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1. Summary 
In the ecological context of insect-plant interactions, the interdependence of each other is 

important for their survival in complex ecosystem. Insect herbivores locate suitable host plants 

that can provide better resources for food and reproduction. In nocturnal herbivores, especially 

Lepidopterans, olfaction plays a major role during the selection of suitable host plants. 

Generally, Lepidopteran herbivores orient towards host plants using sensory cues such as 

volatile chemicals. Search for a host plant suitable for feeding, mating and oviposition is 

pertinent to the females while males are more conscious in mate and food findings. In addition, 

the chances of encountership between males and females increase in the presence of healthy 

host plants. Female moths prefer to lay eggs on healthy plants in order to provide better food 

resources for their offsprings. On the other hand, plants defend themselves from herbivore 

feeding by producing chemical volatiles as well as non-volatiles. The specific blend of volatile 

compounds in response to feeding damage by herbivores is commonly called as herbivore-

induced plant volatiles (HIPVs). HIPVs are ecologically important because the plant species 

that release these compounds can improve their performance against attacking herbivores by 

several means e.g., by attracting the natural enemies of the herbivores or by repelling 

herbivores at a distance.  

 

Here, I review induced defenses in plants based on their classification along with perception 

and signaling in response to herbivory. In addition, the ecological significance of HIPVs at 

different levels will be described. Furthermore, I will highlight the ease of screening HIPVs on 

olfactory basis, by using different approaches within the laboratory, for their future 

implications in plant protection program. 
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2. Introduction 
Green plants are a food source for herbivores. The diversity of potential threats to plants in 

nature is wide and quite impressive. Important herbivores are mammals, reptiles, amphibians, 

birds, mollusks, worms, arthropods, viruses, bacteria, fungi, and other microorganisms. 

Representing a significant part of life on earth, insect herbivores are a considerable threat to the 

plants (Karban and Baldwin, 1997). Insects use various feeding strategies to obtain nutrients 

from all above (vegetative) and belowground (root) plant parts and inflict mechanical damage 

on plant tissues. The quantity and quality of injury varies greatly, depending on the feeding 

tactic. Approximately two thirds of all known herbivorous insect species are leaf-eating beetles 

(Coleoptera) or caterpillars (Lepidoptera) that cause damage with mouthparts designed for 

chewing, snipping, or tearing (Schoonhoven et al., 1998; Howe and Jender, 2008).  

 

Plants are considered to be well defended if they have the abilities of either escaping from the 

herbivore preference during their attack or decreasing the performance of the herbivores or 

their population fitness after attack. The plants equipped with such traits are likely to be better 

represented in the future generations than those that failed to resist against their attackers. 

Plants have to evolve or select among such traits in order to combat the selection pressure of 

the attacking herbivores (Karban and Baldwin, 1997).  Hence, the defensive traits of plants 

help them to develop resistance against herbivores and allow them to confront herbivores 

directly; by affecting either herbivore preference or their reproductive success on host plant, or 

indirectly; by attracting the natural enemies of the herbivores (Kessler and Baldwin, 2001; 

Dicke, 2009).  

 

Expression of some defensive traits in plants is termed as constitutive because these traits 

develop under the continuous developmental program within the plant. Constitutive traits 

generally protect the plants against the direct effect of the biotic and abiotic factors, 

categorized into “direct defense”. Physical factors including morphological and structural 

features of the plants constitute direct defense e.g., reproductive tissues contain large amounts 

of defensive proteins and metabolites (Howe and Jender, 2008) (Fig.1). These plant’s inherited 

defensive traits cope with the situations such as antixenosis (when these morphological 

features have negative impact on the insect preference such as host plant selection, oviposition 

and feeding behaviour) and antibiosis (when these morphological traits have negative impact 

on the performance of insects such as growth rate, development and reproductive success). 
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Thus far, plant defenses were generally assumed to be constitutive i.e., always expressed in the 

plant and function independent of herbivore attack. Since after the initial report on proteinase 

inhibitor (PIs) by Green and Ryan (1972), numerous defensive traits have been identified in 

many plant species that are induced by herbivore-feeding or mechanical wounding. In their 

fascinating work, Green and Ryan showed that potato and tomato plants accumulate PIs 

throughout the plants´ tissues after damaging the leaves by adult Colorado potato beetles as 

compared to the control plants. They further suggested the role of PIs as a protection agent 

against further herbivore infestation. Karban & Baldwin (1997) referred these changes in plants 

after damage as “Induced Responses”. Biochemical factors; such as anti-nutritive proteins & 

metabolites, and ecological factors; such as herbivore preference and performance & tritrophic 

interaction (involving other species), are the determinants of the induced responses (Karban 

and Baldwin, 1997; Kessler and Baldwin, 2001; Bruinsma and Dicke, 2008).  

