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Mapping and monitoring of vegetation using airborne laser 
scanning 

Abstract 

In this thesis, the utility of airborne laser scanning (ALS) for monitoring vegetation of 

relevance for the environmental sector was investigated. The vegetation characteristics 

studied include measurements of biomass, biomass change and vegetation classification 

in the forest-tundra ecotone; afforestation of grasslands; and detection of windthrown 

trees. Prediction of tree biomass for mountain birch (Betula pubescens ssp. 

czerepanovii) using sparse (1.4 points/m
2
) and dense (6.1 points/m

2
) ALS data was 

compared for a site at the forest-tundra ecotone near Abisko in northern Sweden 

(Lat. 68° N, Long. 19° E). The predictions using the sparse ALS data provided almost 

as good results (RMSE 21.2%) as the results from the dense ALS data (18.7%) despite 

the large difference in point densities. A new algorithm was developed to compensate 

for uneven distribution of the laser points without decimating the data; use of this 

algorithm reduced the RMSE for biomass prediction from 19.9% to 18.7% for the 

dense ALS data. Additional information about vegetation height and density from ALS 

data improved a satellite data classification of alpine vegetation, in particular for the 

willow and mountain birch classes. Histogram matching was shown to be effective for 

relative calibration of metrics from two ALS acquisitions collected over the same area 

using different scanners and flight parameters. Thus the difference between histogram-

matched ALS metrics from different data acquisitions can be used to locate areas with 

unusual development of the vegetation. 

The height of small trees (0.3–2.6 m tall) in former pasture land near the Remnings-

torp test site in southern Sweden (Lat. 58° N, Long. 13° E) could be measured with 

high precision (standard deviation 0.3 m) using high point density ALS data 

(54 points/m
2
). When classifying trees taller than 1 m into the two classes of changed 

and unchanged, the overall classification accuracy was 88%. A new method to 

automatically detect windthrown trees in forested areas was developed and evaluated at 

the Remningstorp test site. The overall detection rate was 38% on tree-level, but when 

aggregating to 40 m square grid cells, at least one windthrown tree was detected in 77% 

of the cells that according to field data contained windthrown trees. 

In summary, this thesis has shown the high potential for ALS to be a future tool to 

map and monitor vegetation for several applications of interest for the environmental 

sector. 
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If I were creating the world, I wouldn't mess about with butterflies and 

daffodils. I would have started with lasers, eight o'clock, Day One! 

Time Bandits  
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1 Introduction 

The term “remote sensing” was introduced in the 1960s. The general term used 

before that was aerial photography, but with new methods and technology, a 

new term was established. Aerial photographing was tested already at the end 

of the 1880s using balloons and kites to lift a camera into the air. About 70 

years later, the first satellite image was acquired in 1960 by the US military 

(Day et al., 1998). Satellite images were acquired on a regular basis and made 

it possible to monitor changes. Civilian use of satellite images to study earth 

resources started with the first Landsat satellite in 1972. This was preceded by 

testing of multispectral scanner systems carried by aircrafts (Swain & Davis, 

1978). 

Airborne laser scanning (ALS) was introduced in the 1980s, but first 

became commercial in the mid-1990s. The principle of ALS is described here 

in a simplified way. The ALS instrument is mounted on an airplane or 

helicopter where the sensor’s position and pointing direction are continuously 

recorded using GPS (Global Positioning System) and IMU (inertial 

measurement unit). A short laser pulse is emitted and the time it takes to be 

reflected back to the sensor from the ground, branches, leaves, etc. is 

measured. A 3D coordinate of a reflected point can then be calculated. This 

process is repeated at the same time as the platform moves forward in the 

flying direction and the scan angle is changed. Thousands of pulses are emitted 

every second and a point cloud of 3D coordinates of reflected positions is 

created. For a more thorough description of the principles of ALS, the reader is 

referred to Shan & Toth (2009), Lindberg (2012), and can be compared to the 

principles of photogrammetry in Kraus & Pfeifer (1998). 

The development of laser scanners has been rapid and the recent scanners 

on the market can have scan frequencies around 500 kHz and can record the 

full waveform of the returned laser pulse. At the time of writing this thesis, 

Lantmäteriet is scanning all of Sweden (450,295 km
2
) using ALS. The density 
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is at least 0.5 points/m
2
. Due to the rapid technological development, it is also 

of interest to conduct research using higher point density data which is 

expected to be standard data in the future. 

Laser metrics can be calculated from the ALS points and used for 

estimation of vegetation properties. The ALS point cloud is first classified into 

ground and non-ground using automatic methods (e.g., Kraus & Pfeifer, 1998; 

Axelsson, 1999, 2000). A digital elevation model (   ) representing the 

ground is then calculated from the ALS points classified as ground. The height 

above ground of the non-ground points is calculated by subtracting the 

elevation of each point by the ground    . Laser metrics that characterize the 

vegetation can be calculated for a sample plot or grid cell. Examples of metrics 

are height percentiles and vegetation ratio. Height percentiles, giving a 

measure of vegetation height, are calculated from the distribution of all height 

values above a threshold (e.g., threshold = 1 m). The vegetation ratio, giving a 

measure of vegetation density, is the proportion of all laser returns that are 

above the threshold. 

1.1 Background and motivation of the studies 

Airborne laser scanning has been used for some time to monitor state and 

changes in forestry (Næsset et al., 2004), but there are fewer studies that 

investigate the use of ALS for environmental purposes. There is a need to 

develop methods for monitoring of changes in the forest-tundra ecotone, 

afforestation of pasture land, and windthrown trees, for example. The papers in 

this thesis are conducted in three vegetation types: alpine forest, hemi-boreal 

forest, and pasture land. 

Methods for ALS remote sensing for the alpine forests and hemi-boreal 

forest are in general the same, but the mosaic patterned forest in the mountains 

requires robust models (paper I) when predicting forest variables. In this thesis, 

the term “forest-tundra ecotone” is defined as the transition zone where sub-

alpine forest and alpine tundra meet (Clements, 1936; Payette et al., 2001). 

There has been a growing interest in monitoring the forest-tundra ecotone, 

especially the tree line, which is expected to change with a warmer climate 

(Kupfer & Cairns, 1996; Kullman, 1998, 2010). In addition to tree line 

changes, an increase in the biomass of the forest-tundra ecotone can be 

expected (Tømmervik et al., 2009; Hedenås et al., 2011; Rundqvist et al., 

2011). The Arctic Climate Impact Assessment report (ACIA, 2004) states that 

the arctic average temperature has risen almost twice the rate as the rest of the 

world in the past few decades. In addition to climate, the tree line is also 

influenced by other factors such as browsing by moose and reindeer, human 
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activities and insect attacks (Holtmeier & Broll, 2005; Post & Pedersen, 2008; 

Olofsson et al., 2009; Hofgaard et al., 2010; Aune et al., 2011; Van Bogaert et 

al., 2011). Callaghan et al. (2002) presented a summary of studies defining the 

tree line. The conclusion stated that there was a clear need for rationalization of 

the definitions, but that the task was not trivial. Callaghan et al. also states that 

many studies are based on the term “line”, but many characteristics of the 

forest-tundra ecotone are better characterized by 2- or 3-dimensional patterns. 

In paper I in this thesis, an area based method is used to create a spatially 

complete coverage map of above ground biomass in the forest-tundra ecotone. 

This map can then be used to assess changes by taking the difference between 

wall-to-wall biomass predictions from two time-points. 

Vegetation maps of the forest-tundra ecotone have previously been created 

by manual photo interpretation. The use of optical satellite images to 

automatically classify alpine vegetation has also been evaluated (e.g., Reese, 

2011). The addition of topography (e.g., slope, elevation, aspect) to satellite 

images increases the classification accuracy of some alpine vegetation types 

(Edenius et al., 2003; Reese, 2011). Some alpine vegetation classes, for 

instance willow, may be confused with other classes due to spectral overlap 

and similar topographical niches. Therefore, it is of interest to investigate 

whether classification accuracy could be improved by including laser metrics 

from ALS. 

Series of ALS data start to become available and future multi-temporal data 

will likely be collected with various point densities, scanning systems, and 

system parameters, among other characteristics. Efficient calibration methods 

are needed to perform monitoring or detection of changes using multi-temporal 

ALS data. In paper III in this thesis, a method to calibrate laser metrics from 

two different ALS systems was developed and used to detect local changes that 

differ from the normal development of the landscape. 

Early stages of afforestation of pasture lands is difficult to monitor with 

aerial photos or optical satellite images due to the often tall surrounding grass 

that makes it difficult to distinguish small newly established trees. Information 

on afforestation is typically needed for arable land where farmers receive 

subsidies from the European Union to keep pasture land open or for nature 

reserves that should preserve certain species and landscape characteristics. 

Similar needs for detecting new trees also exist for climate related monitoring, 

such as control of afforestation and reforestation within the REDD+ framework 

(GOFC-GOLD, 2012). Monitoring the establishment of small trees in arable 

land is a difficult task, and is similar to the detection of pioneer trees in the 

forest-tundra ecotone for which some ALS studies exist (e.g., Næsset & 

Nelson, 2007; Næsset, 2009b; Thieme et al., 2011; Nyström et al., 2012, 2013; 
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Stumberg et al., 2012). No previous studies have been found which have been 

conducted in agricultural grasslands using ALS to detect afforestation. It is 

therefore of interest to examine the minimum level of change in this landscape 

that can be measured using ALS. 

Dead wood in the form of logs from windthrown trees is a valuable 

resource for biodiversity in forest ecosystems (Bouget & Duelli, 2004; Jonsson 

et al., 2005). The large number of windthrown trees usually occurring after 

major storms might, however, sustain large populations of insects that could 

impose a danger to the remaining living forest (Martikainen et al., 1999). 

Forest managers would be aided by remote sensing methods which could 

detect the location of recent windthrown trees. For ecosystem management, as 

well as for carbon accounting, there is a need for efficient statistical methods 

for surveying the amount of dead wood logs. 

It has been shown that radar as well as optical images acquired from 

aircrafts or satellites can be used to find areas where many trees have fallen. It 

is however difficult to find scattered windthrown trees located under a tree 

canopy from optical satellite data or aerial photos acquired from standard 

altitudes (i.e., 4,000–5,000 m a.g.l.). The few previous studies detecting 

windthrown trees on the ground using ALS have been conducted at test sites 

with tree diameters at breast height (DBH) greater than 300 mm or conducted 

in areas with low canopy cover. Thus it is motivated to study how well 

windthrown trees could be detected in Scandinavian forest conditions using 

ALS data. 

1.2 Objectives 

The objective of this thesis is to develop methods for mapping and monitoring 

vegetation using ALS data. The specific objectives for paper I-V are: 

I (1) Investigate prediction accuracy of above ground tree biomass, 

maximum tree height, and vertical canopy cover of mountain birch forest 

in the forest-tundra ecotone when using models developed from field 

surveyed sample plot data and corresponding ALS data, (2) compare the 

results from two different ALS acquisitions with different point densities, 

flying altitudes, and scanner types, and (3) apply the developed model for 

above ground tree biomass to calculate complete predictions over the 

whole study area. 

II (1) Classify alpine and subalpine vegetation using a combination of optical 

satellite data, elevation derivatives, and laser metrics, (2) compare the 
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accuracy of classification using the different input data, and (3) assess the 

importance of the individual input variables for their utility in classifying 

the alpine vegetation types. 

