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Abstract 

Leaching losses of autumn-applied glyphosate (1.06 kg ha-1) via drainage water were 

examined by flow-proportional sampling of discharge from 20 drained plots in a field 

experiment in eastern Sweden. Samples were analysed for glyphosate in particulate-bound 

(PGly) and dissolved (DGly) form. The first 10 mm water discharge contained no detectable 

glyphosate but the following 70 mm had total glyphosate (TotGly) concentrations of up to 6 

µg L-1, with 62% occurring as PGly. On average, 0.7 g TotGly ha-1 was leached from 

conventionally ploughed plots compared with 1.7 g TotGly ha-1 from shallow-tilled plots 

(cultivator to 12 cm working depth). Higher glyphosate losses occurred in snowmelt periods 

in spring, but with the majority (60%) as DGly. All autumn concentrations of PGly in 

drainage water were significantly correlated (p<0.001) to the concentrations of particulate-

bound phosphorus (PP) lost from the different plots (Pearson correlation coefficient 0.84), 

while PP concentrations were in turn significantly correlated to water turbidity (Pearson 

correlation coefficient 0.81). Leaching losses of TotGly were significantly lower (by 1.3 g ha-

1; p<0.01) from plots that had been structure-limed three years previously and ploughed 

thereafter than from shallow-tilled plots. Turbidity and PP concentration also tended to be 

lowest in discharge from structure-limed plots and highest from shallow-tilled plots. This 

difference in TotGly leaching between soil management regimes could not be explained by 

differences in measured pH in drainage water or amount of discharge. However, previously 

structure-limed plots had significantly better aggregate stability, measured as readily 

dispersed clay (RDC), than unlimed plots.  

Key words: glyphosate, drainage water, particulate phosphorus, reduced tillage, structure 

lime, turbidity 

 

Introduction 

Transport of pesticides via sub-surface drains can contribute significantly to contamination of 

surface waters and soil management has been suggested as an important approach to reduce 

this transport (Brown & van Benium, 2009). The widely used substance glyphosate [N-

(phosphonomethyl)glycine] is known to react with metal ions and to be strongly sorbed to soil 

minerals. The substance has four pKa values (0.8, 2.3, 6.0 and 11.0) whereas the acid of 

phosphorus (P) has only three (2.2, 7.2 and 12.4). Long persistence of glyphosate has been 

reported after application in autumn to clay soils in the boreal zone (see e.g. Laitinen et al., 

2009; Bergström et al., 2011), together with frequent occurrence of macropore flow 
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(Verecken, 2005; Jarvis, 2007; Kjær et al., 2011). Despite this, few studies have examined 

leaching of particulate glyphosate (PGly) via tile drains (Borggaard & Gimsing, 2008). In 

contrast, leaching of particulate-bound P, which has similar binding and sorbing 

characteristics to glyphosate, is frequently reported to be high from clay soils (see e.g. 

Uusitalo et al., 2001). Several studies have stressed the importance of structure in clay soils 

for the magnitude of glyphosate losses and losses of other strongly adsorbed pesticides 

through drainage. In addition to changes in macropore connectivity, the sorption and 

degradation of glyphosate may be altered as a result of tillage. However, published results 

regarding glyphosate leaching from reduced tillage compared with conventional ploughing 

have been contradictory. Lysimeter studies have shown no differences or modest positive or 

negative differences under reduced tillage compared with conventional ploughing, 

(Formsgaard et al., 2003; Gjetterman et al., 2009; Larsbo et al., 2009). On the other hand, 

several field experiments have demonstrated distinct positive differences in glyphosate losses 

via surface runoff under reduced tillage compared with mouldboard ploughing (e.g. Stenrød et 

al., 2007).  

Reduced tillage, here referred to as shallow tillage, means that the soil is only tilled to a 

depth of 5-15 cm with a cultivator, disc harrow or rotovator and the soil is not inverted. This 

leaves the soil surface covered with at least 15% of crop residues year-round, according to the 

US definition (ASAE, 2006). Studies of different tillage techniques and associated P losses 

have revealed that shallow tillage can result in less detrimental compaction in the long term, 

as a result of plough pan development being avoided (Wither et al., 2007). Improved water 

storage and a reduction in evaporative water losses may follow (Aura, 1999). Increased 

biological activity and improved soil structure due to an increased amount of organic matter 

in the surface layers are other possible benefits (Rasmussen, 1999). On the other hand, 

shallow tillage by cultivator in wet conditions may create more cloddy topsoil compared with 

conventional mouldboard ploughing (Børresen & Njøs, 1993). In addition, conventional 

ploughing can disrupt macropores and reduce hydraulic conductivity below tillage depth, 

consequently decreasing losses of glyphosate with drainage water. 