 

                          
Figure 1. Classification of defensive traits in plants categorized under their mode of interactions with the 

insects. (Modified from Schaller, 2008) 
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 3. Induced Responses in Plants 

Nocturnal insects, esp. Lepidopterans, orient towards the host plants by exploiting the volatile 

chemical cues from the plants. Generally, the survival of offsprings in lepidopteran herbivores 

depends on the preference of the females during the selection of suitable host plants for 

oviposition. Once after hatching on the female selected plants, the Lepidopteran larvae are 

relatively immobile and have less choice to find alternative food plants (Renwick, 1989; 

Renwick and Chew, 1994). Soon after hatching, the Lepidopteran larvae start feeding on the 

green foliage of the selected host plant vigorously that can cause a significant loss of plant 

biomass. Some plant species efficiently produce secondary metabolites, both volatiles and non-

volatile chemicals, in response to feeding damage by herbivorous arthropods. These secondary 

metabolites have been documented in several studies as a reliable source of increasing plant 

resistances against herbivores both at above-ground and below-ground levels (Paré and 

Tumlinson, 1996; Agrawal, 1998; Farmer, 2001; Heil, 2004; Kost and Heil, 2006; Rasmann 

and Turlings, 2007; Kost and Heil, 2008).  

 

Induced response traits mainly depend on the environmental conditions prevailing around the 

host plants. Induced responses can be classified into; (1) induced resistance, and (2) induced 

defenses 

 
3.1. Induced Resistance  

The induced responses that reduce herbivore survival, reproductive out put, or preference for a 

plant are termed as “induced resistance”.  Induced resistance has been discussed from the 

herbivore’s point of view, and it does not necessarily benefit the plant. For example, the 

investment in induced resistance may exceed the benefit from reduced herbivore damage, or 

induced resistance may render the plants more vulnerable to other potential danger (Karban 

and Baldwin, 1997; Agrawal and Karban, 1999) 

 

3.2. Induced Defense 

The induced responses that minimize the negative fitness consequences of the subsequent 

herbivore attacks on plants either by repelling them or by attracting the natural enemies 

(predators and parasitoids) of the herbivores are termed as “induced defenses”.  Induced 

defense is viewed from plant’s point of view, and plant gain benefit from these responses in all 

circumstances (Karban and Baldwin, 1997; Agrawal and Karban, 1999). 
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4. Classification of Induced Defenses 
Two types of induced defenses are commonly distinguished. 

 

4.1. Induced Direct Defense 

Defense is called direct if the induced responses affect the interaction between herbivore and 

its host plant directly. It relies on morphological features such as, thorns, spines, and trichomes, 

epicuticular wax film and wax crystals, tissue toughness, as well as secretory structures and 

latices and resins containing channels. They also include compounds for chemical defense, like 

secondary metabolites, digestibility-reducing proteins and anti nutritive enzymes (Howe and 

Schaller, 2008).  

 

4.2.  Induced Indirect Defense 

Two systems are involved to understand the whole mechanism of induced indirect defense in 

plants under the attack of the herbivores: 

4.2.1. Extrafloral Nectar Production 

4.2.2. Herbivore Induced Plant Volatile Production 

 

4.2.1. Extrafloral Nectar Production 

Herbivore feeding induces plant defense by producing the extra-floral nectar (EFN) that is 

exploited as alternative food source by carnivorous arthropods. EFN-production has been 

described in ca. 1000 plant species belonging to at least 93 different families (Karban and 

Baldwin, 1997). Using an acquisitive approach towards indirect defense, many plants attract 

ants as well as other predators and parasitoids to their above ground parts by secreting nectar 

from extrafloral nectaries in order to increase their own reproductive fitness. In the context of 

EFN-production, vegetative plant parts such as stem and leaves as well as the flowers are 

actively involved (Wäckers et al., 2001; Röse et al., 2006; Wäckers et al., 2007; Heil et al., 

2010).  

 

Some of the well-documented examples from this system are as follows: The ant-acacia system 

is among the best-described system in EFN production by the plants for their defenses against 

the attacking herbivores. Due to the presence of eggs and damaged caused by the young larvae 

of the main herbivore Ceratomia catalpae (Sphingidae), the leaves of Catalpa speciosa 
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(Bignoniaceae) secrete more nectar compared to the unattacked leaves and reduce herbivory by 

enhancing more and frequent visitations of the ants as well as ladybird beetles and a parasitoid, 

Apanteles congregatus, of herbivores (Stephenson, 1982).  

 

In repose to feeding damage by Spodoptera littoralis larvae, foliar EFN-production in caster 

Ricinus communis and cotton Gossypium herbaceum plants has been increased 2.5 and 12 folds 

respectively, as compared to the control plants or mechanically damaged plants (Wäckers et 

al., 2001). These plants efficiently adjust their nectar production in order to recruit the 

predators and parasitoids to the site of attack when exactly needed (Röse et al., 2006). Kost and 

Heil (2006) have shown that herbivore-induced EFN production in Lima bean Phaseolus 

lunatus plants results in increased numbers and duration of visits by carnivorous arthropods 

e.g. ants and wasps. Moreover, it has also been found previously that EFN production increases 

under the external application of jasmonic acid (a plant-hormone) on lima bean P. lunatus 

plants that help in reducing the amount of leaf damage indirectly via ants and wasps (Heil, 

2004). 