III (1) Validate the effect of a histogram matching algorithm when comparing 

two ALS datasets, and (2) identify metrics from ALS data that are efficient 

for detecting changes of vegetation in the sub-alpine tree line ecotone 

using supervised classification. 

IV (1) Possibility to measure heights of newly established trees (0.3–2.6 m) in 

former pasture land using ALS acquired from a single scanning occasion, 

(2) estimate height change of newly established trees using ALS data 

acquired from two different scanning occasions, and (3) classify the trees 

into three classes: unchanged, partly changed and removed tree. 

V (1) Develop a method for enhancing the appearance of windthrown trees in 

a difference elevation model derived from two elevation models, (2) 

automatically detect windthrown trees in the difference elevation model, 

and (3) evaluate the results at individual tree level and for 40 m × 40 m 

grid cells using a complete field survey of windthrown trees in the study 

area.  
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2 Literature review 

This literature review is divided into four sections. The first section is a review 

of remote sensing studies in the forest-tundra ecotone with an emphasis on 

results where ALS has been used. The subsequent section is about change 

detection methods mainly using ALS. There is also a brief overview of change 

detection with other remote sensing techniques. The third and fourth sections 

also provide a review of change detection, but with a focus on two specific 

applications: remote sensing of afforestation and detection of windthrown 

trees. 

2.1 Remote sensing of the forest-tundra ecotone 

The many definitions of the tree line (Callaghan et al., 2002) make it difficult 

to monitor changes by comparing with previous studies. Field methods to 

record the tree line have been used for a long time. Kullman (1986) located the 

uppermost individual of each species with a minimum height of 2 m at a 

specific location and defined its elevation as the tree line. Large changes in the 

tree line could then occur when a new tree taller than 2 m was found. 

Rundqvist et al. (2011) compared three 50 m × 50 m plots in the forest-tundra 

ecotone over a 34-year period and found a substantial increase of shrub and 

tree (<35 mm DBH) coverage. The reader is referred to Callaghan et al. (2002) 

and Van Bogaert (2010) for more information about field methods. 

Remote sensing can offer spatially complete predictions of areas. Aerial 

photograph interpretation is impractical and dependent on the interpreter when 

mapping the tree line (Heiskanen et al., 2008). Reese (2011) used optical 

satellite images to classify alpine vegetation in ten classes with 72.9% overall 

classification accuracy, where overall accuracy is defined according to 

Congalton (1991). Optical satellite data can be used for large area overviews, 

but will not provide a detailed assessment for the structure, height, and biomass 
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of the forest-tundra ecotone (Allen & Walsh, 1996; Ranson et al., 2004; 

Heiskanen, 2006a; b; Hill et al., 2007; Heiskanen & Kivinen, 2008; Weiss & 

Walsh, 2009; Zhang et al., 2009). ALS data will in comparison with optical 

satellite data provide a better spatial resolution and in particular also data about 

the 3D structure of the vegetation. 

ALS has been proven to measure height and density of vegetation with high 

precision and accuracy (Hyyppä et al., 2008). There are two main methods 

used to estimate forest properties: the individual tree method (e.g., Brandtberg, 

1999; Hyyppä & Inkinen, 1999; Ziegler et al., 2000; Hyyppä et al., 2001; 

Persson et al., 2002) and the area based method (Magnussen & Boudewyn, 

1998; Næsset & Bjerknes, 2001; Næsset, 2002). Hyyppä et al. (2008) 

presented advantages and disadvantages with the two methods, for example, 

the single tree method requires higher point density data, but there is less need 

for extensive reference data. Yu et al. (2010) compared area based and 

individual tree methods at plot level using the same datasets (point density 

2.6 m
-2

). The study indicated that the root mean squared errors (RMSE) for 

mean height, mean diameter, and volume were similar. 

The FAO definition of forest is based on height and density of vegetation 

(FAO, 2004). The definition reads “land spanning more than 0.5 hectares with 

trees higher than 5 meters and a canopy cover of more than 10 percent, or trees 

able to reach these thresholds in situ”. ALS has large potential to monitor 

changes of forest, as defined by FAO, as heights and canopy cover can directly 

be calculated from the point cloud. Lindgren (2012) classified forest, as 

defined by FAO, using ALS data over an 875 km
2
 area in the forest-tundra 

ecotone in northern Sweden. Lindgren achieved an overall classification 

accuracy of 92% using 461 field plots. 

Rees (2007) used low density ALS data (pulse density 0.25 m
-2

) to detect 

the existence of trees in a 120 km
2
 forest-tundra ecotone in northern Norway. 

Rees created a map of forest regions where the definition of forest required 

trees to be taller than 2 m and have adjacent trees less than 10 m away. No 

accuracy assessment of the results was done though. 

Næsset and Nelson (2007) evaluated how well pioneer trees could be 

detected on a mountain ridge in southeastern Norway using high-resolution 

ALS data (pulse density 7.7 m
-2

) and three different terrain models. A tree was 

considered to be found if there was a return with a height value larger than zero 

inside the field measured tree polygon. Regardless of the terrain model used, at 

least 91% of all trees taller than 1 m were found. The smoothest terrain model 

resulted in the highest success in tree detection, 42% for trees smaller than 1 m 

and 97% for trees taller than 1 m. A high commission error of 1,142% for trees 

was reported when using the smoothest terrain model though. They also 
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suggested that multi-temporal data could reduce the commission errors as 

terrain objects will not have changed in height. 

Hollaus et al. (2007) mapped stem volume for a 128 km
2
 large mountainous 

area in Austria using ALS data from 2002 and 2003 with a point density of 

0.9 m
-2

 and 2.7 m
-2

, respectively. A relative RMSE of 22.9% was achieved for 

stem volume using a regression model including laser metrics and trained with 

field data from 103 sample plots. They also tested the use of reduced point 

density data (0.3 m
-2

) and achieved only slightly higher relative RMSE 

(24.7%). 

Næsset (2009b) evaluated how properties of the terrain model, choice of 

sensor, and flight settings influenced the detection and height estimation of 

small trees in the alpine tree line. A subsample of 342 trees from the study by 

Næsset and Nelson (2007) was used. Four ALS datasets were aquired with two 

different instruments, different flying altitudes, and different pulse repetition 

frequencies (PRF). The combinations were (flying altitude / PRF) 

700 m / 100 kHz, 700 m / 125 kHz, 700 m / 166 kHz, and 1,130 m / 166 kHz. 

An Optech ALTM 3100C sensor was used for the first acquisition and Optech 

ALTM Gemini for the others. The average point density ranged between 

7.7 m
-2

 and 11.9 m
-2

. A tree was considered to be detected if any return was 

above zero height within a circular polygon around the field measured 

coordinate of the tree. The general result was that the detection rate was lowest 

using ALS data acquired at 700 m flying altitude and PRF 100 kHz whereas 

the smoothest terrain model (iteration angle 6°) yielded the highest detection 

rate. For all trees > 1 m, the detection rate was between 93% and 100% 

regardless of ALS acquisition and terrain model. The corresponding numbers 

for trees < 1 m ranged from 29% to 61%. The highest commission errors 

(6,838–8,948%) were found for flying altitude 700 m and PRF 166 kHz and 

the lowest (709–2,374%) for flying altitude 700 m and PRF 100 kHz. The most 

likely reason for the higher commission errors at 166 kHz than 100 kHz is the 

lower precision of the laser ranging measurements at higher PRF causing 

higher variation of the height returns and therefore more returns appearing to 

have a postivie height. When estimating height, an underestimation was found 

ranging between 0.35 m and 0.55 m for the smallest trees (< 1 m) and between 

0.99 m to 1.42 m for the tallest trees (> 3 m). Næsset’s conclusion was that 

ALS can potentially detect almost all trees taller than 1 m in the tree line and 

the flight and sensor properties were all equally well suited. For trees < 1 m 

though, there were significant differences in the flight and sensor properties. 

Jochem et al. (2011) used a semi-empirical model to estimate above ground 

biomass (   ) of spruce dominated alpine forest in Austria using ALS data 

with point densities between 0.9 m
-2

 and 2.7 m
-2

. The semi-empirical model 
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was first developed by Hollaus et al. (2009) to be a robust model to estimate 

growing stock in alpine forests. In the study by Jochem et al.,     was 

expressed as a linear function of canopy volume calculated using 196 sample 

plots with 12 m radius. The canopy volume was calculated from the height 

above ground of the first ALS returns. Jochem et al. extended the semi-

empirical model with three parameters describing the transparency of the 

canopies. The results showed that the semi-empirical approach by Hollaus et 

al. (2009) could also be used for     estimation (standard deviation 35.8%), 

but the canopy surface transparency extension did not improve R
2
 significantly. 

Thieme et al. (2011) used ALS data with pulse density of 6.8–8.5 m
-2

 to 

detect single trees in the forest-tundra ecotone in Norway. They used the field 

measured coordinate to evaluate if small trees could be detected or not using 

ALS data. If the ALS points within the field measured individual tree crown 

polygons had a height greater than zero, the tree was counted as successfully 

detected. The detection rate for trees taller than 1 m was 90%, but for trees 

shorter than 1 m the corresponding value was 49%. 

Stumberg et.al. (2012) classified ALS data with pulse density of 6.8 m
-2

 as 

tree and non-tree returns in the forest-tundra ecotone in Norway. The field data 

consisted of tree height and crown area of 524 trees with heights from 0.04 m 

to 7.80 m. Training data, consisting of 2,323 tree and 27,487 non-tree returns, 

was created using the tree crown polygons. As discriminators they used the 

laser return's height and intensity, the Voronoi area, and the terrain variables 

aspect and slope. The overall accuracy was over 93% irrespective of 

classification method (i.e., generalized linear models and support vector 

machines). Class specific accuracies were not presented for the two classes 

(tree and non-tree). 

Ørka et al. (2012) successfully integrated strip samples of ALS (pulse 

density 2.7 m
-2

) with Landsat imagery to delineate the subalpine zone 

(3,660 km
2
) in Hedmark county in Norway. Three classes, forest, alpine, and 

subalpine zone, were delineated using height and canopy cover calculated from 

the ALS data. The overall classification accuracy of the three classes using 

binomial logistic regression and alpha-cuts was 69%. Ørka et al. also identified 

the tree and forest line for specific regions using only ALS data. The predicted 

lines delineating the three classes showed a good correspondence with the field 

measurements, but four of the 26 field locations did not have a satisfactory 

match.  

Coops et al. (2013) investigated the dual role of remote sensing and 

physiological modeling when characterizing the alpine tree line in Switzerland. 

ALS data were collected in September 2010 with a point density of 10 m
-2

. The 

Physiological Principles in Predicting Growth (3-PG) model was used to assess 
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the importance of seasonal variations on four climatically related variables that 

impose non-linear constraints on photosynthesis (Landsberg & Waring, 1997). 

The ALS data were used to map tree height and stand density along a series of 

altitudinal gradients. A strong relationship between field measured tree height 

and ALS tree height was found (R
2
 = 0.85, RMSE = 0.70 m). The 3-PG model 

showed that the spring and fall temperatures explain most of the difference 

along the altitudinal zones. The two methods give complementary information 

on the tree line location and if combined they provide further understanding of 

potentially endangered forest-grassland transition zones. 

