
Novel Insights into the Action of 
SHI/STY Transcriptional Regulators 

During Plant Development 

 

Izabela Cierlik 
Faculty of Natural Resources and Agricultural Sciences 

Department of Plant Biology 
Uppsala 

Doctoral Thesis 
Swedish University of Agricultural Sciences 

Uppsala 2014 



 

Acta Universitatis agriculturae Sueciae 
2014:13 

ISSN 1652-6880 
ISBN (print version) 978-91-576-7974-1 
ISBN (electronic version) 978-91-576-7975-8  
© 2014 Izabela Cierlik, Uppsala 
Print: SLU Repro, Uppsala 2014 

Cover: photo by Izabela Cierlik 



 

 

Novel Insights into the Action of SHI/STY Transcriptional 
Regulators During Plant Development 

Abstract 
One key player in plant organogenesis is the phytohormone auxin, and this thesis reveal 
that members of the SHI/STY gene family participate in the regulation of auxin 
homeostasis and organ development in Arabidopsis thaliana.  
 

Using inducible constructs, ChIP, and EMSA, we could show that the SHI/STY 
members act as transcriptional activators directly binding to the promoter of the auxin 
biosynthesis gene YUC4. Additional putative downstream targets were identified 
encoding transcription factors, other auxin biosynthesis enzymes and enzymes involved 
in cell wall modulations. This work also brings novel insight into SHI/STY-dependent 
regulation of cotyledon and leaf vascular patterning and stamen number. Detailed 
expression studies of SHI/STY genes and several downstream targets confirm their 
overlapping spatial and temporal expression pattern during cotyledon, leaf, stamen and 
gynoecium development, clearly supporting the partially redundant function of the 
SHI/STY family members during the development of these organs.  
 

In addition, the expression of SHI/STY members is partially mediated through a 
conserved motif in their promoter region, a GCC-box, which appears to be essential for 
SHI/STY expression in aerial organs. Furthermore, a group of putative upstream 
regulators belonging to the AP2/ERF family have been identified, which requires the 
GCC-box for their transcriptional regulation of the SHI/STY genes  

Keywords: Arabidopsis thaliana, organ development, transcriptional regulation, 
SHI/STY family, STYLISH1 

Author’s address: Izabela Cierlik, SLU, Department of Plant Biology,  
P.O. Box 7080, 750 07 Uppsala, Sweden  
E-mail: Izabela.Cierlik@slu.se 



 

 

You must do the thing which you think you cannot do. 
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1 Introduction 
Plants make up a great deal of the Earths natural environment converting 
sunlight into chemical energy and in doing so producing a primary source of 
food for life on the planet. The uses for plants are extensive from building 
materials to medicines and they are an essential and irreplaceable part of our 
everyday life.  Understanding the developmental processes occurring 
throughout the plant life cycle and revealing their control and regulation is 
crucial for our understanding of healthy and profitable human-plant 
interactions. With each new insight we are discovering and exploring new 
pathways in plant development, which can be used to increase production and 
quality with huge social and economic impacts.  

In this thesis I am presenting a novel insight into plant organ development 
controlled by SHORT INTERNODES/STYLISH family of transcription factors. 
Using Arabidopsis thaliana as a model organism I aim to understand how this 
gene family is being regulated and their main downstream affects. 

1.1 Arabidopsis is an essential model for modern plant research 

The genome sequence of Arabidopsis thaliana and subsequent 
developments in system biology changed the grounds of modern plant 
research. In addition there is a wealth of available online data supporting the 
genome at TAIR (http://www.arabidopsis.org/).  With a relatively small 
genome size of 146 mega bases (MB) and short life cycle, Arabidopsis is one 
of the first and most widely used plant model organisms (Koornneef & 
Meinke, 2010; Van Norman & Benfey, 2009; Meyerowitz, 1987). 
Understanding the processes in and the regulation of the Arabidopsis life cycle 
is an extremely valuable reference for studies of many other plant species (Chu 
et al., 2013; Kapazoglou et al., 2012; Larsson et al., 2012; Mounet et al., 
2012). Arabidopsis grows worldwide and a large collection of natural ecotypes 
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is available, complimented with an increasing number of mutants. These 
resources allow the study of questions relating to linking gene function with 
phenotype and adaptation. The great advantages of such studies have been 
achieved by forward genetics, the correlating phenotype to a specific gene 
function. However, the major impact on modern Arabidopsis research was 
development of the reverse genetics, where scientists could retrieve an 
available collection of known gene mutants and study it for the putative 
phenotypes (reviewed in Van Lijsebettens & Van Montagu, 2005). 

Despite the huge evolutionary gap in divergence between the plants and 
other organisms, such as humans, a large number of cellular and biological 
processes are highly conserved. Details of some of these processes were first 
elucidated in Arabidopsis, which have led to novel insights into the pathways 
leading to specific human diseases such as Alzheimer and Parkinsons (Xu & 
Moller, 2011). Thus, although Arabidopsis will remain primarily as a plant 
model, it also has a value as a complementary model for more universal 
biological process. 

1.2 Transcriptional regulation  

A central aspect of every living organism is to transfer the genetic information, 
encoded by the DNA sequence into proteins. Generally, since the genetic 
information does not change during the lifetime it must be selectively 
transcribed under governance of various transcription factors and other co-
actors, during specific time points and location. The identity and function of a 
cell is thus largely defined by the set of genes, apart from the housekeeping 
genes expressed in most cells, that it transcribes. The transcription machinery 
is evolutionary conserved among different eukaryotic species, but it is the 
differential regulation of this process that contributes to the overall organism 
diversity. Eukaryotes control the expression of their genetic information in 
several ways, and I will focus on two of the main pathways: the control via 
chromatin modulations and by the activity of transcription factors (TFs). 

1.2.1 Chromatin modulations 

The eukaryotic DNA strands are wound around histone octomeres, forming the 
fundamental packing unit of eukaryotic chromatin, the nucleosomes (Pfluger & 
Wagner, 2007). The tight coiling of the chromatin limits the access of RNA 
polymerase and transcription factors to the DNA. In order for transcription to 
take place, chromatin must “open” by a process called chromatin remodeling. 
Highly transcribed regions of DNA remain fairly accessible while for most of 
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the other genes activation requires controlled unfolding of the condensed DNA 
and variety of modulatory processes. 

According to Pfluger and Wagner (2007) there are three main classes of 
epigenetic regulatory pathways controlling gene expression. These are 
chromatin remodeling, which is an energy dependent modulation of 
nucleosome position or composition; cytosine residues methylation, which 
affects the DNA ability to bind to TFs and other proteins and finally, histone 
modifications that can influence the histone-DNA interactions thus promoting 
or inhibiting binding of gene transcription activator proteins (Coulon et al., 
2013; Berger, 2007; Pfluger & Wagner, 2007; Rando & Ahmad, 2007; Klose et 
al., 2006).  
Histone modifications resulting in open chromatin permit selective binding of 
transcription factors (TFs) to short DNA sequences (cis-elements or enhancer 
sequences). The TFs can then recruit cofactors and RNA polymerase II to the 
target genes, allowing transcription to initiate (Lelli et al., 2012; Spitz & 
Furlong, 2012; Ong & Corces, 2011; Turner & Muller, 2005). Typically, 
multiple TFs cooperatively bind to individual enhancer sequences (Panne, 
2008) and together with co-factors regulate transcription from core promoters 
of nearby or distant genes through physical contacts achieved by looping of the 
DNA between enhancers and the core promoters (Krivega & Dean, 2012). TFs 
binding to core promoter cis-elements, which include sites where transcription 
initiation occurs, are also key components of this regulatory network 
(Mathelier & Wasserman, 2013; Dikstein, 2011; Goodrich & Tjian, 2010). 
These protein complexes also recruit histon-modifying enzymes contributing to 
the transcriptional control (reviewed in Lee & Young, 2013). 

TFs can be classified by their characteristic DNA-binding domains (DBD), 
which interact with specific DNA sequences. Around 1500 TFs belonging to 
30 TF families has been identified in Arabidopsis thaliana and about half of 
these have been considered plant specific (Yamasaki et al., 2013; Mitsuda & 
Ohme-Takagi, 2009). The majority of these are involved in regulating plant 
specific organs or response pathways for adapting to their environment 
(Yamasaki et al., 2013). Examples of plant specific TF families are the 
APETALA (AP2)/ ethylene responsive element binding factor (ERF); CUP-
SHAPE COTYLEDON 2 (NAC) and WRKY families (Swaminathan et al., 
2008).   

The DNA binding by TFs is strictly dependent on the correct 
stereochemical principles of protein folding, base pair recognition and DNA 
structure modulations (reviewed in Yamasaki et al., 2013; Luscombe et al., 
2000). Interestingly, a number of TFs contain multiple DBDs allowing 
interacting with more than one binding site in the genome, which also gives the 
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possibility for a TF to act as an activator or repressor of transcription. The 
specificity of their actions is dependent on alterations in associated protein 
complexes or additional signaling cues. Some TFs can exclusively act as 
transcriptional inhibitors. Because the cis- elements are usually short conserved 
stretches of 5-10 base pair (Riechmann, 2002), and can be positioned in the 
promoter region, as well as in regions further away, it has been difficult to 
identify which of these are actively used by the identified TFs (Klug, 2010). In 
addition many TFs interact with more than one binding site and are often also 
able to tolerate small variations within the binding sequences.  

Apart from the above-described processes, the translation of the genetic 
code to protein sequences is affected by a multitude of additional mechanisms, 
including variable RNA splicing and the action of small RNAs (Ernst & 
Morton, 2013; Phillips & Hoopes, 2008). 

1.3 The plant hormone auxin  

Phytohormones are endogenous molecules, which at low concentrations affect 
plant growth and development, both directly and through cross talk with other 
hormones. Auxin is a major plant hormone involved in a variety of different 
developmental processes and cellular events. These include regulation and 
coordination of cell-specific wall modifications, elongation rates, 
differentiation rates, and polarity during e.g. embryogenesis, organ initiation 
and tissue patterning via formation of auxin maxima/minima or auxin gradients 
(reviewed in Sauer et al., 2013). These are achieved through the spatial and 
temporal regulation of auxin biosynthesis, signaling, sensing, transport, 
degradation and compartmentalization (reviewed in Ljung, 2013). 

1.3.1 Auxin biosynthesis  

The most abundant endogenous auxin is indole-3-acetic acid (IAA). It is 
believed that the dominant route of IAA production is initiated from 
Tryptophan (Trp), although there is evidence of the existence of tryptophan-
independent pathways of IAA synthesis (reviewed in Zhao, 2010). The four 
main suggested Trp-dependent biosynthesis pathways are the indol-3-pyruvic 
acid (IPA), the tryptamine (TAM), the indole-3-acet-amide (IAM) and the 
indol-3-acetaldoxime (IAOx) pathway, which are presented in Figure 1 
(Mashiguchi et al., 2011). The most dominant pathway in Arabidopsis appears 
to be the one producing IPA as an intermediate between Trp and IAA (Figure 
1, pathway enclosed in a frame). In this pathway members of the 
TRYPTOPHAN AMINOTRANSFERAS OF ARABIDOPSIS 
1/TRYPTOPHAN AMINOTRANSFERASE RELATED (TAA1/TAR) protein 
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family are responsible for conversion of Trp to IPA, while members of the 
flavin monooxygenase-like YUCCA (YUC) protein family are responsible for 
synthesizing IAA from IPA (Mashiguchi et al., 2011; Stepanova et al., 2011; 
Won et al., 2011).  

