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Microbial Status of Irrigation Water for Vegetables as Affected by 
Cultural Practices - Agronomic Aspects 

Abstract 
Human pathogens present in irrigation water can be transmitted to plants. Consumption 
of fruits and vegetables irrigated with pathogen-contaminated water can cause illness in 
humans. Leafy vegetables that are consumed fresh are particularly prone to cause such 
illnesses. Understanding the microbiota of irrigation water and its decontamination and 
introducing some preventative pre-harvest cultural practices can help procure 
hygienically safe horticultural produce. 

Variations were found in water indicator organisms, including heterotrophic plate 
counts, total coliforms, thermotolerant coliforms, Escherichia coli and faecal 
enterococci, at five different sampling sites in an irrigation water distribution system 
(IWDS) on a commercial vegetable-growing farm. 454-pyrosequencing data showed 
that the IWDS bacterial community was dominated by Bacteriodetes and 
Proteobacteria, with classes within these phyla, including Flavobacteriia, 
Sphingobacteriia, α-, β- and γ-Proteobacteria, being found at all five sampling sites. 
The genera Arcicella, Flavobacterium, Limnohabitans, Sejongia, Fluviicola, 
Escherichia, Clostridium and Legionella were present at various sites. Indicator 
organisms and the pathogen Salmonella in the IWDS were significantly reduced by 
photocatalytic treatment in most cases. 

Pre-harvest cultural practices to reduce pathogen load, including cessation of 
irrigation with contaminated water three days before harvest and decreasing the water 
regime of the growing medium for leafy vegetables, were assessed. The results showed 
that an attenuated gfp-tagged E. coli O157:H7 decreased with increasing time to harvest 
after cessation of irrigation, but were present in the plant phyllosphere three days after 
cessation, irrespective of dose applied. Similarly, both attenuated gfp-tagged E. coli 
O157:H7 and an attenuated strain of L. monocytogenes persisted in vegetables grown at 
a reduced water regime in the growing medium. Total microbiota and 
Enterobacteriaceae remained unchanged on plants after cessation of irrigation with 
contaminated water and on plants grown on different water regimes. Use of 
contaminated irrigation water for leafy vegetable production should thus be avoided. 
Photocatalytic treatment can be used to decontaminate irrigation water. 
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1 Background 
Irrigation is an essential step in crop production in areas with deficient or 
sporadic rainfall and therefore millions of hectares are irrigated world-wide for 
food production. As high quality irrigation water is becoming scarce, the risk 
of outbreaks of foodborne illnesses due to consumption of crops irrigated with 
contaminated water is increasing (Miraglia et al., 2009; Klonsky, 2006). 
Verotoxin-producing Escherichia coli, Salmonella spp. and Listeria spp. are 
some of the prominent foodborne pathogens that can be transferred via 
irrigation water to plant surfaces (Liu et al., 2013; Beuchat, 1996b). Most of 
the foodborne pathogens linked with fresh produce consumption are associated 
with gastrointestinal diseases. Decontamination of irrigation water is highly 
recommended for hygienically safe agricultural production. It has been found 
that the pathogens can survive for varying periods on the plant surface 
depending on environmental conditions such as temperature, nutrient 
availability, humidity and UV radiation (Brandl, 2006). 

The main objectives of this thesis were to investigate (i) the bacterial 
community structure in the free water phase of an irrigation water distribution 
system (IWDS) on a commercial vegetable-growing farm and (ii) to assess the 
impact of cultural management on irrigation water quality, by photocatalytic 
treatment and on the plant phyllosphere colonisation of selected human 
pathogens by cessation of irrigation with contaminated water before harvest 
and growing plants using different water regimes in the growing medium. 
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2 Introduction 

2.1 Irrigation water 

Water used to replace or supplement precipitation in the production of crops is 
called irrigation water (Hargreaves & Merkley, 1998). Irrigation of crops is an 
important and long-used practice to increase agricultural and horticultural 
production. According to the Food and Agriculture Organisation (FAO), the 
drinking water requirement for one person is 2-4 L d-1, but to produce one 
person’s daily food takes 2000-5000 L of water. It requires almost 1000-3000 
L of water to produce 1 kg of rice and 13 000-15 000 L to produce 1 kg of 
grain-fed beef (FAO, 2010; Pimentel et al., 1997). Demand for irrigation water 
is increasing (Shiklomanov, 1998) and in 2000 almost 274 million hectares of 
agricultural land were irrigated world-wide, which is about 16% of the total 
cultivated area on Earth (Sieberta et al., 2006). In Sweden, during 2003 an area 
of almost 53,000 ha was under irrigation (Wriedt et al., 2008). 

2.1.1 Sources of irrigation water 

In many cases irrigation water is stored in a source, natural or artificial, prior to 
use. Fresh water that can be used for irrigation and which is accessible to 
humans comprises less than 1% of the Earth’s total water resources (Zia et al., 
2013). There are different sources of irrigation water, including rainwater, 
groundwater, surface water and untreated or treated wastewater. 

Rainwater 
Rainwater use is considered the easiest method of crop production (Li et al., 
2000). ‘Rainwater harvesting’ is a term used for collecting and storing 
rainwater in man-made reservoirs (Makoto, 1999; Prinz, 1999) for subsequent 
use for irrigation of crops. 



14 

Groundwater 
Groundwater can be accessed through wells and springs. Groundwater is 
comparatively hygienically safer than surface water for crop production (Ayers 
& Westcot, 1985). 

Surface water 
In general, various surface water sources can be utilised for crop irrigation 
(Winter et al., 1999). Surface water is ultimately hydraulically connected to 
groundwater, but it can become contaminated with the addition of wastewater, 
stormwater and agricultural run-off, which in many cases contain loads of 
pathogens (Winter et al., 1999). 

Wastewater 
Lack of freshwater for irrigation has forced growers to utilise any type of 
available water, including wastewater, and around 20 million hectares (7% of 
all irrigated land) are irrigated with different types of wastewater (Scott et al., 
2004). Wastewater use in the developing countries has increased because it 
contains ample amounts of nutrients and is a reliable source of water supply 
(Hussain et al., 2001). 

2.1.2 Irrigation methods 

Application of water to plants can be through different means or irrigation 
methods. There are two main types of irrigation method, surface irrigation and 
localised irrigation (Cuenca, 1989). An easy way of crop irrigation is through 
surface irrigation, in which water flows under gravity without pumping. 
Surface irrigation can be performed as furrow, flood or border strip irrigation 
and the water is not applied directly to the plant canopy, so the plant 
phyllosphere cannot be directly contaminated if unhygienic water is used 
(Solomon et al., 2002). 

When water is applied to each plant with the help of connected pipes, this is 
called localised irrigation (Vermeiren & Jobling, 1983). With this irrigation 
method, water can be supplied through drip irrigation (water is applied to the 
root zone of each plant), spray or micro-sprinkler irrigation (water is supplied 
directly to the plant canopy) or bubbler irrigation (water is applied in low 
quantities to the soil adjacent to plants) (Frenken, 2005). Micro-irrigation of 
crops can apply the required water either directly to the plant canopy or to the 
root zone, improving the quality and quantity of the produce. Vegetables are 
mostly irrigated with localised irrigation systems, and therefore in this thesis a 
sprinkler irrigation system was used in experiments with leafy vegetables 
(Papers III and IV). 
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In areas with a high groundwater level, a sub-irrigation method can be 
utilised in which water is raised by pumps and pipes to open ditches or 
underground conduits and is made available through capillary force to the plant 
root zone (Smajstrla et al., 1991). 

2.1.3 Water circuit 

Open irrigation systems result in larger water losses due to insufficient control 
(mainly evaporation and technical faults in the distribution system) (Rivas et 
al., 2007). For example, in Zimbabwe 50% of water is lost through evaporation 
during surface irrigation of the traditional irrigated gardens (Batchelor et al., 
1996). Therefore, installation of a water circuit is important for improving the 
efficacy in IWDS and 10-50% water can be saved (Postel, 1992). 

The hygiene quality of IWDS is affected by the microbiological status of 
the water source, the complex environment, nutrient availability, microbial 
interactions and accumulation of sediment, which can contain vibrant 
microbial communities important for food safety (Pachepsky et al., 2012). The 
use of partly treated or untreated wastewater for irrigation increases the risk of 
microbes occurring in the water delivery system. Research indicates that these 
microorganisms can then persist in the water circuit within biofilms (Yan et al., 
2009; LeChevallier et al., 1987). Pathogen survival and growth in the water 
system is affected by various environmental factors as well as nutrient 
availability, microbial interactions, pipe material, system hydraulics, use of 
disinfectants and residuals, and sediment accumulation, with carbon 
accumulation in particular acting as a limiting factor (Pachepsky et al., 2011; 
USEPA, 2002). 

