

This is an author produced version of a paper published in Biodiversity and Conservation.

This paper has been peer-reviewed but may not include the final publisher proof-corrections or pagination.

Citation for the published paper:

Ranius, Thomas. & Roberge, Jean-Michel. (2011) Effects of intensified forestry on the landscape-scale extinction risk of dead-wood dependent species. *Biodiversity and Conservation*. Volume: 20, Number: 13, pp 2867-2882.

http://dx.doi.org/10.1007/s10531-011-0143-8.

Access to the published version may require journal subscription. Published with permission from: Springer.

Epsilon Open Archive http://epsilon.slu.se

Should be cited as: Ranius, T. & Roberge, J.-M. (2011) Effects of intensified forestry on the landscape-scale extinction risk of dead wood dependent species. Biodiversity and Conservation 20: 2867-2882.

The published article is available at: http://link.springer.com/article/10.1007%2Fs10531-011-0143-8/fulltext.html

Effects of intensified forestry on the landscape-scale extinction risk of dead-wood dependent species

Short title: Effects of intensified forestry on extinction risks

Thomas Ranius^{1,*}, Jean-Michel Roberge²

¹ Department of Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden

² Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences (SLU), S-90183 Umeå, Sweden

* Corresponding author. Dept. of Ecology, SLU, Box 7044, SE-750 07 Uppsala, Sweden, Email: thomas.ranius@ekol.slu.se, Phone: ++46-18-67 23 34, Fax: ++46-18-67 28 90.

1 Abstract

2 In the future, a significant proportion of northern forests may become intensively 3 managed through the planting of monospecific stands of native or introduced trees, and 4 the use of multiple silvicultural treatments such as forest fertilization. Such an 5 intensification of management in selected parts of the landscape is suggested by different zoning models, for example the Triad approach, which is under evaluation in some 6 7 regions of North America. In this study, based on Fennoscandian conditions, we 8 predicted landscape-scale extinction risks of five hypothetical model insect species 9 dependent on fresh dead wood from Norway spruce (Picea abies), by simulating 10 colonizations and local extinctions in forest stands. Intensified forestry applied to 50 % of 11 the spruce stands led to strongly increased extinction risks of all species during the 12 following 150 years. For one species – the sun-exposure specialist – there were strong 13 effects already after 50 years. The negative effects of intensive plantation forestry could 14 be compensated for by taking greater biodiversity conservation measures in other 15 managed forests or by setting aside more forests. This is consistent with the Triad model, 16 which is according to our analyses an effective way to decrease extinction risks, especially for the short-dispersing species and the species associated with closed forest. A 17 18 zoning of forest land into intensive forestry, conventional forestry, and set asides may be 19 better at combining increased timber production and maintenance of biodiversity in 20 comparison to landscapes where all production forests are managed in the same way. 21 22 **Keywords:** CWD, functional zoning, metapopulation, plantation forestry, population

23 viability analysis, saproxylic insects, Triad

24 Introduction

Forest management includes a range of intensities, from management based on close-tonature principles (e.g., Madsen and Hahn 2008) to plantation forestry involving nonnative tree species and multiple silvicultural treatments. Plantation forestry generally implies that tree species (native or introduced) are sown or planted so that evenly spaced and even-aged monocultures are obtained. In 2006 it was estimated that plantation forests covered 3.5 % of the forest area in the world, and the covered area was increasing with 2 % per year (Anonymous 2006).

32 In Sweden, it has been estimated that 4 million ha could be used for intensified 33 forestry, which may be compared with the country's 23 million ha of productive forest. 34 The main part of the land potentially dedicated to intensified forestry is currently 35 supporting conventionally managed forests, and a smaller part is abandoned agricultural 36 land (Larsson et al. 2009). Intensive forestry in Sweden involves multiple silvicultural 37 treatments (including fertilization) in monocultures of introduced tree species such as 38 lodgepole pine (*Pinus contorta*), hybrid aspen (*Populus tremula* \times *P. tremuloides*), and 39 hybrid larch (*Larix* × *eurolepsis*), or of native tree species, especially Norway spruce 40 (*Picea abies*) (Larsson et al. 2009). In Sweden, forest plantations are increasing, and in 41 2005 they covered 2.4% of the forest land (Anonymous 2006).

42 Due to negative effects on the abundance of natural forest structures and processes, 43 intensified forestry has been shown to have negative effects on large numbers of naturally 44 occurring species at the scale of forest stands (e.g., Baguette et al. 1994; Chey et al. 1997; 45 Magura et al. 2000). For example, many saproxylic species (i.e. species dependent on 46 dead wood) may be affected because stands managed intensively for the sole aim of 47 maximizing timber production contain virtually no dead wood of larger diameters, except 48 ephemerally in the case of accidental disturbances, where dead trees are typically 49 salvaged shortly after disturbance. When experts were asked about intensified 50 management in Sweden, they estimated that the effect on all evaluated organism groups 51 (vascular plants, lichens, bryophytes, grasses, shrubs, birds, saproxylic species, and red-52 listed species) would be strongly negative (Gustafsson et al. 2009). Hence, at the scale of 53 individual forest stands, intensive forestry is not compatible with the conservation of 54 native biodiversity. Consequently, implementing intensive forestry over the entire forest

land base would clearly not be compatible with society's commitment to sustainable
development. However, little is known about the ecological effects of dedicating various
proportions of landscapes and regions to intensive forestry.