 
Figure 1. Overview of the proposed IAA biosynthesis pathway in Arabidopsis. Following 
abbreviations stand for: IAA Indole-3-acetic acid; IAAld Indole-3-acetaldehyde; IAM 
Indoleacetamide; IAN Indole-3-acetonitrile; IAOx Indole-3-acetaldoxime; IPA Indole-3-pyruvic 
acid; STY1 STYLISH1; TAM Tryptamine; TAR TAA1 RELATED; Trp Tryptophan. The IPA 
pathway enclosed in the box is considered to be the dominant one in Arabidopsis.    

1.3.2 Auxin conjugation and oxidation 

Plants produce a multitude of auxin molecules with different signaling and 
transport capacities, resulting in the possibility to store or transport auxin in 
less active forms, which can be converted to active auxin again, to trap auxin in 
mildly active forms or to permanently inactivate auxin. IBA is an example of a 
highly inactive transportable auxin that can be converted to IAA in specific 
competent cells (De Rybel et al., 2012). Ester and amide conjugation of free 
auxin can temporarily inactivate auxin (Staswick et al., 2005). The major 
fraction of auxin is conjugated to amino acids, sugars, peptides or proteins for 
temporary storage or for future degradation processes (Pencik et al., 2013). In 
Arabidopsis, auxin is mostly conjugated to the amino acids alanine (Ala), 
leucine (Leu), asparate (Asp) and glutamine (Glu) (Kowalczyk & Sandberg, 
2001; Tam et al., 2000), which is facilitated by the auxin-induced GRETCHEN 
HAGEN3 (GH3) amido synthases (Staswick et al., 2005; Hagen & Guilfoyle, 
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1985). Importantly, such conjugation does not lead to complete inactivation of 
the molecules, as they may still act in the very specific signaling pathways or 
may be hydrolyzed back to an unbound form. The release of conjugated IAA 
molecules is mediated by aminohydrolases, such as IAA-LEUCINE 
RESISTANT1 (ILR-1)-like (reviewed in Barbez & Kleine-Vehn, 2013). It is 
suggested that IAA-Asp and IAA-Glu are non-hydrolysable forms and are 
bound for the degradation processes. 2-oxoindole-3-acetic acid (oxIAA) and 
oxIAA-glucose are the main IAA degradation products (Pencik et al., 2013; 
Novak et al., 2012; Kai et al., 2007; Ostin et al., 1998), but the genes involved 
are not yet identified. 

1.3.3 Auxin transport 

An important aspect of auxin functioning as a developmental cue is the 
formation of tissue or organ specific concentration gradients or maxima. 
Although spatiotemporal regulation of auxin biosynthesis, degradation or 
phloem mediated auxin transport is important in the formation of these 
gradients/maxima, intercellular auxin transport plays a central role. Only 
protonated auxin formed at low pH conditions, as in the apoplast, can freely 
cross the plasma membrane whereas unprotonated IAA formed in the high pH 
cytosol only can leave the cell with the aid of auxin transporters (Rosquete et 
al., 2012; Zazimalova et al., 2010). There are four main groups of well-
characterized auxin transporters responsible for the polar cell-to-cell auxin 
transport (PAT) or for auxin compartmentalization of auxin within the cell 
(Pencik et al., 2013).  

Two types of auxin efflux carriers aiding the transport of auxin out of the 
cell has been well characterized, and these are the PIN-FORMED (PIN1, 2, 3, 
4 and 7) and the ATP BINDING CASSETTE SUBFAMILY B 
TRANSPORTER (ABCB) proteins. As the PIN proteins mainly have a polar 
localization in the PM, they play an important role in PAT leading to auxin 
gradient or maxima/minima formation. They are dynamically recycled within 
the cell and this trafficking has direct effects on their polarity. The polarity is 
also regulated by the antagonistic activity of the ABC protein kinase, PINOID 
(PID) and the serine-threonine protein phosphatase 2A (PP2A) (Ding et al., 
2011; Dhonukshe et al., 2010; Huang et al., 2010; Kleine-Vehn et al., 2009; 
Michniewicz et al., 2007; Friml et al., 2004). PIN-mediated auxin efflux has 
been shown to be crucial for many plant developmental processes, such as 
embryogenesis, organ initiation, organ positioning, organogenesis, 
gravitropism and maintenance of the root meristem (Nakamura et al., 2012; 
reviewed in Peer et al., 2011; Titapiwatanakun & Murphy, 2009; Benkova et 
al., 2003). At least five members of the ATP-dependent ABCB/P-glycoprotein 
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family have been shown to localize uniformly in the PM regardless of internal 
or external signals, and to mainly transport auxin out of the cell across the PM, 
suggesting that these proteins may act as basal auxin transporters (reviewed in 
Cho & Cho, 2012; Mravec et al., 2008; Blakeslee et al., 2007; Geisler et al., 
2005). Despite their apolar locations, they contribute to PAT and long-range 
auxin transport (Bailly et al., 2008; Bouchard et al., 2006; Geisler et al., 2003). 
It has been suggested that the apolar ABCBs minimize auxin reflux from the 
apoplast (Bailly et al., 2011), whereas polar PINs provide a vectorial auxin 
stream (Mravec et al., 2008). However, ABCBs and PINs are also capable of 
interactive and coordinated transport of auxin (Blakeslee et al., 2007). It has 
recently been suggested that PID, in addition to its function to switch PIN 
polarity, also has a direct and dual effect on ABCB-mediated auxin efflux 
activity (Henrichs et al., 2012). Interestingly, one of the ABCB auxin 
transporting family members, ABCB4, has been shown to import auxin when 
the auxin level is low, and switch to an efflux carrier when the auxin 
concentration is high (Peer et al., 2011; Kim et al., 2010a). 

Three PIN proteins, PIN5, PIN6 and PIN8, are not PM bound, but localize 
to the endoplasmic reticulum (ER), where they seem to limit nuclear auxin 
signaling by intracellular auxin transport (Dal Bosco et al., 2012; Ding et al., 
2012; Mravec et al., 2009). They have been shown to be important, together 
with intercellular auxin transport, for leaf vein formation (Sawchuk et al., 
2013). Apart from these three PIN proteins, a novel PIN-like family called 
PILS (PIN-LIKES) appears to be involved in intracellular auxin homeostasis 
via a similar mechanism as PIN5, PIN6 and PIN 8 (Barbez et al., 2012).  These 
transporters reduce the level of free IAA and increase the level of amino acid 
and glucose auxin conjugates, which suggests a link between conjugation of 
free IAA and auxin compartmentalization in the ER lumen (Barbez & Kleine-
Vehn, 2013). Because the auxin receptor ABP1 (see section 1.3.4) mainly 
localizes to the ER, it has been hypothesized that this receptor may perceive 
ER-compartmentalized auxin or auxin conjugates (Barbez & Kleine-Vehn, 
2013). 

Another group of proteins, the AUXIN1/LIKE-AUX1 (AUX1/LAX) 
proteins, has been characterized as auxin influx carriers with mainly polar 
localization (reviewed in Swarup & Peret, 2012). Although IAA is readily 
diffused into the cell, AUX1/LAX carriers are involved in e.g. embryogenesis 
(Ugartechea-Chirino et al., 2010), apical hook development (Vandenbussche et 
al., 2010), root gravitropic responses (Swarup et al., 2008; Bennett et al., 
1996), lateral root development (Swarup et al., 2001), leaf phyllotaxis 
(Bainbridge et al., 2008) and phloem loading and unloading (Marchant et al., 
2002). They are generally believed to pump auxin against its concentration 
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gradient, and mathematical modeling supports their role in local maxima 
formation for phyllotaxis formation in the SAM (Smith et al., 2006). Recently 
another group of proteins, the nitrate transporter NRT1.1, has been suggested 
to act as an auxin influx carrier, involved in regulating lateral root formation in 
relation to the nitrogen status of the plant (Krouk et al., 2010). 

1.3.4 Auxin perception 

Auxin is perceived by at least two different classes of receptors: the nuclear 
TRANSPORT INHIBITOR RESPONSE1/AUXIN-RELATED F-BOX 
(TIR1/AFB) which together with its co-receptors AUXIN/INDOLE-3-
ACETIC ACID (AUX/IAA) control transcriptional responses to auxin, and the 
ER and extracellular space localized AUXIN-BINDING PROTEIN1 (ABP1) 
controlling certain aspects of growth and development (reviewed in Sauer et 
al., 2013). 

The most well studied auxin receptors are the TIR1/AFBs (reviewed in 
Sauer et al., 2013; Calderon Villalobos et al., 2012). When auxin levels are 
low, the AUX/IAA proteins together with TOPLESS (TPL) bind to and repress 
the activity of the AUXIN RESPONSE FACTOR (ARF) transcription factors, 
which directly regulates auxin response genes. When auxin levels increase, 
IAA binds TIR1/AFB in the SCF-type E3 ubiquitin ligase complex and 
promotes TIR1/AFB interaction to the DII domain of the AUX/IAA proteins. 
Auxin has been suggested to act as a glue to stabilize the TIR/AFB binding to 
AUX/IAAs. This binding mediates the ubiquitination of AUX1/IAAs, which 
leads to their degradation by the 26S proteasome and thereby also the release 
of ARF activity. As the II-domain of AUX/IAA proteins is responsible for the 
AUX/IAA-auxin-TIR/AFB binding and thus the release of auxin responses, it 
has been used in a reporter construct, DII-VENUS, allowing monitoring of 
auxin responses in plant tissues. The DII-VENUS fluorescence signal is 
depleted proportionally to the available amount of free auxin in auxin 
responsive tissues (Brunoud et al., 2012).  

ABP1 was identified as an auxin receptor with auxin binding activity a 
couple of decades ago (Jones & Venis, 1989), but it was not until an embryo 
lethal abp1 mutant was identified that its biological importance was clarified 
(Chen et al., 2001). Although ABP1 is localized to the ER, it is also secreted to 
the extracellular space, where it associates to the plasma membrane and acts as 
an auxin receptor stimulating ion fluxes at the plasma membrane, which leads 
to acidification of the extracellular space and activation of pH-dependent cell 
expansion ((Napier et al., 2002); for cell expansion, see section 1.4.1). In 
response to auxin, ABP1 has also been shown to activate Rho-like (ROP) 
GTPases affecting interdigitation in leaves (Chen et al., 2012; Xu et al., 2010). 
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In addition, ABP1 is essential for clathrin-dependent endocytosis, whereas 
auxin-associated ABP1 inhibits recruitment of clathrin to the plasma 
membrane, which results in reduced internalization of e.g. PIN proteins (see 
section 1.3.3), and as a consequence, affects the rate of auxin efflux (Covanova 
et al., 2013; Chen et al., 2012; Robert et al., 2010). Finally, ABP1 influences 
the expression of some of the early auxin-responsive genes (reviewed in 
Tromas et al., 2010), and recent data suggest that ABP1 genetically acts 
upstream of TIR1/AFB. Knock-down of ABP1 results in enhanced degradation 
of AUX/IAAs through the SCFTIR1/AFB E3 ubiquitin ligase pathway suggesting 
that the two auxin receptors collectively contribute to mediate auxin responses 
(Tromas et al., 2013). 

A third auxin receptor candidate, the F-box S-PHASE KINASE-
ASSOCIATED PROTEIN 2A (SKP2A), has recently been suggested to be 
involved in auxin mediated cell-cycle control (Jurado et al., 2010; Jurado et al., 
2008). 
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Figure 2. Model of the proposed transport and perception of auxin. Details about the processes 
have been described in the sections 1.3.2 and 1.3.3.  
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1.4 Cell expansion and plant development  

Plants grow and form their shapes by controlled cell division and cell 
expansion. The rigidity of the plant cell wall, which contributes to mechanical 
support and protection of the enclosed protoplast, must be loosened in order for 
cell expansion to occur. The cascade of events during expansion is triggered 
both by internal mechanical turgor pressure and by molecular signaling 
pathways affecting the expression of genes encoding cell wall-modifiers and 
the activity of cell wall-modifying molecule.  