 

4.2.2. Herbivore-induced Plant Volatile Production 

A second stretegy of induced indirect defense is the production of volatile organic compounds 

(VOCs) in response to various stimuli e.g., herbivore infestation, pathogen infection, 

mechanical damage etc. VOCs produced specifically in response to herbivore infestation are 

known as herbivore-induced plant volatiles (HIPVs). These HIPVs emanate from the exposed 

herbaceous parts (most probably from leaves and flowers) and provide airborn signals 

(chemical informations) either attract carnivorous arthropods (predators and parasitoids) or 

deter ovipositing females from their host plants (Dicke and Sabelis, 1988; De Moraes et al., 

1998; Arimura et al., 2005; Turlings and Ton, 2006; Zakir et al., 2009; Dicke and Baldwin, 

2010; Hare, 2011).  

 

Thus, the plants use their induced direct defenses to alter the preference (oviposition site-

selection) or performance (larval feeding) of the attacking herbivores. For example, cabbage 

Brassica oleracea plants reduce oviposition preference of adult female moths of Pieris rapae 

and larval performance after infestation (Fig. 2). Similarly, HIPVs help the attacked plants in 

reducing the further herbivore attack in two ways; i) through induced direct defense, by 

deterring the ovipositing females of cabbage butterfly P. rapae, as well as ii) through induced 

indirect defense, by attracting the larval parasitoid Cotesia glomerata (Fig. 2).  
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Figure 2. Illustration of induced direct and indirect defenses in response to herbivory in Brassica-Pieris 

system (Modified from Bruinsma and Dicke, 2008; Photos: Hans Smid / bugsinthepicture.com). 

 

Further in our studies, we will try to highlight the investigations so far has been made in the 

field of induced direct and indirect defenses in plants in response to the herbivore attack as 

well as we will discuss the ecological significances of these induced defenses with respect to 

their possible role as future implications in the existing agricultural systems.  

 

5. Investigations of Induced Defenses 
Undamaged leaves of a plant release low levels of volatile chemicals, but when herbivorous 

insects damage a plant, the phenotype of the plant is entirely changed and many more volatiles 

are released.  This type of phenotypic plasticity of plants in response to herbivory influences 

the community dynamics in the ecological systems both directly and indirectly e.g., through 

tritrophic interactions. The term “phenotypic plasticity” is defined as “independent of 

antagonists or mutualists, when individuals of two species interact in a community, one partner 

can adjust its phenotype in response to its respective partner” (Agrawal, 2001). As a result, the 
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general appearance of the attacked plants become highly appealing towards natural enemies 

that enhance their foraging towards the damaged parts where the herbivores are feeding and 

that ultimately enhance the plant fitness by reducing herbivores (Turlings et al., 1995; De 

Moraes et al., 1998; Kessler and Baldwin, 2001).  

 

Phenotypic plasticity in terms of “induced direct and indirect defenses” can influence many 

more interactions within the organisms belonging to different communities. The integrated 

knowledge of herbivore induction, mechanism of volatile production and their perception at 

different levels of organisms is important 

for understanding the ecological 

interactions and formulation of 

manipulative tools against attacking 

herbivores (Bruinsma and Dicke, 2008).  

 

Herbivore-challenged plants survive in the 

complex ecosystem of insect-plant 

interaction under the following 

consequences:  

(a) Perception of herbivore species: attacked 

plants introduce herbivore-associated 

molecular patterns (HAMP) in response to 

the specific herbivore-elicitors (Felton and Tumlinson, 2008; Mithofer and Boland, 2008).  

(b) Further, these HAMP help plants in initiation of the signalling mechanism within the plant 

tissues according to the specific herbivore attack, (Kessler and Baldwin, 2002) and finally, 

(c) Emissions of defensive compounds (volatiles and non-volatiles) occur from the attacked 

plants, both locally and systemically, in the surroundings for their protection against further 

herbivore attack (D' Alessandro et al., 2006; Kost and Heil, 2008) (Fig 3).  

 

Now, it is important to investigate the above mentioned consequences in detail that how plants 

perceive and trail their signaling mechanisms in response to the herbivore attack and which 

defensive compounds are ecologically important for plants to synthesize and how these 

compounds are functional in nature. 

 

Figure 3. Herbivory and its related consequences 

in the ecosystem among insect-plant ineractions. 
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5.1. Plant Perception of Herbivory 
Recent work on plant perception of herbivory suggested that a component or components 

associated with feeding herbivores are helpful for the plants in distinguishing between general 

wounding and damage inflicted by chewing herbivores. Many plant species including cotton, 

tobacco, maize, potato, tomato and lima bean have been reported to release induced volatiles in 

response to the feeding damage of the their respective herbivores (Paré et al., 2005; Mithofer 

and Boland, 2008). For instance, cotton plants have been described as to modify their volatile 

profiles after their exposure to Lepidopteran larvae. Diurnal and nocturnal variation in the 

emission of the volatiles e.g., (E)-β-ocimene, linalool,  (E)-β-farnesene, (E)-4,8-dimethyl-1,3,7-

nonatriene (DMNT), (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) and indole, has 

also been described in among the herbivore damaged cotton plants (Mccall et al., 1994; 

Loughrin et al., 1995; Jönsson and Anderson, 1999) (Fig. 5).  