To summarize the use of ALS in the forest-tundra ecotone, the studies can 

be categorized into detection of single pioneer trees (Næsset & Nelson, 2007; 

Næsset, 2009b; Thieme et al., 2011; Stumberg et al., 2012), delineation of the 

tree line (Ørka et al., 2012), and large area mapping of forest, volume, or 

biomass (Hollaus et al., 2007; Rees, 2007; Jochem et al., 2011; Coops et al., 

2013). A large number of commission errors have been noticed when detecting 

small pioneer trees (Næsset & Nelson, 2007; Næsset, 2009b) but on the other 

hand, the use of an area based approach will in most cases not give information 

about the pioneer trees on the tundra because of their relatively small size. 

However, none of the previous studies have been conducted in mountain birch 

dominated forests and mapped height, biomass, and canopy cover of this forest 

type. 

2.2 Methods for change detection 

Optical images from satellites have been used to detect changes of forest 

(Balzter et al., 2003; Donoghue et al., 2004; Lu et al., 2004), but the spectral 

signal from trees is driven mainly by the shadow patterns caused by the trees as 

well as the particular tree species and field layer reflectance. In addition, the 

area to be detected as a change needs to be at least a few pixels in size in order 

to be detected as a changed area. For detection of changes, ALS has the 

advantage that it gives information about vegetation height and density, but on 

the other hand, does not provide spectral information. There are still problems 

that need to be solved when using ALS for change detection, for example, 

repeatability (i.e., achieving comparable measurements when flying over the 

same area a second time). Stable laser metrics are important when calculating 

change, otherwise anomalies in the change estimations might occur. 

One approach for detection of changes using ALS data is to detect objects 

in data, for example, using image analysis methods applied on rasterized ALS 

data, followed by classification and estimation of attributes for the detected 

objects. One advantage with this approach is that precise estimates are 
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possible, for example the removal of an individual tree can be detected. On the 

other hand, in practice, not all objects can be detected, which need to be 

considered in the analysis (e.g., using statistical models). Another approach is 

to use area based change detection methods where laser metrics are calculated 

within raster cells with the size of a field plot. These methods are very sensitive 

to system parameter settings, though. Often different systems are used for 

repeated ALS data acquisitions and the differences between laser metrics from 

two time points are therefore not only a result of vegetation change. This 

problem can be solved either with relative calibration methods or by calibrating 

with field samples. So far, most ALS studies have used the field sample 

calibration. Relative calibration methods have earlier been developed for 

analysis of optical satellite image data (Olsson, 1994; Tokola et al., 1999; 

Yang & Lo, 2000; Coppin et al., 2004), but no studies have been found where 

relative calibration methods have been applied on multi-temporal ALS data. 

A few studies have investigated the characteristics of ALS data in 

vegetation and the effect of altering flying altitude, footprint size, PRF, 

sampling density, and scan angle (Goodwin et al., 2006; Hopkinson, 2007; 

Næsset, 2009a; Disney et al., 2010). The reproducibility of laser metrics from 

ALS data collected the same day has also been investigated (Bater et al., 

2011).  

2.2.1 Reproducibility of measurements 

Goodwin et al. (2006) investigated the effect of flying altitude and footprint 

size for ALS in Wedding Bells State Forest in Australia. When comparing the 

proportion of first/last returns to single returns, the highest flight altitude 

(3,000 m) had higher proportion of single returns than the lower flight altitudes 

(1,000 m and 2,000 m), probably because of the reduced returned energy due 

to higher flight altitude. Canopy heights and canopy covers, however, were not 

significantly affected by the flying altitude. It was also shown that attributes for 

individual trees were strongly affected by the point spacing and structural 

characteristics of the specific sites. 

Hopkinson (2007) collected eight ALS acquisitions over the same area in 

Nova Scotia, Canada to investigate the influence of flying altitude, beam 

divergence, and PRF. The intensity values of the laser pulses were found to be 

linearly related (R
2
 = 0.98) to peak pulse power concentration on the reflecting 

target. The peak pulse power concentration, as well as the returned intensity, 

decreases with higher flying altitude, scan angle, beam divergence and PRF. It 

was concluded that the laser peak pulse power concentration was the most 

important factor in the determination of returned intensity and also caused 

systematic variations in the canopy height distribution if varied. With lower 
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peak pulse power concentration, the penetration was slightly reduced for short 

canopy foliage and increased penetration in tall canopy foliage. It was 

suggested that calibration models for vegetation characterization should be 

developed which would also take into account the variations in laser pulse 

power peak concentration if data were collected with different survey settings. 

Næsset (2009a) concluded that different ALS sensors, flying altitudes and 

PRFs affect height-related as well as canopy density-related metrics. Higher 

flying altitude tends to give higher values for the height metrics for both 

single+first and last returns. Height metrics derived from the last returns also 

tend to be less stable between the flying altitudes than the metrics derived from 

the single+first returns. Lower PRF tend to produce an upward shift of the 

canopy heights compared to higher PRF, which results in higher values for 

height metrics and density metrics. The precision seems to be relatively stable 

when estimating forestry variables, such as mean tree height and timber 

volume, using different sensors, flying altitudes, and PRF, but significant 

differences in mean values were observed. This study presented a mean 

difference for timber volume of up to 10.7% and up to 2.5% for mean height. 

Disney et al. (2010) simulated the impact of ALS system and survey 

characteristics over pine and birch forest. Detailed models of Scots pine and 

Downy birch were used to simulate the laser returns. Signal triggering method, 

foot print size, sampling density, and scan angle affected the height of returns 

in the tree crowns and differences could also be observed for the two species. 

Bater et al. (2011) collected four ALS acquisitions from the same day over 

a forested area on Vancouver Island to validate the reproducibility of laser 

metrics. The four overlapping acquisitions were collected with identical sensor 

and survey parameters and covered a 3 km transect with a pulse density of 

2 m
-2

. The number of returns and the number of first returns were significantly 

different between the four flight lines. Height metrics calculated only from first 

returns showed no statistical difference, except for maximum height. The 

estimate of understory cover was not significantly different, but the estimate of 

overstory cover was significantly different. The mean and standard deviation of 

returned intensity were also significantly different, as well as all height metrics 

calculated from last return data. 

2.2.2 Area based change detection  

Næsset & Gobakken (2005) estimated forest growth in a boreal forest in 

southeastern Norway by comparing two independent predictions based on ALS 

datasets that were acquired two years apart. The average pulse density in the 

1999 data was 1.2 m
-2

 and in the 2001 data it was 0.9 m
-2

. Out of the 54 laser 

metrics, 45 changed their value significantly due to forest growth. The upper 
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height percentiles, however, had a larger increase in their values than the field 

measured height growth. For example, the 90
th

 height percentile increased by 

0.4–1.3 m and the field measured mean height growth on the sample plots was 

0.2–0.9 m. Mean tree height, basal area, and volume were estimated for 

respective acquisition using regression. Predictions from the ALS data showed 

significant growth in all three variables, but the predictions were biased and 

had low precision. The results were better for young forest than mature forest 

and it was clear that first returns were better predictors of forest growth than 

last returns. It was also noted that some metrics were not suitable for growth 

estimation, such as maximum height, as it tended to be less stable. 

Solberg et al. (2006) mapped changes in leaf area index (LAI) due to insect 

attacks by using ALS data calibrated to field measurements. Three ALS 

acquisitions were performed in May, July, and September 2005 with a pulse 

density varying between 3.1 and 9.8 m
-2

. LAI was determined in 20 field plots 

using the LAI-2000 instrument. Gap fraction was estimated from the ALS data 

as the ratio of canopy returns to the total number of returns. Different linear 

regression models of field measured LAI were estimated based on either first 

or last return data. The strongest relationship between the field measurements 

and the ALS data was found for the first return data (R
2
 = 0.93). When 

comparing the mean of predicted LAI from the three acquisitions in pure pine 

stands, the LAI values were 0.94, 0.96, and 0.96 (in time acquisition order), 

which indicated an increase in LAI during the summer despite the insect attack. 

Yu et al. (2008) compared three methods for plot wise estimation of mean 

tree height and volume growth for 33 sample plots in southern Finland. The 

ALS datasets were the same as in Yu et al. (2005). Variables for the trees were 

calculated using data inside a cylinder with its center being the field measured 

tree coordinate with a radius based on the height of the tree. Three different 

types of variables were extracted for the height change estimation: difference 

in maximum height, digital surface model (   ) differences, and difference in 

height percentiles (50
th
, 60

th
, 70

th
, 80

th
, 85

th
, 90

th
, and 95

th
). Regression models 

for mean tree height and volume growth were estimated for the single best 

predictor for each method and by selecting predictors from all methods. The 

best method to estimate mean tree height growth was the maximum tree height 

differencing method (adjusted R
2
 = 0.84). For volume growth estimation, the 

best method was the     differencing method (adjusted R
2
 = 0.56). When 

combining the methods and selecting the best predictor, there was no 

improvement for the mean tree height growth estimation, while for volume 

growth the adjusted R
2
 value increased from 0.56 to 0.75. 

Hopkinson et al. (2008) evaluated the estimation of plot level mean tree 

height growth using four ALS acquisitions of a pine plantation in Toronto, 
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Canada. ALS data were collected in year 2000, 2002, 2004, and 2005 with a 

point density around 3 m
-2

. Field measured height change of 126 trees within 

19 plots was collected in 2002 and 2005. The 90
th
, 95

th
, and 100

th
 height 

percentiles all had high correlation with field measured tree height. Although 

the 100
th
 height percentile provided the most robust overall direct estimate of 

field measured forest growth, most ALS-based methods underestimated the 

growth. The growth rate estimate was around 0.32 m/year using the 100
th

 

height percentile and around 0.4 m/year in the field measurements. The RMSE 

of field measured height change and the 100
th
 height percentile difference was 

0.58 m. 

Vepakomma et al. (2008) used multi-temporal ALS data to map canopy 

gaps of a 6.0 km
2
 area in southern Québec, Canada. The ALS data were 

collected in 1998 and 2003, with a pulse density of 0.3 m
-2

 and 3 m
-2

, 

respectively. Horizontal shifts were checked visually by studying, for example, 

hill shading and trends in slope between the    s (with 0.5 m cell size) 

created from each acquisition; no horizontal shifts were found. Elevation 

differences were also checked by comparing the elevation for patches of bare 

ground which resulted in lowering the 1998 data 22 cm in elevation. The gaps 

were automatically delineated in canopy height models (   s) with a 0.25 m 

cell size using an object-based technique. Accuracy assessment was done only 

for the 2003 data using four randomly located line transects with a total length 

of 980 m. Of the total 29 gaps, 28 were found (with gaps as small as 5 m
2
 

identified), and 73% of the gap length was identified. It was observed that the 

total area of gaps had decreased from 200 ha to 181 ha. 

Vastaranta et al. (2012) detected snow-damaged trees in southern Finland 

using the difference in ALS measured canopy heights. The pulse density 

ranged between 7–12 m
-2

 for the ALS datasets collected in 2006, 2007, and 

2010. The snow-damaged trees were detected by applying thresholds to height 

difference and area of damage between two     . The overall detection rate 

was 66% which represented 81% of the total stem volume of snow damaged 

trees. At plot level, the omission error was 19–75% and the commission error 

0–21%. 