1.4.1 Cell wall modifications regulate cell growth and expansion 

Although cell wall composition is complex and varies between plant species, 
tissues and ages, cellulose is the key component synthesized by large cellulose 
synthase complexes at the plasma membrane. The inelastic cellulose 
microfibrils builds up the wall framework and their differential alignment 
determines the plasticity of the cell and the direction of the cell (Taiz & Zeiger, 
2010; Wojtaszek, 2000). The cellulose microfibrils are embedded in a pectin 
matrix consisting of a diverse group of polysaccharides, such as galacturonans 
and rhamnogalacturonans, which through ionic and covalent bonds to different 
pectins and other polysaccharides, provide support and flexibility to the cell 
wall (Caffall & Mohnen, 2009). Additional cell wall polysaccharides are 
xylans, xyloglucans, mannans and glucomannans, usually referred to as 
hemicellulose. Cross-linkage of cellulose microfibrils by all these cell wall 
components is suggested to be a key to cell wall strength and stability 
(Braidwood et al., 2013).  

According to one of the most accepted, but still questioned theories, plant 
cells can expand by a controlled interaction between cell turgor pressure 
determined by osmolality and water uptake, and the relaxation of bonds 
between the existing cell wall components (for a recent review see Kutschera 
& Niklas, 2013; Heyn, 1981; Ray et al., 1972). In addition, the composition of 
the cell wall components will be modified (Braidwood et al., 2013). Loosening 
of the cell wall releases the inner turgor and allows the cell to passive uptake of 
water and further growth. Cellulose microfibril orientation plays a major role 
in determining the direction of growth and is mainly perpendicular to the main 
axis of expansion (Braidwood et al., 2013).  Many factors affect the timing, 
rate and orientation of expansion, such as cell type, developmental stage, and 
environmental ques. Plants ability to shape their cells accordingly, requires 
complex regulatory systems that dynamically integrate endogenous and 
exogenous factors to appropriately control cell growth. Integrators of signals 
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are often the plant hormones auxin, brassinolide, and GA. These in turn affect 
wall-modulating agents that can modify the physical properties of the cell wall. 

Apart from affecting the activity of cell expansion genes via the nuclear 
TIR/AFB auxin receptor regulated auxin signaling, auxin has been suggested to 
have a direct effect on cell expansion via cell wall acidification, resulting in 
activation of pH-sensitive cell wall loosening enzymes/proteins (Hager et al., 
1971; Rayle & Cleland, 1970). Cell wall acidification has also been suggested 
to lead to K+ uptake allowing subsequent water uptake. Recently, Takahashi 
(Takahashi et al., 2012) could support the above hypothesis by showing that 
auxin application to excised hypocotyl segments increased H+-ATPase proton 
extrusion activity, leading to acidification of the cell wall and cell expansion, 
by inducing penultimate threonine phosphorylation independently of TIR/AFB 
activity. However, as stated by Grebe (Grebe, 2006) “it remains to be revealed 
exactly where auxin-regulated cell wall acidification constitutes an intrinsic 
mechanism regulating different aspects of plant growth”. 

Although, key players affecting cell expansion have been discovered, the 
complex regulatory system of cell wall loosening is still unclear. In 1999, 
Cosgrove proposed that there are two types of cell wall modulating agents: the 
primary agents that instantly are able to act on the plasticity of the cell wall; 
and secondary agents that does not themselves interact with cell wall polymers, 
but instead leads to cell wall relaxation and increased sensitivity through the 
primary agents. 

1.4.2 Expansins are cell wall loosening agents 

One group of main primary cell wall loosening proteins is expansins. These are 
small extracellular proteins that disrupt non-covalent interactions between wall 
polysaccharides, in particular between cellulose microfibrils, resulting in 
enhanced extensibility (Braidwood et al., 2013; Yennawar et al., 2006).  The 
expansin superfamily consists of α-, β-expansins, expansin-like A (EXLA) and 
expansin-like B (EXLB) (Sampedro & Cosgrove, 2005; Cosgrove, 2000a). 
Expansins induce cell relaxation via pH changes (McQueen-Mason & 
Cosgrove, 1995). The α- and β-expansins are suggested to non-enzymatically 
loose non-covalent bonds between xyloglucans (α), xylans (β) and cellulose 
and between cellulose microfibrils. The action of EXLA and EXLB are still 
unknown, but have been suggested to be secreted directly to the cell wall 
(Sampedro & Cosgrove, 2005).  It is proposed that expansins most likely act 
via two distinct domains: the CDB domain would anchor the protein to the 
cellulose strands enabling the perfect positioning for cleavage of the non-
covalent bonds by activation of the catalytic domain (Cosgrove, 2000b). This 
in turn leads to local disjoining of the polysaccharides conjunction and 
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immediate cell wall relaxation (Cosgrove, 2000b). Importantly, although the 
cell wall creep is induced, the overall covalent interactions are not affected 
(McQueen-Mason & Cosgrove, 1995). It has been suggested that several of the 
molecules integrating endogenous and environmental signals for cell expansion 
such as auxin (Fleming et al., 1999; Rayle & Cleland, 1992), gibberellins 
(Vriezen et al., 2000) or ethylene (Rose et al., 1997) most probably regulates 
the expression of specific expansins. 

1.4.3 A variety of enzymes affect cell growth 

Apart from expansins, there are a multitude of additional enzymes affecting 
cell wall loosening and relaxation (see de Vries and Jaap Visser, 2001; Jamet et 
al., 2008; Frankova and Fry 2013 for review) (Frankova & Fry, 2013; Jamet et 
al., 2008; de Vries & Visser, 2001). I will here only mention a few that are of 
relevance for my thesis work. 

A large number of enzymes act on the bonds between and within cell wall 
polysaccharides through transglycosylation, cross-linking and hydrolysis (Cao 
et al., 2012; Yadav et al., 2009) modulating cell wall extensibility. Xyloglucan, 
the most abundant hemi-cellulose in many dicot plants, is modulated by 
xyloglucan endo-transglycosylase/hydrolase proteins, which possibly have 
both strengthening and loosening effects on the primary wall (Eklof & Brumer, 
2010). In addition, many classes of enzymes are involved in degradation and/or 
modification of pectins, including the polygalacturonases (PGs), one of the 
pectin lyases family members. They hydrolyze the glycosidic bonds linking 
galacturonic acid residues together in for instance one of the most common 
pectins homogalacturonan. Therefore the PGs by degrading polygalacturonan 
polymer in the cell wall are affecting the cellular integrity, allowing cell 
expansion and growth events to occur. 

Moreover, the FAD-dependent polyamine oxidases (PAO) are active in cell 
walls where they have been suggested to metabolize polyamines (PA) thus 
serving as cell wall loosening initiators (Cona et al., 2005). AtPAOs are 
catabolizing polyamines to produce H2O2, 1,3-diaminopropane and 
aminoaldehyde (Tavladoraki et al., 2006).  H2O2 has been shown to be 
involved in the cell wall modifications through oxidative cross-linking of 
suberin and lignin, leading to strengthening effects. Additionally, H2O2 through 
formation of arabinoxylan coagula is allowing cell wall to maintain its 
extensibility (Angelini et al., 2010; Fry et al., 2000; Wisniewski et al., 2000). 
There are five PAOs (AtPAO1-5) in Arabidopsis thaliana showing distinct 
expression patterns (Fincato et al., 2012) suggesting that they may have tissue 
specific functions. 
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Metabolic reactions resulting in cell wall modifications are controlled and 
supported by transcriptional changes of variety of specific genes. The 
Arabidopsis thaliana CYP78A subfamily consists of 6 members (CYP78A5-
A10) encoding for enzymes with the cytochrome P450 (CYP) activity. CYP78A 
genes are differentially expressed and suggested to be involved in regulation of 
directional cell expansion and proliferation during organ growth, including 
embryogenesis (Sotelo-Silveira et al., 2013; Yang et al., 2013; Fang et al., 
2012; Lohmann et al., 2010; Adamski et al., 2009; Wang et al., 2008; 
Anastasiou et al., 2007; Zondlo & Irish, 1999). The overexpression of 
individual member results in enlarged organs and consequently the loss-of-
expression leads to reduced growth as well as disrupted maintenance of SAM 
region. However, their exact road of actions is yet to be determined. 

In summary, plants control organ growth via a tight control of cell 
proliferation and cell expansion. Multiple elements that are present in the 
cascades of these events uphold for the complexity of the multicellular 
organisms. 

 
Figure 3. Schematic model of primary cell wall composition. For more details see chapter 1.4. 

1.5 Aerial organ development  

Plants are sessile organisms and in order to survive the environmental 
conditions they are exposed to they have to adapt their developmental program 
in accordance to this (Franks & Hoffmann, 2012). It is believed that this is one 
of the reasons why plant embryos, in contrast to animal embryos, do not have 
all organs pre-formed. Instead plants continue to form organs from the stem 



 25 

cells of the meristems through out their life cycle, making it possible for the 
plant to make developmental decisions in accordance to the individual needs. 

1.5.1 Body axis establishment and embryo development 

Two axes are formed during embryo development:  the apical-basal and radial 
(outer-inner) axes. An apical-basal axis already apparent in the egg cell is re-
established in the zygote (Faure et al., 2002; Laux & Jurgens, 1997; Mansfield 
& Briarty, 1990), and several transcription factors including WRKY2 and 
different WOX members have been implicated in this process (reviewed in 
Jeong et al., 2012). The apical-basal polarity manifests itself in the first 
asymmetric cell division after fertilization. The apical daughter cell becomes 
the source of the embryonic tissue including the shoot apical meristem (SAM) 
and cotyledon primordia, while the basal cell will develop into the suspensor. 
The uppermost part of the suspensor will give rise to hypophyseal cell, 
incipient to the root apical meristem (RAM) (reviewed in Ueda & Laux, 2012). 

The PLETHORA (PLT) transcription factor has been suggested to act as a 
master regulator for root fate, whereas HDZIPIII transcription factors have 
been suggested to impose shoot fate in the embryo. The PLT gene is expressed 
in the basal end of the early globular embryo, and becomes confined to the 
vascular precursor and the incipient RAM quiescent centre in the proembryo, 
whereas HDZIPIII genes are expressed at the apex of early globular embryos 
(reviewed in Jeong et al., 2012). In addition, dynamic auxin flow, biosynthesis 
and signalling are important processes during plant pattern formation, 
including the early embryo development, and it has been suggested that 
asymmetric divisions and inter-cell communication generates gene expression 
domains along the main apical-basal embryo axis that may serve as a basis for 
organizing the dynamic polar auxin flux (reviewed in  Jeong et al., 2012) 
involved in polarity and tissue identity establishment. In the two-celled zygote, 
PIN auxin efflux proteins mediate auxin transport from the basal to the apical 
cell, which induce normal apical cell division (Friml et al., 2003). Later, 
apical-to-basal auxin transport creates a basal auxin maximum in the early 
embryo, required for root initiation (reviewed in Aichinger et al., 2012).  

Already during the late globular stage of embryo development local cell 
division gives rise to bilaterally symmetrical incipient cotyledons. They 
emerge in two apical regions of high auxin levels created by PIN-mediated 
transport (Moller & Weijers, 2009), and strong auxin responsiveness, 
visualized by activity of the synthetic auxin response reporter DR5 (Benkova et 
al., 2003). The sites of DR5 activity correlates well with reported defects in 
auxin mutants (Hardtke & Berleth, 1998; Jurgens et al., 1994), suggesting that 
auxin indeed is required for cotyledon initiation, positioning and outgrowth. A 
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certain set of genes appears to be specific for cotyledon development, such as 
e. g, DRN and DRNL (Chandler et al., 2007), whereas large sets of the genetic 
program are similar to the leaf developmental program (reviewed in Chandler, 
2008), see below. 
 