58 A forest management concept which has gained interest in the past decades is the 59 Triad model (Seymour and Hunter 1992), whereby the forest landscape is divided into 60 three types of uses: (1) intensive forestry, (2) ecological forestry and (3) set-asides. In 61 that zoning system, the negative ecological effects of intensive forestry would be 62 compensated by increased biodiversity conservation measures in the rest of the landscape 63 through ecological forestry and forest protection. Such a zoning model is in place in some 64 regions, e.g. southwestern Australia (Stoneman 2007). The Triad has also been proposed for implementation across Canada's boreal forest (Anonymous 1999) and case studies are 65 66 ongoing in different regions (e.g. Montigny and MacLean 2006; Messier et al. 2009). 67 However, empirical studies of the consequences of such an approach for biodiversity are 68 difficult, because most species extinctions at the landscape level occur with some delay 69 after the management regime has been changed (Ranius and Kindvall 2006).

70 In this study we use population viability analyses of generalized model species over 71 250 years to isolate the effect of different landscape zoning scenarios in the long term. 72 We predict the landscape-scale extinction risk for five saproxylic model insect species by 73 combining simulations of habitat dynamics with a metapopulation model. The aims were: 74 (1) to analyse how long time it takes before intensified forestry increases the extinction 75 risk at the landscape level for species with different characteristics, (2) to compare the 76 response of species with different habitat affinities and life-history traits, and (3) to test 77 the efficacy of compensation measures whereby greater biodiversity consideration is 78 made in the rest of the landscape to counteract the potential negative effects of intensified 79 forestry.

80

81 Methods

82 The metapopulation model

83 For a hypothetical forest landscape divided into forest stands, we used computer

simulations to predict the availability of dead wood in every forest stand and the

85 colonization-extinction dynamics of the saproxylic model species in these stands. As

response variable we used the extinction risk at the landscape level, estimated from 1,000
replicates for each scenario–species combination. This number of replicates is sufficient
to obtain stable outcomes among simulation runs.

We used the incidence function model (IFM) equation to predict colonizationextinction dynamics (Hanski 1994; 2000). Every year each stand could either be occupied or not by a local population. The amount of habitat (denoted by *Q*) in the forest stand is equal to the volume of dead wood suitable for the species.

93 The probability of colonization of an unoccupied stand is a function of its
94 connectivity to existing local populations. The connectivity, *S*, of stand *i* is defined as:
95

96
$$S_i = \sum e^{-\alpha d_{ij}} p_j Q_j$$
 eq (1)

97

98 where p = 0 for unoccupied and p = 1 for occupied stands, Q is the amount of habitat, d is 99 the distance between stands i and j, and $1/\alpha$ is the mean dispersal distance. The yearly 100 colonization probability C of an unoccupied stand is assumed to be a function of 101 connectivity and the constant y:

102

103
$$C_i = S_i^2 / (S_i^2 + y^2)$$
 eq (2)

104

A higher value of *y* implies that a higher connectivity (i.e. larger populations nearby) is
required to obtain a given colonization probability, which may be due to a stronger Allee
effect. The yearly extinction probability for an occupied stand is given by

eq (3)

109
$$E_i = \min\{1, (u / Q_i^x)(1 - C_i)\}$$

110

111 where *u* and *x* are species-specific parameters and $(1 - C_i)$ represents the rescue effect.

112 The risk of extinction of a local population is assumed to be inversely related to Q,

because population size tends to be smaller when the habitat amount is lower, which

114 generates a higher risk of local extinction. *u* reflects the level of the local extinction risk

- and *x* the difference in extinction risk between stands holding large vs. small dead wood
- amounts.

118 Model species

119 We modeled the metapopulation dynamics of five generalized model species of insects 120 having different characteristics regarding mean dispersal distance and substrate 121 requirements: a "normal" (i.e. average) species, a long-distance disperser, a short-122 distance disperser, a closed-forest specialist and a sun-exposure specialist (Table 1). 123 Furthermore, due to poor empirical knowledge about local extinction risks and turnover 124 rates, we modeled four additional species to explore the sensitivity to the local extinction 125 risk parameters. All species were dependent on dead wood of Norway spruce being 126 younger than 10 years and having a diameter >10 cm. Young dead wood is an important 127 substrate, especially for saproxylic insects living under bark, because almost a half of 128 Norway spruce dead wood is without bark after 10 years (calculated from data presented 129 in Ranius et al. 2003). The inner bark and subcortical space of dead trees is an important 130 microhabitat; among 542 saproxylic red-listed invertebrates in Sweden, 168 (31 %) are 131 directly dependent on bark as a microhabitat (Jonsell et al. 1998). We assumed that 50 % 132 of the volume of dead wood less than 10 years old and having a diameter > 10 cm was 133 suitable as habitat for the model species. The remaining 50 % was unsuitable, for 134 instance, because of unfavorable microclimate or absence of appropriate rot types. We 135 adjusted the value of y after setting the values for the other parameters in such a way that 136 the extinction risk during the following 250 years became about 50 % for all model 137 species if the current management regime (95% conventionally managed and 5% set-138 asides) would prevail during the whole period. Hence, all model species represent species 139 which would run a significant risk of extinction given today's management regime. 140 There are only a few studies of the spatial occurrence patterns of saproxylic insects