Pathogenic microorganisms have been found in the water remaining in 
pipes between irrigation events (Pachepsky et al., 2012; Juhna et al., 2007). In 
a study in the USA on membrane bioreactor treatment plants, regrowth of 
pathogens, including Legionella and Aeromonas, has been reported (Jjemba et 
al., 2010). These microbes mix with irrigation water passing through irrigation 
systems and may reach the plant surface. Flushing of the irrigation system is 
one way to decrease the risk of microbial contamination in pipes (Pachepsky et 
al., 2012). With advances in technology, water circuit irrigation systems have 
been adopted for many crops, including vegetables. This thesis focused on an 
IWDS used for irrigating vegetables at commercial level and evaluated the 
microbial community in this system. For decontamination of the irrigation 
water, a prototype photocatalytic treatment unit installed in the IWDS was 
evaluated (Papers I and II). 
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Figure 1. Potential factors affecting the microbiological quality of irrigation water sources and 
irrigation water distribution systems. Modified from Pachepsky et al.(2011), reprinted with kind 
permission from Elsevier. 
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2.2 Pathogens in irrigation water 

A wide range of microbial pathogens have been found in water and can be 
transferred to crops during irrigation. Okafo (2003) recovered E. coli, 
Salmonella spp. and Vibrio spp. from irrigation stream water in Nigeria and 
found that these microbes were also present on the irrigated plants. Some 
possible routes for contamination of irrigation water are shown in Figure 1. 
Aquatic plants and sediments can help pathogen survival in the open irrigation 
system, whereas in case of pipe-based irrigation systems pathogens can survive 
through biofilms. Survival of pathogens in the water and surrounding 
environment is mainly dependent on factors such as nutrient availability, 
temperature, organic matter content, competition with other microorganisms, 
pH and radiation (Pachepsky et al., 2011). It has been shown that E. coli can 
survive for up to 300 days in autoclaved, filtered river water at 4 °C (Flint, 
1987). Use of contaminated water for irrigation of crops is considered to be 
responsible for several outbreaks of disease following consumption of such 
crops (Beuchat & Ryu, 1997). 

Bottom sediment could be one of the major reservoirs of pathogenic 
microorganisms as it provides nutrient availability and protection from UV 
sunlight (Burton et al., 1987; Lewis et al., 1986). For example, Pachepsky et 
al. (2011) showed that faecal coliforms are multiple-fold higher in sediments 
than in the water column. Therefore, to obtain maximum decontamination in 
water treatment, it is recommended that the total suspended solids (TSS) 
content be reduced before treatment (Rose et al., 1996). 
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the favourable conditions for pathogen survival (Pachepsky et al., 2012). 
Biofilms can be formed in the water circuit by certain pathogens in order to 
persist and survive (LeChevallier et al., 1987). Important pathogens including 
E. coli O157:H7, Salmonella, Listeria monocytogenes, Cryptosporidium 
oocysts, Vibrio spp. and Yersinia spp. have been found in different irrigation 
systems (Pachepsky et al., 2012; Wilkes et al., 2009; Doyle, 1990). These can 
subsequently mix with the irrigation water and may reach the plant surface. 
Therefore, in this thesis the pathogens E. coli O157:H7 and Listeria 
monocytogenes were analysed in order to determine their prevalence in the 
phyllosphere of leafy vegetables, as affected by pre-harvest cultural practices 
(Papers III and IV). 

2.2.1 Water indicator organisms 

For water quality assessment, heterotrophic plate counts (HPC) at 22 ºC, total 
coliforms (TC), faecal (thermotolerant) coliform bacteria (TTC), Escherichia 
coli (E. coli) and faecal enterococci (FE) are normally used (DIN-19650, 
1999). These indicator organisms are not necessarily pathogenic, but indicate 
possible contamination of the water by different pathogens. Heterotrophic plate 
counts indicate the general pollution state, consisting of all aerobic 
microorganisms, including yeasts and moulds. For water hygiene standards, 
measurements of TC and ‘faecal coliform’ organisms are often used in 
combination (Blumenthal et al., 2000). The group TC includes Gram-negative, 
non-spore forming, rod-shaped bacteria, comprising the genera Escherichia, 
Citrobacter, Enterobacter and Klebsiella. These indicate the general sanitary 
level of water. The TTC include the genera Escherichia and Klebsiella and 
indicate the level of faecal contamination (Paruch & Mæhlum, 2012). Faecal 
coliforms are broadly equivalent to ‘thermotolerant coliforms’. These and E. 
coli indicate short-term faecal contamination, with E. coli being the faecal 
indicator bacterium and a comparatively more reliable and consistent predictor 
of illness (Paruch & Mæhlum, 2012; Edberg et al., 2000). The FE, or faecal 
streptococci, are not a taxonomic-systematic class of microorganisms, but 
mainly comprise species belonging to Enterococcus (E. avium, E. durans, E. 
faecalis, E. faecium) and some streptococci (S. bovis, S. equinus) (Leclerc et 
al., 1996). They are Gram-positive and survive for a long time in water, and 
are therefore used as indicators for long-term faecal contamination (Pourcher et 
al., 1991). In this thesis, all these water indicators were used to assess the 
microbial quality of irrigation in an IWDS and water decontamination by 
photocatalysis (Papers I and II). 
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2.2.2 Guidelines for using irrigation water 

For hygienically safe agricultural production, the World Health Organisation 
(WHO) and various countries have established guidelines for using irrigation 
water. The experiments described in this thesis were performed with leafy 
vegetables (Papers III and IV), which are mostly consumed raw, and therefore 
the guidelines presented below are for raw crops. Recommendations on 
sampling frequency of irrigation water vary between different guidelines from 
daily sampling to five times a month (Jamieson et al., 2002), once a month 
(Strang, 2010), or once a year (Pachepsky et al., 2011). The United States Food 
and Drug Administration (USFDA) guidelines recommend site-specific 
analysis for the specific crop, pathogen, irrigation system, water source and 
management practice/s (Pachepsky et al., 2011). General recommendations for 
water sampling frequency include using the geometric mean from five weekly 
measurements or five sampling events per month (Pachepsky et al., 2011; 
British Columbia Ministry of Environment, 2001). 

According to the guidelines in British Columbia, Canada, the geometric 
mean of five sampling events per month for various indicator organisms in 
irrigation water should be: faecal coliforms <200 CFU 100 mL-1, E. coli <77 
CFU 100 mL-1 and faecal Enterococci <20 CFU 100 mL-1 (British Columbia 
Ministry of Environment, 2001). 

In the guidelines set by Alberta, Canada, the geometric mean of five 
sampling events per month for indicator organisms should be: total coliforms 
<1000 CFU 100 mL-1, E. coli <200 CFU 100 mL-1 and Enterococci <35 CFU 
100 mL-1 (Alberta Environment, 1999). 

According to DIN 19650 (1999) there are four classes of irrigation water. 
For crops consumed raw, specifications for the classes EK-1 and EK-2 should 
be observed (DIN-19650, 1999). In EK-1, the water quality is the same as 
drinking water quality and no E. coli or faecal streptococci should be present in 
the water. In class EK-2, the guidelines recommend that E. coli should be <200 
CFU 100 mL-1 and faecal streptococci should be <100 CFU 100 mL-1. DIN 
19650 (1999) also recommends no Salmonella presence in 1000-mL samples 
of irrigation water and no potentially pathogenic stages of human parasites. 

2.3 Human pathogens and vegetables 

Routes of transmission of human pathogens through vegetables are 
summarised in Figure 2. One major cause of vegetable contamination could be 
the unavailability of hygienic irrigation water. Pathogens can be transmitted to 
vegetables and cause outbreaks of illnesses when these are consumed (EFSA, 
2013). A wide range of pathogens can be transferred to plants via irrigation 
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water, surviving several days both on external and internal parts of the plant 
(Islam et al., 2004). In many cases pathogens have the ability to enter into the 
plant tissues through wound surfaces and stomatal cavities (Barker-Reid et al., 
2009; Gomes et al., 2009; Aruscavage et al., 2008). In the plant tissues, 
pathogens are protected from various disinfection treatments and UV-light and 
have ample amounts of nutrients available (Heaton & Jones, 2008). 
Experiments on human pathogen population dynamics and survival, applied 
with irrigation water either in the plant canopy or by the root system, have 
given differing results, so it is difficult to make general statements on pathogen 
survival and their populations on plants (Berger et al., 2010). 

Leafy vegetables are normally irrigated near harvest to increase their market 
value, so they can be responsible for a large proportion of foodborne illnesses 
if contaminated irrigation water is used (EFSA, 2013; Harris et al., 2003). 
Irrigation can also lead to a humid microenvironment in the plant canopy and 
result in better survival of pathogens (Dreux et al., 2007). Studies have 
reported high numbers of pathogenic infections, especially diarrhoea, due to 
consuming uncooked vegetables irrigated with contaminated water (Harris et 
al., 2003). 

 
Figure 2. Field crop contamination by human pathogens via different sources. Adapted from 
(Köpke et al., 2007; Beuchat, 1996b), reprinted with the kind permission of Woodhead 
Publishing Limited. 
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Escherichia coli O157:H7 and L. monocytogenes are among the dominant 
causal agents of certain food illnesses transmitted through fresh fruits and 
vegetables (EFSA, 2013; Brackett, 2001). The infective dose of both bacteria is 
low (Ramaswamy et al., 2007; Ackers et al., 1998). The two pathogens are 
compared in Table 1. Both have been found in surface water (Wilkes et al., 
2009) and can be carried to the plant phyllosphere via irrigation water (Steele 
& Odumeru, 2004). Both E. coli O157:H7 and L. monocytogenes have been 
documented in numerous disease outbreaks linked to fruits and vegetables 
world-wide (EFSA, 2013). An E. coli O157 outbreak in Sweden was attributed 
to consumption of fresh lettuce irrigated with contaminated water (Söderström 
et al., 2008). In many cases the initial concentration of pathogens in irrigation 
water is critical for produce contamination, but Pachepsky et al. (2011) 
concluded that the concentration in irrigation water may not necessarily be the 
dominant factor if the microorganism is able to internalise in produce or 
colonise it. 