A possible method to improve soil structure and reduce glyphosate leaching losses is 

structure liming. Quicklime (calcium oxide, CaO) was widely used in the past in Sweden to 

stabilise agricultural clay soils and improve soil structure (Berglund, 1977). An immediate 

improvement in soil stability and porosity and aggregate strength has been reported 

(Choquette et al., 1987), caused by the ‘Pozzolan reaction’ (Shi & Day, 1993). In addition, 
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dispersed clay particles may form soil aggregates as a result of flocculation and agglomeration 

(Prusinski & Bhattacharja, 2005). The clay may also be stabilised as a result of ion exchange 

between positive ions on clay surfaces and Ca ions (Rodriguez-Navarro et al., 2005). Such ion 

exchange was suggested as the major reason for significantly reduced P concentrations in 

drainage water on mixing lime (shale ash) into trench backfill in a slightly acid clay loam in 

Lithuania (Šaulys & Bastien÷, 2007).  

The main objectives of the present study were to quantify and evaluate glyphosate leaching 

and identify some possible mitigation options, in parallel with measures to reduce P leaching. 

Field studies were carried out to test the following hypotheses: i) A significant proportion of 

glyphosate leaching losses occurs in particulate form; ii) structure liming reduces glyphosate 

leaching losses compared with unlimed soils that are either conventionally ploughed or 

shallow-tilled; and iii) structure liming increases soil aggregate stability compared with 

unlimed soils that are either conventionally ploughed or shallow-tilled.  

 

Materials and methods 

Experimental plots and soil 

In 2006, an experimental field with a subsurface drainage water collection system was 

constructed close to the Lake Bornsjön reservoir by Stockholm Water Company. It 

encompasses 28 drained plots, 20 of which were used in the present experiment. In order to 

match the experimental plots to farm machinery, their dimensions are 20 m x 24 m (0.048 ha) 

and the drains are placed centrally, with 8 m spacing, in order to effectively drain the soil. 

Drainage water flows to a sampling and measuring station and is recorded with tilting vessels 

and data logger. The data logger controls the flow-proportion sampling by means of small 

tube pumps in the basement of the station. After a certain volume of water has passed, the 

suction tube is first cleaned by reverse pumping and thereafter a small volume is sampled. 

The flow-proportional (composite) sampling took place in dark glass vessels (2.5 L) at 

relatively cold temperature (approximately 10-14oC) and in darkness for a maximum of one 

week prior to freezing the water samples and transport to the laboratory before analysis. 

Clay content (60%), is high throughout the profile (Table 1), with small spatial variation in 

both topsoil and subsoil (variance less than 0.5%). In addition, pH and soil concentration of P 

are uniformly distributed in the experimental area (variance less than 15%). In the soil profile, 

the pH (dry soil samples) varies between 5.2 and 6.9, with the lowest values occurring in the 
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70-100 cm layer, which includes the tile drains at approx. 90 cm depth. Under wet conditions 

the pH in the upper subsoil is higher than that under dry conditions (6.9 compared with 6.6). 

No carbonates have been detected. Plant-available P, analysed after extraction with acid 

ammonium-lactate solution (PAL) or as POlsen, is low, especially in the upper subsoil. The 

content of iron (Fe), analysed as lactate-extracted Fe (Fe AL) or as oxalate-extracted Fe 

(Feox), is high, while the corresponding aluminium values (AlAL and Alox) are rather typical 

for Swedish clay soils (Eriksson et al., 2012). Molar-based degree of P saturation in the 

lactate-extract (DPSAL) and the corresponding ratio between Olsen-P and P sorption, 

measured as sorption index (PSI2) are both low. Overall, the soil profile generally 

demonstrates a high ability to sorb P to the soil matrix. 

The soil horizon has a strongly aggregated structure, with approximately 10 wide and 10-

20 cm prismatic aggregates in the deeper part (43-100 cm). Large vertical pores (up to 5 mm 

wide) are apparent between the aggregates and abundant fine pores in old root channels. 

Frequent precipitation of rust occurs in the root channels, on aggregate walls and as 3 mm 

diameter patches and water retention is very high. This rust covers 10% of the area in the 

deeper horizon. In an adjoining field with an old drainage system, the deeper soil horizon is 

very wet, the aggregates similarly very prismatic and the structure is easily destroyed by 

digging.  