Hudak et al. (2012) estimated biomass change and carbon flux in northern 

Idaho, USA using ALS data from 2003 and 2009. The 2003 data had a point 

density of 0.4 m
-2

 and the 2009 data 12 m
-2

. They recommended four points to 

consider when assessing biomass change using multiple ALS datasets. First 

was to beware of the difference in the ALS sensors and to use metrics that are 

stable for both low- and high point densities, such as mean canopy height. 

Second, field plots need to represent the landscape in an unbiased way. Third, 

field plot centers should be measured with high precision and the plot center 
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marked permanently. Fourth, consistency is required for measuring biomass of 

field plots. Biomass models were developed separately for the two datasets 

using Random Forest (Breiman, 2001) with 62 candidate laser metrics. The 

root mean square difference was 92.8 Mg/ha for the 2003 acquisition and 

101.9 Mg/ha for the 2009 acquisition. The biomass change, which was 

calculated by plot wise subtraction of the two independent predictions, was 

more variable than the two independent predictions, but still significantly 

correlated. 

Bollandsås et al. (2013) tested three approaches for estimation of biomass 

change between two ALS acquisitions in the Norwegian mountains. The first 

approach was simply the difference between biomass predicted from the two 

ALS acquisitions. The second approach used change in different variables 

between the ALS acquisitions to model biomass change. The third approach 

modeled relative change in biomass. The two ALS acquisitions were collected 

at two time points (four growth seasons apart) and with different scanners. The 

first scanning had a point density of 3.4 m
-2

 and the second 4.7 m
-2

. The two 

direct approaches (second and third) resulted in lower RMSE than predicting at 

two occasions, probably because the results were affected by only one model 

error.  

Næsset et al. (2013) estimated 11 years of change in forest biomass in an 

853 ha area in southeastern Norway using a sampling approach where ALS 

data were used as auxiliary information in a model-assisted approach. The 

pulse density was 1.2 m
-2

 in the 1999 data and 7.3 m
-2

 in the 2010 ALS data. 

The 176 sample plots used were located using a stratified systematic design. 

Three different models were used: first, directly modelling the change in 

biomass, second, modelling the change in biomass by a system of models, and 

third, modelling the change in biomass by separate models at each time-point. 

They reported a 57% reduced standard error of the overall net change in 

biomass compared to using only the field surveyed data. In general, the direct 

approach (first) resulted in better precision than the two other approaches 

(second and third), which is consistent with the finding of Bollandsås et al. 

(2013). 

2.2.3 Object based change detection 

Hyyppä et al. (2003) was the first study that demonstrated that multi-temporal 

ALS data could be used to measure forest growth. The two ALS acquisitions 

used were collected over a boreal forest in southern Finland in September 1998 

and June 2000, both with a point density of 10 m
-2

. A tree-to-tree matching 

algorithm was used to calculate the height growth for the individual trees. The 

standard error was less than 5 cm when estimating height growth at stand level. 
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At individual tree level, the mean height growth deviated on average 28 cm 

from the field measured height growth of the 15 reference trees. The major 

factors affecting the tree height estimates were errors in the terrain model, 

segmentation (tree objects), linking of the trees, and small trees that were not 

identified in the ALS data. 

Yu et al. (2004) automatically detected harvested trees and estimated forest 

growth between two ALS acquisitions in southern Finland (same two 

acquisitions as used in Hyyppä et al. (2003)). Systematic and random errors 

were found in the ground      created and     compensation was 

performed to remove these errors. This was done to make sure that the terrain 

was unchanged between the two acquisitions which could cause false canopy 

height changes. Trees were linked to calculate height growth of individual 

trees. All trees were not successfully linked in the 20 stands used in the study. 

The percentage of correct links per stand ranged from 39% to 70%. Mean 

height growth at plot level was estimated with a precision of 10–15 cm and 

about 5 cm at stand level. Sixty-one of the 83 field checked harvested trees 

were automatically and correctly detected. It was mainly the smaller harvested 

trees that were not detected. It was also noted that many of the individual tree 

segments included two or more trees, which could have affected the results. 

St-Onge and Vepakomma (2004) used ALS data acquired in 1998 and 2003 

to detect fallen trees and tree growth within a 6.8 ha study site in Québec, 

Canada. The pulse density of the 1998 data was 0.3 m
-2

 and  for the 2003 data 

it was 3 m
-2

. The same ground     (from the 2003 data) was used for both 

years to avoid false canopy height changes. The 1998 data were adjusted in 

height by comparing the ground returns from the two datasets. Three ways of 

measuring height growth were evaluated: at tree crown level by delineating the 

crowns manually, tree crown level with automatic delineation, and at area level 

in 20 m × 20 m windows. The manually delineated crowns resulted in height 

growths close to the observed values and similar results were obtained for the 

automatically delineated crowns. The area level height growth estimates 

worked well for hardwoods, but not for softwoods. Canopy gaps were detected 

by locating points where the canopy height (  ) was higher than 10 m in the 

1998 data and    less than 10 m in the 2003 data. In the study site, 88 new 

gaps were found with an overall accuracy of 96% when comparing with 

visually interpreted images from Ikonos, Quickbird and videography (collected 

from an airplane flying at 1890 m a.g.l.). The gap commission error was only 

8%. 

Yu et al. (2005) estimated growth of individual trees using ALS data from 

September 1998, June 2000 and May 2003. The point density was around 

10 m
-2

 for all three scanning occasions. Field height measurements of 153 
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pines were done in August 2002 and November 2004. Annual growth was 

estimated by field measuring three to six consecutive shoots below the top of 

the tree, which resulted in an accuracy of 10–15 cm. The field measured 

coordinate of each tree was used to extract the maximum height value from the 

ALS data within a cylinder based on the height of the tree. The tree height 

growth was calculated as the difference of the extracted maximum heights 

from the ALS data. RMSE of individual tree growth between 1998 and 2003 

was 45 cm with a bias of 10 cm which implies an overestimation in the ALS 

data. Between 1998 and 2000 the RMSE was 46 cm and bias was 0 cm and 

between 2000 and 2003 the RMSE was 38 cm and the bias was 11 cm. It 

should be noted that the scanning in 2003 used a different scanner than the two 

previous acquisitions, which could be a reason for the bias between the two 

later scannings. 

Yu et al. (2006) compared different methods for height growth estimation 

of individual trees in southern Finland using ALS data from September 1998 

and May 2003. The point density was around 10 m
-2

 for both acquisitions. 

Field measurements of 82 pines were collected in August 2002 and November 

2004. Five to seven consecutive shoots below the top of the trees were 

measured to estimate the annual growth. Three different types of variables 

were extracted for the height change estimation: difference in maximum 

height, mean or median of     differences, and difference in height 

percentiles (85
th
, 90

th
, and 95

th
). Treetop locations were sought in the ALS data 

in a close neighborhood from the field measured coordinates of the trees. The 

treetop locations were used as the center location of the cylinder in which ALS 

points were extracted of each individual tree. The lowest RMSE (43 cm) was 

achieved for the method which used the difference in maximum height. The 

other methods resulted in RMSEs ranging between 48 cm and 78 cm. A new 

tree-to-tree finding algorithm was also developed. When tested on 1,644 field 

measured trees, the number of matched trees divided by total number of trees 

measured in the field was 60.8%. 

2.3 Remote sensing of afforestation 

Afforestation has not been widely studied previously using remote sensing. 

There are studies classifying shrub vegetation (Waser et al., 2008b; Hellesen & 

Matikainen, 2013) and estimating biomass and volume of shrub (Estornell et 

al., 2012a; b), but very few studies have monitored change (Waser et al., 

2008a). Waser et al. (2008a) used      from aerial photos to estimate shrub 

encroachment between 1997 and 2002. Waser et al. (2008b) used    s from 

aerial photos to generate a probability map of shrub/tree cover in open mire 
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land in Switzerland. Factors affecting shrub volume estimation in Chiva, Spain 

were studied using ALS data by Estornell et al. (2012a), as well as ALS data 

and aerial photos by Estornell et al. (2012b). Hellesen & Matikainen (2013) 

showed that classification of trees and shrubs above 1.8 m height, as well as 

ground and buildings, improved from 82% overall accuracy when using only 

CIR ortho-photos to 97% when also including ALS data. In this literature 

review, no studies were found using multi-temporal ALS data to detect 

changes of small individual trees in agricultural grasslands. 

2.4 Detection of windthrown trees 

Field based objective survey methods for estimating amount of dead wood 

have been developed by, for example, Warren & Olsen (1964), Ståhl (1997), 

Gove et al. (1999), Bebber & Thomas (2003), Jordan et al. (2004), Gove et al. 

(2005) and Ståhl et al. (2010). Such methods are expensive if not combined 

with other surveys like National Forest Inventories, for example, Fridman & 

Walheim (2000), or used in multiphase sampling approaches together with 

remote sensing data. 

Aerial photos or optical satellite images can be used to detect areas where 

many trees have fallen (Wilson & Sader, 2002; Pasher & King, 2009). It is 

difficult to detect scattered windthrown trees located under a tree canopy from 

optical satellite data, or from aerial photos acquired from standard altitude (i.e., 

4,000–5,000 m above ground). A drawback of using optical satellite images for 

this purpose is that thinning cuttings cause a similar increase in reflectance as 

partially windthrown areas, which reduces the usefulness of change detection 

(Olsson, 1994). Compared to optical satellite data, use of radar data can 

provide better separation, since windthrown trees tend to increase radar 

backscatter while removal of trees reduces the backscatter. However, the 

increase or decrease of backscatter for windthrown forest depends largely on 

the wavelength used. Promising results have been obtained using the long 

wavelength airborne radar system CARABAS-II (Fransson et al., 2002; 

Ulander et al., 2005). The results from CARABAS-II show that detection 

success depends mainly on the direction of illumination (flight direction), with 

illumination perpendicular to the windthrown trees giving the strongest 

backscatter. 

Similar to radar, ALS is an active remote sensing technology that penetrates 

the tree canopies and therefore has potential to find objects close to the ground. 

Promising results have also been obtained in a few studies for area level 

estimations of windthrown trees using ALS data (St-Onge & Vepakomma, 

2004; Pesonen et al., 2008; Vehmas et al., 2011). St-Onge & Vepakomma 
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(2004) detected gaps arising after trees had been windthrown. Pesonen et al. 

(2008) estimated downed and standing dead wood volumes at area level using 

regression models of height and intensity metrics from ALS data calibrated 

with field measurements. Vehmas et al. (2011) detected canopy gaps using 

ALS data and classified them into five canopy gap classes, including a class of 

downed dead wood. There are three studies detecting windthrown trees on an 

individual tree level in high density ALS data (Blanchard et al., 2011; 

Lindberg et al., 2013; Mücke et al., 2013).  

Blanchard et al. (2011) used object-based image analysis to classify 

downed logs in California, USA using gridded ALS data (point density 

10.5 m
-2

). The study area had low canopy cover, bare ground, low-growing 

shrubs (maximum 0.3 m), and tall trees in the range of 10 m to 60 m in height. 

Blanchard et al. completely or partially classified 73% of 103 downed logs 

correctly. They also noticed that over-classification occurred in areas where a 

large number of logs were clustered and in areas with shrub and tree canopies, 

but no commission errors were presented. 

Mücke et al. (2013) identified downed trees using small footprint full-

waveform ALS data (point density 29.4 m
-2

, pulse density 10.9 m
-2

) in eastern 

Hungary. The field data consisted of 82 downed trees with a minimum 

diameter of 300 mm. They used a stepwise detection process based on 

variables such as normalized heights and echo widths to generate a map of 

downed trees. They detected 75% of the 82 field surveyed trees in the area and 

had a commission error of 9%.  