The plant phyllosphere can be considered a hostile environment for enteric 
pathogens. This environment is typically characterised by fluctuating 
temperatures, inconsistent nutrient availability, competition with resident 
microbiota, UV-light and water activity (Heaton & Jones, 2008; Cooley et al., 
2006). Therefore, human pathogens (outside their host) are considered not to 
be part of the phyllosphere. However, as evidenced from the outbreaks of 
foodborne illness, these pathogens can be considered capable of adapting to 
phyllosphere conditions (Berger et al., 2010). Studies suggest that bacterial 
processes, including gene expression, motility and extracellular compound 
production, can be important in colonisation and survival in the phyllosphere 
(Aruscavage et al., 2006; Solomon & Matthews, 2006). It has been shown that 
plants have defence mechanisms against undesired bacterial proliferation, e.g. 
the plant hormone ethylene can inhibit certain plant pathogens, but there are no 
such reports about plant defence against human pathogens. One possible reason 
could be that since plants do not recognise human pathogens as potentially 
harmful, they do not prevent their colonisation. Therefore, human pathogens 
can exist as a part of the plant phyllosphere (Berger et al., 2010).  
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Table 1. Comparison of the human pathogens Escherichia coli O157:H7 and Listeria 
monocytogenes 

 E. coli O157:H7 L. monocytogenes 
Category Human pathogen Human pathogen 
Family Enterobacteriaceae Listeriaceae 
Gram test Gram-negative Gram-positive 
Transmission to human Contaminated food Contaminated food 
Habitat Intestine of warm-blooded 

animals 
Plants, soil, animal faeces 

Impact on humans Bloody diarrhoea,  
homolytic uraemic syndrome, 
kidney failure  

Listeriosis,  
gastroenteritis,  
miscarriage (newborn 
mortality) 

Both E. coli O157:H7 and L. monocytogenes have been found to colonise plant 
surfaces and, depending on environmental factors and nutrient availability, 
both can survive for long periods on plants (Islam et al., 2004; Beuchat, 
1996a). The abiotic factors required for the growth of both pathogens are 
shown in Table 2. Takeuchi et al. (2000) observed that E. coli O157:H7 can 
attach better to surfaces and the cut edge of lettuce leaves than L. 
monocytogenes. Pathogen colonisation in the plant phyllosphere is mainly 
dependent on moisture and nutrients and bacteria need active motility or simple 
diffusion for colonisation (Cooley et al., 2003). The colonisation may advance 
to microbial aggregate formation, especially near stomatal depressions and 
intercellular junctions, and thus pathogens can protect themselves from adverse 
environmental conditions, as well as post-harvest sanitisation treatments 
(Heaton & Jones, 2008). Internalisation within the plant and aggregate 
formation in the plant phyllosphere are considered to be potential factors for 
long-term survival of human pathogens on plants (Heaton & Jones, 2008). 

It has been indicated that environmental factors affect the contamination of 
leafy vegetables mainly during pre-harvest (Liu et al., 2013). Studies have 
shown that environmental conditions, particularly temperature increases and 
precipitation pattern changes, can affect the survival of human pathogens on 
leafy vegetables (Liu et al., 2013). Plant characteristics, e.g. leaf water content, 
nutrient content, antioxidants and leaf morphology, may affect the 
phyllosphere microbiota. Leaf physiology and morphology may also affect the 
development of microbial populations in the phyllosphere and it is possible that 
certain spots on the leaf surfaces that are suitable for microbial growth can 
develop. Pre-harvest cultural practices that can alter leaf morphology and 
physiology, and consequently the prevalence of human pathogens on the leaf 
surfaces, could be exploited in order to prevent proliferation of human 
pathogens. 
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As water of good hygienic quality is a scarce commodity, pre-harvest 
cultural management strategies are important to consider. The main focus of 
this thesis was on adopting irrigation water-related cultural practices, namely 
(i) decontamination of irrigation water before application to vegetables; (ii) 
cessation of irrigation to reduce moisture on the plant surface (Keraita et al., 
2007) and (iii) reducing the moisture content of the growing medium to 
develop dry conditions on the leaf surface. These practices may be helpful in 
reducing the load of pathogenic microorganisms in the irrigation water, as well 
as in the plant phyllosphere. 

Table 2. Abiotic factors required for growth of Escherichia coli O157:H7 and Listeria 
monocytogenes. 

  E. coli O157:H7 L. monocytogenes 
pH Minimum 4.4 4.4 
 Optimum 6-7 7 
 Maximum 9.0 9.4 
Temperature (°C) Minimum 7-8 1.5 
 Optimum 37 37 
 Maximum 46 45 
Water activity (aw) Minimum 0.950 0.920 
 Optimum 0.995 - 
 Maximum - - 

2.4 Irrigation water hygiene 

The hygiene quality of irrigation water and crops can be assured either by 
supplying pathogen-free water or by disinfecting water before it reaches the 
plants. Possible water disinfection treatments include heat treatment or 
pasteurisation, filtration, UV irradiation, chlorination, ozonation (Newman, 
2004), waste stabilisation, use of sedimentation ponds, waste storage or 
filtration through sand and soil (Keraita et al., 2010; Mara & Silva, 1986). All 
these have been shown to decrease the levels of microorganisms in irrigation 
water. 

Water decontamination can be achieved through physical, chemical or 
biological methods. Every treatment system has its own advantages and 
disadvantages. Use of chlorine for water disinfection is an old and relatively 
inexpensive technique with a high oxidising potential and the chlorine used can 
be in different forms, e.g. chlorine gas, hypochlorite and chlorine dioxide 
(Newman, 2004). Chlorine dioxide is very effective in killing bacteria and 
viruses, but it is very unstable and needs to be produced at the site of 
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application. Chlorine exists as hypochlorous acid and hypochlorite in water and 
can react with organic matter in water to create mutagenic and carcinogenic 
products (Nieuwenhuijsen et al., 2000). Furthermore, it has been observed that 
in many cases chlorine treatment fails to inactivate oocysts of Cryptosporidium 
parvum (Korich et al., 1990; Peeters et al., 1989). Ozonation of water is also an 
effective disinfectant treatment. Ozone can lyse microbial cell membranes due 
to its highly oxidative properties. However, ozone releases some byproducts 
that may be deleterious to humans (Glaze & Weinberg, 1993; Haag & Hoigne, 
1983). Hydrogen peroxide is an unstable, strong oxidiser that can inactivate the 
cell membrane of microorganisms. It has been found to be useful against fungi, 
bacteria and algae, and can therefore be used for disinfection of irrigation water 
(Glaze et al., 1987). 

Water filtration is a very useful method to remove microbes, especially 
protozoan oocysts and helminth eggs (Landa et al., 1997). As the water passes 
through a porous granular medium, microbes are removed. Filtration is a 
simple and relatively safe method, as there is no danger of chemicals forming. 
However, water filtration normally requires large land areas and environmental 
factors can sometimes affect the efficacy of the system (Huisman & Wood, 
1974). Wetlands are an appropriate low-cost technology for inactivation of 
water microbes (Greenway, 2005). Constructed wetlands are suitable for 
pathogen removal through physical, chemical and biological processes 
(Greenway, 2005; Zdragas et al., 2002; Davies & Bavor, 2000). For example, 
wetlands are able to remove faecal coliforms, Enterococci and the total 
bacterial load from water (Greenway, 2005; Bolton & Greenway, 1999). 

Ultraviolet light in the form of UV-C (λ=254 nm) can be used against 
microorganisms, resulting in DNA and RNA damage and inactivation. A UV 
dose of 330 mJ cm-2 can completely inactivate faecal coliforms, faecal 
streptococci and E. coli (Caretti & Lubello, 2003). However, some 
microorganisms are resistant to UV radiation, e.g. Enterobacter cloacae 
(Ibáñez et al., 2003). In recent years, semiconductor photocatalytic processes 
that work on the basis of active oxidative treatment have been developed for 
water disinfection. Hydroxyl ( OH) radicals generated during this process can 
be used to inactivate bacteria and viruses. UV-radiation (λ<385 nm) is 
normally used to activate the semiconductor, which in many cases is titanium 
dioxide (TiO2), to form free hydroxyl OH radicals (Hoffmann et al., 1995). 
The radicals can degrade microbial cell walls, which leads to the release of 
essential cell components, resulting in microbial death (Kiwi & Nadtochenko, 
2005). In this process, TiO2 can be used either in powder form or fixed in lines 
with a UV-lamp (Malato et al., 2007). Gram-positive and Gram-negative 
bacteria, yeast and algae can be inactivated using metal halide lamp irradiation 
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and TiO2 (Matsunaga et al., 1985). The photocatalytic unit can be installed 
online in the IWDS and hence no water storage is required. The water 
decontamination experiment described in this thesis (Paper II) used a prototype 
photocatalytic unit that was installed directly in the IWDS. 

2.5 Microbial analysis 

Culture-dependent methods represent only 0.1-3% of the total microbiota 
within the community (Whipps et al., 2008). Thus although most standardised 
laboratory procedures for describing water quality are based on culture-
dependent techniques using semi-selective media and enrichment, the majority 
of the microorganisms inhabiting water and the phyllosphere cannot be 
cultured on standard laboratory media. Therefore, culture-independent 
techniques can make it possible to identify the unexploited constituents of the 
microbial community. Water-related microbial communities can be assessed 
through DNA-based techniques (Bernhard & Field, 2000; Toze, 1999). 
Important DNA-based techniques include gene cloning and sequencing (Dı́ez 
et al., 2001), denaturing gradient gel electrophoresis (Emtiazi et al., 2004; 
Araya et al., 2003), terminal restriction fragment length polymorphism 
(Bernhard & Field, 2000), and a recently developed next generation 
sequencing (NGS) technique, 454 pyrosequencing (Douterelo et al., 2013; 
Telias et al., 2011). Microbial DNA is very stable in the environment and 
therefore can persist for extended periods after cell death (Josephson et al., 
1993; Novitsky, 1986). Thus the DNA-based techniques sequence both viable 
and dead members of the community and the results obtained do not 
discriminate between living and dead organisms. 