   

 

Glyphosate application and cultivation practices 

In preceding years the crops were: winter wheat in 2007, spring barley in 2008 and 2009 and 

oats in 2010. No glyphosate had been applied to the actual experimental plots for the previous 

3 years. Quicklime (CaO) had been applied in dry conditions on the stubble in four plots in 

2007 at a rate of 5 ton ha-1 and incorporated immediately into the soil by a cultivator driven in 

different directions. Since this initial year, the structure-limed plots have been conventionally 

ploughed in autumn.  

Glyphosate was applied on 22 September 2010 as the commercial product Glypro Bio, at a 

rate equal to 1.06 kg ha-1 active substance. This amount, which represents a normal dose in 

Swedish production systems, was applied in evening at air temperature 11oC and no wind. 

Twelve days later, the conventional and structure-limed plots were stubble-harrowed (Table 

2) and 8 plots were shallow-tilled (12 cm) twice and reconsolidated with a rib-roller. After a 

further 10 days, the conventionally ploughed plots (8) and the structure-limed plots (4) were 
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mouldboard-ploughed and the soil was inverted to a depth of 23 cm. All tillage operations 

took place under relatively dry soil conditions and without any pronounced cloddiness in the 

reconsolidated topsoil after cultivation.  

 

Weather, discharge and water taken to analysis  

Autumn 2010 was short, with permanent snow from the end of November (Figure 1). Owing 

to the thickness of the snow cover, soil freezing was limited despite low air temperatures. A 

short period of snowmelt occurred at the beginning of January, but this was followed by more 

accumulated snow. The main snowmelt took place in late March and the first two weeks in 

April.  

The glass vessels with flow-proportional samples in the station basement were observed 

regularly (at least weekly) and when at least 300 mL turbid water had been collected from 

most plots, subsamples were taken from every plot for glyphosate analysis. The glass vessel 

was shaken and a portion of water was poured into a 200 mL plastic bottle. This was frozen at     

-18oC before analysis for glyphosate and turbidity, which took place 5-8 months after 

sampling. Simultaneously, from every plot a 100 mL sample was taken in a glass bottle for P 

analysis and a 100 mL sample in a plastic bottle for pH analysis. These were immediately sent 

to the water laboratory where pH was measured on the following day, dissolved reactive P 

(DRP) within two days and total P (TotP) within 4 days after storage at +4oC. When a minor 

amount of flow-proportional water was collected this was thrown away and the glass vessel 

was rinsed with distilled water. When there was a moderate amount of water or less turbid 

water in the glass vessel, sampling was performed only for analysis of P and turbidity for 

reasons of economy. Such sampling occurred in total on 5 sampling occasions. On March 28, 

186 days after glyphosate application in autumn, turbidity was observed once again in the 

flow-proportionally sampled water and additional water was collected for glyphosate analysis, 

which was performed on the 14 most turbid samples.  

 

Water analysis 

Total P was analysed as soluble molybdate-reactive P after acid oxidation with K2S2O8 (ECS 

1996). Dissolved reactive phosphorus (DRP) was analysed after pre-filtration using filters 

with pore diameter 0.45 µm (Schleicher & Schüll GmbH, Dassel, Germany). In the major 

flow events and with water-saturated topsoil the concentration of dispersed clay is known to 
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be high at the present site (Ulén & Persson, 1999). Particulate P (PP) is the absolute dominant 

P fraction, while non-mineral forms of dissolved P are very small, and accordingly the 

difference between TotP and DRP was taken as PP. The concentration of particles was 

analysed from thawed samples as turbidity on a HACH 2100 turbidometer (Hach Loveland, 

Co, Düsseldorf, Germany). Measurement took place 15 sec after shaking the sample and the 

results were expressed as nephelometric turbidity units (NTUs). Freezing-thawing and 

shaking may have broken down any larger aggregates in particulate form into smaller 

particles, reducing shadowing and facilitating turbidity measurement.    

Before analysing glyphosate, each thawed sample was thoroughly shaken by hand and 20 g 

were immediately transferred to a polypropylene centrifuge filter tube containing a removable 

cellulose acetate filter with pore size 0.45 µm (#64525-CA, SUN-SRi, Tennessee, USA). The 

tube was centrifuged at 4000 rpm for 2 minutes. The filtered water was used for analysis of 

DGly, including AMPA, after pH adjustment (pH 7-8) with either diluted HCl or NaOH.  