in boreal forests that indicate at which spatial scale colonizations take place. For the
saproxylic beetle *Hadreule elongatula* there was a positive relationship between
occupancy and the amount of habitat (clear-cuts with high stumps) within a radius of 1
km (Schroeder et al. 2006), and for *Bellamira scalaris* between larval abundance and the
non-coniferous forest cover within a radius of 1.2 km (Saint-Germain and Drapeau 2011).
For another saproxylic beetle, *Harminius undulatus*, the strongest relationship between
observed occurrence patterns and stand-scale probability of occurrence was predicted by

a metapopulation model in which $1/\alpha$ (using eq. 1) was set to 1500 - 2500 m (Schroeder et al. 2007). Furthermore, in a study of beetles (Coleoptera) and bugs (Hemiptera) specialized on fresh aspen (*Populus tremula*) wood, the strongest relationship between species richness and amount of aspen wood in the surrounding was obtained with $1/\alpha =$ 93 m (Ranius et al., subm ms). Consequently, we assumed mean dispersal distances varying between 100 m and 2 km for the model species.

154 For *u* and *x*, which regulates the local extinction risk, no relevant empirical data are 155 available. We believe that the extinction risk within a smaller area (with the rescue effect 156 excluded) is high for many saproxylic insect species, because their abundance may be 157 very low (for many species, on average a few individuals per managed forest stand; 158 Schroeder et al. 2006) However, in forest landscapes local extinctions may still be rare 159 because they are counteracted by a rescue effect (i.e by immigration from surrounding 160 forest stands). For the normal species, we adjusted the values of x and u to obtain a yearly 161 extinction risk of 10 % in an average future unmanaged stand, and 50 % at the stand age 162 with the lowest amount of dead wood in a future conventionally managed forest and with 163 the rescue effect excluded. As a sensitivity analysis, we also tested "normal" species with 164 other combinations of local extinction risks (2 % and 50 %; 25 % and 50 %; 10 % and 20 165 %; and 10% and 80 %, in unmanaged stands and in stands with the lowest amount of 166 dead wood in managed forest, respectively).

167 For the sun-exposure and closed forest species, we used the same x-value as for 168 normal species and adjusted u to obtain a local extinction risk of 10 % under the best 169 conditions also for these species. We assumed that in stands with high amounts of dead 170 wood ($Q > 1.15m^3$ /ha, which is the case for all unmanaged forest and some managed 171 forest; Fig. 1) the species with long-distance dispersal had a higher extinction risk than 172 the normal species; x and u were set so the local extinction risk in a future unmanaged 173 stand was 25 % per year. On the contrary, the species with short-distance dispersal was 174 given values of x and u that generated a local extinction risk in a future unmanaged stand 175 of only 2 %. This is based on knowledge that strong dispersers may be poorer 176 competitors than weak dispersers (Tilman et al. 1994) and that populations with higher 177 dispersal rates and ranges tend to suffer to a larger extent from dispersal mortality (Fahrig 178 2007). We believe this makes a difference especially when the density of dead wood is 179 high. Hence, we adjusted x and u so the extinction risk remains the same as for the 180 normal species (50 %) when Q = 1.15 m³/ha. Higher levels of dispersal may also lower 181 the actual local extinction risk due to a rescue effect. However, this effect is not included 182 in the x and u parameters but is a separate factor (eq. 3).

183 For all species except two (the closed forest and sun-exposure species) the dead 184 wood was of equal quality independent on forest age. We assumed that for the sun-185 exposure specialist, dead wood was only suitable in managed forests with an age < 20186 years, and to some extent (only 0.5 m³/ha) in unmanaged forest, while the other dead 187 wood (in managed forests > 20 years + all dead wood in unmanaged forest except 0.5 188 m^{3} /ha which is assumed to be sun-exposed) was suitable for the closed forest specialist. 189 This is because in unmanaged forest, gaps are created due to small-scale disturbances, 190 while gaps are generally avoided in even-aged forest management (Caron et al. 2009). A 191 large proportion of the saproxylic beetles has indeed a preference either for sun-exposed 192 or shaded conditions (Lindhe et al. 2005), but the preferences are rarely so strong as in 193 the cases of the closed forest and sun-exposure specialists. Thus, we analyzed species at 194 two extremes (closed forest and sun-exposure specialists) and a midpoint (normal 195 species) of the scale, acknowledging that real species are more or less continuously 196 distributed along that scale.

197

198 *The landscape model*

199 We simulated habitat development in a model landscape of $13.4 \text{ km} \times 13.4 \text{ km}$, which is 200 similar to the scale suggested to be used in landscape planning of Swedish forests 201 (Larsson and Danell 2001). The landscape consisted of 3,600 squares, corresponding to 202 forest stands. Each square was 5 ha, which is near the average size of harvested forest 203 stands in Sweden (Anonymous 2010). Because we assumed this landscape to be adjacent 204 to similar landscapes, the edges of the landscape were wrapped around. Thus, stands 205 situated at the left and upper margin were bounded to those at the right and lower margin, 206 respectively, as if they were located on a donut-shaped surface. Tree species composition 207 of each stand was determined stochastically for each stand, with a 40 % probability of 208 being a Norway spruce stand (in Sweden, 41 % of the growing stock is Norway spruce;

Anonymous 2010). We assumed that the rest of the landscape was entirely unsuitable forthe model species.