In bacteria, 16S rRNA genes can be used as phylogenetic markers to assess 
the microbial community and phylogenetic information on the dominant 
members of the community can be generated by sequencing the 16S rRNA 
genes obtained through PCR (Osborn et al., 2000). Basically, RNA-based 
microbial community analysis provides information on active members of the 
community (Griffiths et al., 2000). Recent advances in sequencing techniques 
have made it possible to assess microbial communities in detail. 

The Sanger sequencing method works by utilising 16S rRNA gene 
amplification, followed by cloning and the chain termination method with dye-
labelled dideoxynucleotides (ddNTPs) (Siqueira Jr et al., 2012). This method 
can generate sequence reads with a length of around 1000 bp (Luo et al., 
2012), and has been used for investigation of bacterial communities for several 
years (Siqueira Jr et al., 2012). However, the high cost of cloning and 
subsequent sequencing with the Sanger sequencing method make it difficult to 
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examine a large number of clones from a large number of samples (Siqueira Jr 
et al., 2012). Therefore, a recently developed next generation sequencing 
(NGS) technique that can generate high throughput sequences has been 
adopted for large-scale bacterial community analyses. The five most widely 
used NGS technologies at present are 454-pyrosequencing, Illumina, SOLiD, 
the HeliScope Single Molecule Sequencer and Single Molecule Real Time 
technology. All can perform massive parallel sequencing (Siqueira Jr et al., 
2012). The NGS techniques are usually employed for metagenomic studies of 
complex microbial communities (Luo et al., 2012). 

Of the NGS techniques, the most commonly used are the pyrosequencing 
methods (Metzker, 2009). Pyrosequencing provides a large number of 
sequence reads in a single run and thus allows microbial communities to be 
studied in depth (Edwards et al., 2006). This technology is a sequencing-by-
synthesis method (Siqueira Jr et al., 2012), in which the isolated DNA is bound 
to small beads. An oil-water emulsion polymerase chain reaction (PCR) is 
performed and DNA is amplified on beads containing oligonucleotide primers. 
A million copies of a specific DNA template are generated on each bead. 
These beads, which contain the enzymes that are subsequently used in the 
pyrosequencing reaction steps, are deposited in picotitre wells (Mardis, 2008). 
A mixture of the single-stranded DNA template, sequencing primer, DNA 
polymerase, ATP sulfurylase, luciferase and apyrase helps in the 
pyrosequencing reaction. The four deoxynucleotides (dNTPs) are added to the 
pyrosequencing reaction. If a nucleotide is incorporated into a sequence, a 
phosphodiester bond between the dNTPs is formed, releasing pyrophosphate 
(PPi) in a quantity equivalent to the amount of nucleotide incorporated. This is 
followed by conversion of PPi to adenosine triphosphate (ATP). The ATP 
helps conversion of luciferin to oxyluciferin, which emits light in an amount 
proportional to the amount of ATP used. The emitted light is detected and the 
sequence can be determined by repeated incorporation of the complementary 
nucleotide and light emission (Siqueira Jr et al., 2012). 

The Illumina/Solexa sequencing technology is also based on the 
sequencing-by-synthesis method. It works on the principle of dye terminator 
nucleotides incorporated into the sequence by a DNA polymerase similar to 
that in the Sanger sequencing method (Siqueira Jr et al., 2012). In Illumina, a 
flow cell surface is used for the immobilisation of DNA fragments, followed 
by bridge PCR for amplification (Shendure & Ji, 2008). 

The sequence read length generated by most of the NGS technologies is 
shorter than that needed for identification of bacterial gene length (Luo et al., 
2012). Therefore bacterial identification using these methods has focused 
primarily on hypervariable regions of the 16S rRNA gene (Huse et al., 2008). 
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Hypervariable regions (V1-V6) have been commonly used for microbial 
identification (Siqueira Jr et al., 2012). The read length of Illumina is about 
100 bp (Siqueira Jr et al., 2012) and is not suitable for bacterial identification. 
The 454-pyrosequencing technology has progressed over time and the recently 
developed GS FLX+ can generate read lengths up to 1000 bp (454 
LifeSciences, 2014; Luo et al., 2012), which can be utilised for identification 
of microorganisms in an environment. This technique has been used for 
exploring microbial communities in different environments (Douterelo et al., 
2013; Petrosino et al., 2009; Edwards et al., 2006). 

In this thesis, both culture-dependent and culture-independent (454-
pyrosequencing) techniques were used, to assess indicator organisms and 
general bacterial microbiota, respectively, in the free water phase of a field 
irrigation system (Papers I and II). 
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3 Objectives 
The main aims of this thesis were to find ways to increase the food safety of 
irrigated leafy vegetables and to identify cultural practices to minimise the 
prevalence of human pathogens on fresh produce. 

 
Specific objectives were to: 

 Identify the dominant bacterial microbiota in a commercial irrigation water 
distribution system (IWDS) (Paper I). 

 Explore the efficacy of photocatalysis in decontaminating irrigation water 
(Paper II). 

 Investigate the population of introduced human pathogens as affected by 
cessation of irrigation before harvest of leafy vegetables (Paper III). 

 Investigate the effect of water regime of the growing medium on introduced 
human pathogens on leafy vegetables (Paper IV). 

 
 
 
The starting hypotheses in Papers I-IV were as follows: 
 

(i) The microbial community structure within the IWDS changes 
during irrigation events (Paper I). 

(ii) The microbial community varies at different sampling sites within 
the IWDS (Paper I). 

(iii) A photocatalytic unit installed in the IWDS can improve the water 
microbial hygiene quality (Paper II). 

(iv) The prevalence of E. coli O157:H7 decreases with increasing time 
interval between irrigation and harvest (Paper III). 
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(v) The decline in E. coli O157:H7 inoculated into the phyllosphere is 
a function of its concentration applied through irrigation water 
(Paper III). 

(vi) Different water regimes applied to the growing medium can affect 
the occurrence of human pathogenic bacteria on leafy vegetables 
(Paper IV). 
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4 Materials and Methods 
Issues related to the microbial quality of irrigation water were investigated 
from two perspectives: (i) microbial community structure and water quality 
indicators in the free water phase in the IWDS, including the effects of 
decontamination (Papers I and II) and (ii) the impact of contaminated irrigation 
water on pathogen occurrence on leafy vegetables, as affected by cultural 
practices (Papers III and IV). Water samples were collected from the IWDS on 
a commercial vegetable-growing farm in southern Sweden (Papers I and II). 
Experiments on the persistence of gfp-tagged E. coli O157:H7 (Papers III and 
IV) and L. monocytogenes (Paper IV) on leafy vegetables were carried out in 
the greenhouse, to exclude background contamination and to comply with 
Swedish legislation. Table 3 shows the irrigation water parameters used in the 
two approaches. 

Table 3. Irrigation water parameters used in field and greenhouse experiments 

                                                                   Field (Papers I, II)        Greenhouse (Papers III, IV) 

Water source                                              Pond                                   Potable water 
Water pH                                                    7.7                                      8.3 
Water electrical conductivity (mS cm-1)    0.7                                      0.18                                               
Water temperature (°C)                             10-20                                  15-18  
Decontamination method                          Photocatalysis (Paper II)   Filtration &mild chlorination 

4.1 Field experiments 

4.1.1 Water sample collection (Papers I, II) 

Irrigation water samples at the commercial vegetable-growing farm were 
collected from the IWDS. Water collected in a pond and originating from a 
nearby stream, surface run-off and rainfall was pumped through the IWDS 
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(Figure 3). The water was pre-filtered (50 μm polyester cartridge filter, 
Harmsco) before entering the field pipeline. 

A prototype photocatalytic unit (Wallenius Water M900BE 160 W) was 
mounted on the irrigation ramp. In this photocatalytic unit, TiO2 was fixed with 
the UV-radiation lamp and installed online in the IWDS. Triplicate water 
samples were collected at five sampling sites on three and five occasions 
during 2009 and 2011, respectively. Water samples were collected from (i) the 
pond, (ii) after coarse filtration, (iii) at the start of the field water pipe and (iv) 
at the end of the field water pipe for analyses of the microbial community 
structure of the free water phase in the IWDS during 2011 (see Paper I). 
Decontamination was studied at the end of the IWDS and included water 
samples from (i) the pond, (iv) the end of the field water pipe (before 
photocatalytic unit) and (v) after treatment with the photocatalytic unit during 
2009 and 2011 (Paper II). All water samples were immediately cooled and 
brought to the laboratory within 1.5 h of sampling for further analysis. 

4.2 Greenhouse experiment 

The experimental procedures used in the two greenhouse experiments are 
summarised in Figure 4. 