The removable filter in the tube, containing the particles (PGly), was immediately 

transferred to a new, filter-free, centrifuge tube. An internal standard mixture (0.1 µg L-1) of 

glyphosate isotope-13C15N and 0.2 µg L-1 of the same isotope of its major metabolite 

aminomethyl-phosphonic acid (AMPA) was added. Extraction was performed using 5 mL 0.1 

M NaOH, with occasional shaking of the sample for 15 min. The sample was then centrifuged 

for 1-2 min at 3000 rpm. Another 3 mL 0.1 M NaOH were used for rinsing and the sample 

was shaken and immediately centrifuged at 3000 rpm. The filter was removed and sample pH 

was adjusted to pH 2 by adding 0.6 M HCl, during an hour, in order to precipitate any humic 

acids. The sample was then diluted and neutralised (pH 7-8) with 0.1 M NaOH. 

The same analytical procedure was used for both PGly and DGly and involved ion-

exchange and derivatisation, followed by final identification and quantification by gas 

chromatography-mass spectrometry (GC-MS). The internal glyphosate/AMPA standard 

mixture was added (also to the DGly samples) before starting analysis. Sample preparation 

involved series coupling of an empty reservoir, an activated C18-column (Isolute 500g, 

Biotage IST, Uppsala Sweden) and a wet bead ion-exchange resin (AG 1-X8, Bio-Rad 

Laboratories, Sundbyberg, Sweden). The whole sample was entered into the reservoir and the 

water moved slowly through the cleaning and ion-exchange stages. The ion-exchange column 

was thereafter slowly eluted with 10 mL 0.6 M HCl into a 25 mL pear-shaped bottle (pre-

washed with KOH). The extract was evaporated to almost dryness using vacuum and a 50 °C 

water bath, and then the remaining liquid was transferred into a glass tube (prewashed with 
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KOH). The pear-shaped bottle was rinsed with methanol/ultrapure water/HCl (80/20/1.4) and 

this too was transferred to the glass tube. The sample was thereafter blown to total dryness by 

air at 50 °C.  

Derivatisation was performed using 1.5 mL trifluoroacetic anhydride (TFAA) and 0.75 mL 

trifluoroethanol (TFE), followed by heating to 100 °C during 1 hour. After being cooled to 

room temperature the sample was evaporated to total dryness for at least 2 hours by air. The 

sample was thereafter dissolved in 0.5 mL ethyl acetate (EtAc).  

Analyses were performed using gas chromatography-mass spectrometry (GC-MS) with a 

Hewlett-Packard 6890 GS MS 5973 (Agilent Technology AB, Kista, Sweden), equipped with 

a capillary column (HP-5MS Ul), a split/splitless injector and the software Chemstation. A 1 

µL portion of the sample was injected in pulsed splitless mode at oven temperature 70 °C. 

After 1 min, the oven temperature was raised to 160 °C at a rate of 16 °C min-1 and then from 

160 to 260 °C at a rate of 70 °C min-1. Helium (N55) was used as the carrier gas and the flow 

rate was 1.2 mL min-1. The mass spectrometer was operated in the electron impact (EI) mode; 

the transfer line temperature was 260 °C and the MS source temperature 230 °C. Fragment 

ions were detected by selected ion monitoring (SIM) and used for identification of AMPA and 

glyphosate derivates. Verification of compound identification was based on comparison of the 

peak-heights of the selected ions in the samples with those of the standards. The uncertainty 

of residue results was estimated from the recoveries obtained. The limit of detection (LOD) 

was 0.03 µg L-1, 0.1 µg L-1 and 0.2 µg L-1 for DGly, PGly and AMPA respectively, with 

occasional higher LODs due to background interference. The limit of quantification (LOQ) 

was 2-3 times higher.  

 

Soil aggregate stability 

Soil samples from plots with structure liming, conventional ploughing and reduced tillage 

were analysed in the laboratory for aggregate stability, expressed as readily dispersed clay 

(RDC). Slightly moist samples were collected from the topsoil (0-20 cm) on 27 August 2010, 

before post-harvest stubble cultivation, and gently transported to the laboratory. Four 

subsamples representing 12 aggregates (8-10 mm) were prepared for each plot and gently 

wet-sieved (0.6 mm mesh opening) with a slow oscillating movement (90 revolutions min-1) 

in 3 cm vertical sweeps for 6 min (Ejkelkamp Wetsieving Equipment, Gesbieek, The 

Netherlands). After 4 hours sedimentation (to allow all particles larger than clay to settle; 
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Sheldrick & Wang, 1933), the content of dispersed clay still in solution was determined by 

turbidometer (Cryz et al., 2002). 