Lindberg et al. (2013) detected windthrown trees in the ALS point cloud 

(point density 69 m
-2

) instead of rasterizing the data first. The study area was 

the same as in paper V in this thesis, Remningstorp, Sweden. A line template 

matching method was applied directly to the laser point cloud. They detected 

41% of the 651 field surveyed downed logs, but had a commission error of 

89%. 

Honkavaara et al. (2013) detected gaps after a winter storm in Finland using 

a difference of the DSM from ALS and the DSM from matching of aerial 

photos. The ALS data had a point density of at least 0.5 m
-2

 and was collected 

in the spring 2008. The aerial photos were collected in January 2012 only a few 

days after the storm with snow on the ground and low solar elevation angles 

(5–7°). Areas of change were identified in the difference DSM and classified 

into areas of change, sparse change and no change. By visually classifying 1 ha 

areas in the airborne images, the method was evaluated. All areas with more 

than 10 windthrown trees per hectare were successfully found. Areas with less 

than 10 fallen trees per hectare were mixed up with unchanged areas and were 

found with an accuracy of 46%. 
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The previous studies using ALS data to detect individual dead trees on the 

ground, with the exception of Lindberg et al. (Lindberg et al., 2013), have been 

done in test sites with minimum diameter breast height (DBH) of 300 mm 

(Mücke et al., 2013) or conducted in areas with low canopy cover (Blanchard 

et al., 2011). 
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3 Material and methods 

3.1 Study areas 

The study areas are located in Abisko and Remningstorp (Figure 1). The 

Abisko area in northern Sweden is dominated by mountain birch (Betula 

pubescens ssp. czerepanovii) and alpine vegetation. The study area in 

Remningstorp used in paper IV was a former pasture land and in the later years 

small alder trees (Alnus glutinosa) had established. Paper V was conducted in 

managed forest in Remningstorp dominated by Norway spruce (Picea abies) 

and Scots pine (Pinus sylvestris). Table 1 gives a summary of the study areas. 

Table 1. Summary of the study areas used in the papers. 

Paper Area Lat. Long. Nature type Field data 

I Abisko 68°20’ N, 

19°01’ E 

Mountain forest and 

alpine vegetation 

Systematical grid of 104 plots, 10 m 

radius 

II Abisko 68°20’N, 

18°52’ E 

Mountain forest and 

alpine vegetation 

Training: 61 clusters of 9 plots, 179 

photo interpreted 100 m
2
 areas. 

Validation: 400 photo 100 m
2
 areas. 

III Abisko 68°20’ N, 

19°01’ E 

Mountain forest and 

alpine vegetation 

43 plots 6 m radius and 53 plots 10m 

radius 

IV Remningst. 58°29’ N, 

13°37’ E 

Abandoned pasture 

land with small trees 

383 trees within 0.3 ha area 

V Remningst. 58°29’ N, 

13°38’ E 

Managed hemi-

boreal forest 

651 windthrown trees within 54 ha 

area 

3.2 Field data 

Table 1 gives a summary of the field data used in the papers. The sample plot 

centers were measured with RTK GPS with sub-dm accuracy, except for 

paper V where post-processed DGPS produced positioning measurements with 

errors of several meters. 
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Figure 1. Location of the study areas in Sweden. © Lantmäteriet, i2012/901. 
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3.2.1 Paper I 

In total, 104 sample plots with 10 m radius in a systematic grid with 100 m 

spacing, covering a 1.3 km × 1.3 km area in the forest-tundra ecotone were 

field surveyed. For trees taller than 2 m, DBH, canopy extent, and tree height 

were measured. Above ground biomass was calculated using functions by 

Dahlberg et al. (2004) where DBH and height of the field measured trees were 

used as input. Photos from the field-work can be seen in Figure 2 and Figure 3. 

3.2.2 Paper II 

The training data were from a systematic grid of 61 clusters with each cluster 

consisting of 9 sample plots with 20 m radius and 179 subjectively chosen 

training samples (single pixel, 10 m × 10 m) that were manually interpreted in 

stereo aerial photographs. The validation data were selected using an elevation-

stratified random design for 400 manually interpreted samples (10 m × 10 m 

areas) in stereo aerial photographs. 

3.2.3 Paper III 

In total, 43 sample plots with a 6 m radius were placed in the border zone 

between mountain forest and tundra. In addition, 53 sample plots, from paper I 

were used as reference plots, but with a 6 m radius. Changes were simulated by 

assigning one of the following treatments: (1) reference, no removal of trees, 

(2) removal of 50% of the total number of trees taller than 1.5 m, and (3) 

removal of 100% of the total number of trees taller than 1.5 m. 

3.2.4 Paper IV 

All 383 trees within an area of 2,800 m
2
, (marked with red border in Figure 1) 

were measured. Each tree was positioned and height measured. One of the 

following treatments was assigned to each tree: leave as reference, cut at root 

level or cut to half of the height. Figure 4 shows some of the trees in the study 

area. 

3.2.5 Paper V 

All windthrown trees (651) lying on the ground within an area of 54 ha 

(marked with red border in Figure 1) were field surveyed. The following data 

were collected for each lying tree stem: position, direction, DBH, length, 

species, height above ground and if the stem was broken or not. 
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Figure 2. Paper I, measuring height of a 

mountain birch using a 7 m measuring pole. 

Figure 3. Paper III, typical sample plot in the 

forest next to the tundra. 

 
Figure 4. Paper IV, abandoned pasture land where small alder trees have established. 

3.3 Laser data 

Table 2 gives an overview of the ALS data used in the papers in this thesis. 

The TerraScan software (Soininen, 2012) was used to classify the ALS data as 

ground and non-ground using a progressive triangulated irregular network 

(TIN) densification method (Axelsson, 1999, 2000).  
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3.4 Analysis methods 

A digital elevation model (   ) representing the ground level was calculated 

using TIN-interpolation of the ground-classified ALS data. Canopy 

heights       were calculated by subtracting the ground     from the 

elevation of each laser return. A digital surface model (   ) was created by 

assigning the maximum elevation for laser returns classified as non-ground to 

each grid cell. A normalized     (    ) was calculated by subtracting the 

ground     from the    . In paper I–III, a grid cell size of 0.5 m was used 

and in paper IV–V, which had higher density ALS data, a grid cell size of 

0.1 m was used. 

Laser metrics were calculated from the   s and the      for values above 

a height threshold (Nilsson, 1996). The height threshold was set depending on 

the forest type and application. The calculated laser metrics were as follows: 

height percentiles (H10, H20, …, H100), vertical canopy density metrics (D0, 

D1, …, D9) according to Næsset and Gobakken (2008), mean height (Hmean), 

standard deviation (Hsd), normalized sum of squared heights (Hsum), and 

vegetation ratio (VR). Vegetation ratio was calculated in two ways: first the 

common way which is by dividing the number of returns above the height 

threshold with the total number of returns (Hyyppä et al., 2008), and secondly 

by weighting each ALS point according to the density of surrounding points 

(developed in paper I). Both ways of calculating the vegetation ratio used 

either all returns (denoted VRall) or only first returns (denoted VR1st). The 

point-weighted vegetation ratio is denoted with “pw” subscripted (e.g., 

VRpw,1st). Metrics calculated from      were denoted with      

superscripted (e.g., H
nDSM

) and metrics calculated from    with    

superscripted (e.g., H
CH

).  

To evaluate the accuracy of classification, an error matrix was calculated 

(Congalton, 1991). The error matrix is a square array of numbers where the 

columns usually specify the reference data and the rows show the classification 

produced using remote sensing data. From the error matrix, user’s and 

producer’s accuracy as well as overall accuracy are calculated. Producer’s 

accuracy is the probability that a certain class in the field is correctly classified 

as such. User’s accuracy is the probability that a map element classified as a 

certain class is indeed that class. The overall accuracy is calculated by dividing 

the total correct by the total number of reference data samples. 

3.4.1 Prediction of tree biomass in the forest–tundra ecotone using airborne 

laser scanning (paper I) 

The area based method (Magnussen & Boudewyn, 1998; Næsset & Bjerknes, 

2001; Næsset, 2002) was used in this paper. The laser metrics were calculated 
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only from   s and using a height threshold of 1 m. Regression models were 

developed based on data from the sample plots to predict the following 

response variables: maximum tree height (  ), above ground tree biomass 

(   ) and vertical canopy cover (   ). Separate models were created for the 

two datasets, Optech and TopEye. The models were developed to be robust and 

support the objective of making predictions in the mosaic patterned forest-

tundra ecotone. Best subset regression (Lumley and Miller, 2009) was used to 

select the best laser metrics to explain the response variables. Logarithmic bias 

was corrected following Holm (1977). Validation was done by calculating 

RMSE and bias using leave-one-out cross-validation (Weisberg, 1985). Leave-

one-out cross-validation is done by using a single observation as validation 

data and the remaining observations as training data. The process is repeated 

until all observations have been used once in the validation data. A raster map 

of     with pixel size 10 m × 10 m was created by calculating the developed 

model for each pixel in the study area. 

3.4.2 Combining airborne laser scanning data and optical satellite data for 

classification of alpine vegetation (paper II) 

Laser metrics were calculated in 10 m × 10 m grid cells. A height threshold of 

0.2 m was used when calculating metrics from    and     . The vegetation 

ratio was calculated using a variable threshold though, from 0.1 m to 1.0 m in 

0.1 m increments (example of notation:             ). The standard deviation 

was also calculated from            where                    and denoted 

             . The following elevation derivatives were calculated from the 

Swedish 50 m grid ground DEM: elevation, slope, aspect, and the Saga 

wetness index (Böhner et al., 2002). From the SPOT 5 HRG data, the green, 

red, near infrared, and shortwave infrared bands were used. In addition the 

normalized difference vegetation index (NDVI; Rouse et al., 1973) and the 

normalized difference infrared index (NDII) were calculated. 

The Random Forest algorithm (Breiman, 2001) was used for the 

classification. The “varSelRF” package (Diaz-Uriarte, 2010) in R (R 

Development Core Team, 2010) was used to identify variables contributing 

most towards building an accurate model. The training data from the 

systematic clustered field plots had a predominance of dry heath samples and 

could be considered “imbalanced”. A “balanced” training dataset was therefore 

created by reducing the samples from classes with more than 45 observations 

using random selection to achieve approximately 40 training samples for these 

classes. After the most important variables were identified, the classification 

accuracy was assessed using the evaluation dataset with the following runs: (1) 

single SPOT 5 data only, (2) SPOT 5 data and elevation derivatives, (3) SPOT 
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5 data, elevation derivatives and laser metrics, and (4) laser metrics and 

elevation derivatives. 

3.4.3 Change detection of mountain birch using multi-temporal ALS point 

clouds (paper III) 

A height threshold of 0.7 m was used when calculating metrics from    and 

nDSM. The lower threshold in this paper was chosen to obtain reliable laser 

metrics for sample plots with trees around 1.5 m tall while omitting most of the 

shrub vegetation close to the ground. Laser metrics were calculated in 

10 m × 10 m grid cells for an area of 1.8 km
2
, covering the study area. The 

laser metrics inside this area were used to calculate cumulative histograms for 

each laser metric and acquisition. Histogram matching was used to calibrate 

the metrics from the two ALS acquisitions to common distributions. The 

histogram matching routine produced a look up table which was used to 

transfer the laser metrics from the Optech data to the same distribution as the 

laser metrics from the TopEye data. For each laser metric calculated from the 

field plots the look up table was used to calibrate the Optech data. 