 

Elicitation of these induced volatiles is due to high concentration of a signaling molecule 

jasmonic acid. An elicitor is a general term implied for any signaling compounds that can 

stimulate herbivore-induced plant responses. Basically, it is derived from plant-pathogen and 

plant-microbial interactions where they are classified as pathogen-associated molecular 

patterns (PAMPs) or microbe-associated molecular pattern (MAMPs). Similarly, HAMPs are 

herbivore-derived elicitor-like signaling molecules that interact with the particular host plants  

(Loughrin et al., 1994; Paré and Tumlinson, 1999; Felton and Tumlinson, 2008; Mithofer and 

Boland, 2008).  

 

These HAMPs can be categorized into as chemical elicitors (produced by the herbivore oral 

secretions, saliva and oviposition fluids) and those that originate under herbivore specific 

wounding pattern. To date, five different herbivore-produced elicitors have been identified and 

documented with examples about their impressive role in the production of plant volatiles, 

which mediate complex, chemical interactions at plant-herbivore interface (Fig 4). Four of 

them are associated with herbivore feeding [three of these elicitors were isolated and identified 

from larvae of moths and butterflies and fourth from grasshoppers] while the fifth elicitor is 

derived from oviposition fluid deposited by weevils (Felton and Tumlinson, 2008; Jianqiang 

and Ian T, 2009).  

 

β-Glucosidase is the first claimed elicitor separated from regurgitate of the white cabbage 
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butterfly P. brassicae caterpillars. Mattiacci and her co-workers (1995) found that under the 

application of gut regurgitant of P. brassicae caterpillars on the healthy leaves of cabbage 

plant, a specific blend of volatiles (similar to that of herbivore-damaged plants) was being 

emitted that was highly attractive to parasitic wasps C. glomerata.  

 

 
Figure 4. Herbivore-elicitors reported from oral secretions and oviposition fluids (Jianqiang and Baldwin, 

2009). 

 

Volicitin was isolated from oral secretion of beet armyworm Spodoptera exigua larvae (Fig. 

4b). Female parasitic wasps, C. marginiventris, natural enemies of S. exigua larvae, were found 

highly attractive to the volatile blend emitted from the damaged maize Zea mays plants after 

applying volicitin as compared to the volatile blend emitted from only mechanically damaged 

plants (Alborn et al., 1997). In contrary, volicitin was unable to regulate the same mechanism 
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of volatile induction in lima bean Phaseolus lunatus and cotton Gossypium hirsutum plants. 

Thus, volicitin should not be considered as a “general elicitor” of induced plant volatiles. 

Inceptin was isolated from the oral secretions of fall armyworm S. frugiperda caterpillars after 

feeding them on the cowpea leaves (Schmelz et al., 2006) (Fig. 4a). Another class of fatty acid 

elicitors of plant volatiles was isolated and identified from the oral secretions of the 

grasshopper Schistocerca americana. They were commonly occurring in the Orthoptera 

suborder Caelifera, and thus have been named as Caeliferins (Alborn et al., 2007) (Fig. 4c). 

The only known insect-produced elicitors involved in induced direct plant defenses are the 

Bruchins (Doss et al., 2000) (Fig. 4d). These compounds were deposited on pea Pisum sativum 

pods during oviposition by both pea weevils Bruchus pisorum and cowpea weevils 

Callosobruchus maculates and direct the plants to form callus tissue under the eggs to avoid 

the hatched larvae from burrowing directly into the pea pod. Recently, benzyl cyanide (BC) 

isolated from P. brassicae oviposition fluid has been identified as the second elicitor in 

oviposition fluid (Fig. 4e). The egg parasitoid, Trichogramma brassicae, was attracted to 

Brussels sprouts plants B. oleracea under the application of BC (1 ng) (Fatouros et al., 2008) 
 

5.2. Plant Signaling in Response to Herbivore Damage 
Depending on the type of the insect elicitors, plants adjust their innate response to insect 

feeding by activating several major signal-transduction pathways that leads to the induced 

production of a variety of secondary metabolites particularly terpenoids and green leaf volatiles 

(GLVs). All of these signal-transduction pathways are regulated by various plant hormones 

such as jasmonic acid (JA), salicylic acid and ethylene. These plant hormones are activated by 

insect feeding damage as well as by mechanical damage. In addition, synergistic and 

antagonistic relationship between these hormones suggests that plants and the interacting 

herbivores can profoundly effect the end results of the interactions i.e., by suppressing or 

overexpressing the induced volatiles (Arimura et al., 2005; Leitner et al., 2005; Mithofer et al., 

2005; Mithofer and Boland, 2008; Arimura et al., 2009; Zhang et al., 2009).  

 

The octadecanoid pathway, also known as lipoxygenase pathway, is a major signal-

transduction pathway regulated by the plants in response to lepidopteran herbivores. Plants 

provide 18-carbon fatty acid (linolenic acid) to the lepidopteran larvae feeding on them as a 

precursor molecule to initiate the plant’s innate defense mechanism via the octadecanoid 

pathway (Fig. 5). Though linolenic acid is a defensive element against lepidopteran herbivores, 

it is impossible for them to get rid of linolenic acid because it is an essential element for the 
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growth and development of the young larvae.  The breakdown of linolenic acid into various 

intermediate molecules such as 13-hydroperoxylinolenic acid, oxophytodienoic acid and 

others, leads to the production of JA (Paré and Tumlinson, 1999). Methyl jasmonate (MeJA) or 

cis-jasmone is a volatile derivative of JA. Both JA and MeJA are reported as defense inducing 

agents in plants against the attacking herbivores (Birkett et al., 2000; Bruinsma et al., 2009). 