 

Data calculations and statistical analyses 

The mean and standard deviation were calculated for the experimental parameters determined 

in all flow-proportional samples (4 or 8 parallel samples) from replicate plots for the different 

treatments. If no residue of glyphosate or AMPA was detected in a given sample, the value 0 

was used for calculating the mean. Pearson correlation and regression linear relationships 

were determined between the parameters total glyphosate (TotGly = PGly + DGly), TotP, 

PGly, PP and turbidity for the autumn period (27 September-15 November) and between TotP 

and turbidity for the spring period (21 March-11 April). Any differences in glyphosate 

concentrations between the different soil treatments were analysed using Bonferroni post test  

assuming equal variance and a significance level of p<0.05. 

Leaching losses from the different plots in the autumn period were calculated by multiplying 

discharge by measured flow-proportional concentrations in the sub-periods. In the spring 

period, transport of TotGly was estimated from measured values from 14 plots on 28 March. 

Without any measured values the transport was estimated from TotP transport using the 

relationship between TotP and TotGly as determined for the 14 samples.  

 

Results and discussion 

Glyphosate and phosphorus concentrations in water 

One week after glyphosate application in autumn, when 10 mm discharge had passed 

through the tile drainage system, no glyphosate or AMPA was present in detectable quantities 

in the discharge (Table 3). In the following 7-8 weeks, representing 70 mm water discharge, 

relatively high and quantifiable concentrations of both DGly and PGly were detected in 

practically all water samples and, in addition, dissolved AMPA was frequently observed. The 

concentrations varied greatly from plot to plot and TotGly concentrations of up to 5-6 µg L-1 

were recorded for some plots. High PGly concentrations were generally associated with high 

DGly concentrations and the two forms of glyphosate were significantly correlated to each 

other (p<0.05). More DGly seemed therefore to leach together with mobilised soil particles 

with high glyphosate content. However, since glyphosate sorption-desorption reactions are 

rapid (see e.g. Borggaard & Gimsing, 2008), the correlation may also reflect an equilibrium 

taking place between PGly and DGly in the cumulative discharge stored before filtration. 
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Mean DGly concentration in discharge in the autumn was 1.03 µg L-1 for plots with shallow 

tillage; 0.43 µg L-1 for plots with conventional ploughing and 0.36 µg L-1 for plots with 

structure liming (differences not significant).  

Similarly to TotGly, the majority of TotP appeared in particulate form. A clear and positive 

correlation between TotGly and TotP concentrations and between PGly and PP concentrations 

was recorded (Figure 2). In turn, PP concentrations could be quite well predicted from 

turbidity (Figure 2). In contrast, DRP concentrations were generally low (0.018-0.027 mg L-1) 

and DGly concentrations were more weakly correlated to DRP concentrations (r=0.65; 

p<0.001). Glyphosate is commonly suggested to compete with phosphate ions for adsorption 

sites (Borggaard & Gimsing, 2008), but at the present site, with high sorption capacity of the 

soil particles, this seemed not to be the case, since the correlation was positive. Mean PGly 

concentrations in the autumn were 1.73 µg L-1 in discharge from shallow tilled plots; 0.62 µg 

L-1 for conventional ploughed plots; and 0.36 µg L-1 for structure-limed plots, which were all 

significantly different (p=0.001). 

 

Glyphosate and phosphorus in spring versus autumn period 

As with glyphosate and phosphorus, pH was measured in the cumulative flow-proportionally 

sampled water and may have changed in the glass vessel. However, measured pH generally 

did not differ between the three treatments and pH in discharge from the previously structure-

limed plots was similar to that in discharge from the unlimed plots (Table 3). The pH tended 

to be lower (6.6) in the snowmelt period (Table 3). This low pH may have influenced both the 

electrical charge of glyphosate and the hydrogen bonds of the minerals (Verecken, 2005), 

which may explain the high concentrations of DGly in snowmelt. The snowmelt water had 

low electric conductivity and DRP concentrations that were twice as high as those in the 

autumn discharge water. High DRP concentrations in snowmelt are frequently observed for 

high charged Swedish clay soils, which commonly contain the mineral illite (Ulén, 2003; 