211 The extinction risk may be dependent on present occurrence patterns. To obtain 212 realistic occurrence patterns, we started the simulations 100 years before present. We 213 assumed that the landscape had been unaffected by commercial forestry based on clear-214 cutting until 100 years ago, and that the species were present in every spruce stand at that 215 time. During the following 100 years, 0.95 % of the forest was clear-cut annually. We 216 assumed that today 95 % of the forest has been managed, and that the age distribution is 217 even among managed forest stands. The simulated scenarios we compared all started with 218 the same current landscape situation and covered a period of 250 years from now. The 219 extinction risk was estimated as the proportion of all replicates in which the species had 220 gone extinct at the landscape level every 50 years for 250 years into the future.

221 We assumed that the unmanaged forest stands are currently unevenly distributed in 222 the landscape. We did this by dividing the landscape into 36 equally large (500 ha) 223 squares. Each square was randomly assigned a value, representing the probability for 224 each forest stand (5 ha) within the square to have been left unmanaged until today. These probability values were distributed between 5×10^{-9} % and 50 %, by using the equation P 225 226 $= 5 \times 10^{x}$, in which P is the probability value for each square, and x is a stochastic 227 variable, randomly given a value between -9 and 1 according to an even distribution. 228 Each stand was randomly determined as having been managed or not, based on the 229 probability value for the square where it was situated. When the number of set asides was 230 increased from now into the future, we assumed that stands of ages with the highest 231 amount of dead wood were selected.

232 The habitat amount changed over time, as determined by the management regime 233 of the forest (Fig. 1). We predicted the amount of dead wood in managed forest in 234 relation with stand age as in Ranius et al. (2003), i.e. by simulating dead wood dynamics 235 taking into consideration forest growth, tree mortality, dead wood decay, and destruction 236 of dead wood during forestry operations. We assumed a site index (i.e. tree height at an 237 age of 100 years) of 24 m and a rotation period of 100 years. Furthermore, we assumed 238 that since about 10 years ago the forestry is biodiversity-oriented, following FSC's 239 certification regulations (Anonymous 2000), but that no concerns were taken to preserve

240 dead wood before that. In unmanaged forest, we assumed that the average amount of 241 dead wood was constant over time. This is close to reality if forests are dominated by 242 fine-scale disturbances (Jonsson 2000), which at least sometimes is the case in 243 Fennoscandian spruce forests (e.g., Hörnberg et al. 2005; Steijlen and Zackrisson 1987). 244 For both managed and unmanaged forests we used two measures of stochastic variability 245 in the predictions: one between stands and one between years within each stand. We 246 estimated the variability from 500 replicate simulation runs. 247 We emulated the effect of weather by including regional stochasticity, which 248 affected the extinction risk and colonization rate by generating a temporal change in 249 habitat amount, Q. This factor was equal for the entire landscape but varied stochastically 250 between years according to a normal distribution. Arbitrarily, we set the coefficient of 251 variation of this factor to 0.25. 252 Scenarios 253 254 In the simulations, forest stands were managed in three different ways from today and 255 250 years into the future: 256 i) free development (i.e. no management) 257 ii) conventional forestry (following certification standards) 258 iii) intensive plantation forestry based on Norway spruce or another (native or 259 introduced) tree species 260 We assumed that at the beginning of the simulations (i.e., 100 years before today), the 261 amount of suitable dead wood corresponds to 50 % of what is found in old-growth 262 forests. Indeed, the amount of dead wood at that time was often considerably lower than 263 in old-growth forest because there was a lower density of living trees due to cattle 264 grazing and selective logging (e.g., Lindbladh 1999; Sippola et al. 2001; Groven et al. 265 2002). We assumed that the amount of dead wood has further decreased because of 266 increased management during the past 100 years, so forests that have been left for free 267 development until today were assumed to contain 30 % of the dead wood volume that 268 occurs in old-growth forests. This is consistent with survey data of Swedish key habitats 269 with Norway spruce (Jönsson and Jonsson 2007). Setting aside these forests will increase

the amount of dead wood in the future; we assumed that after 40 years the volume of

271 suitable dead wood will have increased from the current 30 % to 80 %. However, it will 272 never reach 100 %, because some dead wood is removed also from unmanaged forests, 273 especially in the event of extensive storm felling in order to decrease the risk of damage 274 by the spruce bark beetle *Ips typographus* to nearby managed forest (Schroeder 2007). 275 This means that the amount of suitable dead wood (i.e. younger than 10 years old, with 276 diameter > 10 cm) in forests with free development is first 4.16 m³/ha today and 11.10 277 m³/ha after 40 years. In future conventionally managed forest, the amount of suitable 278 dead wood varies with stand age, with an average of 2.08 m³/ha. We assumed that 279 intensively managed plantations are totally unsuitable for the model species (i.e. there is 280 no suitable dead wood). This is likely to be the case if intensive forestry is based on the 281 plantation of non-native tree species which are unsuitable for the Norway spruce 282 specialists. As regards Norway spruce plantations, this assumption implies that intensive 283 multiple-entry silviculture minimizes natural tree death and allows salvaging dying trees 284 which may occur accidentally after disturbance.