 

 
Figure 5. HIPVs signaling pathways demonstrating the production of terpenoids, jasmonic acid, green 

leaf volatiles (GLVs) and Indole by the feeding damage of the lepidopteran caterpillars on the plant 

(Arimura et al., 2005).  

 

The importance of JA in the signal-transduction cascade has been confirmed by the fact that (i) 

the external application of JA helps in initiation of defense response sequences e.g., JA-treated 

plants of black mustard B. nigra were rejected by its specialist herbivore P. rapae and secondly 

JA application increased the plant performance by attracting a predator C. glumerata of the 

herbivores (Bruinsma et al., 2008). (ii) correlation exists between increased internal JA level 

after wounding and induced defense responses e.g., root application of MeJA increased the 

nicotine concentration in the above-ground parts of Nicotiana attinuata plants that significantly 

suppressed the herbivore attack of grasshopper Trimerotropis pallidipennis (Baldwin, 1998),  

and (iii) inhibition of JA producing pathway corresponds to the inhibition of defense responses 

e.g., phloem feeding insects (aphids, white fly) trigger salicylic acid mediated pathway and 

suppress the jasmonate signaling pathway that in turn suppress the production of terpenoids. 

phosphatidic acid, and N-acylethanolamines, which travel
through the vascular system of the plant. However, actual
evidence for a possible involvement of DIR1 in an
herbivore-induced defence is still lacking. In addition,
electrical signals have been noted and claimed to mediate
long-distance interactions in wounded tomato seedlings
[93]. Plants may have multiple systems that enable accurate
long-distance signalling. Thus, JA itself can act as a
systemic signal in tobacco, which is formed in the wounded
leaves and travels to the undamaged distal leaves and roots
where the expression of PI and the nicotine biosynthesis are
induced, respectively [94,95].

3. Biosynthesis of herbivore-induced plant volatiles
(HIPVs)

3.1. Volatile terpenoids

Volatile terpenoids which can be induced by herbivore-
feeding comprise monoterpenes (C10), sesquiterpenes (C15)
and homoterpenes (C11 or C16). All terpenoids are synthes-
ised through the condensation of isopentenyl diphosphate
and its allylic isomer dimethylallyl diphosphate by catalysis
of farnesyl diphosphate (FPP) synthase via the mevalonate
pathway (cytosol/endoplasmic reticulum) or geranyl diphos-
phate (GPP) and geranylgeranyl diphosphate via the methyl-

d-erythritol-1-phosphate pathway in plastids [96,97] (Fig.
3). A large, structurally diverse number of terpenoids are
yielded by a large family of terpene synthases (TPS) using
GPP and FPP as substrates. In Arabidopsis, 32 genes
including two gibberellin biosynthetic genes are putative
members of the TPS family [98], some function as mono-
TPSs and sesqui-TPSs [99–102]. Terpenoid formation is
generally assumed to be regulated on the transcript level of
the TPS genes [91,103–105].

However, the regulation mechanism seems to be rather
complex, because herbivore-induced TPS transcripts and
terpene emissions are affected by several factors (for
example, by diurnal rhythmicity and distance to herbivore-
damaged tissue) [91,106]. Fig. 4 shows temporal patterns of
volatile emissions in Lima bean leaves following herbivore
attack by S. littoralis over 4 days. The release of terpenoids
and the C6-volatile (3Z)-hex-3-enyl acetate follows diurnal
cycles with increased emissions during the light period and
reduced emissions during darkness. This result is in line
with findings in Lima beans treated with ALA and poplar
leaves infested with forest tent caterpillars, where the
volatile emissions or the TPS expressions follows diurnal
cycles [91,107]. In this context it would be interesting to
study to what extent volatile emissions are linked to the
endogenous biological clock.

On the other hand, a single event of mechanical damage
or the application of ALA to Lotus japonicus plants was not

Fig. 3. Biosynthetic pathways required for herbivore-induced plant volatiles. Elements in bold are enzymes. Abbreviations: ALDH, aldehyde dehydrogenase;

DMAPP, dimethylallyl diphosphate; DMNT, (E)-4,8-dimethyl-1,3,7-nonatriene; DXP, 1-deoxy-d-xylulose-5-phosphate; DXR, DXP reductoisomerase; DXS,

DXP synthase; FPP, farnesyl diphosphate; FPS, FPP synthase; GGPP, geranylgeranyl diphosphate; GGPS, GGPP synthase; GPP; geranyl diphosphate; GPS,

GPP synthase; HMG-CoA, 3-hydroxy- 3-methyl-glutaryl CoA; HMGR, HMG-CoA reductase; HPL, fatty acid hydroperoxide lyase; IDI, IPP isomerase; IGL,

indole-3-glycerol phosphate lyase; IPP, isopentenyl diphosphate; JA, jasmonic acid; JMT, JA carboxyl methyl transferase; LOX, lipoxygenase; MeJA, methyl

jasmonate; MEP, 2-C-methyl-d-erythritol-4-phosphate; TMTT, 4,8,12-trimethyltrideca-1,3,7,11-tetraene; TPS, terpene synthase.