Ulén & Snäll, 2007). In addition, the relatively low pH may dissolve some Ca-bound P from 

the clay particles (Devau et al., 2011). The PGly concentrations found in snowmelt in the 

present study were generally lower than the DGly concentrations and remained at nearly the 

same level as in autumn, and consequently the relative proportions of DGly and PGly were 

reversed from autumn to spring (snowmelt) (Table 4). However, the latter case is based on a 

more limited number of analyses (n = 14). The PGly/turbidity ratio was generally 20-40% 

lower in March than in November and the dispersed clay particles might have been more 
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decomposed and depleted of glyphosate in spring. Similarly, PP concentrations related to 

turbidity had a lower slope in snowmelt than in autumn. The regression line (not shown) was: 

[PP] (µg L-1) = 11 + 0.7818* Turbidity (FTU) (R2 = 92%). This may also have been an effect 

of the topsoil colloids being more depleted of P in spring than in autumn. 

Since the major water discharge took place during the snowmelt period, glyphosate losses 

tended to be higher in spring than in autumn (Tables 5 and 6). In relation to applied amount, 

losses were approximately 0.1% in spring and 0.05% in autumn for the conventionally 

ploughed plots. The main reason for the high spring discharge was the intensive snowmelt 

taking place after a winter with much snow accumulation. The apparent importance of such a 

snowmelt period for glyphosate losses confirms findings by Laitinen et al. (2009). Snow 

accumulation also had great consequences for P losses, e.g. for the conventionally ploughed 

plots TotP leaching losses were 0.32 kg ha-1 in the snowmelt period, compared with 0.12 kg 

ha-1 in autumn.  

 

Glyphosate and phosphorus losses under different soil management regimes 

In the autumn period, TotGly leaching losses were on average 0.70 g ha-1 from the 

conventionally ploughed plots (Table 6). TotGly losses from structure-limed plots were 

significantly lower (p<0.05) than from shallow-tilled plots, expressed in absolute terms (Table 

5), and also as a percentage of applied amount of glyphosate (Table 6). The structure-limed 

plots had significantly (p<0.05) better aggregate stability (lower RDC values) in autumn than 

the conventionally ploughed and shallow-tilled plots (Figure 3), which may explain the clear 

tendency for lower losses of both PGly and PP from this treatment (Table 5).  

Any enhanced amounts of stubble residues in the topsoil, combined with higher potential 

biological activity and organic matter content, did not seem to have improved aggregate 

stability in the regular shallow-tilled plots (Figure 3). Furthermore, leaching losses of both 

PGly and PP tended to be highest from these plots (Table 5). Sorption of glyphosate is 

generally not increased in the presence of more straw residues as a consequence of reduced 

tillage (Stenrød et al., 2007), so the straw may have facilitated water transport rather than 

providing new sorption sites after the mixing and reconsolidation of the soil surface. Since the 

tillage operations took place under relatively dry soil conditions, no serious soil compaction 

with associated soil structural problems should have occurred. However, the macropores 

might have been less damaged after shallow tillage, allowing more channelised water flow 

through the soil profile. Shallow tillage is possibly a suitable mitigation option primarily for 
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sloping sites with surface erosion and a high risk of particle-facilitated leaching of glyphosate. 

This is also the case as regards leaching of P at the experimental site with no slope and, 

similarly, P losses were reported to be higher with reduced tillage than conventional tillage at 

a Finnish site (Koskiaho et al., 2002).  

Since there were strong similarities between phosphorus and glyphosate concentration 

pattern, TotGly could act as an indicator of leaching losses of P, including PP. The source of 

the glyphosate leaching in this study was the tilled topsoil (0-12 or 0-23 cm), which was 

possibly the main source of phosphorus leaching too. Other studies have also reported that the 

topsoil may act as the main source of particle and PP losses via subsurface runoff (see e.g. 

Chapman et al., 2001). 

 

Conclusions 

In this field study, glyphosate leaching followed the same general pattern as phosphorus 

leaching. A significant proportion of glyphosate leaching losses may occur in particulate form 

from clay soils with high amounts of sorption sites available. The fine clay particles may act 

as an important transporter of glyphosate via tile drains. Structure liming combined with 

conventional ploughing was shown to reduce glyphosate leaching losses compared with 

unlimed soils at the study site, while simultaneously improving soil aggregate stability 

significantly. The results also showed that shallow tillage may not be a suitable way to reduce 

particle-facilitated transport of glyphosate and phosphorus via tile drains from this type of 

clay soil. 
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Table 1. Selected physical and chemical properties of the soil at the study site 

Properties Soil depth (cm)   Reference for the 

 0-10 10-30 30-50 50-70 70-100 Method 

Particle size distribution:     