285 In all scenarios simulating future conditions, conventional forest management 286 initially takes place in 95 % of the forest stands. Intensive forestry can become 287 implemented only when forest stands are harvested. Furthermore, we assumed that each 288 year only 50 % of the clear-cuts were suitable for implementing intensive forestry, due to 289 e.g. variations in landowners' interests, transport infrastructure or terrain characteristics. 290 Consequently, the higher the proportion of intensive forestry, the longer time it will take 291 until the new distribution of management types is reached; because about 1 % of the 292 forest is cut annually it takes, for instance, ten years until the new level is reached for the 293 scenario with 5 % intensive forestry, while it takes 100 years to reach 50 % intensive 294 forestry.

In Scenario 1, the proportions of forest subject to intensive forestry and conventional management varied, and no measures were implemented to compensate the landscape-scale loss of dead wood resulting from an intensification of management (Table 2). In the other two sets of scenarios, compensations were implemented to maintain the amount of dead wood constant at the landscape level. Scenario 2 involved compensation by increasing the amount of dead wood in managed forest through changed management (more green tree retention at final logging; Table 3). Scenario 3 involved

- 302 compensation by setting aside more forest (Table 4). Hence, in sets 2 and 3, the total
- 303 amount of dead wood in the landscape was the same for all scenarios.
- 304
- 305 *Estimations of changes in annual harvestable volume at the landscape level*
- 306 For each scenario, we conducted a rough estimation of how the annual harvestable
- 307 volume differed compared to the scenario with no intensive plantation forestry. The
- 308 estimations were based on the following assumptions:
- i) In intensively managed forests, the volume production over 100 years is expected to be
- 310 95 % higher than in conventionally managed forests at the stand scale. This is based on
- 311 predictions made for 15% of all forest land in Sweden which would be dedicated to
- 312 intensive production involving fertilization, clone forestry based on Norway spruce and
- 313 plantation of lodgepole pine (Fahlvik et al. 2009; Larsson et al. 2009).
- 314 *ii*) In set asides, the harvestable volume is equal to $0 \text{ m}^3/\text{ha}$.
- 315 *iii*) For conventionally managed forest, we made calculations from the data presented in
- Jonsson et al. (2006). We assumed a forest situated in central Sweden. All compensation
- 317 was assumed to be made by green tree retention at final harvest, and it was assumed to
- 318 result in a decrease in volume production equal to 0.75 times the proportion of area that is
- 319 retained, which is consistent with assumptions made in Jonsson et al. (2006).
- 320

321 Results

- 322 Intensified plantation forestry applied to 50% of the spruce stands had increased the
- 323 extinction risk relatively strongly compared to the status quo scenario (i.e. no intensive
- 324 plantation forestry) for all species after 150 years (Fig. 2). For four of the five species,
- 325 most of the expected extinctions took place 50–150 years from the intensification of
- 326 forestry. The sun-exposure specialist was an exception, as most extinctions took place
- 327 already during the first 50 years.
- The extinction risk increased rather gradually with an increasing proportion of intensive plantation forestry for all species under Scenario 1 (no compensation), but the degree of increase varied much among species (Fig. 3). For the short-dispersing species and the closed-forest specialist, extinction risk increased more slowly with increasing

332 proportion of intensive plantation forestry than for the long-dispersing species and the333 sun-exposure specialist.

334 Given that compensations were made to maintain mean dead wood volumes 335 constant at the landscape level, the extinction risk decreased with an increasing area of 336 intensified forestry in many cases (Fig. 3). Compensation by setting aside forest was a 337 very effective way of decreasing the extinction risk for the normal species, the short-338 distance disperser and the closed-forest species. Compensation through changed 339 management was generally less effective; in most cases it resulted in more similar 340 extinction risks compared to the scenario with no intensive plantation forestry. Moreover, 341 the sensitivity analysis showed that the four additional variants based on different ranges 342 of local extinction risk yielded outcomes which were qualitatively similar to those for the 343 normal species, suggesting that the general pattern is robust to variation in the local 344 extinction parameters (Appendix).

345 The response of the sun-exposure specialist differed clearly from that of most 346 other model species: its extinction risk increased with the area of intensified forestry, 347 even with compensation efforts made (Fig. 3). Compensation through set-asides was 348 clearly ineffective for that species, whereas compensation through adapted management 349 resulted only in a slightly lower extinction risk than without compensations made, except 350 at 50% intensive plantation forestry, where compensation through management was 351 better at mitigating the negative effects of intensive forestry. Also for the long-distance 352 disperser the compensation measures were less effective than in other species: 353 compensation kept extinction risk at a level rather close to that of status quo scenario, no 354 matter the proportion of intensive plantation forestry, i.e. it did not result in strongly 355 decreased extinction risk.

Implementing intensive plantation forestry increased the harvestable timber volume production at the landscape scale in the long term (Tables 2, 3 & 4). This was clearly the case even if the negative effects of intensified forestry on dead wood were compensated for by increased conservation efforts elsewhere in the landscape. The scenarios involving compensation through set-asides (Table 3) yielded smaller increases in harvestable volume compared to those assuming compensation through changed management (Table 2).