G. Arimura et al. / Biochimica et Biophysica Acta 1734 (2005) 91–111 97
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Similarly, jasmonate mutated tomato plants has shown less resistance against herbivores 

performance and less attraction to the predators after herbivore attack compared to wild-type 

tomato plants (Thaler et al., 2002; Leitner et al., 2005). 

 

6. Ecological Significance of HIPVs: Specificity and Diversity 

 
Figure 6.  Herbivore-induced plant volatiles (HIPVs) associated interactions among different organisms 

(signal receivers) around a damaged plant (Dicke and Baldwin, 2010). 

 

HIPVs emission from the plant and its perception in the surrounding organisms is quite 

fascinating because different species perceive these chemicals as information to survive in a 

complex environment (Fig. 6).  In tritrophic system, HIPVs help the infested plants by 

attracting the natural enemies (predators and parasitoids) of the herbivores in order to reduce 

the further level of herbivore infestation. For example, HIPVs from maize Z. mays plants 

infested by Egyptian cotton leafworm S. littoralis, attract the parasitoids C. marginiventris and 

Microplitis rufiventris towards infested parts (D' Alessandro et al., 2006). Similarly, a lima 

bean plant P. lunatus release HIPVs after the infestation of the two-spotted spider mites 

Tetranychus urticae from the vegetative parts and attract predatory mites Phytoseiulus 

persimilis for protection against the increasing population of T. urticae (Dicke and Van Loon, 

2000). A recent investigation has shown that tobacco N. attenuata  releases (E)-isomers of 
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green leaf volatiles (GLVs) instead of (Z)-isomers (produced on mechanical damage) after the 

infestation of Munduca sexta. This isomeric change in GLVs [(E)-isomers] ultimately 

influence the foraging efficiency of the generalist hemipteran predator Geocoris spp. towards 

the exact location of the neonates and eggs on the plants (Allmann and Baldwin, 2010). In 

addition, HIPVs provide protection to the below-ground plant parts against the attacking 

herbivores e.g., the roots of Z. mays plant infested by root-feeding beetles Diabrotica virgifera 

virgifera, release (E)-β-caryophyllene into the soil that can help in the foraging of 

entomopathogenic nematode Heterorhabtitis megidis towards the infested roots (Rasmann et 

al., 2005)). As HIPVs provide benefits to both the natural enemies and the infested plants, thus 

they can be categorized as synomones (Table 1). 

 
Table 1. Types and functions of allelochemicals (Arimura et al., 2009) 

 
 
 
Depending on the system and level of infestation, HIPVs exhibit both kairomonal and 

allomonal qualities during the selection (acceptance or rejection) of the suitable host plants at 

2nd trophic level. Though the studies are limited but HIPVs has shown a great influence on the 

herbivore preference behavior during suitable-site selection for feeding, mating and oviposition 

(egglaying behavior in herbivores). Kessler and Baldwin (2001) showed kairomonal effect of 

HIPVs in a field study where ovipositing females of M. sexta avoid the healthy plants of 

tobacco N. attenuata attached with induced volatiles treated with lanolin paste compared to 

untreated plants. Nocturnal female moths of Heliothis virescens showed repellency to the 

induced volatiles of the tobacco N. tabacum plants produced by the feeding of their offsprings 

(De Moraes et al., 2001).  

 

removal of TSSMs from the plant, the HIPVs are classifi ed as 
synomones. Similar interactions between plants and carniv-
orous natural enemies of herbivores have been reported in 
systems consisting of plants, caterpillars and parasitic wasps 
(for review, see  Dicke and van Loon 2000 ,  Sabelis et al. 2007 ). 
For example, maize plants infested by African cotton 
leafworm ( S. littoralis ) emit volatiles that attract parasitic 
wasps  Cotesia marginiventris  and  Microplitis rufi ventris  
( D’Alessandro et al. 2006 ). Recently, parasitic wasps that 
attack eggs of herbivorous insects were reported to use vola-
tile organic compounds of plant origin whose production 
was induced by egg deposition by female herbivores ( Meiners 
and Hilker 1997 ,  Meiners and Hilker 2000 ,  Fatouros et al. 
2008 ). These volatiles are also categorized as HIPVs. 

 HIPV-mediated plant–carnivore interactions are also 
observed even in the soil.  van Tol et al. (2001)  showed that 
the roots of a coniferous plant ( Thuja occidentalis ) release 
chemicals upon attack by weevil larvae ( Otiorhynchus sulca-
tus ) and that these chemicals attract parasitic nematodes 
( Heterorhabditis megidis ). The fi rst such below-ground plant 
signal identifi ed was the root-feeding beetle ( Diabrotica vir-
gifera virgifera )-induced below-ground maize plant signal, 
( E )- β -caryophyllene, which strongly attracts a parasitic nem-
atode ( Rasmann et al. 2005 ).  Rasmann and Turlings (2007)  
further reported that simultaneous feeding by above-ground 
herbivores (African cotton leafworm) and below-ground 
herbivores ( D. virgifera virgifera ) affected the production of 
HIPVs that in turn affected the attraction of the respective 
natural enemies.   