<0.002 mm (clay) (%)  60 60 59 61 54 Eriksson et al., 1998 

0.002-0.02 mm (%)  31 30 30 31 34 Eriksson et al., 1998 

0.02-0.2 mm (%)    9 10 11   8 12 Eriksson et al., 1998 

Organic matter (%)    3.9 1.9 0.1 0.0 0.0 Eriksson et al., 1998 

pHH2O
*    6.0    6.2     6.6    6.5    5.2 ISO, 2005 

POlsen (mmol kg-1)*    0.59    0.53     0.13    0.17    0.68 Olsen & Sommers, 1982 

PAL (mmol kg-1)*    1.4    1.0     0.3    0.4    1.0 Egnér et al., 1960 

Alox (mmol kg-1)* 116 106   71   77   88 Schwertmann, 1964 

Feox (mmol kg-1)* 165 169 158 181 118 Schwertmann, 1964 

AlAL (mmol kg-1)*   10.3    9.9   9.8   9.6   16.1 Ulén, 2006 

FeAL (mmol kg-1)*     9.4 10.1   8.8   9.4   12.5 Ulén,  2006 

PSI2
 (mmol kg-1) *     7.3   7.8   7.3   7.2   10.5 Börling et al., 2004 

POlsen/PSI2
* (%)     8.1   6.8   1.8   2.4    6.4 Börling et al., 2004 

DPSAL
* (%)     8.7   6.2   2.0   2.5    4.3 Ulén,  2006 

*data from Andersson et al., 2012 
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Table 2. Management regime in the different treatments (A-E) in 2010, where A+B                                                      

(8 plots) represent regular conventional autumn ploughing, C (4 plots) represents previous                                                  

structure liming and D+E (8 plots) represent regular shallow tillage in autumn                                                            

 Treatment Management Date 

A+B, C, D+E  Harrowing (0-5 cm)  16 May 

A+B, C, D  Fertilisation, seed drilling*   17 May 

E Fertilisation (broadcasting)  17 May 

A+B, C, D+E  Sowing (oats)  17 May 

A+B, C, D+E  Harvesting  27 Aug. 

A+B, C, D+E  Glyphosate application (1.06 kg ha-1)  22 Sept. 

A+B, C  Stubble harrowing     4 Oct. 

D+E  Cultivation (8 cm) twice     4 Oct. 

A, B, C  Conventional ploughing (23 cm)   14 Oct. 

* No P fertilisation to B plots  
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Table 3. Discharge, pH (in stored composite samples) and flow-proportional concentrations of dissolved 

glyphosate (DGly), AMPA, particulate glyphosate (PGly), dissolved reactive phosphorus (DRP), particulate P 

(PP) and turbidity (Turb) in five periods 2010-2011  (n.d. = not detected)  

Period 22/9-27/9 28/9-25/10 26/10-8/11 8/11-15/11 21/3-28/3 

Conventional ploughing    

Discharge (mm)   8.2±3.0   9.2±4.3 25.5±11.1 33.5±13.1 72.9±30.2 

pH   6.5   7.2    7.0   6.7    6.6 

DGly (µg L-1)   n.d.   0.43±0.32   0.43±0.34   0.39±0.21    0.31±0.34 

AMPA (µg L-1)   n.d.   0.05   0.04   0.03    n.d. 

PGly (µg L-1)   n.d.   0.67±0.63   0.61±0.67   0.60±0.34    0.22±0.43 

DRP (mg L-1)    0.021±0.011   0.021±0.011   0.018±0.007   0.020±0.007    0.048±0.019 

PP (mg L-1)    0.132±0.068   0.122±0.010   0.161±0.166   0.168±0.144    0.124±0.039 

