increasing the sugar concentrations. Similar 
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effects were also measured in the binary systems. The 3JCH,OH did not change 
significantly except for GlcOH3 β, which decreased from 3.5 to 2.8 Hz. Small 
upfield shifts (∆δmix) for the hydroxy protons of both lactose and trehalose 
were observed. The |∆δmix| increased as the sugar concentrations increased. The 
chemical shifts of the GlcOH3α/β signals were however significantly less 
affected by changes in concentration as reflected by their smaller |∆δmix| 
(Figure 41).  

 
Figure 41. Graphical representation of ∆δmix values. ∆δmix: δ(Trehalose/Lactose X + X mg/mL) 
– δ(Trehalose/Lactose 37 + 36 mg/mL), except for the 37 + 36 mg/mL mixture where ∆δmix: 
δ(Trehalose/Lactose 37+36 mg/mL) – δ(Lactose 35 mg/mL) 

Chemical exchange was observed between hydroxy protons of trehalose and 
lactose, (Figure 42). GlcOH3 in lactose display less chemical exchange with 
trehalose. To determine whether the effects measured on lactose hydroxy 
protons were specific for interaction with trehalose the sucrose/lactose/water 
ternary system was analyzed under analogous conditions.  
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Figure 42. ROESY 1H NMR spectra at –5 °C of (a) trehalose/lactose 37/36 mg/mL mixture, 
mixing time 80 ms and (b) trehalose/lactose mixture 256/256 mg/mL, mixing time 100 ms. 

Very similar results were obtained for the coupling constants, temperature 
coefficients and ∆δmix. In the ROESY spectra, the intramolecular chemical 
exchange crosspeak between GlcOH2 and FruOH1’ in sucrose had the 
strongest intensity while only weak chemical exchange crosspeaks between 
sucrose and lactose were observed (Figure 43). 

 
Figure 43. ROESY 1H NMR spectra at –5 °C of (a) sucrose/lactose 178/181 mg/mL mixture, 
mixing time 40 ms and (b) sucrose/lactose mixture 178/181 mg/mL, mixing time 80 ms. 

GlcOH3 of lactose was slightly less affected by the addition of trehalose or 
sucrose, attributed to its spatial proximity to GalO5' which restricts interaction 
with the surroundings. The data suggested that trehalose and sucrose did not 
significantly or differently affect the hydrogen bonding in lactose in the 
concentration range investigated. 

The general upfield shift of hydroxy proton signals observed when 
increasing the sugar concentrations was attributed to reduced hydration due to 
slowed down water dynamics as shown in simulations with trehalose and 
proteins (Corradini et al., 2013; Lins et al., 2004). In support of these results is 
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the recent study by Lupi et al. who proposed that the concentration of hydroxy 
groups rather than the type of sugar is important for sugar-sugar and sugar-
water interactions (Lupi et al., 2012), at least for sugar concentrations ≤ 50% 
(w/w). It has also been shown that at low concentrations the hydration of 
trehalose is similar to that of other organic solutes (Winther et al., 2012).  

At concentrations above 40% (w/w) where water retardation in sugar 
solutions is strongly increased and differentiation between sugars start (Lerbret 
et al., 2011), the effect of trehalose and sucrose on the hydration and hydrogen 
bonding in lactose might be differentiated. However this could not be 
investigated due to the low temperatures required for NMR studies of hydroxy 
protons.  
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4 Concluding Remarks and Further 
Perspectives 

The work presented in this thesis was aimed at the analysis of carbohydrate 
structures, properties and interactions using NMR spectroscopy. Much of the 
work was done within the PolyModE project and was focused on carrageenans, 
alginates and GAGs.  

In paper I the structures of κ- and κ/µ-hybrid carrageenan oligosaccharides 
were investigated using NMR of hydroxy protons. It was found that in κµκ and 
κµµκ there is an interresidual hydrogen bond interaction between OH2_G4S 
and OH3_D6S across the 14 linkage of the µ-carrabiose units. In the κµµµκ 
decasaccharide the NMR data suggested that this hydrogen bond is lost in the 
central µ-carrabiose unit. It cannot be excluded that what is observed at the 
oligosaccharide level is also present in the larger polymers. The existence of 
hydrogen bonds in κ/µ-carrageenan and hence a certain structural rigidity may 
infer that the µ-carrabiose units, mostly found in the non-helicoidal regions of 
the κ-carrageenan gel network have an underestimated role in the structural 
organization of the κ-carrageenan gel network. Studies of larger κ/µ-hybrid 
structures that more closely resemble polymeric structures would be interesting 
and could yield new information important for describing the structural 
implications of hybridity in carrageenans 

In paper II a method for measuring the monomeric composition in intact 
alginate samples in solution was developed, using diffusion-edited NMR. 
Minimal sample preparation was required and the method was applicable to the 
screening of large sample sets. The experiment could also be employed to 
determine the M/G-ratio of intact alginate samples at temperatures below 50 
°C allowing the utilization of NMR probes that cannot be used at high 
temperature, such as cryoprobes and certain HR-MAS probes. Diffusion-edited 
NMR experiments were also shown to be highly applicable to studies of 
biomolecules where buffer components and solvents produced NMR signals 
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that overlapped and obscured the signals of interest. The use of presaturation 
methods for water suppression will lead to an increase in intensity of the 
signals from M-residues in alginate. We have made similar observations with 
hyaluronic acid and other polysaccharides with large water retention 
capabilities. In the case of alginates the increase in signal intensities has been 
attributed to closer water association in the M-blocks due to a more linear and 
flexible structure (Salomonsen et al., 2009a). Further investigation of the effect 
of presaturation of water on the NMR spectra of these types of polymers could 
help to understand, at an atomic level, how the polymers interact with water.  

In paper III four novel GAG-sulfatases from the human gut commensal 
Bacteroides thetaiotaomicron were identified and their specificity determined. 
The enzyme BT3349 was found to be the first bacterial GAG endolytic-O-
sulfatase and was able to remove sulfate groups at the 4-position of N-
acetylgalactosamine from disaccharides to polymers of CS/DS. The other three 
enzymes were strictly exolytic. Two of them, BT3333 and BT4656, were 6-O-
sulfatases specific for N-acetylgalactosamine and N-acetylglucosamine sugars 
respectively, thus participating in the degradation of CS/DS and HS. The fourth 
enzyme, BT1596, a ∆-4-hexuronate-2-O-sulfatase, active on HS and CS/DS 
oligo- and disaccharides produced from their respective polymers by lyase 
activity. The complementary set of sulfatase enzymes present in Bacteroides 
thetaiotaomicron enlighten that GAGs are likely metabolized by different, non-
parallel pathways with common steps. Further characterization of the GAG 
degradation pathways of Bacteroides thetaiotaomicron could not only provide 
us with knowledge about the GAG metabolism of bacteria but also provide us 
with enzymatic tools for the production of tailored GAG structures. 

In the fourth paper it was shown that trehalose and sucrose had small and 
similar effects on the hydration and hydrogen bonding interaction of lactose. 
The results suggested that it is the concentration of hydroxy groups that 
influences the sugar-sugar and sugar-water interactions at concentrations below 
40% (w/w), more than the type of sugar.  
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