 
Figure 4. Overview of some of the stages of embryogenesis. Arrows indicate the direction of 
auxin flow and the blue-marked cells indicate high auxin sites. From globular stage onwards 
colors indicate pattern of organ development.  

1.5.2 Post-embryonic plant development requires meristem activity 

New organs form from daughter cells produced by the self-renewing 
population of stem cells in the SAM and RAM, established during embryo 
development. Their activity is responsible for the indeterminate shoot and root 
growth, respectively, and it has been shown that cell-cell communication and 
non-cell-autonomous processes play important roles in meristem function. 
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The shoot apical meristem 
The SAM in higher plants shares a common organization. It is composed of 
cells forming a dome-shaped structure, with a small number of undifferentiated 
stem cells in the central zone (CZ), and their more rapidly dividing daughter 
cells, ready for recruitment into organ initiation in the more peripheral zone 
(PZ) (Steeves & Sussex, 1989). The maintenance of the stem cell niche is 
dependent on the organizing centre (OC) located directly beneath the CZ. The 
OC cells express the homeobox transcription factor WUSCHEL (WUS) 
(Mayer et al., 1998), which has been indicated to move from the OC to the CZ 
stem cells, where it acts as a repressor of genes promoting cell differentiation 
in order to maintain stem cell identity (Yadav et al., 2013; Yadav et al., 2011; 
Yadav et al., 2010). In addition, WUS restricts its own level by directly 
activating CLAVATA3 (CLV3) in the CZ (Yadav et al., 2011; Brand et al., 
2000; Fletcher et al., 1999). CLV3 is a secreted peptide, which via activation 
of the receptor kinase CLAVATA1 pathway, restrict WUS transcription to a 
few cells only, thus forming a feedback system (Ogawa et al., 2008; Fletcher et 
al., 1999; Clark et al., 1997).  

Surrounding the stem cell pool, two antagonistic pathways control cell stem 
identity versus differentiation in the PZ. An undifferentiated cell-identity is 
maintained by SHOOTMERISTMLESS (STM) activity, in combination with 
CUP-SHAPED COTYLEDON (CUC) family members (Aida et al., 1999). 
STM has been shown to induce cytokinin biosynthesis, and this hormone has 
been associated with the undifferentiated state of cells in both the CZ and PZ 
(Shani et al., 2006; Jasinski et al., 2005). STM and CUC genes are switched off 
by an unknown factor in the few PZ cells that is recruited to primordia 
formation, and remain off by the activity of the ASYMMETRIC LEAVES1 
(AS1) transcription factor (Byrne et al., 2000), resulting in rapid proliferation 
and growth rate in the developing primordium, delimited by the organ 
boundary region, where cell expansion is reduced. 

In addition, organ primordia will only initiate in the PZ at sites of auxin 
maxima established by the PIN1 efflux carrier (Heisler et al., 2005; Reinhardt 
et al., 2000; Okada et al., 1991). New primordia develop on the flanks of the 
SAM in a species-specific phyllotactic pattern (Fleming, 2006), and in 
Arabidopsis leaf initiation follows a spiral phyllotaxy, where primordia are 
initiated one at a time, at the incipient site far away from the two last formed 
primordia. It has been suggested that auxin itself may be able to direct its flow 
via PIN re-localizations to guide auxin to the next incipient site in the PZ. Two 
different hypotheses on how this could be achieved have been tested by 
computational modelling: auxin flow against the auxin gradient (Jonsson et al., 
2006; Smith et al., 2006), and amplification of the auxin flow by induced 
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transport (Stoma et al., 2008). Both models are sufficient to reproduce realistic 
PIN1 localization and phyllotactic patterns, and more detailed studies of actual 
auxin concentrations will help determine which fits best with reality (Bayer et 
al., 2009). Transcription factors belonging to the auxin-signalling pathway, 
such as MONOPTEROS (MP) is expressed in the PZ (Vernoux et al., 2011; 
Hardtke & Berleth, 1998) and recruits founder cells for primordia formation. 
The competence for organ initiation in the PZ thus also depends on the spatual 
modulation of auxin signal transduction. In addition, it has been suggested that 
mechanical forces cooperate with auxin to establish the phyllotactic pattern, for 
instance by reinforcing the directionality of auxin transport (reviewed in 
Besnard et al., 2011). Cell expansion is also required for the actual outgrowth 
of the organ primordia (Peaucelle et al., 2011). 

 

 
Figure 5. Proposed model for regulation of stem cell identity vs differentiation by selected genes. 

Leaf initiation and development 
As leaf primordia develop in the PZ on the flanks of the SAM CZ, they possess 
a positional relationship to the SAM. The adaxial side (which will become the 
photosynthetic surface of the leaf) is derived from cells adjacent to the CZ, 
while the abaxial side (to become the gas-exchange side of the leaf) is derived 
from PZ cells further away from the CZ. Already in the 1950ies, Sussex 
(Sussex & Steeves, 1953; Sussex, 1951) revealed by microsurgical experiments 
that a signal derived from the SAM is required for the establishment of the 
adaxial leaf primordia identity (Sussex, 1951). Without direct cell-cell 
communication with the SAM, leaf primordia only obtain abaxial cell identity 
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and fail to produce a leaf blade, suggesting that leaf lamina outgrowth is 
dependent on the adaxial-abaxial polarity. These observations have been 
supported by work with mutants failing to induce either adaxial or abaxial 
identity. However, the nature of the Sussex signal still remains obscure, 
although it has been speculated that it could be a small RNA (Chitwood et al., 
2007), see below. 

The regulatory network controlling adaxial-abaxial polarity is based on the 
mutual antagonistic interactions between adaxial and abaxial determinants. The 
three HD ZIPIII genes, PHB, PHV and REV are, based on both loss-of-function 
and gain-of-function mutant phenotypes, necessary and sufficient for 
specification of adaxial identity in leaf primordia (Prigge et al., 2005; Emery et 
al., 2003; McConnell et al., 2001; McConnell & Barton, 1998). Abaxial 
expression of the two miRNAs 166 and 167 targeting HDZIPIIIs restricts 
HDZIPIII activity to the adaxial side (Emery et al., 2003). The KANADI genes 
(KAN1 and KAN2) and two ARF genes (ETT/ARF3 and ARF4) specifies the 
abaxial domain (Pekker et al., 2005; Emery et al., 2003; McConnell et al., 
2001). Whereas KAN and HDZIPIII supresses each other, ETT/ARF3 and 
ARF4 are negatively regulated in the adaxial domain by a small RNA known as 
tasiR-ARF, derived from non-coding TAS3 precursor transcripts expressed in 
the adaxial domain (Fahlgren et al., 2006; Garcia et al., 2006; Allen et al., 
2005). The precise mechanism inducing leaf lamina outgrowth upon adaxial-
abaxial juxtaposition is still not known, but members of the YABBY gene 
family have been indicated to play an important role. Although YABBY genes 
previously were suggested to determine abaxial identity (Sawa et al., 1999; 
Siegfried et al., 1999), recent data suggest that they are not required for initial 
polarity establishment, but rather polarity maintenance and lamina outgrowth 
(Sarojam et al., 2010). 

Soon after leaf primordia initiation, the primordia start to produce auxin that 
is transported back to the meristem to contribute to subsequent leaf primordia 
initiations (Heisler et al., 2005; Ljung et al., 2001). Initially, an apical auxin 
maxima in the leaf primordia, reinforced by epidermal auxin flow to this point, 
presumably induces distal growth (Benkova et al., 2003; Reinhardt et al., 
2003), whereas a subsequent symmetrically distributed auxin at the leaf 
margins, acting downstream of the polarity genes, is thought to facilitate blade 
outgrowth (Wang et al., 2011; Zgurski et al., 2005; Aloni et al., 2003; Scanlon, 
2003; Mattsson et al., 1999). In addition, auxin drainage flow from the apex of 
the very young leaf primordia through the centre of the primordium marks the 
positioning of the vascular leaf midvein, which will become continuous with 
the stem vasculature. During further development, auxin maxima at the 
margins of the leaf primordial correlate with the sites of lateral-vein formation 
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and positions of leaf serrations (see below). After primary morphogenesis, 
higher order leaf veins are initiated within the growing leaf lamina (reviewed 
in Scarpella et al., 2010; Sawchuk et al., 2007). All vascular cells are produced 
from procambial cells, differentiating from selected cells called preprocambial 
cells (Scarpella et al., 2004; Mattsson et al., 2003). In 1981, Sachs (Sachs, 
1981) proposed a hypothesis suggesting that auxin flow promotes polar auxin 
transport, leading to the canalization of auxin flow into narrow cell files, which 
will become preprocambial cells. This hypothesis has been supported by many 
studies, and it has been shown that three components, auxin flow, PIN1, and 
the auxin response factor MP, form a positive feedback loop, which reinforces 
auxin canalization. In addition, the ATHB8 transcription factor restricts 
preprocambium formation to a narrow domain by spatially limiting PIN1 
expression, and by regulating MP (Ohashi-Ito & Fukuda, 2010; Wenzel et al., 
2007; Scarpella et al., 2006). Interestingly, the leaf adaxial-abaxial identity 
tool-kit described above has been co-opted for the correct spatual positioning 
of the vascular components xylem and phloem in the vascular bundles 
(Carlsbecker & Helariutta, 2005). 

Auxin is also, together with CUC2 and its negative regulator miR164, a key 
regulator of leaf marginal modifications leading to leaf serration in Arabidopsis 
(Bilsborough et al., 2011; Hay et al., 2006; Nikovics et al., 2006; Scarpella et 
al., 2006). Before serration outgrowth, CUC2 is expressed along the whole leaf 
margin, but eventually its expression disappears from serration initiation sites 
marked by high auxin activity. CUC2 is required to generate marginal 
epidermis PIN1 re-localizations directing auxin towards specific marginal 
convergence points providing local auxin maxima necessary for the localized 
auxin activity and serration outgrowth. In addition, auxin represses CUC2 via 
miR164 activation, revealing a feed-back loop critical for serration 
development (Bilsborough et al., 2011). Auxin accumulating in the leaf 
serration points is then predicted to become transported into the leaf blade by 
basal localization of PIN 1 in subepidermal cells, defining the sites of lateral 
vein formation (Wenzel et al., 2007; Hay et al., 2006; Scarpella et al., 2006). 

1.5.3  Floral transition and initiation of flowering 

The correct timing of initiation of flowering ensures reproductive success and 
therefore plants are dependent on the complex genetic and molecular signaling 
networks involved. Under the influence of endogenous signals, which include 
plant age and health, as well as environmental cues such as seasonal changes, 
the plant initiates the transition process from adult vegetative stage to 
reproductive phase. Transition from a vegetative SAM to an inflorescence 
meristem occurs when the required endogenous and environmental signals are 
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perceived. This is achieved by the stimulation of the flowering pathway 
integrator genes, FLOWERING LOCUS T (FT) and SUPPRESSOR OF 
OVEREXPRESSION OF CONSTANS 1 (SOC1), and subsequently, activation 
of the flowering genes LEAFY (LFY) and AP1. The endogenous signal network 
contains hormones, in particular gibberellins, sugars, and a variety of genetic 
factors (reviewed in Srikanth & Schmid, 2011; Amasino & Michaels, 2010; 
Wang & Li, 2008).  