Turb (NTU)  64±26 36±7 62±24 60±20 30±16 

Structure liming    

Discharge (mm) 10.4±4.1 13.5±5.4 29.1±11.4 30.1±5.1 74.4±25.5 

pH   6.9   7.3   7.2   6.9   6.6 

DGly (µg L-1)   n.d.   0.24±0.20   0.30±0.21   0.24±0.27   0.23±0.25 

AMPA (µg L-1)   n.d.   0.03   e.d.   0.05   0.08 

PGly (µg L-1)   n.d.   0.40±0.48   0.41±0.53   0.33±0.58   0.16±0.35 

DRP (mg L-1) 0.018±0.007   0.017±0.008   0.015±0.005   0.020±0.006   0.047±0.027 

PP (mg L-1) 0.075±0.066   0.066±0.074   0.093±0.131   0.100±0.106   0.078±0.032 

Turb (NTU) 46±30 34±11 64±26 46±31 28±6 

Shallow tillage    

Discharge (mm) 10.8±5.3 15.6±6.6 25.9±10.2 29.7±6.4 76.4±23.5 

pH   6.8   7.2   7.1   6.8   6.6 

DGly (µg L-1)   n.d.   1.15±0.89   1.28±1.42   0.99±0.64   0.82±0.93 

AMPA (µg L-1)   n.d.   0.05   0.23   1.3   0.02 

PGly (µg L-1)   n.d.   1.99±1.64   1.42±1.44   1.89±1.48   0.57±0.84 

DRP (mg L-1) 0.024±0.007   0.024±0.007   0.023±0.008   0.027±0.007   0.047±0.021 

PP (mg L-1) 0.142±0.078   0.236±0.181   0.411±0.355   0.275±0.151   0.136±0.029 

Turb (NTU) 88±44 50±17 99±45 81±31 52±43 
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Table 4. Number of samples analysed (n), relative proportions of dissolved glyphosate (DGly) and particulate 

glyphosate (PGly) in total glyphosate (TotGly) and relative proportions of dissolved reactive P (DRP) and 

particulate P (PP) in total phosphorus (TotP) in autumn (28/9-15/11 2010) and in a snowmelt period in spring 

(21-28/3 2011), based on flow-proportional concentrations 

Glyphosate Phosphorus 

Fraction Autumn Spring Fraction Autumn Spring 

n  80  14 No 80 20 

DGly/TotGly (%) 40 60 DRP/TotP (%) 10 32 

PGly/ TotGly (%) 60 40 PP/TotP (%) 90 68 
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Table 5. Discharge and transport of dissolved glyphosate (DGly), particulate glyphosate (PGly), total glyphosate 

(TotGly), dissolved reactive phosphorus (DRP), particulate P (PP) and total P (TotP) from conventionally 

ploughed, structure-limed (and ploughed) and shallow-tilled plots in the period 28/9-15/11 2010 

Period 28/9-15/11 Conventional Structure-limed Shallow-tilled  

Discharge (mm)     69±28   74±23   72±22 

DGly (g ha-1)       0.25±0.13     0.12±0.10     0.65±0.54 

PGly (g ha-1)       0.45±0.53     0.19±0.19     1.01±0.75 

TotGly (g ha-1)       0.70±0.60     0.31±0.31**     1.65±0.96 

DRP (kg ha-1)       0.012±0.004     0.012±0.003     0.018±0.007 

PP (kg ha-1)       0.104±0.082     0.048±0.044     0.192±0.111 

TotP (kg ha-1)       0.117±0.084     0.060±0.044     0.209±0.114 

** Significantly lower (p<0.05) than in shallow-tilled plots 
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Table 6. Discharge (mm) and leaching losses of dissolved glyphosate (DGly), particulate glyphosate (PGly) and 

total glyphosate (TotGly) as a percentage of original amount applied from conventionally ploughed, structure-

limed (and ploughed) and shallow-tilled plots based on measurements in autumn (28/9-15/11 2010) and more 

rough estimates in the most intensive spring snowmelt period (31/3-11/4)  

            Conventional       Structure-limed      Shallow-tilled 

 Autumn Snowmelt Autumn Snowmelt Autumn Snowmelt 

Discharge (mm)   69  170   74 169   72 160 

DGly (%)     0.024     -     0.011     -     0.061     - 

PGly (%)     0.041     -     0.018     -     0.095     - 

TotGly (%)     0.066   0.09     0.029     0.05     0.156     0.19 

 

 

 

FIGURE CAPTIONS  
 

Figure 1. Temperature  

(oC), precipitation (mm) and snow cover (mm) on the experimental field in 2010-2011.  

 

Figure 2. Regression equation for the relationship between concentrations of: a) total 

glyphosate (TotGly) and total phosphorus (TotP); b) particulate glyphosate (PGly) and 

particulate P (PP); and c) PP and turbidity (NTUs) in the period 27 September-15 November 

2010. Corresponding Pearson correlations (0.86, 0.84 and 0.82, respectively) were all 

significant (p<0.001).    

  

Figure 3. Readily dispersed clay (RDC) in the topsoil from (A) conventionally ploughed, (C) 

structure-limed and (D) shallow-tilled plots. The soil was sampled in September 2010, three 

years after structure liming. 
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Fig 1
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Fig 2 
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Fig. 3 
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