364 Discussion

365 This study suggests that intensified forestry has negative effects on biodiversity at the 366 landscape level if no compensations are made for nature conservation. Still, negative 367 effects on population persistence were limited when intensive forestry was applied to 368 only 5 - 10% of the spruce stands. However, it should be emphasized that the amount of 369 suitable habitat required for population persistence differs widely among species (e.g., 370 Baguette et al. 2000; Vance et al. 2003; Holland et al. 2005). Some very demanding 371 forest species are most likely unable to persist in a managed forest landscape independent 372 on whether the forests are managed intensively or conventionally (Ranius and Fahrig 373 2006), while other species with lesser requirements can be expected to persist even at 374 high proportions of intensive plantation forestry. In this study, we parameterized the 375 models to represent species which are already sensitive to forestry given today's 376 management regime. Hence, the effects observed on the model species are probably 377 stronger than we should expect for forest species in general. Rather, they reflect the 378 effects expected for species which are currently red-listed. We studied specialized 379 saproxylic insects, but we believe that our results also apply to a much wider range of 380 species, because the mechanisms behind the outcome (specialized species are strongly 381 negatively affected by intensified forestry, and are able to use the habitat more efficiently 382 if it occurs more aggregated in the landscape) are likely to be common to many, if not 383 most, other groups of forest organisms.

In this study we assumed that intensive forestry was applied on forest land of average productivity and conservation value. In Sweden, it has been suggested that intensive forestry will be applied only on land of low conservation value (Larsson et al. 2009). On the contrary, intensive forestry is probably more profitable on the most productive land, which often also is land of high conservation value. Therefore, the negative impacts may become both larger or smaller than suggested by this study, depending on where intensive forestry is being implemented.

391 The simulation outcome indicates that it takes a long time before species richness 392 at the landscape level is affected. When intensive plantation forestry was applied to 50% 393 of the stands, the extinction risk of the model species did not increase strongly over the 394 first 50 years except for the sun-exposure specialist. However, extinction risks of all 395 species had increased strongly after 150 years compared to the *status quo* scenario (Fig. 396 2). It has been suggested that intensification of forestry in Sweden should be 397 implemented within an adaptive management framework over a time period of 20 years 398 (Larsson et al. 2009). To some extent it is possible to study effects on biodiversity at the 399 stand level over a 20-year period. However, according to the present study we should not 400 expect any significant effects on biodiversity at the landscape level over such a short 401 period. To gain knowledge about the effects of intensive plantation forestry at the 402 landscape scale without having to wait so long, we must rely on modeling studies like 403 this one, or retrospective studies in landscapes which already have characteristics 404 comparable with future landscapes containing intensively managed forests.

405 The effects of intensive plantation forestry differed among species with different 406 habitat affinities and life-history traits. In biodiversity conservation, focus has often been 407 on species associated with forests in late successional stages (e.g., Bauhus et al. 2009; 408 Fritz et al. 2008; Siitonen and Saaristo 2000) and species with a limited dispersal 409 (Baguette et al. 2000; Kotiaho et al. 2005). Populations of such species are typically 410 conserved by setting aside forests. Our results show that for such species, an 411 intensification of forestry is more advantageous than the current management regime if 412 intensification in parts of the landscape is compensated by setting aside more forests (Fig. 413 3). However, this compensation measure was ineffective for the sun-exposure specialist, 414 which was highly sensitive to intensive plantation forestry at the landscape scale, even 415 already after 50 years. Clear-cuts may potentially host a species-rich insect fauna 416 (Sippola et al. 2002), because they harbor species associated with sun-exposed habitat 417 that originally occurred after forest fires. In the light of the trend for an intensification of 418 forestry in northern forests, our results call for an increased interest in species associated 419 with early successional stages.

We found that for three of the five model species (including the "normal" species assumed to represent an average red-listed species), extinction risk actually decreased with an increasing proportion of intensive plantation forestry compared to the *status quo* scenario (i.e. 0 % intensive forestry), given that appropriate compensations were made elsewhere to keep the mean dead wood volumes constant over the whole landscape. This

425 is due to the fact that the compensation measures resulted in a better spatial aggregation 426 of dead wood and hence positive effects on species persistence in stands subjected to 427 these compensation measures, which were stronger than the negative effects of a 428 decreased total area of suitable stands in the landscape. We assumed that all set asides 429 had an area of 5 ha, but in many real landscapes there may be much larger areas of high 430 conservation value that may be set aside. That will generally tend to decrease the 431 extinction risk in comparison to have only 5-ha set asides (Ranius and Kindvall 2006), 432 and consequently the present study probably tends to underestimates the usefulness of 433 setting aside forests as a compensation measure.

434 Hence, our results provide support to zoning approaches such as the Triad, 435 whereby intensive forestry is implemented on part of the land base and protected area 436 networks are expanded to compensate for negative effects of intensified management. 437 Such an approach would decrease biodiversity locally in intensively managed forest 438 stands, but more species would be likely to persist at the landscape level. In a simulation 439 study based on a boreal landscape in Quebec, Canada, Côté et al. (2010) showed that 440 Triad scenarios resulted in larger areas of forest with old-growth properties than current 441 land use, which suggests that many species sensitive to forest management would benefit. 442 In our analyses, we found that timber volume production would increase with an 443 increasing proportion of intensive plantation management, even when dead wood 444 compensation measures were implemented. In a case study in New Brunswick, Canada, 445 Montigny and MacLean (2006) also found that intensive management resulted in 446 increased timber yields in a Triad zoning context. In Quebec, Côté et al. (2010) found 447 that Triad scenarios with 12 % set-asides yielded higher timber volumes in the long term 448 than both a status quo scenario and scenarios involving 20 % set-asides.