 Interaction between a plant and a herbivore 
mediated by HIPVs 
 Herbivorous arthropods use host-food plant volatiles as one 
of the foraging cues. In general, the amounts of volatiles 
emitted from intact leaves of a plant are rather low, making 

the intact plant inconspicuous to herbivorous insects. In 
contrast, the blend of HIPVs is qualitatively and quantita-
tively different from that of intact leaf volatiles, making the 
plants conspicuous not only to carnivores, but also to herbi-
vores. Thus, HIPVs can be used by con- and heterospecifi c 
herbivores as one of their host-food-fi nding cues.  Horiuchi 
et al. (2003)  reported that lima bean plants slightly infested 
by TSSMs attracted the conspecifi c mites, whereas those 
heavily infested repelled the conspecifi cs. Regarding insect 
herbivores, HIPVs released at night from tobacco budworm-
infested tobacco plants repelled conspecifi c female moths 
( De Moraes et al. 2001 ). Common armyworms ( Mythimna 
separata ) utilize HIPVs emitted from maize plants infested 
by conspecifi cs to determine their nocturnal behavior 
( Shiojiri et al. 2006b ). Recently,  Carroll et al. (2006, 
2008)  reported that neonates and larvae of fall armyworms 
( S. frugiperda ) exploit fall armyworm-induced corn plant 
volatiles as host plant location and recognition cues.   

 Interaction between two plants mediated by HIPVs 
 In response to HIPVs or volatiles from artifi cially damaged 
plants, neighboring intact plants enhance either their direct 
defense (i.e. become a less suitable resource for herbivores) 
or their indirect defense (i.e. attract carnivorous natural ene-
mies of herbivores) ( Bruin et al. 1992 ,  Arimura et al. 2000 , 
 Dolch and Tscharntke 2000 ,  Karban et al. 2000 ,  Choh et al. 
2004 ,  Engelberth et al. 2004 ). 

  Bate and Rothstein (1998)  showed that ( E )-2-hexenal, 
one of the commonly found HIPVs in many plant–herbivore 
combinations, induced several defense-related genes in Ara-
bidopsis. Exposing plants to GLVs induces phytoalexin pro-
duction as well as the expression of defense-related genes in 
several plant species ( Matsui 2006 ). Similarly,  Frost et al. 
(2008)  reported that GLVs prime defense genes and metab-
olites in poplars. Terpenoids ( β -ocimene, DMNT, TMTT and 

 Table 2    Allelochemical terminology   

Allelochemical An infochemical  a   that mediates an interaction between two individuals that belong to different species. 

Allomone An allelochemical that is pertinent to the biology of an organism (organism 1) and that, when it contacts an individual of another 
organism (organism 2), evokes in the receiver a behavioral or physiological response that is adaptively favorable to organism 1, but 
not to organism 2. 

Kairomone An allelochemical that is pertinent to the biology of an organism (organism 1) and that, when it contacts an individual of another 
organism (organism 2), evokes in the receiver a behavioral or physiological response that is adaptively favorable to organism 2, but 
not to organism 1. 

Synomone An allelochemical that is pertinent to the biology of an organism (organism 1) and that, when it contacts an individual of another 
organism (organism 2), evokes in the receiver a behavioral or physiological response that is adaptively favorable to both 
organism 1 and organism 2. 

Antimone An allelochemical that is pertinent to the biology of an organism (organism 1) and that, when it contacts an individual of another 
organism (organism 2), evokes in the receiver a behavioral or physiological response that is adaptively favorable to neither organ-
ism 1 nor organism 2.

  a  An infochemical is a chemical that, in natural context, conveys information in an interaction between two individuals, evoking in the receiver a behavioral or physiological 
response. Pheromone and allelochemical are subcategories of infochemical.  

G.-i. Arimura et al.

918 Plant Cell Physiol. 50(5): 911–923 (2009) doi:10.1093/pcp/pcp030 © The Author 2009.



   16 

 
 

Figure 7. Influence of HIPVs on the oviposition behavior in S.littoralis (Zakir et al., 2009). 

 

Cotton G. hirsutum plant has been reported to undergo stage-dependent induced changes after 

being attacked by the larvae of S. littoralis and these changes further suppress the preference 

for induced plants in the adult female moths of S. littoralis during the selection of the plants for 

oviposition (Anderson and Alborn, 1999). Furthermore, female moths of S. littoralis avoided 

healthy stands of cotton plants exposed to HIPVs produced by the neighboring cotton plants 

that are being infested by the larvae of S. littoralis (Zakir et al., 2009; 2010) (Fig. 7). 

Electrophysiological studies revealed that almost 18 compounds have been identified as 

antennal active on the antennae. At low infestation, a lima bean plant attracts more spider mites 

whereas it repels them at a high infestation level (Horiuchi et al., 2003). 