Afforestation was simulated by using the TopEye data as the “after” data and 

the Optech data as “before” data. The unchanged field reference plots were 

used to evaluate the similarity of the metrics before and after histogram 

matching was conducted. The relative RMSE (rRMSE) used in paper III was 

defined as 

 

         

√∑
(               )

 

 
 
   

 ̅      
 

(1) 

The relative bias (rBias) in paper III was defined as 

          
∑ (               )

 
   

   ̅      
 (2) 

where i is the index of the unchanged sample plots, k is the laser metric, 

        is laser metric k of sample plot i from the 2008 data and         is the 

same laser metric (k) from the same sample plot (i) in the 2010 data, n is the 

number of unchanged sample plots, and  ̅       is the mean value of laser 

metric k, i.e., mean value of       and      . 

Linear Discriminant Analysis (LDA) classification was used to evaluate 

which laser metrics best discriminated the experimentally changed from 
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unchanged vegetation. The relative differences (equation 3) of the laser metrics 

were used as explanatory variables. 

        
               

                     
 (3) 

The classification was based on either one or a combination of two explanatory 

variables (      ). Leave-one-out cross-validation was used to calculate 

classification accuracy using all 96 sample plots. 

To evaluate the classification based on laser metrics, sample plots were 

divided into three change classes, which were also stratified into three density 

categories depending on the total number of trees taller than 1.5 m. 

3.4.4 Detecting afforestation at individual tree level using ALS (paper IV) 

All of the following processing was conducted for both dates of ALS data. 

Models created from the first and second scanning are denoted with subscript 1 

and 2, respectively. In contrary to paper I, II, III, and V, an algorithm based on 

an active surface (Elmqvist, 2000, 2002) was used to produce the     which 

represented the ground. The     and      were calculated as described in 

section 3.4. A difference raster (     ) was calculated by subtracting the 

second scanning’s      (     ) from the first scanning’s      (     ). 

This difference raster (     ) was median filtered with a 3×3 kernel. 

The height was estimated to the maximum value from       in a 0.3 m 

radius around the field position of the tree, but no calibration against field data 

was done. Height change was estimated by subtracting the maximum height 

within a 0.5 m radius around the field coordinate in       and      . The 

corresponding field height change was also calculated within a 0.5 m radius 

around the field coordinate to avoid the problem of taller trees shading a 

smaller tree. 

LDA classification was used to classify the trees into the three categories: 

reference, 50% removal and 100% removal. The discriminators used were 

maximum height from       and       in a 0.3 m radius from the field 

coordinate. Two different classifications were conducted: using all field 

measured trees, and using only trees taller than 1 m. Leave-one-out cross-

validation was used to assess accuracy. 

3.4.5 Detection of windthrown trees using airborne laser scanning (paper V) 

Two    s were created: first a smooth model created using TerraScan 

(Soininen, 2012) and secondly a more elastic model created using an active 

surface (Elmqvist, 2000, 2002; Elmqvist et al., 2001). The two    s were 

subtracted to achieve an object height model (OHM), which is a model 
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representing objects close to the ground. Template matching was used to 

identify potential windthrown trees in the OHM. LDA classification was used 

to reduce the number of falsely detected trees, which typically occurred along 

roads and streams. The discriminators used in the classification were metrics 

created from the area of the template in the OHM. Training data for the 

classification was achieved by manually linking field surveyed trees with the 

automatically detected trees from the template matching. Falsely detected trees 

were also identified and used as training data for a non-tree class. The 

automatically detected trees were linked to field surveyed trees using an 

algorithm (Olofsson et al., 2008) that maximized a weight calculated from 

Euclidian distance and difference in direction between the field surveyed tree 

and the automatically detected tree. 

The results were evaluated both at individual tree level and area level. The 

individual tree results were primarily based on count, but also on tree volume. 

The area level evaluation was based on a 40 m × 40 m grid covering the study 

area. In each grid cell, the proportion of correctly detected trees was calculated. 
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4 Results 

4.1 Prediction of tree biomass in the forest–tundra ecotone 
using airborne laser scanning (paper I) 

Multiple linear regression was used to estimate models to predict above ground 

tree biomass, maximum tree height and vertical canopy cover from ALS data 

in the forest-tundra ecotone. The denser TopEye data (6.1 points m
-2

) showed 

only a small improvement in the predictions compared to the sparser Optech 

data (1.4 points m
-2

). Table 3 summarizes the leave-one-out cross-validated 

rRMSEs for the models. A comparison using the point-weighted vegetation 

ratio (i.e., compensating for uneven distribution of the laser returns) in the 

models was conducted with results also shown in Table 3. 

Table 3. Leave-one-out cross-validated relative root mean square error. Comparison with and 

without point-weighted vegetation ratio used in the multiple linear regression. 

 rRMSE with pw
a
  rRMSE without pw

a
 

Variable TopEye Optech  TopEye Optech 

Above ground tree biomass 18.7% 21.2%  19.9% 22.1% 

Maximum tree height 8.8% 9.5%  8.9% 9.6% 

Vertical canopy cover 16.8% 18.7%  19.1% 19.9% 

a
 Point-weighted vegetation ratio. 

 

Figure 5a shows a forested sample plot from above illustrating the uneven 

coverage of points in the helicopter acquisition (TopEye). Figure 5b shows the 

same sample plot from the more evenly distributed point cloud collected from 

fixed wing aircraft (Optech). Figure 5c and 5d illustrate the same sample plot, 

but taken from the side. Figure 6 shows a raster map with predicted values of 

above ground biomass from the TopEye acquisition. The map is extrapolated 

outside the area calibrated with sample plots to give an overview of the mosaic 

patterned forest-tundra ecotone in this area. 
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Figure 5. Point cloud of a forested sample plot with 10 m radius. Red points are classified as 

ground returns and black points are non-ground. View from top in a and b and from side in c and 

d. Point density for this particular sample plot is 19.7 m
-2

 for TopEye and 0.8 m
-2

 for Optech. 

 
Figure 6. Raster map showing above ground tree biomass in 10 m × 10 m pixels. The sample 

plots are marked with circles. © Lantmäteriet, i2012/901. 
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4.2 Combining airborne laser scanning data and optical satellite 
data for classification of alpine vegetation (paper II) 

Laser metrics improved the overall classification accuracy by 5.9 percentage 

points compared to SPOT 5 satellite data and elevation derivatives (from 

57.2% to 63.1%) and by 14.2 percentage points compared to SPOT 5 satellite 

data alone (48.9%). Alpine willow and mountain birch were the two classes 

benefitting the most from the addition of laser metrics. Table 4 gives an 

overview of the producer’s and user’s accuracy for the vegetation classes. The 

producer’s classification accuracy of mountain birch increased from 55.8% 

using satellite data alone to 98.1% when adding laser metrics and elevation 

derivatives to the classification, and from 18.2% to 54.6%, respectively, for 

alpine willow. The other vegetation classes showed only slightly higher 

producer’s accuracy when laser metrics were included and sometimes 

decreased accuracy (e.g., grass heath). The user’s accuracy increased for most 

classes when adding laser metrics. The addition of elevation data to the satellite 

data also increased the accuracy for several classes. When using only laser 

metrics and elevation, the classification accuracy was much lower for most 

classes. Figure 7 shows an area of classifications where mountain birch, alpine 

willow, and mesic heath classification has been influenced when adding laser 

metrics. The variable selection showed that the following laser metrics were 

important for the classification and therefore included:    
    ,    

    ,      
    , 

   
    ,     

    ,   
    ,             

  ,             
               

  ,              
  , 

and elevation derivatives: elevation, slope, and the wetness index. 

Table 4. Producer’s and user’s accuracy (%) by class given the different input data sources. 

Indata Producer’s accuracy User’s accuracy  

Satellite (S) 

Elev. deriv. (E) 

Laser metrics (L) 

S 

E 

L 

S 

E 

-- 

S 

-- 

-- 

-- 

E 

L 

S 

E 

L 

S 

E 

-- 

S 

-- 

-- 

-- 

E 

L 

Total # 

reference 

plots 

Grass heath 52.9 58.8 58.8 29.4 29.0 28.6 27.0 15.2 17 

Ext. dry heath 60.0 50.0 40.0 40.0 40.0 35.7 21.1 25.6 10 

Dry heath  75.0 77.5 57.5 40.0 36.6 35.2 30.7 22.2 40 

Mesic heath 20.8 13.2 18.9 17.0 47.8 38.9 38.5 39.1 53 

Alpine meadow 39.3 39.3 35.7 21.4 34.4 29.7 22.2 15.8 28 

Snowbed 51.3 48.7 48.7 53.9 100.0 100.0 100.0 100.0 39 

Wetland 60.0 60.0 50.0 42.9 80.0 63.2 71.4 60.0 20 

Alpine willow 54.6 40.9 18.2 35.6 75.0 75.0 28.6 32.0 44 

Mountain birch  98.1 65.4 55.8 98.1 82.4 72.3 65.9 85.0 52 

Bare rock 82.0 76.0 82.0 24.0 95.4 95.0 97.6 44.4 50 

Snow 100.0 100.0 100.0 63.0 100.0 100.0 100.0 63.6 11 

Water 100.0 100.0 100.0 90.0 100.0 100.0 100.0 75.0 10 
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Figure 7. a) The SPOT image (NIR, SWIR, Red in RGB); b) The Swedish Mountain vegetation 

map; c) Classification from SPOT + elevation derivatives; d) Classification of SPOT + elevation 

derivatives + laser metrics. The uppermost red arrow shows where laser data improved separation 

between mountain birch and willow and the lower red arrow shows improved separation between 

willow and mesic heath. © Lantmäteriet, i2012/901.  
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4.3 Change detection of mountain birch using multi-temporal 
ALS point clouds (paper III) 

The laser metrics from the Optech scanning were histogram matched to the 

histograms of laser metrics from the TopEye scanning. Figure 8 shows 

examples of cumulative histograms for two of the laser metrics used in paper I: 

the normalized sum of squared heights (     
  ) and the point-weighted 

vegetation ratio of first returns (        
  ). Figure 9 shows one-to-one plots of 

the same two laser metrics without calibration and calibrated using histogram 

matching. In the figure it can be seen that after histogram matching was 

applied, the relationship between the metrics from the two sensors is no longer 

curved. 

The similarity of the laser metrics between the two acquisitions were 

evaluated by calculating rRMSE and rBias for the reference sample plots. 

Table 5 shows the similarity of the laser metrics used in paper I. In general, 

laser metrics calculated from      tend to have lower rRMSE and rBias than 

metrics calculated using   . The rBias always has a low value when histogram 

matching is used. 

When classifying the sample plots into the three experimental classes, the 

laser metrics based on the density of the vegetation resulted in general in 

higher classification accuracy (overall classification accuracy 87.5%) than the 

laser metrics based on the height of the vegetation (overall classification 

accuracy 81.3%). Slightly higher classification accuracy (88.5%) was achieved 

when the best combination of two laser metrics was used, namely height 

density 1 (  
    ) and the 95

th
 height percentile (   

  ). When using only a 

height percentile, almost none of the sample plots from the 50% changed class 

were correctly classified. Considerably higher classification accuracy for the 

50% changed class was achieved when using a measure of density (e.g., 

  
    ). 