4.2.1 Plant material (Papers III, IV) 

For the experiments described in Paper III, seeds of spinach (Spinacia oleracea 
L. cv. Island) and rocket (Diplotaxis tenuifolia L. cv. Grazia) treated with 
metalaxyl-M/thiram/thiophanate-methyl (Seminis, Oxnard CA, USA) were 
sown in trays (0.52 m x 0.42 m x 0.09 m) at a rate of about 400 seeds per tray. 
The trays were filled with three layers of growing medium: a 1-cm bottom 
layer of sand (particle size 0.2-1 mm), a 4.5-cm middle layer of fertilised peat-
based growing medium (K-soil) and a 2.5-cm top layer of peat-based growing 
medium (S-soil), both from Hasselfors Garden AB, Örebro, Sweden. For the 
experiments described in Paper IV, spinach and rocket seeds were also used as 
described above and, in addition, Swiss chard (Beta vulgaris L. cv. Bull’s 
blood) seeds were used. The trays in this case were filled with two layers of 
growing medium: a 4.5-cm bottom layer of fertilised peat-based growing 
medium (K-soil) and a 1.5-cm top layer of peat-based growing medium (S-
soil). The seeds in this experiment were sown at a density of 0.10 g, 4.76 g and 
4.50 g per tray for rocket, spinach and Swiss chard, respectively. 

The trays were placed in the experimental greenhouse (21+2 °C, relative 
humidity 60-80% and at least 12 h light d-1) (Figure 5). For inoculation with 
attenuated strains of human pathogens, the plant trays were transferred to a
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greenhouse section approved for experiments with genetically modified 
organisms (REK 2011/1072; ID202100-2817v28) and kept under the same 
environmental conditions as described above. 

The experiments in Paper III were repeated two times each, with three 
replicates for four harvest times and three inoculum densities and controls. In 
the experiments in Paper IV, five replicates were performed in trial one and 
three replicates in trial two, each divided for two water regimes, with parallel 
controls. 

 
Figure 4. Greenhouse and laboratory procedures used in experiments on leafy vegetables (Papers 
III, IV). 
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4.2.2 Bacterial inoculum preparation and inoculation (Papers III, IV) 

Bacterial strains of E. coli serotype O157:H7 (registered, E81186, verotoxin-1 
and -2 absent and eae-gene present) for use in Papers III and IV were procured 
from the Swedish Institute for Communicable Disease Control, Solna, Sweden, 
and non-pathogenic Listeria monocytogenes for use in Paper IV from the 
National Veterinary Institute, Uppsala, Sweden. 

The E. coli O157:H7 (gfp-tagged) cells were prepared as explained in 
Papers III and IV for the experiments using Luria-Bertani broth (LB, L3022-
1kg, Sigma, Stockholm, Sweden), supplemented with 100 µg mL-1 ampicillin 
and 0.1% L-arabinose, solidified with 1.5% Bacto Agar (DIFCO 214010, 
DeMoines, USA) and incubated for 18 h at 37 °C. The cell density (OD620) for 
E. coli O157:H7 was adjusted to 1.0 (Expert 96™ spectrophotometer, 
AsysHiTech, Eugendorf, Austria), corresponding to 109 CFU mL-1. Preparation 
of L. monocytogenes cells for the experiment is described in detail in Paper IV. 
In brief, the cells were prepared using Blood Agar Base (BAB, OXOID, 
CM0055, Hampshire, England) supplemented with 200 μg mL-1 rifampicin and 
incubated (48 h, 26 °C). For L. monocytogenes the cell density was adjusted to 
(OD620) 0.8, which corresponds to 109 CFU mL-1. 

A final density of gfp-tagged E. coli O157:H7 of 107, 106 or 105 CFU mL-1 
was sprayed on leafy vegetables at a rate of 25 mL tray-1 (see Paper III). 
Similarly, gfp-tagged E. coli O157:H7 and L. monocytogenes (107 CFU mL-1) 
were sprayed at a rate of 25 mL tray-1 (Paper IV). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Leafy vegetables (left: Swiss chard, right: spinach) grown in the greenhouse during the 
experiments on leafy vegetables inoculation with human pathogens. (Photo: Mehboob Alam). 
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After 35-42 days, (BBCH code 49 for rocket and spinach and BBCH code 38 
for Swiss chard), the plants were transferred to the greenhouse section 
approved for experiments with genetically modified organisms and kept under 
the same environmental conditions as explained above. In the experiments in 
Paper III, 12 trays (rocket or spinach) per treatment were inoculated with E. 
coli O157:H7 suspension. In the experiments in Paper IV, plants of the same 
age (rocket, spinach and Swiss chard) were transferred to the greenhouse 
section as explained above and 10 plant trays during trial one and 6 trays 
during trial two were inoculated with E. coli O157:H7 or L. monocytogenes 
suspension. In the control treatments, the same numbers of trays containing 
plants were sprayed with an equivalent volume of sterile 0.085% NaCl 
solution. The plant trays then remained in the greenhouse until harvest. All 
plants from each tray were considered an individual replicate and were 
harvested 1.5 cm above the growing medium using sterile scissors and the 
material kept separately in plastic bags. In Paper III, the plants were harvested 
at 3, 24, 48 and 72 h after inoculation, each with three replicates per treatment. 
In Paper IV, the plants were harvested after 24 h of inoculation, with five and 
three individual replicates in trials one and two, respectively. The plastic bags 
of plant material were then brought to the Risk Class II laboratory for analysis. 

4.3 Analyses 

4.3.1 Growing medium water regime analyses (Paper IV) 

Two water regimes were used in Paper IV to examine the effect of water 
regime in the growing medium on human pathogens on leafy vegetables. A 
Fieldscout TDR 300 device (Spectrum Technologies, Plainfield, Illinois, USA) 
was used for measuring the water regime of the growing medium. It was 
determined that 62% volumetric water content (vwc) was equivalent to 100% 
field capacity of the growing medium. Ten days after sowing the seeds, the 
trays were divided into two groups (five replicates in trial one and three 
replicates in trial two), one with a growing medium moisture content of 20-
30% vwc (32% of field capacity) and the other with a growing medium 
moisture content of 5-12% vwc (16% of field capacity). This difference 
between the two treatments was maintained during the remainder of the 
experiment. 

4.3.2 Plant analyses (Papers III,IV) 

Plant fresh weight was determined immediately after harvest. For control 
treatments, leaf area (cm2) was also determined (LI-3100 Area meter, LI-COR 
Inc., Lincoln, USA) (Papers III and IV). In Paper III, plant dry weight was 
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measured after five days of desiccation at 70 °C, while in Paper IV, plant dry 
weight was measured after freeze-drying. Leaf stomata gaseous conductance 
(gs) of CO2 was measured with the help of gas exchange photosynthesis meter 
(LCpro, ACD Bioscientific, Hoddesdon, UK) to evaluate the effect of water 
regime (20-30% and 5-12% vwc) on this parameter (Paper IV). 

4.3.3 Microbial analyses 

Culture-dependent analyses 
Assessment of the microbiological quality of irrigation water in Papers I and II 
was based on determination of indicator organisms in the water (see section 
2.2.1), namely heterotrophic plate counts (HPC), total coliform bacteria (TC), 
thermotolerant coliform bacteria (TTC), Escherichia coli (E. coli), faecal 
enterococci (FE) and Salmonella. A detailed description of the procedure for 
enumeration of the indicator organisms can be found in Papers I and II. Table 4 
summarises the semi-selective media used during the experiments. 

In Papers III and IV, after harvest and fresh weight determination, aliquots 
of 100 mL sterile NaCl (0.85%) were added to the plant bags to wash off 
phyllosphere-associated microorganisms. The bags were then shaken by hand 
(208 rpm) for one minute and 50 mL aliquots of the suspension were poured 
into sterile tubes. A 10-fold dilution series was made using 0.85% NaCl and 
from a determined dilution series, 50 µL of the suspension were spread on 
semi-selective media, using a spiral plater (WASP2, Don Whitley Scientific 
Limited, Shipley, UK) to enumerate the strains introduced (E. coli and L. 
monocytogenes), Enterobacteriaceae and total aerobic counts from the 
phyllosphere, as explained in Papers III and IV. The specific incubation 
conditions used are listed in Table 4. Only plates with 30 to 300 colonies were 
considered for analysis. 



36
 

Ta
bl

e 
4.

 S
em

i-s
el

ec
tiv

e 
m

ed
ia

 u
se

d 
fo

r d
et

er
m

in
at

io
n 

of
 ir

rig
at

io
n 

w
at

er
 in

di
ca

to
r 

or
ga

ni
sm

s, 
in

cl
ud

in
g 

he
te

ro
tr

op
hi

c 
pl

at
e 

co
un

ts
 (H

PC
), 

to
ta

l c
ol

ifo
rm

s 
(T

C
), 

th
er

m
ot

ol
er

an
t c

ol
ifo

rm
s 

(T
TC

), 
Es

ch
er

ic
hi

a 
co

li 
(E

. c
ol

i),
 fa

ec
al

 e
nt

er
oc

oc
ci

 (F
E)

 a
nd

 S
al

m
on

el
la

 (P
ap

er
s 

I, 
II

); 
th

e 
ba

ct
er

ia
l s

tr
ai

ns
 (g

fp
-ta

gg
ed

 E
sc

he
ric

hi
a 

co
li 

O
15

7:
H

7 
an

d 
Li

st
er

ia
 m

on
oc

yt
og

en
es

) i
nt

ro
du

ce
d 

in
to

 th
e 

pl
an

t p
hy

llo
sp

he
re

; E
nt

er
ob

ac
te

ria
ce

ae
; a

nd
 to

ta
l a

er
ob

ic
 c

ou
nt

s i
n 

th
e 

ph
yl

lo
sp

he
re

 (P
ap

er
s I

II,
 

IV
). 