To conclude, a combination of intensive plantation forestry, ecological forestry, and set asides seems to allow for a combination of different goals, such as increased timber production and carbon sequestration, and maintenance of biodiversity. However, we stress that species with different life-history traits may respond differently, and hence the implementation of such a system should be accompanied by continuous biodiversity monitoring allowing for early warning and adaptive management. To implement such a zoning approach in Fennoscandia, some changes in forestry laws and certification

456	standards (e.g. Anonymous 2000) would be required. Also, it should be kept in mind that
457	landscape zoning is easier to implement in regions where forests are publicly owned (e.g.
458	Messier et al. 2009) or where one actor owns most of the land base, and may not be a
459	socially viable option in landscape with highly fragmented ownership.
460	
461	Acknowledgements
462	This study was financed by the "MINT-project" which was a commission from the
463	Swedish Government (Jo 2008/1885) to SLU, and Future Forests, a multidisciplinary
464	research programme supported by the Foundation for Strategic Environmental Research
465	(MISTRA), the Swedish Forestry Industry, the Swedish University of Agricultural
466	Sciences (SLU), Umeå University, and the Forestry Research Institute of Sweden.
467	
468	References
469	Anonymous (1999) Competing Realities: The Boreal Forest at Risk. Report of the Sub-
470	Committee on Boreal Forest of the Standing Senate Committee on Agriculture and
471	Forestry. Parliament of Canada, Ottawa
472	Anonymous (2000) Svensk FSC-standard för certifiering av skogsbruk. 2:a uppl. Svenska
473	FSC-rådet, Uppsala, Sweden (in Swedish)
474	Anonymous (2006) Global forest resources assessment 2005. Progress towards
475	sustainable forest management. In FAO Forestry Paper, Vol. 147. FAO, Rome
476	Anonymous (2010) Swedish Statistical Yearbook of Forestry. Swedish Forestry Agency,
477	Jönköping
478	Baguette M., Deceuninck B, Muller Y (1994) Effects of spruce afforestation on bird
479	community dynamics in a native broad-leaved forest area. Acta Oecologia 15: 275-
480	288
481	Baguette M, Petit S, Quéva F (2000) Population spatial structure and migration of three
482	butterfly species within the same habitat network: consequences for conservation. J
483	Appl Ecol 37: 100–108
484	Bauhus J, Puettmann K, Messier C (2009) Silviculture for old-growth attributes. For Ecol
485	Manage 258: 525–537

- 486 Caron M-N, Kneeshaw DD, Grandpré LD, Kauhanen H, Kuuluvainen T (2009) Canopy
- 487 gap characteristics and disturbance dynamics in old-growth *Picea abies* stands in
- 488 northern Fennoscandia: Is the forest in quasi-equilibrium? Ann Bot Fennici 46: 251–
 489 262
- Chey VK, Holloway JD, Speight MR (1997) Diversity of moths in forest plantations and
 natural forests in Sabah. Bull Entomol Res 87: 371–385
- 492 Côté P, Tittler R, Messier C, Kneeshaw DD, Fall A, Fortin M-J (2010) Comparing
- different forest zoning options for landscape-scale management of the boreal forest:
 possible benefits of the TRIAD. For Ecol Manage 259: 418–427
- Fahlvik N, Johansson U, Nilsson U (2009) Skogsskötsel för ökad tillväxt. Faktaunderlag
 till MINT-utredningen. SLU Rapport, Uppsala
- 497 Fahrig L (2007) Non-optimal animal movement in human-altered landscapes. Funct
 498 Ecology 21: 1003–1015
- 499 Fritz Ö, Gustafsson L, Larsson K (2008) Does forest continuity matter in conservation? –
- 500 A study of epiphytic lichens and bryophytes in beech forests of southern Sweden.
- 501 Biol Conserv 141: 655–668
- 502 Groven R, Rolstad J, Storaunet KO, Rolstad E (2002) Using forest stand reconstructions
- to assess the role of structural continuity for late-successional species. For Ecol
 Manage 164: 39–55
- 505 Gustafsson L, Dahlberg A, Green M, Henningsson S, Hägerhäll C, Larsson A, Lindelöw
- 506 Å, Lindhagen A, Lundh G, Ode Å, Ranius T, Sandström J, Strengbom J, Svensson R,
- 507 Widenfalk O (2009) Konsekvenser för kulturarv, friluftsliv, landskapsbild och
- 508 biologisk mångfald. Faktaunderlag till utredning om möjligheter till intensivodling av
 509 skog. SLU, Uppsala
- 510 Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63: 151–
- 511 162
- 512 Hanski I (2000) Extinction debt and species credit in boreal forests: modelling the
- 513 consequences of different approaches to biodiversity conservation. Ann Zool Fenn
- 514 37: 271–280