Table 5. rRMSE (%) and rBias (%) for the laser metrics used in paper I calculated for the 68 

reference sample plots. 

Laser metric 

rRMSE 

Uncalibrated 

rRMSE 

Histogram matched 

rBias 

Uncalibrated 

rBias 

Histogram matched 

   
   8.5 6.7 4.5 -0.2 

    
   13.6 13.7 -0.6 -1.6 

        
   23.4 16.5 12.0 -2.4 

        
   18.1 16.4 -1.2 -1.8 
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a) normalized sum of squared heights b) point-weighted veg. ratio of first returns 

  
Figure 8. Cumulative histograms of two metrics also used in paper I. 

a) uncalibrated b) histogram matched 

  
c) uncalibrated d) histogram matched 

  
Figure 9. One-to-one plot before and after applying histogram matching. The dashed line is the 

one-to-one line. Only every fifth point is plotted. a, b) normalized sum of squared heights (    
  ), 

c, d) point-weighted vegetation ratio of first returns (        
  ). 
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4.4 Detecting afforestation at individual tree level using ALS 
(paper IV) 

The height of the 0.3 m to 2.6 m tall trees could be measured with high 

precision at the first scanning occasion (standard deviation = 0.3 m), however, 

there was a systematic underestimation (Figure 10a). It could also be seen that 

the height of some individuals were clearly overestimated, most likely due to 

the presence of nearby taller trees. The mean difference and standard deviation 

of the difference between laser measured and field measured tree heights 

was -0.15 m and 0.32 m, respectively. 

Figure 10b shows a positive correlation for the field measured height 

change and the difference between the two     s. The 1-1 line in Figure 10b 

translated to the 100% removed trees (crosses) shows that there was a 

systematic shift and that height changes for trees with a small initial height are 

not measurable. 

 
a) b) 

 
 

Figure 10. Black line is 1-1. a) Field measured height at the first scanning plotted against laser 

derived height, i.e., maximum       height within 0.3 m radius from the field coordinate. 

Different symbols are used to show that most of the trees with overestimated heights have a taller 

tree within a 0.5 m radius. b) Field measured height change within 0.5 m radius from the field 

coordinate versus difference between maximum height in       and       within 0.5 m radius 

from the field coordinate. 

LDA classification was performed using       and       heights within a 

0.3 m radius around the field coordinates as discriminators. Leave-one-out 

cross-validated overall accuracy for the three classes (i.e., reference, 50% 

removal, 100% removal) was 63%. When only trees taller than 1 m were 

included, the overall accuracy increased to 75%. When aggregating the 50% 



48 

removal and 100% removal classes, the corresponding overall accuracy was 

88% for trees taller than 1 m. Table 6 shows an error matrix for all trees taller 

than 1 m where the 50% and 100% change classes have been aggregated. 

Table 6. Error matrix for linear discriminant analysis classification of all trees ≥ 1 m height into 

the classes reference and an aggregated change class with 50% or 100% of the trees removed. 

 Field data  

Predicted Reference 50+100% removed User’s accuracy 

Reference 70 17 80.5% 

50+100% removed 7 108 93.9% 

Producer´s accuracy 90.9% 86.4% Overall: 88.1% 

4.5 Detection of windthrown trees using airborne laser scanning 
(paper V) 

Windthrown trees were discriminated using a difference elevation model 

(OHM) between a smooth model of the ground and a more elastic model 

created using an active surface (Figure 11a). Windthrown trees can clearly be 

seen in the OHM, but also other rough objects close to the ground are present, 

for example bushes, ditches, and boulders. 

Template matching was used to automatically detect windthrown trees in 

the OHM (Figure 11b). In the 54 ha study area, 2,628 objects were detected as 

potentially being windthrown trees. LDA classification reduced the number of 

objects to 480 using training data. Of the total 651 windthrown trees in the 

study area, 247 were automatically linked to trees detected by template 

matching in the OHM. The number of detected trees that could not be linked to 

a field measured windthrown tree was 233, which corresponds to a commission 

error rate of 36%. Figure 11b gives an overview of detection, commission and 

omission of windthrown trees in a close-up within the study area. It can be 

noted that some true windthrown trees from the automatic detection were not 

linked to the field measured windthrown trees because they did not fulfill the 

linking criteria (distance and angle).  

In Figure 12, trends can be seen in the probability of detecting a 

windthrown tree based on field measured tree length and density of the 

remaining forest within a 12 m radius around the field measured coordinate of 

the windthrown tree. When aggregating the results to 40 m square grid cells, at 

least one tree was detected in 77% of the grid cells that included windthrown 

trees and 34% of the grid cells without windthrown trees were falsely detected 

as having windthrown trees. 
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Figure 11. a) A close-up within the study area to illustrate the object height model (OHM). The 

OHM is created by subtracting the ground     from the active surface    . b) OHM with the 

results from the detection of windthrown trees. Note that the field measured coordinates can have 

a positional error of several meters. The white border is the extent of the study area. 
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Figure 12. Probability of detecting a windthrown tree based on a) field measured length of the 

windthrown tree and b) the crown coverage represented as vegetation ratio within a 12 m radius. 

c, d) Histograms of total number of windthrown trees. Note that there are few observations in the 

lower and upper limits. 
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5 Discussion 

5.1 The forest-tundra ecotone 

Paper I shows that maximum tree height, above ground tree biomass, and 

vertical canopy cover for sub-arctic mountain birch forest can be predicted 

with high precision using ALS data. To my knowledge, this is the first time 

ALS-based biomass predictions for this type of forest have been reported, since 

earlier ALS studies of mountain birch concentrated on the existence of forested 

areas (e.g., Rees, 2007; Ørka et al., 2012), and the existence of pioneer trees 

(e.g., Næsset & Nelson, 2007; Næsset, 2009b; Thieme et al., 2011; Stumberg 

et al., 2012). Three studies have been found which were carried out in 

mountain environments with steep inclination, but in areas containing much 

taller trees and dominated by spruce: Hollaus et al. (2007, 2009) and Jochem et 

al. (2011) predicted stem volume and above ground biomass for Austrian 

mountain forest. 

A new method to weight unevenly distributed laser returns in relation to the 

density of surrounding points was presented in paper I. The combination of a 

heterogeneous forest canopy and an uneven distribution of laser points within 

the sample plot might cause unrepresentative relationships between laser 

metrics and forest data. The solution presented in paper I weights each point 

based on the density of surrounding points within a given radius when 

calculating the vegetation ratio. Visual inspection revealed that TopEye laser 

data points were more unevenly distributed than in the Optech data (e.g., 

Figure 5). This was most likely the reason why the point weight correction had 

a larger improvement on the TopEye data. An advantage with the method is 

that the point cloud does not need to be decimated, which is the case for the 

gridding method presented by Vauhkonen et al. (2008).  

The foot-print was about 0.5 m with both laser scanners regardless of the 

difference in flying altitude. This causes the Optech scanner with low point 

density to omit some vegetation because the ground is not fully illuminated. In 
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paper I the predictions using the Optech were good in any case because all 

sample plots which had a few trees also had at least a few points from the 

vegetation. The results in paper II could probably have been improved with 

higher point density ALS data, especially for some of the vegetation classes 

such as mesic heath. In paper III it was found that plots with few trees were 

more difficult to classify if they had changed or not than plots with many trees. 

A probable reason is that sample plots with few small trees (tree height 

<3.5 m) had too few hits in the vegetation in the sparse second scanning 

causing inaccurate laser metrics.  

In paper II, a problem was noticed using the             
   metric as it was 

often equal to zero because there were no hits higher than 0.1 m above the 

ground    . The previously mentioned problem with low point density could 

be a reason for this. The use of full waveform data could probably increase the 

accuracy for the classes with low vegetation (<1 m). Full waveform data can 

give more information about returns, for example pulse-width. 

5.2 Change detection 

It has been shown in previous studies, such as Yu et al. (2005) that two ALS 

datasets collected with different scanners could result in bias in height growth 

estimates. It is of interest to further analyze differences between instruments 

and how to make acquisitions from different sensors comparable and 

measurable. Paper III suggests the use of histogram matching of the laser 

metrics from two acquisitions. With this method, changes cannot be measured 

in absolute numbers, but rather as relative to the normal growth of the 

vegetation in the area used as reference for the histogram matching algorithm. 

As noticed by Næsset & Gobakken (2005), the 100
th
 height percentile is 

less suitable for multi-temporal use, because it tends to be less stable. Paper III 

showed the same result, as the 100
th
 height percentile (    

      had a rRMSE of 

11.9% and the 95
th

 height percentile (   
    ) a rRMSE of 9.2%. This showed 

that the 95
th
 height percentile was more similar between the two acquisitions 

than the 100
th
 height percentile. A reason why the 100

th
 height percentile tends 

to be less stable is that it is based only on the single highest return. Hudak et al. 

(2012) found that there was more underestimation of tree height with sparse 

pulse density ALS compared to dense when using the maximum canopy height 

from ALS. Hudak et al. also noticed that mean canopy height from ALS was 

less subject to such bias. 

In paper III, rRMSE and rBias (Table 5) were calculated using the 68 

reference sample plots without experimental changes to evaluate similarity 

between the two datasets. The height percentiles appeared to be more similar 
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than the density metrics due to the lower rRMSE noticed. Bater et al. (2011) 

compared four acquisitions from the same day and also noted that the height 

percentiles were more stable than density metrics. A possible reason is that the 

height percentiles are less sensitive for view angle effects (Holmgren et al., 

2003). 

The laser metrics created using      values have lower rRMSE for the 

reference plots and provide higher classification accuracy than metrics created 

from   . Multi-temporal data requires measures to be spatially normalized at 

each acquisition to avoid problems with uneven distribution of laser points 

(paper I). 

Many other studies compare multi-temporal data for shift in elevation, but 

in papers I, III and IV in this thesis, this was not done as a ground     was 

created from each dataset. The horizontal errors will probably have minor 

effect on the results in paper III, but could have a quite large effect on the 

results in paper IV. In paper IV a visual analysis of a few trees was performed 

to check for horizontal shifts, but only minor shifts could be seen and could 

have been caused by the wind. 

5.3 Remote sensing of afforestation 

Paper IV demonstrated how the height of individual trees in the height range 

0.3 m to 2.6 m could be measured with high precision despite a large amount 

of surrounding grass with the same heights as the smaller trees (0.3–1 m tall). 

This is the first known study where removal of small trees (≤2.6 m tall) have 

been detected on individual tree level using ALS data from two time points. 

However, in Thieme et al. (2011) small trees were detected in the mountains 

using data from a single time point and the results were evaluated in a similar 

way as in paper IV using a radius around field measured tree positions. In that 

study, the proportion of detected trees was 90%, which is comparable to the 

88% overall classification accuracy for trees taller than 1 m in paper IV. 

However, in Thieme et al. the detection rate for trees shorter than 1 m was only 

49%, as compared to 72% in paper IV. Hellesen & Matikainen (2013) used a 

combination of ALS and ortho-photos from one time point of grasslands in 

Denmark to classify vegetation. They created segments that were classified in 

three classes including a class with shrubs and trees and obtained a producer’s 

accuracy of 93.7%. 