 
Fi

lte
r (

0.
45

 µ
m

) 
M

ed
iu

m
 

In
cu

ba
tio

n 
tim

e 
(h

) 
Te

m
pe

ra
tu

re
 (°

C
) 

C
om

m
en

ts
 

W
at

er
 in

di
ca

to
r 

or
ga

ni
sm

s 
 

 
 

 
 

H
PC

 
- 

Y
ea

st
 p

ep
to

ne
 a

ga
r 

68
+4

 
22

+2
 

(P
ap

er
s I

,II
) 

TC
 

+ 
Le

s e
nd

o 
ag

ar
 

24
+4

 
35

+0
.5

 
(P

ap
er

s I
,II

)a   
TT

C
 

+ 
m

FC
 a

ga
r s

up
pl

em
en

te
d 

w
ith

 ro
so

lic
 a

ci
d 

24
+4

 
44

+0
.5

 
(P

ap
er

s I
,II

)a  
E.

 c
ol

i 
+ 

m
FC

 a
ga

r s
up

pl
em

en
te

d 
w

ith
 ro

so
lic

 a
ci

d 
24

+4
 

44
+0

.5
 

(P
ap

er
s I

,II
)a  

FE
 

+ 
Sl

an
et

z-
B

ar
tle

y 
ag

ar
 

44
+4

 
35

+1
 

(P
ap

er
s I

,II
)a  

Sa
lm

on
el

la
 

+ 
R

ap
pa

po
rt-

V
as

si
lia

di
s b

ro
th

 
16

-2
0 

37
+1

 
(P

ap
er

s I
,II

)a  
B

ac
te

ri
al

 st
ra

in
s i

nt
ro

du
ce

d 
to

 th
e 

ve
ge

ta
bl

e 
ph

yl
lo

sp
he

re
 

 
 

 
 

 

E.
 c

ol
i O

15
7:

H
7 

- 
Lu

ria
-B

er
ta

ni
 (s

up
p.

 w
ith

 a
m

pi
ci

lli
n 

an
d 

L-
ar

ab
in

os
e)

 
18

 
37

 
(P

ap
er

s I
II,

IV
)b  

L.
 m

on
oc

yt
og

en
es

 
- 

B
lo

od
 a

ga
r b

as
e 

(s
up

p.
 w

ith
 ri

fa
m

pi
ci

n)
 

42
 

26
 

(P
ap

er
 IV

)c  
B

ac
te

ri
a 

fr
om

 th
e 

ve
ge

ta
bl

e 
ph

yl
lo

sp
he

re
 

 
 

 
 

 

En
te

ro
ba

ct
er

ia
ce

ae
 

- 
V

io
le

t r
ed

 b
ile

 d
ex

tro
se

 a
ga

r 
24

 
37

 
(P

ap
er

s I
II,

IV
) 

To
ta

l a
er

ob
ic

 c
ou

nt
s 

- 
Tr

yp
tic

 so
y 

ag
ar

 
72

 
25

 
(P

ap
er

s I
II,

IV
) 

a C
on

fir
m

at
io

n 
pr

oc
ed

ur
e 

fo
r i

rr
ig

at
io

n 
w

at
er

 in
di

ca
to

r o
rg

an
is

m
s e

xp
la

in
ed

 in
 P

ap
er

 I.
 

b G
re

en
 fl

uo
re

sc
in

g 
co

lo
ny

 c
ou

nt
in

g 
un

de
r U

V
-li

gh
t. 

c Li
st

er
ia

 m
on

oc
yt

og
en

es
 c

on
fir

m
at

io
n 

pr
oc

ed
ur

e 
ex

pl
ai

ne
d 

in
 P

ap
er

 IV
. 

+ 
= 

fil
te

re
d 

th
ro

ug
h 

0.
45

 µ
m

 m
em

br
an

e;
 - 

= 
no

 fi
ltr

at
io

n 
pe

rf
or

m
ed

. 



37 

Culture-independent analyses 
In Papers I and II, three independent water samples (1 L) from five collection 
events during 2011 at each sampling site within the IWDS were filtered 
separately through a 0.45 µm filter (VWR 514-0605) to assess microbial 
community in the IWDS. Repeated centrifugation (30 min, 4 oC, 3000 xg) and 
resuspension with 0.85% NaCl were performed on the filter residues. First the 
filter residues were centrifuged (3000 xg, 30 min) in 5 mL 0.85% NaCl, then 
the suspension was discarded and the pellets were subjected to a second 
centrifugation (10,000 rpm, 3 min) in 1 mL 0.85% NaCl. The suspension was 
again discarded and the pellets were stored at -80 oC. For 454-pyrosequencing, 
the pellets were processed as explained in Papers I and II. 

In Paper III, dominant Enterobacteriaceae from rocket and spinach 
canopies were characterised by randomly selecting solitary colonies from 
VRBD plates after incubation (24 h, 37 °C), pure-cultured on full-strength TSA 
and incubated (72 h at 25 °C). Pure cultures were transferred to sterile cryovials 
with freezing medium (4.28 mM K2HPO4, 1.31 mM KH2PO4, 1.82 mM Na-
citrate, 0.87 mM MgSO4 x 7H2O, 1.48 mM glycerol 98%) (Fåk et al., 2012) 
and stored at -80 °C. Cryopreserved cultures were grown on 0.1 TSA plates 
and incubated (72 h at 25 °C) and single colonies were randomly selected and 
transferred to freezing medium and preserved at -80 °C. For sequencing, the 
cryotubes with pure culture were treated as described in Paper III. 

As explained in Papers I-III, DNA was extracted using BioRobot® EZ1 
with EZ1 DNA tissue card and EZ1 DNA tissue kit (QIAGEN®, Hilden, 
Germany). In Papers I and II, the DNA amplification was performed using 
multiple displacement amplification (Illustra Genomiphi V2 DNA 
amplification kit, GE Healthcare, UK). The quantity and purity of the amplified 
DNA were assessed using a NanoDrop ND-1000 Spectrophotometer 
(NanoDrop Technologies, Wilmington, USA). 

In Papers I-III, the amplification of the 16S rRNA genes was performed 
using universal forward primer ENV1 and reverse primer ENV2. The correct 
size of amplified fragments was determined by running the amplified 
fragments against DNA Molecular Weight Marker VI (Roche Diagnostics) on 
1.5% agarose gel (type III: High EEO, Sigma, St Louis, MO, USA). 

For 454-pyrosequencing in Papers I and II, the purified DNA was sent for 
pyrosequencing to LGC Genomics GmbH (Berlin, Germany). For sequencing 
in Paper III, the amplicons were sent to MWG (Ebersberg, Germany). 
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4.3.4 Statistical analyses 

For experiments with plate counts, the data were log-transformed and analysed 
for statistically significant differences using Minitab Version 16. General linear 
model followed by Tukey’s test was applied to identify the differences. In 
Papers I and II, non-parametric Kruskal-Wallis-ANOVA, regressions and 
principal component analysis were performed to compare the results from 
weather data and viable counts. 

Diversity indices (Papers I, II) were calculated using paleontological 
statistics software package (PAST) Version 2.17b (Hammer et al., 2001). 
Statistical analyses performed in the different experiments are described in 
detail in the individual papers. 
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5 Results and Discussion 

5.1 Analyses of field water samples (Papers I, II) 

5.1.1 Microbiota of the irrigation water distribution system 

Irrigation water systems have been shown to harbour many different 
microorganisms, including human pathogenic microorganisms, as explained in 
section 2.2. Some of these microorganisms are capable of forming biofilms on 
the surfaces of the IWDS and can persist for a long time, contaminating the 
water (Pachepsky et al., 2012). 

Indicator organisms evaluated in Papers I and II, varied markedly. 
Heterotrophic plate count (HPC) was found to be significantly lower after the 
water passed through the field pipe (before photocatalysis) and after 
photocatalysis. No differences were found in total coliform bacteria (TC), 
thermotolerant coliform bacteria (TTC), E. coli and faecal enterococci (FE) 
between the four sampling sites before photocatalysis (Paper I). However, the 
levels of all these organisms were significantly lower in most cases in samples 
after photocatalysis (Paper II). Salmonella umbilo was also found in water 
samples collected from the pond during 2009. Apart from HPC, indicator 
organisms were significantly affected by abiotic factors in samples collected 
from the first four sampling sites (Paper I). 

In this thesis, plate count methods were used for the culturable water 
indicator organisms. For more detailed assessment of the bacterial microbiota 
in the irrigation water community, samples collected during 2011 were 
subjected to 454-pyrosequencing. The 454-pyrosequencing data presented in 
this thesis are based on relative abundance. In total, 42,586 16S rRNA gene 
sequences were obtained from all water samples and these were clustered (at 
>97% similarity) into bacterial operational taxonomic units (OTUs) and 
taxonomically classified from phylum to genus level. The Bacteroidetes and 
Proteobacteria were the most dominant phyla at all sampling sites (Figure 6). 
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Bacteroidetes comprised more than half of all bacterial phyla in samples from 
the pond, after coarse filtration, at the start of the field water pipe and before 
photocatalysis and <50% of all bacterial phyla in samples collected after 
photocatalysis. Proteobacteria comprised >10% of the community at each of 
the five sampling sites. In contrast, a higher number of Proteobacteria was 
found after photocatalysis compared with in the pond, after coarse filtration, at 
the start of the field water pipe and before photocatalysis. These two phyla 
have previously been found to dominate in different water sources and systems 
(Douterelo et al., 2013; Kwon et al., 2011; O'Sullivan et al., 2006). 
Actinobacteria was also found at all sampling sites. Firmicutes and Tenericutes 
were found at the four sites before photocatalysis, but not after photocatalysis. 
Chlorobi, Chloroflexi, Cyanobacteria, Fusobacteria, Nitrospirae, 
Planctomycetes and TM7 were occasionally found at different sampling sites in 
the IWDS. 