 

In addition, the volatile produced by plants in response to herbivore infestation (HIPVs), 

pathogen infection and mechanical wounding, collectively called as volatile organic 

compounds (VOCs), can eavesdrop as well as prime the neighboring plants and it has been 

shown that these exposed plants can better protect themselves against the attacking herbivores 

(Farag and Pare, 2002; Farag et al., 2005; Heil and Kost, 2006; Kost and Heil, 2006; Frost et 

al., 2007; Heil and Silva Bueno, 2007; Barbosa et al., 2009). Various mechanisms of plant-

plant communication has been shown to be activated by these VOCs (Fig. 8). Despite the fact 

that the interplant communication phenomenon via HIPVs is quite controversial, some plant 

species such as lima bean, cotton, poplar, black alder, sagebrush, sitka willow, tobacco, maize 

have shown intraspecific signaling while tobacco and tomato has been shown to induce 

defence responses when exposed to damaged sagebrush volatiles as interspecific signaling 

(Heil and Karban, 2010). Plants can get better resistance against attacking pathogens by the 
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efficient use of the HIPVs (mechanism of pathogen 

attack detailed in plant perception of herbivory 

part). By producing GLVs [C6–aldehydes, –

alcohols and –acetates], a prominent and specific 

part of HIPVs, plants can reduce pathogen attack. 

For instance, C6-aldehydes isolated from transgenic 

Arabidopsis thaliana overexpressed with 13HPL 

have been found active agents against a fungal 

pathogen Botrytis cinerea. Similarly (E)-2-hexen-1-

ol enhance the resistance of citrus Citrus jambhiri 

against Alternaria alternata, while in vitro studies 

on cis-3-hexanol and (E)-2-hexenal has shown their 

anti-growth properties against Pseudomonas (Gomi 

et al., 2003; Prost et al., 2005; Felton and 

Tumlinson, 2008; Kishimoto et al., 2008).   

 

7. Conclusion and Future Directions 
Induction of a herbivore-plant interactions demonstrate that plants are efficient in synthesizing 

and releasing HIPVs in response to herbivore attack, from the perception of the attacking 

organism until the response reactions. In addition, such plant produced diverse blends of 

HIPVs depend on the species of the attacker (herbivore) as well as on the plant species itself 

(Arimura et al., 2009; Dicke and Baldwin, 2010). On the other hand, less effort has been made 

to find out the behavioral correlation between ecologically relevant HIPVs and their olfactory 

perception in the insects. At an organism level, it is important to sort out the compounds on 

olfactory basis in order to; i) find out specifically active compounds in the whole blend of 

HIPVs relevant to the insects perception, and ii) get rid of ones that have less/or no importance 

in the insect-plant communications (Bruyne and Baker 2008). Some electrophysiological 

studies i.e., gas chromatography coupled electroantennographic detections (GC-EADs), on the 

members of tritrophic interactions revealed that a key-volatile emanated from infested plants is 

important for the attraction of the predators towards the infested-sites. For instance, out of six 

EAG active compounds from the infested broad bean Vicia faba plant, 6-methyl-5-heptene-2-

one was found as highly attractive for the aphid parasitoid Aphidius ervi (Du et al., 1998), 

similarly, (E)-β-caryophyllene induced by feeding of Nezara viridula on V. faba highly 

Figure 8. Mechanism of plant-plant 
communication via induced production of 
volatiles (VOCs) (Heil and Karban 2010) 
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attracted an egg parasitoid Trissolcus basalis (Colazza et al., 2004). In other studies, a mixture 

of EAG active compounds elicited attraction in predators and parasitoids towards infested 

plants (Gouinguene et al., 2005; Sasso et al., 2009). Electrophysiological studies on herbivores 

showed that antennae of female moths of S. littoralis resoponded to several compounds present 

in the headspace samples of the infested cotton G. hirsutum plant, and interestingly the 

responses were highly selective and consistent to the specific compounds only (Anderson et al., 

1995a; Anderson et al., 1995b; Jönsson and Anderson, 1999; Zakir et al., 2009). In addition, 

olfactory neurons (ORNs) present on the females antennae are highly sensitive to some of 

these compounds but not to all. In later studies, a blend of electrophysiologically active 

compounds elicited avoidance behaviour in S. littoralis during their oviposition-site selection 

that corresponded to the effect elicited by headspace collections from the infested cotton plants 

(Zakir et al., 2010).  

 

In the light of the above discussion on induced plant defenses against herbivores we conclude 

that the risk of herbivory can largely be reduced if the host plants are efficient in producing the 

HIPVs in response to the herbivore attack. These HIPVs ultimately increase plant resistance by 

i) pushing the herbivores away as well as ii) by pulling the natural enemies of the herbivores 

towards the host plants. In order to cope with the herbivore attack, screening of pulling and 

pushing components from HIPVs blend is very important. From a practical perspective, it is 

important to screen the most relevant volatile compounds. Plant physiologists design different 

assays to highlight the functions of the volatile compounds at different organisms levels while 

insect physiologist are more interested in screening these compounds on temporal and spatial 

basis. Laboratory approaches such as GC-EADs and neurophysiological studies e.g., Ca++ 

imaging (Hansson, 1995) are used by insect physiologists for identification and understanding 

the relevance of different volatile compounds during host locations by the herbivores. After 

identifying the electrophysiologically active compounds, it can be much easier to design 

bioassays in the laboratory to find the best possible combinations of the most effective volatile 

compound(s) before using them in the field tests. Further, it is necessary to identify the 

temporal and spatial mechanism of neuronal interactions in the central nervous system (CNS) 

of the insects. No doubt, functional and mechanistic knowledge of HIPVs could help 

agricultural systems in monitoring and controlling the insect pests in a sustainable and 

environmentally safe manner. Thus, the best combination of these approaches can contribute to 

Integrated Pest Management (IPM) program.  
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