The main endogenous pathways involve the actions of miR156. Changes in 
expression from high levels of miR156 during seedling stage to lower levels in 
further developmental phases are shown to be crucial for the transition of 
plants to the flowering phase (reviewed in Huijser & Schmid, 2011). This age-
dependent genetic pathway involves the repressive action of miR156 on the 
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) mRNA. While 
actions of SPL3, SPL4 and SPL5 affect flowering time, SPL9 and -10 also 
regulate adult phase morphological traits, such as formation of trichomes on 
the abaxial side of the leaf (Wu et al., 2009). As the levels of miR156 decrease, 
SPL9 and -10 also become more prominent in the photoperiod-induced 
pathway of flower transition phase (Schwarz et al., 2008). Importantly, the 
SPL9 and SPL10 transcription factors are also involved in activation of the 
miR172 microRNA family. The miR172 levels increase as the plant proceeds 
through developmental phases and its accumulation levels are complementary 
to the one of miR156. The expression level of miR172 is reported to be under 
influence of the photoperiod (Jung et al., 2007). In downstream actions, 
miR172 represses a number of repressors of flowering, such as TARGET OF 
EAT1 (TOE1), TOE2, SCHLAFMÜTZEN (SMZ) or the AP2 (reviewed in 
Huijser & Schmid, 2011). The complementary accumulation of both miR156 
and miR172 in the plant tissue is critical for the timing of the transition from 
the juvenile to adult phase. Additionally to the endogenous signaling, a number 
of autonomous pathways have been reported and they all act via repression of 
the FLC either by chromatin remodeling or affecting RNA stability, thus 
eventually promoting flowering (reviewed in Srikanth & Schmid, 2011). 

Two of the most important exogenous signals are prolonged exposure to 
low temperature (vernalization) and perception of day-length (photoperiod) 
(Turck et al., 2008). Another important environmental factor is the quality of 
the day light that is perceived by the plants using internally oscillating system, 
known as the circadian clock (reviewed in Srikanth & Schmid, 2011). 

Photoperiod, sensed in the leaves, is an important environmental signals for 
plants adapted to latitudes with varying day-length. In Arabidopsis, adapted to 
perform reproductive development in long days, the circadian clock oscillation 
activates transcription of the CONSTANS (CO) gene in the late afternoon/early 
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evening. As the CO proteins are stabilized by light and degraded in darkness, 
they are only able to accumulate in long day conditions, when CO transcription 
coincides with light. The CO transcription factor accumulating in the leaf 
activates transcription of the FT gene in the phloem companion cells and the 
FT proteins become actively translocated to the phloem sieve elements through 
which they are transported to the SAM. In the SAM, FT interacts with 
FLOWERING LOCUS D (FD) to induce phase transition by regulating the 
expression of other floral integrators such as SOC1 and AP1 (reviewed in 
Andres & Coupland, 2012; Amasino, 2010; Amasino & Michaels, 2010). 

Another seasonal environmental cue used by e.g. winter annuals is 
temperature. In these plants, vernalization, a long period of exposure to cold 
temperatures, is required before the plants can enter into the reproductive 
phase.  In Arabidopsis this process requires the activity of two genes: 
FRIGIDA (FRI) and FLC (reviewed in Amasino & Michaels, 2010). The 
Arabidopsis summer annuals, which do not require vernalization as an initiator 
of flowering, lack a functional allele of FRI and/or FLC. The FRI-dependent 
activation of FLC suppresses flowering (reviewed in Amasino, 2010). 
Similarly to FLC, another MADS-domain protein, the MADS AFFECTING 
FLOWERING3 was reported to act during the repression event (Gu et al., 
2013). FLC activity repress flowering by blocking the transcription of the 
flowering pathway integrator genes (FT and SOC1). Exposure to low 
temperatures reduces FLC transcription progressively over several weeks, and 
by the end of the vernalization period there are low levels of FLC mRNA, thus 
releasing the repression on FT and SOC1. The cold inducted 
VERNALIZATION INSENSITIVE3 (VIN3) interacting with histone 
modification complexes like PRC2 to induce epigenetic silencing of FLC 
mediates the initial repression of FLC transcription. Low levels of FLC mRNA 
even when temperatures increase after the vernalization period due to activity 
of additional identified proteins and non-coding RNAs, is allowing the other 
pathways to induce flowering under right conditions (reviewed in Gu et al., 
2013; Kim & Sung, 2012; Smaczniak et al., 2012; Amasino & Michaels, 
2010). 

1.5.4 Floral organ development 

The inflorescence meristem (IM) is a tissue of meristematic cells, which at its 
PZ generates cauline leaves and axillary buds as well as floral meristems 
(FMs) that will develop into individual flowers (O'Maoileidigh et al., 2014; 
Smaczniak et al., 2012). As in the SAM, auxin is required for the formation of 
these structures, including the FMs, at the IM PZ (Cheng et al., 2008; 
Reinhardt et al., 2003; Reinhardt et al., 2000; Przemeck et al., 1996). The FM 
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stem cell fate and meristem size is initially maintained by the universal stem 
cell-specific WUS-CLV feedback loop (see 1.5.2.1 above; (reviewed in Smyth, 
2005). Eventually, expression of AGAMOUS (AG) will inhibit the actions of 
WUS and thereby initiate differentiation and organ formation (Lenhard et al., 
2001). The phyllotaxis pattern of organ initiation is shifted in the FM from the 
spiral pattern used by the Arabidopsis SAM and IM, to a whorled pre-set organ 
arrangement (reviewed in Chandler, 2012). How this is achieved is not well 
understood, but it has been hypothesized that PAT and the activation of local 
auxin biosynthesis in the early FM results in a prolonged auxin exposure 
induced the switch to whorled organ initiation (van Mourik et al., 2012). 

Once the FM is established, AP1 and LFY activate the ABCE floral organ 
identity genes resulting in floral organ specification at floral stage 5 (Causier et 
al., 2010; Smyth et al., 1990; Bowman et al., 1989). Class A genes (AP1 and 
AP2) specifies the outermost whorl to become sepals, A together with B class 
genes AP2 and PISTILLATA (PI) determine petal identity of second whorl 
organs, B together with C genes (AG) determine stamen fate in the third whorl, 
while C alone controls carpel identity in the inner-most fourth whorl. In 
addition, the E class genes SEPALLATA1 (SEP1), SEP2, SEP3 and SEP4 co-
regulate fate specification in all four whorls. Also, miR172 was suggested to 
suppress AP2 expression in the inner whorls (Grigorova et al., 2011; reviewed 
in Huijser & Schmid, 2011). Except AP2, all other whorl-determining genes 
belong to MADS-box domain transcription factor group (reviewed in 
O'Maoileidigh et al., 2014; Huijser & Schmid, 2011).  Interestingly, SOC1 
(described in section 1.3.5.1) together with AGL24 and SVP has been shown to 
repress expression of B-, C- and E-class homeotic genes in both IM and early 
FM (reviewed in Smaczniak et al., 2012). 

1.5.5 The reproductive floral organs 

The shape and number of floral organs are specific for different species. In 
Arabidopsis the flower consists of six stamens, the male reproductive organs 
hosting the pollen development events, one pistil, formed by two congenitally 
fused carpels, which builds up a female reproductive structure, where the 
pollen germination events and fruit development take place, and the sterile 
perianth consisting of petals and sepals (Roeder & Yanofsky, 2006). 

Stamens 
The male reproductive organs, the stamens, emerge from the floral meristem 
whorl three under control of B and C class genes expressed in the inner whorls 
(ABCE model described in section 1.3.5.2). Arabidopsis produces six stamens, 
four long medial and two short lateral stamens (Scott et al., 2004). A stamen 
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consist of a filament and an anther, which at the point of pollination is 
positioned just above the stigma, allowing direct release of pollen grains onto 
the papillae cells, thus securing effective fertilization. Stamen filaments are 
thought to supply water and nutrients to anthers through the vasculature and to 
facilitate stamen elongation (Scott et al., 2004). In Arabidopsis anthers develop 
four lobes that consist of epidermis, endothecium, middle layer and the adaxial 
tapetum. These four somatic cell layers enclose the inner reproductive tissue, 
the male sporocytes (or pollen mother cells), which undergo meiosis and form 
haploid microspores (Ma, 2005; Goldberg et al., 1993). During floral stage 10 
to 12 further divisions and differentiation occurs at microsporogenesis, 
resulting in mature pollen grains. At floral stage 13 the filaments elongate and 
anthers dehisce to release the mature grains during the pollination event (Song 
et al., 2013; Ge et al., 2010).  The four somatic cell layers of the anthers are 
also essential for proper pollen formation and its release at the right time-point. 
For example, the layer closest to the developing pollen, the tapetum, supplies 
the microspores with nutrients and enzymes important for cell separation as 
well as cell wall synthesis. 

Several phytohormones are crucial for proper stamen and pollen 
development (Song et al., 2013). The auxin biosynthesis genes YUC2 and 
YUC6 are expressed in the tapetum and pollen mother cells from late stage 10, 
and the TIR/AFB receptor genes, as well as the DR5 auxin response reporter 
are activated in these tissues shortly thereafter (Cecchetti et al., 2013; Cecchetti 
et al., 2008; Feng et al., 2006). Although the precise role of auxin at these 
tissues is unknown, it has been suggested that auxin is important for the 
differentiation or function of e.g. the tapetum layer as a reduction of active 
auxin levels in the tapetum results in decreased pollen embryogenesis (Yang et 
al., 1997). However, mutants defective in auxin biosynthesis or auxin 
perception are not only affected in pollen maturation, but also in filament 
elongation and anther dehiscence, suggesting that auxin is important for several 
aspects of pollen and stamen development (Cecchetti et al., 2013; Cecchetti et 
al., 2008; Cheng et al., 2006; Nagpal et al., 2005). Auxin appears to affect 
pollen grain development at least in part by controlling JA-signaling, while 
auxin induced stamen filament elongation is JA independent (Song et al., 
2013). Mutants defective in GA biosynthesis also show defects in filament 
elongation and anther dehiscence (reviewed in Plackett et al., 2011) suggesting 
a complex cross-talk between plant hormones during stamen development. 

The Arabidopsis SPOROCYTELESS/NOZZLE (SPL/NZZ) gene, induced by 
AG activity (Ito et al., 2004), encodes a putative transcription factor important 
for early anther cell division and differentiation. The spl/nzz mutant fails to 
produce a pollen sac, including both sporogenous cells and nonreproductive 
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tissues, (Schiefthaler et al., 1999; Yang et al., 1999). Further work has 
suggested that SPL/NZZ via a regulatory feed-back loop with BARELY ANY 
MERISTEM1/2 (BAM1/2) maintains the sporogenous activity whereas BAM1/2 
promote somatic growth, providing a balance between reproductive and 
somatic cells in the anther (Hord et al., 2006). Interestingly, SPL/NZZ activity 
has also been suggested to affect auxin biosynthesis and transport (Bencivenga 
et al., 2012; Li et al., 2008). During later stages of anther development, three 
putative LRR-RLK proteins, EXCESS MICROSPOROCYTES1 (EMS1), 
SOMATIC EMBRYOGENESIS RECETOR-LIKE KINASE1 (SERK1) and 
SERK2, and the small peptide TAPETUM DETERMINANT1 (TDP1) are all 
required for tapetal cell differentiation and the repression of reproductive tissue 
suggesting that the microsporocyte is a default cell fate, and that cell–cell 
signaling triggers the differentiation of tapetal cells (Albrecht et al., 2008; 
Zhao et al., 2008; Albrecht et al., 2005; Canales et al., 2002; Zhao et al., 
2002).    