Sequences similar to classes belonging to the phylum Bacteroidetes were 
abundant, and Flavobacteriia and Sphingobacteriia dominated the classes and 
were present at all five sites. Flavobacteriia were reduced in number after 
photocatalysis. The most abundant Proteobacteria were the α-Proteobacteria, 
β-Proteobacteria and γ-Proteobacteria, and all three classes were present at all 
sampling sites. Interestingly, γ-Proteobacteria occurrence was lower in the 
pond water than in samples from before and after photocatalysis, which shows 
that this group of bacteria can persist in IWDS. Therefore, it is highly 
recommended that water samples be analysed for microbial quality at the 
irrigation ramp rather as well as at the water source or at the start of the IWDS 
(Alsanius et al., submitted). To get maximum disinfection effect, the 
photocatalytic treatment unit should be installed at the end of the IWDS. 

 In the work described in this thesis, it was found that more than 50% of all 
OTUs could not be assigned to specific genera. However, these results need to 
be confirmed using high-throughput analysis tools. This may lead to the 
construction of new bacterial groups, as has been seen previously (Kalmbach et 
al., 1997). Members of the phyla Actinobacteria, Bacteroidetes, Chloroflexi, 
Firmicutes and Proteobacteria were highly represented at genus level. The 
genera Arcicella and Flavobacterium, which belong to the phylum 
Bacteroidetes, were the most abundant genera and were found at all five 
sampling sites. The genus Arcicella has three known species, namely Arcicella 
aquatica (Nikitin et al., 2004), Arcicella rosea (Kämpfer et al., 2009) and 
Arcicella aurantiaca (Sheu et al., 2010), which have been isolated from 
different aquatic environments (Chen et al., 2013). Members of the genus 
Flavobacterium can be found in soil and freshwater and some are pathogens of 
fish (Bernardet et al., 1996). 
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Two important genera that may contain human pathogens (McGuigan et al., 
2002; Friedman et al., 1998), Clostridium and Legionella, were found at the 
first four sampling sites of the IWDS, i.e. before photocatalysis, and were 
absent (Clostridium) or comprised <1% (Legionella) of the total bacterial 
community after photocatalysis. Clostridium and Legionella have previously 
been found in different water systems (Kwon et al., 2011; Al-Saif & Brazier, 
1996). The genus Escherichia was found only after photocatalysis. Various 
strains of this genus have been found in many foodborne illnesses and have 
been studied in various experiments involving application of contaminated 
irrigation water to different fruits and vegetables. Members of the Escherichia, 
including pathogenic strains, have been isolated from many different water 
sources (Söderström et al., 2008; Tsen et al., 1998). In this thesis a model 
strain from this genus, E. coli O157:H7, was used to study its prevalence on 
leafy vegetables (Papers III and IV). It was shown that dominant strains in the 
phyllosphere of leafy vegetables were Stenotrophomonas, Raoultella, 
Pseudomonas and Enterobacter (see Paper III). It would be interesting to 
compare the phyllosphere microbiota on leafy vegetables with the microbiota 
in irrigation water in future studies and to determine the effect they have on 
interactions with microorganisms carrying food illnesses.  

Pachepsky et al. (2012) has shown that certain microorganisms have the 
ability to continue to affect water quality through their persistent presence in 
the IWDS. Therefore, certain groups of microorganisms may be retained in the 
system by biofilm formation and survive for a longer time. The pipeline used in 
these studies (Papers I and II) was new and there were possibilities of more 
biofilm-forming bacteria being released to the irrigation water passing through 
the pipe, as explained by Shelton et al. (2013). 

The important finding from the analysis of IWDS microbiota was that there 
were variations in the microbiota at the five sampling sites. In field situations, 
the decontamination unit should be installed at the end of the IWDS. It appears 
that the genus Clostridium occurs at various sampling sites in the IWDS, 
leading Payment and Franco (1993) to suggest that a member of this genus 
(Clostridium perfringens) could be used as a water indicator organism. 

5.1.2 Decontamination of irrigation water (Paper II) 

Low hygiene quality irrigation water can be one of the important factors in fruit 
and vegetable contamination (Steele & Odumeru, 2004). Therefore 
decontamination of irrigation water is an important step in producing 
hygienically safe agriculture produce. Irrigation water decontamination was 
performed in Paper II using a photocatalytic unit. The indicator organisms 
assessed were in most cases significantly (p<0.05) reduced after photocatalysis. 
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The highest reduction was found for HPC and TC (around log 1 CFU mL-1 and 
log 1 CFU 100 mL-1, respectively). Ireland et al. (1993) were also able to 
reduce HPC and TC by log 1 in pond water using photocatalysis. A reduction 
of log 0.5-1 CFU 100 mL-1 was seen in TTC and E. coli, while FE was reduced 
by log 0.5 CFU 100 mL-1. In many cases, it has been observed that water 
treatment is dependent on the concentration of microorganisms prior to 
treatment (Rincón & Pulgarin, 2004). Therefore, the data were divided into 
high and low loads of microorganisms before treatment and evaluated. A high 
percentage reduction (88-97%) of the indicator organisms was observed for 
high loads compared with low loads (41-87%). 

The highest reduction through the action of photocatalysis was seen in TC 
and the lowest in FE. Similar observations have been reported previously 
(Rincón & Pulgarin, 2004). The difference in decontamination efficacy can be 
explained by the action of OH radicals on the microorganism cell walls (Saito 
et al., 1992). The TC normally consists of Gram-negative, non-spore forming 
bacteria which are sensitive to physical stress and can easily be eliminated by 
photocatalysis. The FE comprise cells of Gram-positive bacteria with thicker 
and denser cell walls and are more difficult to remove by photocatalysis (Kühn 
et al., 2003). As the decontamination was also dependent on bacterial load 
before treatment, a possible reason for the low reduction in the FE could be that 
this group of microorganisms was low before the treatment and hence the 
efficacy of photocatalysis in reducing this group was low. For improvement of 
the efficacy, lowering the flow rate through the photocatalytic unit, increasing 
the number of reactors installed online or mounting phototcatalytic units close 
to each nozzle on the irrigation ramp should be considered. 

Previous studies have indicated that DNA from organisms can persist for 
several days to weeks after cell death. For example, Salmonella DNA can 
persisted in a seawater microcosm for 10-55 days even if the cells were heat-
killed (Dupray et al., 1997). As explained in section 2.5 of this thesis, the 
ability of 454-pyrosequencing to sequence both viable and dead bacteria does 
not give an indication about the decontamination efficacy of the photocatalytic 
unit. In future studies, techniques including the use of propidium monoazide 
and flow cytometry may help discriminate between viable and dead cells in the 
community (Nocker et al., 2010). 
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Figure 6. Relative abundance of bacterial phyla in the free water phase of the irrigation water 
distribution system (IWDS) studied. The data represent the means of all sampling sites and events 
(n=25). 

5.2 Human pathogen interactions in leafy vegetables 

5.2.1 General phyllosphere biota (Papers III, IV) 

The ambient phyllosphere microbiota of the plant plays an important role in the 
plant environment. The native microbiota of the plants can affect the 
prevalence of enteric pathogens introduced from outside the plant environment. 
Cooley et al. (2006) showed that Wausteria paucula enhanced the survival of 
E. coli O157:H7 on lettuce foliage and Enterobacter asburiae decreased E. coli 
O157:H7 survival. A possible reason could be that E. asburiae and E. coli 
O157:H7 utilise almost the same secondary metabolites produced by plants, so 
competition may develop between the two bacterial strains. On the other hand, 
commensalism may exist between E. coli O157:H7 and W. paucula on foliage. 
Therefore, cultural practices that encourage the growth of competing bacteria, 
e.g. E. asburiae, may reduce the incidence of produce contamination (Cooley 
et al., 2006). In another study, Wilson et al. (1999) exposed plant pathogenic 
(Pseudomonas syringae) and non-pathogenic microorganisms 
(Stenotrophomonas maltophilia, Pantoea agglomerans, Methylobacterium 
organophylum) to stress and found that on dry leaves, the population size of the 
non-pathogenic phyllosphere strains was lower than that of the plant 
pathogenic strains. The data presented in this thesis did not demonstrate any 



44 

interaction between the plant local microbiota and the enteric pathogens 
introduced, as affected by cultural practices. However, background ambient 
phyllosphere biota and Enterobacteriaceae in the leafy vegetable phyllosphere 
were assessed and explained in Papers III and IV. In most cases there were no 
changes in the total microbiota or Enterobacteriaceae under pre-harvest 
cultural practices, as assessed by culture-dependent methods. 

The phylogenetic analysis of the sequenced isolates on spinach and rocket 
(Paper III) revealed that the genera Stenotrophomonas, Raoultella, 
Pseudomonas and Enterobacter were the dominant culturable microbiota, as 
assessed by VRBD. Members of these genera have been shown to colonise 
different plant parts (Berg et al., 2005) and they may include human 
opportunistic pathogens (Alves et al., 2007; Denton & Kerr, 1998; John et al., 
1982). It has been shown that members of these genera can be present in 
different water systems and can be transferred to vegetables through irrigation 
(Papers I and II; see also section 2.2 of this thesis). 