ALS data from two time points were used in paper IV which provides the 

advantage that non-changed objects, such as large stones, can be eliminated 

from the analysis. In paper V, ALS data were used from only one acquisition 
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and the non-changed objects will then cause some false detections of 

windthrown trees (e.g., young forest is included in the OHM in Figure 11a). 

It is important to co-register the two acquisitions if the ground     is not 

created from each acquisition as in paper III and IV. Most of the previous 

studies have done co-registration by systematically adjusting the height based 

on returns from a hard surface or using field measured control points. In 

paper IV, the     from the first scanning had a mean offset of 0.12 m above 

the true ground and the     from the second scanning had a mean offset of 

0.10 m above the true ground. The comparison was done with the field 

measured elevation for all field trees (383 measurements). As the mean offset 

was 0.15 m (Figure 10a), the height underestimation measured at the first 

acquisition is less than one decimeter if the     would have been aligned to 

the true ground. The influence of low vegetation on the ALS point cloud has 

been undertaken in several studies, including Ahokas et al. (2003) and Pfeifer 

et al. (2004). For both of these studies, the conclusion is the same; the laser 

measurements are higher than the field measured control points, especially 

when vegetation is present. 

Analysis of the horizontal mismatch between the two acquisitions in 

paper IV has not been undertaken. The height change from the ALS data 

(Figure 10b) is less correlated to the field measured height change than 

compared to the use of absolute measurements from the first date ALS dataset 

(Figure 10a). Some possible reasons are geometrical mismatch between the 

two     s, influence of wind on the exact position of the small tree crowns, 

and influence from nearby trees or other vegetation within the selected radius 

(0.5 m). A future improvement could be to use unchanged objects to check and 

correct for horizontal displacements between multiple acquisitions or by tree-

to-tree matching (Yu et al., 2008).  

5.4 Detection of windthrown trees 

In paper V, a new method to detect windthrown trees was developed and 

evaluated. The method uses an OHM derived from the difference between two 

height models created from the same laser dataset, where the first is a model of 

the ground elevation and the second is an elastic surface of the ground 

elevation that also includes objects near the ground (e.g., stones, downed trees, 

etc.). This approach was successful in making use of the laser beam’s 

penetration through the vegetation layer to reach objects near ground level. An 

automatic tree detection method was developed based on the OHM, but manual 

interpretation of the OHM could also be done. By visual inspection, the results 

obtained from the OHM were judged to be as good as those from low altitude 
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aerial photos for identifying windthrown trees in open areas. However, from 

the OHM, windthrown trees could also be identified in closed forest (paper V). 

The template matching method used to automatically detect windthrown 

trees in the OHM was found to be useful, but a large amount of commission 

errors were produced if used without a training phase. The commission errors 

occurred because many other objects near the ground had shapes similar to 

windthrown trees, for example, road, edges of ditches, shrubs in a line, etc. 

One way could be to use methods to locate longer linear structures to reduce 

problems with these objects (e.g., Rutzinger et al. (2011) where roads were 

extracted from ALS data). In paper V, field data were used to classify falsely 

detected trees in order to reduce the commission errors. In a future operational 

case, this step would still be necessary, but instead of collecting field data, an 

interpreter could identify windthrown trees in the OHM and in that way create 

training data for the classification of falsely detected trees. In Blanchard et al. 

(2011), the ground truth data were created by visually identifying windthrown 

trees in aerial photos and ALS data. This could cause an underestimation as 

some trees might be occluded or missed. In the study by Lindberg et al. (2013) 

a large amount of commission errors were also obtained. They detected 41% of 

651 downed logs, but had a commission error rate of 89%, compared to 

detecting 38% of the logs and commission error rate of 36% in paper V. 

The results of the detection in paper V were analyzed to find characteristics 

of terrain and windthrown trees needed for successful detection. Figure 12a 

shows an analysis of the probability of detecting a windthrown tree given the 

field measured tree length. There is a clear trend where shorter trees have much 

lower probability of detection compared to the longer trees. An analysis was 

also performed on the density of the remaining forest within a 12 m radius 

around the field measured coordinate of the windthrown tree (Figure 12b). The 

result is quite clear also for this figure: the higher the forest density, the lower 

the probability of detecting a windthrown tree on the ground. It should be 

noted though that the number of observations are few in the lower and upper 

limits (Figure 12c and d). 

In the study by Mücke et al. (2013) the downed trees had much larger DBH 

than in paper V. Mücke et al. used full waveform ALS data and detected 76% 

of the 82 field surveyed trees in the area and had a low commission rate of 9%. 

The results in paper V could have been improved by using a scanner with a 

lower scan angle or waveform data to extract as many points as possible near 

the ground and to make use of the echo width as in Mücke et al. (2013). 

Blanchard et al. (2011) used object-based image analysis to detect downed 

logs using ALS data. They collected the ground truth data by interpreting 

downed trees in aerial photos and ALS data, which might cause higher 
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detection rate as some of the downed trees might be missed. Blanchard et al. 

completely or partially detected 73% of 103 downed logs. They also noticed 

that over-classification occurred in areas where a large number of logs were 

clustered and in areas with shrub and tree canopies, but no commission error 

numbers were presented. The method used in paper V was successful in 

detecting trees in closed forest but resulted in under-classification in areas 

where a large number of logs were clustered. As seen in Figure 12b, the 

detection probability was about the same for vegetation ratios up to 60% of the 

surrounding forest. 

It can also be seen in Figure 11b that some true windthrown trees have been 

identified as commission errors because they have not been automatically 

linked to a field measured windthrown tree. The reasons for this can be that the 

horizontal location of the field measured trees was measured with a GPS which 

produced errors of several meters. This could have been solved by increasing 

the search radius when linking, but that could also cause false links.  

5.5 Conclusions 

The following summarizes the main findings in this thesis: 

 The area based method was used to predict maximum tree height, 

above ground tree biomass, and vertical canopy cover with high 

precision in the forest-tundra ecotone using ALS data. Low (1.4 points 

m
-2

) and high density (6.1 points m
-2

) ALS data were compared for 

predictions of the three variables. Despite the big difference in point 

density, the low density data produced only slightly worse results 

(e.g., relative RMSE of biomass 21.2% vs. 18.7%).  

 A new algorithm to correct for uneven distribution of laser returns, 

without decimating the data, was developed. The method especially 

improved predictions of variables strongly related to forest density. 

The prediction of vertical canopy cover from helicopter acquired ALS 

data had improved relative RMSE from 19.1% to 16.8% when the new 

algorithm was used. 

 When adding laser metrics from ALS data and elevation derivatives to 

the classification of mountain vegetation, a considerable classification 

improvement was seen for mountain birch forest and alpine willow. 

Compared to using only optical satellite data, the classification 

accuracy improved from 56% to 98% for mountain birch and from 

18% to 55% for alpine willow. 
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 Histogram matching was proven to be efficient for calibration of laser 

metrics from two ALS acquisitions to locate local changes that differ 

from the normal development of the landscape. 

 When comparing laser metrics from two ALS acquisitions over the 

same area, laser metrics calculated using      tended to be more 

stable than metrics calculated using   s. 

 Establishment of small trees (0.3–2.6 m tall) in agricultural grassland 

can be found with high accuracy when they are at least of the same 

height as the surrounding grass (>1 m above ground). The overall 

accuracy when classifying trees as changed and unchanged was 88% 

for 202 field measured trees taller than 1 m. 

 A difference between a smooth and a flexible elevation model from 

ALS data reveals objects close to the ground including windthrown 

trees. By using template matching, the windthrown trees could 

automatically be located. At individual tree level, 38% of the 

windthrown trees were successfully linked to the 651 field measured 

trees. When aggregating to 40 m grid cells, at least one tree was found 

in 77% of the cells that included windthrown trees. 

 It was found that larger windthrown trees had a higher detection rate 

than shorter trees when using template matching to automatically 

locate windthrown trees.  

5.6 Future work 

5.6.1 Reproducibility of measurements 

One aim of this thesis was to develop methods for future utilization of time-

series of 3D measurements of vegetation obtained from ALS. One important 

task was therefore to find stable laser metrics that were insensitive to system 

parameter settings and external factors during the data acquisition. In paper I 

and paper III, the uneven distribution of ALS points led to unrepresentative 

metrics. Paper I came up with a solution to this: weighting the points based on 

the density of surrounding points. The drawback with this method is that a 

radius needs to be set which is dependent on the density of the data. A solution 

where no settings are needed is of interest.  

For change detection it is of interest to investigate how the returns are 

extracted in the different acquisitions. Full waveform data collected over the 

same area could result in more stable metrics if the same method were to be 

used to extract the returns from the acquisitions, but will however not solve the 

problem with false changes due to different phenology at the two acquisitions. 
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5.6.2 Area based classification and change detection 

Sparse density ALS data were used in paper II. There were considerable 

improvements for the two taller vegetation classes (>0.5 m), namely mountain 

birch and alpine willow. Future research should consider higher density ALS 

data and full waveform, which probably could also improve some of the lower-

growing vegetation classes. 

Repeated monitoring of changes in the forest-tundra ecotone using ALS 

data will probably be costly. One option is to use 3D point clouds computed by 

matching aerial photos which are collected every fifth year for the Swedish 

mountain region. By using the     representing ground from ALS data, 

vegetation heights can be calculated from the photogrammetric point cloud. 

The results are relatively good for height of the vegetation, but density 

measures are difficult because of the difficulties to match the ground under the 

tree canopies (White et al., 2013). ALS is an active source and penetrates the 

vegetation resulting in a good measure of vegetation density. Two options for 

future monitoring of the forest-tundra ecotone are suggested: repeated ALS 

scans of strips or by initially covering the whole area with ALS data to achieve 

a high resolution ground     and then repeated collection of aerial photos for 

creation of 3D point clouds using matching. Further research should be done to 

assess the best option to set up a monitoring system for the forest-tundra 

ecotone. 

5.6.3 Object based classification and change detection 

In paper IV, no automatic detection of trees was used, but this would be the 

next step in future research as well as evaluation of the effect of, for example, 

flight direction and scan angle. 

In paper V it was shown that features close to the ground, such as newly 

windthrown trees, could be detected using data from only one time point. 

There were some problems with boulders, roads, ditches, and bushes causing 

false identifications as windthrown trees. By also using data collected before 

the storm, the false identifications should be the same and errors would most 

likely be reduced by using a difference image.  

The high density data used in paper IV and V are currently expensive and 

take a longer time to collect than sparse data. Photon counting ALS will be a 

future option that creates point densities similar to the ones used in paper IV 

and V flown at a much higher flying altitude and thereby at a lower cost 

(Harding et al., 2011; Rosette et al., 2011). 

After storms it is not always easy to order an ALS acquisition on short 

notice. An unmanned aerial vehicle (UAV) carrying a laser sensor would 
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therefore be an option. It is shown to be technically possible by Lin et al. 

(2011) and Wallace et al. (2012). 

The use of sampling should be further investigated for the purpose of 

estimating total numbers of windthrown trees after storms. One option could be 

to use two-phase sampling with ALS strips and a limited number of field 

surveyed areas. 

After four years of reading and writing about ALS data use for vegetation 

purposes, I have found that most studies use an empirical approach. I hope that 

more studies in the future will also investigate physical approaches to the 

problems. A reason for the empirical approach is probably the limited 

information delivered with airborne laser scanning data. Close cooperation 

with the manufacturer of the scanner is probably needed to access the 

necessary information for studying physical properties of the data. 
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