The gynoecium  
The purpose of the female reproductive organ, the gynoecium, developing 
from the centre of the FM, is to host the ovules and guide fertilization events. 
After fertilization the gynoecium differentiates into the fruit tissue, which 
harbors the developing seeds and aids in seed dispersal. At stage 5 of floral 
development the FM expands laterally and forms a platform of cells that will 
give rise to the gynoecium. Shortly thereafter, AG will terminate the FM 
activity, as no further organ initiation is required (Sun & Ito, 2010; Lenhard et 
al., 2001). In Arabidopsis, the gynoecium primordium emerges as an open 
cylinder consisting of two carpels congenitally fused at their margins, and 
these margins correspond to the medial domain (Sattler, 1973). Further 
development in the apical-basal, medial (fused carpel margins)-lateral as well 
as adaxial-abaxial results in the mature gynoecium, which is the most complex 
floral organ (Larsson et al., 2013; Roeder & Yanofsky, 2006). The medial 
marginal tissues of the carpels are meristematic and express the meristem-
specifying gene STM (Scofield et al., 2007). Internally (adaxial side) the 
marginal tissue gives rise to placentae and ovules, as well as a septum that 
divides the Arabidopsis ovary into two separate chambers and also harbors the 
transmitting tract guiding the pollen tubes to the ovules (reviewed in Larsson et 
al., 2013). The medial marginal tissue is also suggested to give rise to the 
apical stigma and style after postgenital apical fusion of the carpels. The 
stigma, consisting of papillar cells, where pollen will adhere and germinate, is 
localized on a cylindrical style that guides the pollen tubes via the transmitting 
tract to the ovary and ovules. On the adaxial side (outside) of the gynoecium, 
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medial cells form a replum, to which the carpel margins and the carpels are 
attached. The ovary is connected to the base of the flower through a short stalk 
of cells, referred to as the gynophore (Larsson et al., 2013; Staldal & Sundberg, 
2009; Roeder & Yanofsky, 2006). At floral stage 13, the flower open and is 
ready for the pollination (Roeder & Yanofsky, 2006; Smyth et al., 1990).  

The marginal tissues are dependent on a number of genes, including 
AINTEGUMENTA (ANT), AINTEGUMENTA-LIKE6 (AIL6), LEUNIG (LUG), 
SEUSS (SEU) and FIL, and loss of more than one of these results in a more or 
less complete loss of the marginal derived medial tissues. It has been suggested 
that ANT, SEU, LUG and FIL form a transcriptional co-regulator complex 
important for medial tissue development (Azhakanandam et al., 2008; Nole-
Wilson & Krizek, 2006). 

Auxin plays an important role during gynoecium tissue differentiation and 
proliferation. Reduced auxin signaling, biosynthesis or transport results in 
reduced ovary (carpel) development and an enhanced style and gynophore 
proliferation (Stepanova et al., 2008; Cheng et al., 2006; Sohlberg et al., 2006; 
Christensen et al., 2000; Nemhauser et al., 2000; Hardtke & Berleth, 1998; 
Przemeck et al., 1996; Bennett et al., 1995; Sessions & Zambryski, 1995). 
Based on these findings, Nemhauser et al. (2000) suggested that an apical-
basal auxin gradient with highest concentration in the apical part and lowest in 
the base determine the apical-basal tissue border positioning (Nemhauser et al., 
2000). However recent studies propose that auxin gradients or auxin signaling 
pathways acting in abaxial-adaxial or medial-lateral axes affects the apical-
basal patterning of the gynoecium (reviewed in Larsson et al., 2013). 
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Figure 6. Picture of the Arabidopsis flower. Numbers indicate: 1- pollen grains; 2- anther; 3- 
stamen filament; 4- stigma; 5- style; 6- valve; 7- replum; 8- gynophore. 

  
Figure 7. Cross-section of gynoecium with indicated structures and axis.  

1.6 The SHORT INTERNODES/STYLISH gene family  

The Arabidopsis SHORT INTERNODES (SHI) gene was discovered in an 
activation-tagging screen for genes affecting plant development (Fridborg et 
al., 1999). Further studies revealed that the SHI gene belongs to a plant specific 
gene family, SHI/STYLISH (STY), important for organ development in a variety 
of plants, such as Arabidopsis, barley, Populus, and the moss Physcomitrella 
patens (Yuo et al., 2012; Zawaski et al., 2011; Eklund et al., 2010; Kuusk et 
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al., 2006; Kuusk et al., 2002). The Arabidopsis genome encodes nine 
functional and highly redundant members, SHI, STY1, STY2 and SHI-
RELATED SEQUENCE 3 to 7 (SRS3-SRS7) as well as a putative pseudogene, 
SRS8 (Kuusk et al., 2006; Fridborg et al., 2001). The Arabidopsis sty1 mutant 
is characterized by a split style of the gynoecium. This phenotype is drastically 
enhanced by reduction in expression of additional SHI/STY family members 
and the shi/sty multiple mutant plants produce gynoecia with dramatically 
reduced proliferation of apical and medial tissues (Kuusk et al., 2006). The 
SHI/STY are expressed in an overlapping pattern in the apical part of gynoecia 
from the earliest stage (floral stage 5, see section 1.5.2.3.1.2 above) to 
gynoecium maturity, as well as in ovules. In addition, SHI/STY proteins are 
required for proper leaf development. The sty2 mutant show increased leaf 
serration and this phenotype become enhanced in the SHI/STY family multiple 
mutant lines, which also develop some radialized leaves (Kuusk et al., 2006; 
Kuusk et al., 2002), and as expected from these phenotypes, members of this 
gene family are expressed in leaf primordia, leaf tips and hydathodes/leaf 
serration sites. In addition they are active in cotyledon initiation sites, floral 
organ initiation sites, floral organ primordia, stamens, root tips, and lateral root 
initiation sites, and lateral root primordia (Kuusk et al., 2006; Kuusk et al., 
2002), suggesting that they are of general importance for organ initiation and 
development. 

The SHI/STY proteins carry two unique and conserved regions: a C-
terminal domain with an IGGH motif and an N-terminal RING-like zinc finger 
(ZnFn) domain with a C3HC3H cysteine/histidine consensus arrangement 
(Kuusk et al., 2006; Fridborg et al., 2001; Fridborg et al., 1999).	  Using yeast 
two-hybrid system, it was shown that SHI/STY proteins interact with each 
other in vivo, thereby forming homo- and heterodimers (Kuusk et al., 2006). 
This is a strong indication that these proteins may form molecular complexes 
and act cooperatively in common pathways. In addition, the proteins carry a 
nuclear localization signal (NLS) and one or two glutamine amino acid rich 
region, suggesting that they act as transcription factors. This was further 
confirmed by using a fusion protein consisting of the full-length STY1 coding 
sequence fused to the rat glucocorticoid receptor (GR) domain, driven by the 
cauliflower mosaic virus 35S promoter in the 35Spro:STY1-GR construct 
(Kuusk et al., 2006). The GR domain makes the protein cytoplasmic, but it is 
shuttled to the nucleus upon treatment with the synthetic ligand dexamethasone 
(DEX) (Lloyd et al., 1994; Schena et al., 1991). 

By comparing the transcriptome of DEX-treated with untreated 
35Spro:STY1-GR lines the YUCCA4 (YUC4) auxin biosynthesis gene was 
identified as a potential direct or indirect downstream target, activated by 
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nuclear STY1-GR (Sohlberg et al., 2006; Zhao et al., 2001). In addition, 
nuclear translocation of STY1-GR results in a significant increase in free IAA 
levels, whereas loss of function of SHI/STY genes leads to reduction of auxin 
biosynthesis rates, auxin catabolism, as well as mRNA levels of YUC4, IAA1 
and GH3 genes (Sohlberg et al., 2006). In agreement with these data the sty1-1 
mutant is hypersensitive to alteration of polar auxin transport (PAT) (Sohlberg 
et al., 2006), and the style defects in sty1-1 sty2-1 plants can be restored by 
application of exogenous auxin directly onto the apical end of very young 
gynoecia, before style differentiation had occurred (Staldal et al., 2008).  
Together these results indicate that SHI/STY members, at least in part, affect 
organ initiation and development via direct or indirect regulation of auxin 
homeostasis. 
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2 Aims of the present study 
The goal of this work was to investigate the role of SHI/STY proteins in organ 
development. We aimed to detect if the SHI/STY proteins act as DNA-binding 
transcriptional regulators and identify downstream target genes of SHI/STY 
proteins in order to identify putative pathways co-regulated by the SHI/STY 
activity. In order to do so, we also aimed to characterize several of the 
downstream targets. With the goal to place the SHI/STY regulated processes in 
a wider network, we also aimed to identify regulatory factors controlling 
SHI/STY genes expression.  
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3 Results and discussion 

3.1 SHI/STY family members act as DNA-binding transcriptional 
activators (I, IV) 

3.1.1 The SHI/STY family proteins are localized in the nucleus (I) 

As previous sequence analysis of the nine functional Arabidopsis SHI/STY 
family members revealed that they carry a putative nuclear localization signal 
(NLS) in addition to the conserved IGGH- and RING-like zinc finger domains 
(Fridborg et al, 2001; Kuusk at al., 2002), we studied the intracellular 
localization of STY1-GFP fusion protein in transiently transformed onion 
epidermal cells and in Physcomitrella patents protoplasts (Paper I). We could 
show that the STY1 protein indeed is localized in the nucleus, which fits well 
with previous data, showing that when STY1-GR is trans-located to the 
nucleus by DEX treatment the sty1-1 mutant style phenotype is rescued 
(Sohlberg et al., 2006).  

3.1.2 SHI/STY members are transcriptional activators (I, II) 

We could show that STY1-GR, upon DEX induced nuclear translocation, 
within one hour activates the transcription of a large number of genes (II), 
including YUC4 (Sohlberg et al., 2006). To further verify the role of STY1 as a 
transcriptional activator, we used a 35Spro:STY1-SRDX construct (I). SRDX is 
a 12-amino acid long peptide acting as a strong repressor domain and we could 
show that it changes STY1 into a transcriptional repressor, which strongly 
down-regulated YUC4 transcription. In addition, fusion to the repressor domain 
caused strong phenotypic effects resembling those of shi/sty multiple loss-of-
function mutants. This suggests that STY1-SRDX represses the transcription of 
genes normally activated by members of the SHI/STY protein family. It has 
been shown that at least SHI-GR activates the same set of genes as STY1-GR, 
supporting the hypothesis that STY1-SRDX affects the activity of several 
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common targets (unpublished data). We could also reveal that STY1 has 
several functional transcriptional activation domains by testing the 
transcriptional activation capacity of STY1 deletions fused to the GAL4 DNA 
binding domain in a yeas-two-hybrid (Y2H) assay, and that these act 
synergistically (I). To test if the SHI/STY proteins activate transcription in 
Arabidopsis without de novo protein synthesis, we induced STY1-GR in the 
presence of the translational inhibitor cycloheximide (CHX), and found that 
STY1 mediated transcriptional activation of YUC4 and a large number of other 
genes is indeed independent on protein translation (I, II), suggesting that the 
SHI/STY proteins may act as DNA-associated transcriptional activators. 

3.1.3  STY1 interacts with promoter elements of the YUC4 promoter (I) 

As STY1 activation of YUC4 transcription is independent of protein synthesis, 
we tested if STY1 directly acts on the YUC4 promoter using chromatin 
immunoprecipitation (ChIP), electromobility shift assay (EMSA) and yeast-1-
hybrid (Y1H) experiments. In the ChIP experiments using STY1-GR and anti-
GR antibodies, YUC4 promoter sequences were amplified at a significantly 
higher level after DEX-treatment, and in Y1H experiments this region could be 
narrowed down to a 124 bp fragment binding both STY1 and SHI. By 
comparing this fragment with promoter sequences used in in vitro and Y1H 
binding studies of a SHI/STY ortholog in Catharanthus roseus and the 
promoter of a downstream AP2/ERF target gene, ORCA3 (Vom Endt et al., 
2007), we could identity a putative binding site, ACTCTAC. Mutational 
analysis of this fragment in Y1H revealed that it is important for STY1 
binding. In addition, EMSA studies comparing binding of STY1 produced by 
in vitro transcription/translation to a 30 bp fragment including the putative 
binding site, and fragments with a mutated binding site, revealed a strong 
competition for binding to the functional ACTCTAC site. 