5.2.2 Prevalence of E. coli O157:H7 and L. monocytogenes on leafy 
vegetables as affected by pre-harvest cultural practices (Papers III, IV) 

Irrigation of leafy vegetables close to the time of harvest is a common practice 
to increase the market value of the crop, but this practice can promote survival 
of human pathogens on plant surfaces if contaminated water is used (Solomon 
et al., 2003). Pathogens may colonise both internal and external plant parts and 
can survive for long periods depending on environmental factors and nutrients 
(Olaimat & Holley, 2012; Brandl, 2006). Pathogens can also form aggregates 
on plant surfaces and can proliferate over longer periods (see section 2.3). The 
experiments in Papers III and IV were performed under greenhouse conditions, 
and thus there is a risk that certain important environmental factors, e.g. UV-
radiation that can directly affect the prevalence of enteric pathogens in the 
phyllosphere were excluded. A high inoculation density was used in the 
experiments, due to the fact that a low density may result in low probabilities at 
average natural concentrations and result in an erroneous conclusion on 
absence of pathogens in the phyllosphere. Furthermore, as mentioned earlier 
(Chapter 4), in order to comply with legislation in Sweden and also in order to 
eliminate background contamination of the crops, the experiments with 
attenuated human pathogens on leafy vegetables had to be conducted in the 
greenhouse. Therefore, a significant proportion of the pathogens introduced in 
these experiments may have attached to the growing medium instead of the 
plant canopy. 

Poor hygiene conditions in the pre-harvest phase cannot necessarily be 
counteracted in later stages of the production chain. Therefore, cultural 
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practices could be an option to reduce the contamination of field vegetables 
(see section 2.3). It has been shown that early cessation of irrigation can change 
the moisture conditions, as well as causing mild water stress in the 
phyllosphere. Lower moisture conditions in the phyllosphere may affect the 
survival of pathogenic bacteria (Cooley et al., 2003). Cessation of crop 
irrigation using contaminated water may reduce the survival of pathogens on 
plants (Keraita et al., 2007). To assess the survival of E. coli O157:H7 on leafy 
vegetables after irrigation with contaminated water, an experiment on cessation 
of irrigation with contaminated water was performed. No E. coli O157:H7 was 
found in the control treatments. However, E. coli O157:H7 colonies were more 
abundant when water with high inoculum densities was used and were 
significantly higher for all treatments and harvest events in most cases, on both 
spinach and rocket. There was a reduction in colonies with delayed harvest for 
both crops, as reported previously by Wood et al (2010). Various trends have 
been found in the decline/survival of E. coli O157:H7 on various vegetables 
(Moyne et al., 2011; Wood et al., 2010; Hutchison et al., 2008; Islam et al., 
2004; Abdul-Raouf et al., 1993), which is mainly dependent on initial 
inoculum, moisture, temperature, nutrients and irradiation (Webb et al., 2008; 
Solomon et al., 2003). Reductions in the population could be due to dry 
conditions developing on the leaf surface and affecting nutrient availability to 
the epiphytic microorganisms (Ibekwe & Grieve, 2004). In Paper III, it was 
observed that E. coli O157:H7 persistence was dependent on the initial 
inoculum density, with a high density being able to persist for longer periods. 
This supports previous findings (Webb et al., 2008; Solomon et al., 2003). 
 
In recent years, research on deficit irrigation (irrigation to below the crop water 
requirement) has been conducted for various horticultural crops, mainly for 
reasons of sustainability and product quality improvements (Stefanelli et al., 
2010). This practice may have a mild effect on human pathogen survival on 
crops. In this thesis, the effect of water regime in the growing medium on 
human pathogens on vegetables was assessed (Paper IV). The moisture content 
of the growing medium was significantly (p<0.05) higher for water regimes 
based on 20-30% vwc than for water regimes based on 5-12% vwc. A 
difference of more than 50% vwc was found between the two water regimes. 

Both E. coli O157:H7 and L. monocytogenes were absent from the un-
inoculated control treatments. Vegetables grown at a water regime of 20-30% 
vwc had significantly higher (p<0.05) numbers of E. coli O157:H7 and L. 
monocytogenes colonies than those grown at a water regime of 5-12% vwc 
(Figure 7). Significant differences were observed between the two water 
regimes, but the difference in the overall means for the treatments was low and 
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is only of technical interest. These results do not suggest any improvements in 
cultural practices with respect to the persistence of human pathogens on plants. 
Lower number of colonies on plants grown with a water regime of 5-12% vwc 
in the growing medium could be due to the development of antioxidants 
(Esteban et al., 2001), which can inhibit the growth of human pathogens 
(Alberto et al., 2006; Wen et al., 2003). Experiments on apple antioxidants 
(phenols) have shown that growth of E. coli and L. monocytogenes can be 
inhibited by the high amount of phenols in extract from apple skin (Alberto et 
al., 2006). Similarly, Delaquis et al. (2006) observed an antilisterial action of 
phenols from wounded lettuce in storage. Other studies have shown that 
phenolic compounds are present in different vegetables, including rocket 
(Bennett et al., 2006), spinach (Fry, 1982) and Swiss chard (Pyo et al., 2004). 
These compounds may exert an antibacterial action against human pathogens 
in the plant phyllosphere. 

A difference of more than 50% in stomata gaseous conductance of CO2 was 
found between the two water regimes, with higher stomata conductance for 
plants grown at a water regime of 20-30% vwc than 5-12% vwc. Stomata 
conductance may affect the water activity on the leaf surfaces. Thus low 
stomata conductance may result in dryness on the leaf surfaces of plants grown 
at 5-12% vwc, which may subsequently affect the prevalence of human 
pathogens (Dreux et al., 2007; Aruscavage et al., 2006; Ibekwe & Grieve, 
2004; Chen et al., 1999). As shown by Hirano and Upper (2000), the absence 
of water on leaf surfaces (dryness) may lead to unavailability of nutrients to 
microorganisms. 

The most important finding regarding pathogen persistence on leafy 
vegetables was that E. coli O157:H7 was still found in the phyllosphere of 
leafy vegetables at all densities, even after 72 h of desiccation treatment (Paper 
III). Similarly, different water regimes in the growing medium could not 
completely reduce the prevalence of E. coli O157:H7 and L. monocytogenes on 
leafy vegetables (Paper IV). Previous studies have shown that E. coli O157:H7 
can persist on fruits and vegetable, e.g. on parsley for 177 days (Islam et al., 
2004), on lettuce for 25-77 days (Islam et al., 2004) and about 21 days on salad 
vegetables, watermelons and iceberg lettuce (Diaz & Hotchkiss, 1996; Del 
Rosario & Beuchat, 1995; Abdul-Raouf et al., 1993). Listeria monocytogenes 
can survive comparatively longer in different plant materials (Beuchat, 1996a). 
In conclusion, as both E. coli and L. monocytogenes cause disease at very low 
doses (Ramaswamy et al., 2007; Ackers et al., 1998), cessation of irrigation at 
three days before harvest or changing the water regime of the growing medium 
is not an adequate sanitisation treatment to exclude the probability of viable E. 
coli O157:H7 or L. monocytogenes cells on leafy vegetables. 
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Figure 7. Effect of water regime (5-12% vwc and 20-30% vwc) in the growing medium on the 
prevalence of E. coli O157:H7 and L. monocytogenes inoculated onto leafy vegetables and 
harvested 24 h after inoculation. Data shown as log CFU g-1 fresh weight of plants. No gfp tagged 
E. coli O157:H7 or L. monocytogenes were detected on non-inoculated plants (control groups). 
Bars with different letters shows significant differences (p<0.05) between the two water regimes 
for each crop, based on Turkey’s test (n=8). 
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6 Main Conclusions and Future 
Perspectives 

The following main conclusions can be drawn from the results presented in this 
thesis: 

 
 Bacterial community structure varies along the irrigation pipeline. More 

than half the bacterial microbiota found in irrigation water belonged to 
unknown genera. 
 

 For maximum decontamination, the water treatment unit should be installed 
at the end of the irrigation water distribution system. 
 

 Irrigation water can be decontaminated using photocatalysis if there is a 
high load of microbes in the irrigation water. The prototype photocatalytic 
unit tested here needs to be optimised. 

 
 Cessation of irrigation with contaminated water three days before harvest 

did not eliminate E. coli O157:H7 from the phyllosphere. 
 

 Low water content of the growing medium did not eliminate human 
pathogens from the phyllosphere. 

 
In future experiments, more water samples from the free water phase of the 
IWDS and biofilm samples should be taken to make it possible to draw general 
conclusions on the microbiota of the irrigation water distribution system. It 
would be interesting to relate irrigation water microbiota to dynamics in the 
phyllosphere exposed to the same water source over time. It would also be 
interesting to evaluate the same photocatalytic unit at different water flow 
rates, thereby varying the time of exposure of the microbes to photocatalysis. 
More than one photocatalytic unit may be needed in the irrigation water 
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distribution system. It would also be interesting to install a photocatalytic unit 
close to the nozzles, so as to evaluate the efficacy close to the outlet of the 
irrigation system. 

Cultural practices that may enhance development of antioxidants, e.g. 
phenolic compounds, and practices that encourage the growth of competing 
bacteria such as Enterobacter asburiae should be adopted to reduce the 
numbers of enteric pathogens in the plant phyllosphere. 
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