3.2 SHI/STY members are positive regulators of several groups 
of genes 

3.2.1 Auxin biosynthesis genes (I, II)  

To investigate if STY1 potentially could interact with the promoters of 
additional members of the YUC gene family, we searched for ACTCTAC 
sequences in all members, but found that it is specific for the YUC4 promoter. 
However, a similar sequence, ACTCTAA, was found in YUC1, 5, 8 and 9 
promoters, and in YUC8, just as in the YUC4 promoter, this putative binding 
site was located in close proximity to the TATA box. qRT-PCR studies 
confirmed that STY1 can induce expression of YUC8 independently of protein 
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translation, but not YUC1, 5 nor 9 gene expression, suggesting that the 
presence of the TATA box in near proximity to the ACTCTAC binding site is 
required for transcriptional activation by STY1. Additionally, YUC4 
expression was also induced by 35Spro:SHI-GR in microarray studies 
(unpublished data), strongly suggesting that other SHI/STY members are 
involved in regulation of auxin biosynthesis as well.  

Interestingly, the AP2/ERF gene ORCA3, a downstream target of the C. 
roseus SHI/STY ortholog, appears to activate transcription of a gene (TDC) 
encoding Trp decarboxylase (van der Fits & Memelink, 2000), which mediates 
synthesis of the auxin biosynthesis substrate tryptamine. We have searched for 
closely related AP2/ERFs in Arabidopsis carrying the SHI/STY binding 
element less than 500 bp away from the transcriptional start site, and identified 
the OCTADECANOID- RESPONSIVE ARABIDOPSIS AP2/ERF59 (ORA59) 
gene (Pré et al., 2008). Using qRT-PCR, we could show that ORA59 
transcription is activated by STY1-GR in the presence of DEX and CHX.  

ORA59 is affecting auxin responsiveness (II) 
van der Fits and Memelink (2000) suggest that ORA59 is involved in synthesis 
of tryptamine. Therefore, we analyzed the IAA content in lines with modulated 
levels of ORA59. No significant change was found in the ora59-1 null mutant 
or in the XVEpro:ORA59 inducible line. However, DR5pro:GUS activity was 
increased in leaf margins and sometimes in leaf vasculature after induction of 
XVEpro:ORA59, indicating that ORA59 may not function in a rate limiting 
step of auxin biosynthesis but rather in auxin signaling or other steps in auxin 
homeostasis regulation.  

In summary these data suggest that STY1 and other SHI/STY members are 
capable of activating IAA biosynthesis and possibly also auxin responses, 
through transcriptional regulation. 

3.2.2 Transcription factor genes (I, II)  

Microarray data suggests that SHI/STY family members are not only involved 
in regulation of auxin biosynthesis, but can also induce expression of genes 
involved in other processes. Based on at least three criteria: microarrays 
studies, the presence of STY1 binding site and co-expression analysis, a 
number of putative downstream targets were selected for analysis. The ability 
of STY1-GR to activate these genes in the presence of CHX was tested, and 
their expression levels in quintuple shi/sty mutants were analyzed (II). 

All seven selected genes belonging to transcription factor families were up-
regulated by STY1-GR in the presence of DEX and CHX, suggesting that they 
are direct STY1 targets. Four of the selected genes, ORA59, ETHYLENE-
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RESPONSIVE ELEMENT BINDING FACTOR 15 (ERF15), ERF38 and 
ERF43, belong to the AP2/ERF family and except ERF38 they all carry 
putative STY1 binding sites (I,II). ERF38pro:GUS is active at all major 
SHI/STY activity sites throughout development, and becomes ectopically 
expressed when STY1-GR is activated (II). NGATHA2 (NGA2), belonging to a 
B3 transcription factor superfamily, is co-expressed with STY1 and carries the 
YUC4 STY1 binding site in its promoter sequence. Although 35Spro:STY1-GR 
activates NGA2 transcription, it could not induce ectopic NGA2pro:NGA2:GUS 
activity outside the normal NGA2 expression domain. Instead, ectopic 
NGA2pro:NGA2:GUS activity was detected in the  35S:STY1-SRDX 
background, suggesting that STY1-SRDX is interfering with NGA2-bound 
repressors (II). Two other downstream targets, BEL1-LIKE HOMEODOMAIN 
11 (BLH11) and REPRODUCTIVE MERISTEM 1 (REM1) are also co-
expressed with SHI/STY members and with YUC4 at various developmental 
stages. The expression of these genes is also significantly reduced in the 
quintuple SHI/STY loss of function mutant (II). Interestingly, the spatial and 
temporal expression pattern of REM1 in floral meristem resembles that of STY1 
(Kuusk et al., 2002). 

To summarize, the STY1 downstream targets encodes a diverse group of 
TFs, suggesting that the SHI/STY family members affect plant development 
via several different pathways. 

3.2.3 Genes encoding enzymes involved in metabolic processes or cell wall 
modifications (II, III) 

In the experiment presented in section 3.2.2, we also identified a group of 
STY1 target genes encoding enzymes, of which a couple may be involved in 
cell wall modulations. We studied the expression patterns of the selected genes 
POLYAMINE OXIDASE 5 (PAO5), PECTIN	   LYASE-‐LIKE	   1	   (PGL1), L-
ASCORBATE OXIDASE 1 (LAO1), EXPANSIN LIKE A2 (EXPL2), and 
CYP78A6 in detail and revealed that the activity of most of them show some 
overlap with a number of domains characteristic for SHI/STY gene expression, 
such as in apical tip of cotyledons, leaves and floral organs, in stipules, 
hydathodes and in internal tissues of gynoecia and anthers.  

PGL1 belongs to a large group of pectin lyases carrying a secretory peptide, 
suggesting that it may modulate cell wall polymers. Apart from the 
PGL1pro:GUS activity connected to vascular development, PGL1 expression 
completely overlaps with known SHI/STY expression sites (e.g. organ apices, 
and hydathodes), suggesting that PGL1 mediates SHI/STY regulated cell wall 
modifications in these sites. In addition, PGL1, just as STY1, is expressed in 
maturing pollen before they become released. The pollen cell wall is complex 
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and dynamic with successive synthesis and degradation of cell wall 
components during pollen development (Jiang et al., 2013; Blackmore et al., 
2007; Hasegawa et al., 2000; Heslop-Harrison, 1968), implicating that PGL1 
may play an important role in cell wall-related pollen maturation processes. 
EXPL2 is an uncharacterized member of a large group of different enzymes 
classified as expansins (see section 1.4.2), also involved in cell wall 
modifications, however as we only could detect expression of EXPL2 close to 
the vascular fan of the style, its function may be specific to reproductive 
development.  

The CYP78A sub-family members are heme-dependent enzymes that 
through oxidation of different molecules interplay in many biosynthetic 
pathways (Nelson, 1999). CYP78A6, also known as EOD3, is together with 
two of its closest paralogs, CYP78A8 and CYP78A9, involved in maternal 
control of seed size (Fang et al., 2012). Our detailed expression analysis shows 
that CYP78A6proGUS is mainly active outside the SHI/STY expression 
domain, in connection to the vasculature in many different plant organs. In 
addition, both CYP78A6 and CYP78A9, as well as PAO5, encoding a putative 
oxidase, overlap with SHI/STY expression in three anther cell layers 
surrounding the male germ-line. Modifications of these cell layers, such as 
degradation of the tapetum and middle layers and lignification of the 
endothecium layer, are important for proper pollen maturation and anther 
dehiscence (Sanders et al., 1999). Overexpression of SHI/STY genes results in 
reduced anther dehiscence and incomplete tapetum degeneration, and 
subsequently, reduced pollen maturation and release (Kim et al., 2010b). Based 
on these data, we	  hypothesise that correct expression levels of SHI/STY genes 
and their downstream targets in the three anther cell layers is necessary for 
proper tapetum development and anther dehiscence. 

3.3 SHI/STY members affect flowering time, floral organ 
morphology and floral organ number (I, II) 

The role of SHI/STY family members in Arabidopsis organ development has 
previously been reported (Fridborg et al. 1999; Fridborg et al. 2001; Kuusk et 
al., 2002; Kuusk et al., 2006; Sohlberg et al., 2006; Staldal et al., 2008), and 
here we reveal additional SHI/STY functions during plant development. 

3.3.1 STY1-SRDX has severe effects on plant development (I; II)  

Constitutive expression of the STY1-SRDX repressor of SHI/STY family 
targets results in dramatic developmental defects. The majority of individual 
35Spro:STY1-SRDX transgenic lines are seedling lethal lacking a shoot apical 
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meristem. It is yet to be determined if loss of a functional meristem is an effect 
of reduced activity of SHI/STY targets, or if it is an effect of STY1-SRDX 
interfering with other processes in the meristematic region when ectopically 
expressed. A very small percentage of transgenic lines produce individuals that 
survive the seedling stage, showing a phenotype similar to shi/sty multiple 
mutants (I), including the characteristic split of the style and reduced fertility 
(I, II). 

3.3.2 STY1 as well as its downstream targets YUC4, ORA59, ERF38 and 
NGA2 are affecting lateral stamen number, and the length of stamen 
filaments (II)  

In order to investigate the function of several of the downstream targets, we 
identified new insertion mutants (ora59-1, erf15-1, erf38-1, blh11-1, rem1-2 
and rem1-3) as well as studied the previously published mutant lines yuc4-1 
and nga2-2 (Trigueros et al., 2009; Zhao et al., 2001). None of these single 
mutants showed defects in gynoecia morphology, which may not be surprising 
as they belong to gene families with high functional redundancy. Interestingly, 
NGA2 belongs to a small gene family important for gynoecium development, 
and it has been suggested that SHI/STY and NGA proteins act cooperatively 
during style development (Trigueros et al., 2009). Nevertheless, we were able 
to identify a new role of STY1 and some of its downstream targets during 
floral development. We could observe that yuc4-1, ora59-1, erf38-1, and nga2-
2 as well as the sty1-1 mutant had a statistically significant reduction in lateral 
stamen number, and that 35Spro:STY1-SRDX and yuc8-1 stamen filaments are 
reduced in length. It is known that auxin (described in section 1.5.5 Stamens) is 
required for filament elongation, and thus it is not surprising that YUC8, being 
expressed in the filaments, is involved in the elongation process. 

3.3.3 STY1 and its putative downstream target REM1 affect flowering time (I, 
II) 

The REM1 gene is highly co-expressed with SHI/STY family members in the 
floral meristematic region and in gynoecia (Franco-Zorrilla et al., 2002). We 
could show that rem1 mutants, as well as sty1-1 sty2-1 and 35Spro:STY1-SRDX 
lines are flowering later than wild type plants. Interestingly, some of the 
original 35Spro:STY1-SRDX lines never bolted or flowered very late (I). The 
transcript level of FLC, a known flowering time transcriptional regulator (see 
section 1.5.3), showed no altered expression in the aerial parts of the studied 
lines. These findings indicate that STY/SHI family members affect flowering 
time through REM1 activity independently of the FLC pathway (II). 
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3.4 SHI/STY members affect leaf morphology and 
vascularization (I, IV) 

The SHI/STY genes are expressed already in incipient cotyledon and leaf 
primordia, and as mentioned in section 1.6, sty2-1 and shi/sty multiple mutants 
show increased leaf serration and leaf polarity defects (Kuusk et al., 2002; 
2006). In addition, the 35Spro:STY1-SRDX plants also develop severe leaf 
serration, and narrow cotyledons (I). As auxin homeostasis is important for 
vascular cell fate and differentiation (see leaf sub-section in 1.5.2), we 
hypothesized that SHI/STY mediated auxin biosynthesis may be important also 
for vascular development in cotyledon and leaves. We therefor studied in detail 
the expression pattern of several SHI/STY genes during early venation 
establishment in cotyledon and leaf primordia, as well as the cotyledon- and 
leaf venation pattern of the shi/sty mutants, see below (V).  

3.4.1 SHI/STY spatiotemporal expression partially overlaps with auxin 
biosynthesis during embryogenesis and leaf development (IV)  

Using SHI, STY1, STY2 and SRS5 promoter:GUS reporter lines (Fridborg et al., 
2001; Kuusk et al., 2002, Kuusk et al., 2006) we could observe that whereas 
SHI is expressed already in early globular embryos, STY1 is only active in later 
globular stages. Both genes are expressed in the apical and central tiers, with 
the strongest expression in the site of the incipient cotyledons. At the triangular 
stage STY2 expression appears, and from this stage SHI, STY1 and STY2 
activity is more or less confined to the sites of cotyledon initiation, and at later 
stages, mainly in the apices of cotyledon primordia. Additionally, STY1 
expression is visible in the margins of the cotyledon primordia. SRS5 
expression could only be detected in the apical tip of cotyledons in the torpedo 
stage. This suggests that the five genes have partly overlapping functions, but 
differ in on-set during embryo development. At the globular stage, their 
expression overlaps in the apical tiers with that of auxin biosynthesis genes, 
including YUC4 (Robert et al., 2013; Cheng et al., 2007), suggesting that the 
SHI/STY proteins may play a role in the induction of the apical auxin 
biosynthesis. Interestingly, it has been suggested that apical auxin biosynthesis 
at this stage is required for PIN1 polarization in the pro-embryo (Robert et al., 
2013), adding to the importance of spatiotemporal regulation of auxin 
biosynthesis. In addition, YUC4 expression also overlaps with SHI/STY activity 
in apices of cotyledon primordia (Cheng et al., 2007). 

Although the expression of SHI/STY genes also partially overlaps in apices 
of very young leaf primordia, and in hydathodes, preceding YUC4 expression 
(Wang et al., 2011), they appear to have more diverged functions during the 
differentiation process. Only STY1 is active in the margin and base of the leaf 
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primordia, sites where YUC1 also is active, whereas STY2 is expressed in 
apical areas of incipient midvein formation, again preceding the expression of 
YUC4 (Wang et al., 2011). 

3.4.2 SHI/STY members act redundantly during vascular patterning and vein 
development (IV)  

Indeed, cotyledons and leaves of the shi/sty mutants show defective venation 
pattern and also defective continuity of the venation system. The number of 
secondary veins was significantly reduced and the frequency of free vein ends 
was increased, suggesting that SHI/STYs are necessary both for vein formation 
and differentiation. These venation phenotypes resemble those of multiple yuc 
mutants (Cheng et al., 2007; Cheng et al., 2006), suggesting that the SHI/STYs 
affect venation via their regulation of auxin biosynthesis at cotyledon and leaf 
marginal tissues. Importantly, gaps in the vessels were observed in shi/sty 
mutants, which were either lacking any types of the vascular tissue, suggesting 
that procambial cells were not selected at these sites, or only xylem, 
implicating that differentiation was affected. Additionally, we could note an 
ectopic vascular fragment at the apex, further referred to as a “distal peg” 
phenomenon. The frequency of all of the detected defects increases with the 
number of mutated SHI/STY family members, implying that they act partially 
redundantly in controlling procambium formation, vein patterning and 
differentiation, which is consistent with their partially overlapping expression 
pattern during cotyledon and leaf development. 

3.4.3 The expression pattern of SHI/STY genes is altered when auxin 
accumulation sites and levels are modulated (IV)  

Positive feedback mechanisms in auxin homeostasis and signaling are 
important in regulating plant development (Leyser, 2006), and in an attempt to 
study if the SHI/STY genes are activated by auxin during cotyledon and leaf 
development we studied their expression patterns when auxin transport or 
auxin levels were altered. Generally, treatment with the auxin transport 
inhibitor NPA resulted in an ectopic expansion of the SHI/STY expression 
domains from marginal foci towards larger parts of marginal area in both 
cotyledons and leaves.  A similar expansion of the SHI/STY expression domain 
was also observed upon exogenous auxin treatment of leaf primordia, although 
STY1 activity was also partially induced in the leaf blade, implying that the 
SHI/STY genes are able to respond to altered auxin distribution and auxin 
levels only in certain domains. As expected, ectopic auxin responses detected 
by DR5 activity was also induced in overlapping marginal sites in NPA treated 
leaves (IV; Mattsson et al., 1999), whereas exogenous auxin treatment resulted 
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in elevated auxin responses in the central domain of leaf primordia, suggesting 
that auxin regulates DR5 and SHI/STY genes through at least partially different 
pathways. The results suggest that a positive feed-back loop could potentially 
be in action in the SHI/STY activity domains, which ensures a stable and high 
auxin biosynthesis rate at these sites. 

3.5 Expression of SHI/STY members is regulated via a GCC 
box element (V) 

3.5.1 A conserved GCC-box regulates SHI/STY expression in aerial plant 
tissues (V)   

The overlap in expression domains and function of the SHI/STY genes suggests 
that they may be partially co-regulated by common transcription factors and 
regulatory elements. By comparing the promoter sequences of the SHI/STY 
genes we identified a gene-family specific GGCGGC element, defined as an 
inverted GCC-box (GCCGCC). Mutation of this motif in the STY1 promoter 
resulted in entire loss of STY1 expression in the distal part of the cotyledon tip, 
leaf primordia, apical end of the young gynoecia, style, stigma, ovule and 
receptacle, whereas STY1 expression in hypocotyl, petiole, proximal part of the 
cotyledon, and lateral root primordia appears to be GCC-box independent. In 
addition, loss of the GCC-box in the lrp1 mutant results in restriction of the 
LRP1 activity to lateral root primordia (Smith & Fedoroff, 1995). Although 
GCC-boxes originally were implicated in AP2/ERF mediated ethylene 
responses, we could not observe any activation of STY1 after ACC-treatment, 
suggesting that the SHI/STY GCC box is not related to ethylene signaling. 

3.5.2 DRNL and its homologues regulate the SHI/STY genes expression (V)  

In a search for AP2/ERF proteins potentially involved in transcriptional 
regulation of SHI/STY genes via the GCC-box, we found the work by Ikeda 
(Ikeda et al., 2006) and Marsch-Martinez (Marsch-Martinez et al., 2006) 
revealing that the activity of at least four SHI/STY genes was induced by 
constitutive expression of the AP2/ERF protein ESR2 (ENHANCER OF 
SHOOT REGENERATION2)/ DRNL (DORNRÖSCHEN-LIKE), and we 
could show that this activation do not require any intermediate protein 
synthesis. Interestingly, the close homologue of DRNL, DRN, can interact with 
GCC-sequences both in vitro and in vivo (Matsuo & Banno, 2008; Banno et 
al., 2001) and when the STY1 GCC-box was mutated the ability of DRNL to 
activate STY1 was abolished. In addition, DRN/DRNL and SHI/STY expression 
overlaps in embryo, cotyledon primordia, leaf primordia, tip of young leaves, 
stipules, ovules and carpels (Cole et al., 2009; Kirch et al., 2003) and ectopic 
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expression of members of both gene families results in similar phenotypic 
defects, such as short internodes and hypocotyls (Nag et al., 2007; Ikeda et al., 
2006; Marsch-Martinez et al., 2006; Kirch et al., 2003; Kuusk et al., 2002; 
Fridborg et al., 1999). However, these defects were completely restored when 
DRNL was ectopically expressed in the shi/sty multiple mutant background, 
suggesting that the SHI/STY members are mediating the phenotypic effects of 
ectopic DNR/DRNL activity. 

In order to test if DRNL and its homologues regulate SHI/STY members in 
its native expression domains, we generated a triple mutant carrying mutations 
in DRN, DRNL and a third member of the same AP2/ERF subfamily, PUCHI 
(Nakano et al., 2006). The STY1 transcript level was not affected in the drnl-1 
or the drnl-1 drn-1 mutants, but significantly reduced in the strong drnl-2 
mutant and the drnl-1 drn-1 puchi-1 triple mutants, suggesting that 
DRN/DRNL family members indeed regulate STY1 activity during plant 
development. Furthermore, the STY1pro:GUS expression in drnl-2 was 
specifically reduced in tissues requiring the GCC-box for STY1transcription. 

Apart from cotyledon defects, drn-1 drnl-1 plants produce gynoecia with a 
reduced valve-length, a phenotype typical also of SHI/STY multiple mutants, 
and the 35Spro:STY1-SRDX line (I; Chandler et al., 2011; Kuusk et al., 2006). 
In the puchi-1 drn-1 drnl-1 triple mutant, this phenotype is dramatically 
enhanced and a high frequency of valveless gynoecia with a ring of meristem-
like tissue around stigma is produced. This is a phenotype also resembling 
multiple YUC-family mutants (I; Cheng et al., 2006; Kuusk et al., 2006). Since 
YUC4 is a direct downstream target of STY1 (I), this creates a strong link 
between DRNL and other VIII AP2/ERF genes, STY1 activation, and YUC4 in 
the regulation of e.g. gynoecia development. 
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Figure 8. Model summarizing presented data 
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4 Conclusions 
This work presents some of the new insights into regulation of plant organ 
development regulated by the SHORT INTERNODES/STYLISH gene family.  
 
The main conclusions are: 
 
The SHI/STY genes encode DNA-binding transcriptional activators acting 
highly redundant in various developmental processes. They are activating the 
expression of genes encoding other transcription factors and also specific 
enzymes involved in auxin biosynthesis or processes of cell wall modulations.   
 
In addition to their role in gynoecium and leaf development, we can conclude 
that the redundant actions of SHI/STY family members also are important for 
proper cotyledon and leaf venation patterning, stamen number, and flowering 
time.  
 
Expression of SHI/STY members is partially co-regulated through a conserved 
promoter element, the GCC-box-like regulatory motif, and members of the 
AP2/ERF gene family are potential upstream regulators.  
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5 Future perspectives 
Decades of Arabidopsis research have brought us tremendous knowledge of 
plant biology. It is of great interest to try to verify these findings and 
interconnect them into a “bigger picture”. Therefore, I believe that studies of 
this model organism have not yet reached the highest peak. Research work 
investigating the role of SHI/STY gene family members is also far from 
completed.  

Future research include following possibilities and goals: 
− To investigate which developmental processes the SHI/STY genes 

affects via the regulation of auxin homeostasis, constructs modulating 
the endogenous auxin levels in the STY1 expression domain could be 
used. Can elevated auxin degradation in this domain mimic all or just 
a subset the shi/sty multiple mutant phenotypes? And can elevated 
auxin biosynthesis in the STY1 expression domain rescue all, or only a 
subset of the shi/sty multiple mutant phenotypes? 

 
− Which additional roles do the SHI/STY members play during plant 

development? This could be approached by making even higher order 
multiple mutants, and to characterize the expression domains of all the 
members of the gene family. In addition, constructs repressing 
common downstream targets in the STY1 expression domain could be 
made (e.g. STY1pro:STY1-SRDX). It would be specifically interesting 
to understand their role in tissues where SHI/STY gene expression 
overlaps, but where no phenotypic defects so far has been detected in 
the existing multiple mutant lines (such as e.g. lateral root primordia).  

 
− To identify additional downstream targets using e.g STYpro:STY1-

GFP for ChIP-sequencing. This may, in addition to revealing new 
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downstream pathways, also reveal if additional genes belonging the 
same gene family as already identified SHI/STY downstream targets 
are regulated by SHI/STY members.  

 
− To further characterize the function of identified downstream targets 

by e.g. crossing lines carrying mutations in the target genes with 
mutants in closely related genes. 

 
− To further characterize SHI/STY promoter elements and to identify 

additional upstream regulators. As only a subset of the STY1 
expression domain appears to be dependent on the identified GCC-
box, the SHI/STY genes must be regulated through as yet unidentified 
promoter elements. In addition, additional AP2/ERF proteins might 
also be involved in regulation of SHI/STY gene expression via the 
GCC-box.  
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