- 515 Holland JD, Fahrig L, Cappuccino N (2005) Fecundity determines the extinction
- threshold in a Canadian assemblage of longhorned beetles (Coleoptera:
- 517 Cerambycidae). J Insect Conserv 9: 109–119
- 518 Hörnberg G, Ohlson M, Zackrisson O (1995) Stand dynamics, regeneration patterns and
- 519 long-term continuity in boreal old-growth *Picea abies* swamp-forests. J Veg Science
 520 6: 291–298
- Jonsell M, Weslien J, Ehnström B (1998) Substrate requirements of red-listed saproxylic
 invertebrates in Sweden. Biodiv Conserv 7: 749–764
- Jonsson BG (2000) Availability of coarse woody debris in a boreal old-growth *Picea abies* forest. J Veg Science 11: 51–56
- 525 Jonsson M, Ranius T, Ekvall H, Bostedt G, Dahlberg A, Ehnström B, Nordén B,
- 526 Stokland JN (2006) Cost-effectiveness of silvicultural measures to increase substrate
- 527availability for red-listed wood-living organisms in Norway spruce forests. Biol
- 528 Conserv 127: 443–462
- Jönsson M, Jonsson BG (2007) Assessing coarse woody debris in Swedish woodland key
 habitats: implications for conservation and management. For Ecol Manage 242: 363–
 373
- Kotiaho J, Kaitala V, Komonen A, Päivinen J (2005) Predicting the risk of extinction
 from shared ecological characteristics. PNAS 102: 1963–1967
- Larsson S, Danell K (2001) Science and the management of boreal forest biodiversity.
- 535 Scand J For Res Suppl 3: 5–9
- 536 Larsson S, Lundmark T, Ståhl G (2009) Möjligheter till intensivodling av skog.
- 537 Slutrapport från regeringsuppdrag Jo 2008/1885 (In Swedish)
- 538 Lindbladh M (1999) The influence of former land-use on vegetation and biodiversity in
- the boreo-nemoral zone of Sweden. Ecography 22: 485–498
- 540 Lindhe A, Lindelöw Å, Åsenblad N (2005) Saproxylic beetles in standing dead wood
- 541 density in relation to substrate sun-exposure and diameter. Biodiv Conserv 14:3033–
 542 3053
- 543 Madsen P, Hahn K (2008) Natural regeneration in a beech-dominated forest managed by
- 544 close-to-nature principles a gap cutting based experiment. Can J For Res 38: 1716–
- 545 1729

546 Magura T, Tóthmérész B, Bordan Z (2000) Effects of nature management practice on 547 carabid assemblages (Coleoptera: Carabidae) in a non-native plantation. Biol Conserv 548 93:95-102 549 Messier C, Tittler R, Kneeshaw DD, Gélinas N, Paquette A, Berninger K, Rheault H, 550 Meek P, Beaulieu N (2009) TRIAD zoning in Quebec: experiences and results after 5 551 years. For Chron 85: 885-896 552 Montigny MK, MacLean DA (2006) Triad forest management: scenario analysis of 553 effects of forest zoning on timber and non-timber values in north-western New 554 Brunswick. For Chron 82: 496-511 555 Ranius T, Fahrig L (2006) Targets for maintenance of dead wood for biodiversity 556 conservation based on extinction thresholds. Scand J For Res 21: 201-208 557 Ranius T, Kindvall O (2006) Extinction risk of wood-living model species in forest 558 landscapes as related to forest history and conservation strategy. Landscape Ecol 21: 559 687-698 560 Ranius T, Kindvall O, Kruys N, Jonsson B-G (2003) Modelling dead wood in Norway 561 spruce stands subject to different management regimes. For Ecol Manage 182: 13–29 562 Ranius T, Martikainen P, Kouki J. Colonisation of ephemeral habitats by specialised 563 species: beetles and bugs associated with recently dead aspen trees. Subm to Biodiv 564 Conserv 565 Saint-Germain M, Drapeau P (2011) Response of saprophagous wood-boring beetles 566 (Coleoptera: Cerambycidae) to severe habitat loss due to logging in an aspen-567 dominated boreal landscape. Landscape Ecol 26:573-586 568 Schroeder M (2007) Retention or salvage logging of standing trees killed by the spruce 569 bark beetle Ips typographus: consequences for dead wood dynamics and biodiversity. 570 Scand J For Res 22: 524–530 571 Schroeder M, Ranius T, Ekbom B, Larsson S (2006) Recruitment of saproxylic beetles in 572 high stumps created for maintaining biodiversity in a boreal forest landscape. Can J 573 For Res 36: 2168–2178 574 Schroeder M, Ranius T, Ekbom B, Larsson S (2007) Spatial occurrence in a habitat-575 tracking metapopulation of a saproxylic beetle inhabiting a managed forest landscape. 576 Ecol Appl 17: 900–909

- 577 Seymour RS, Hunter ML Jr (1992) New forestry in eastern spruce–fir forests: principles
 578 and applications to Maine. Maine Agric Exp Sta, University of Maine, Misc Publ
 579 716. 36 p
- Siitonen J, Saaristo L (2000) Habitat requirements and conservation of *Pytho kolwensis*, a
 beetle species of old-growth boreal forest. Biol Conserv 94: 211–220
- 582 Sippola A-L, Lehesvirta T, Renvall P (2001) Effects of selective logging on coarse
- woody debris and diversity of wood-decaying polypores in eastern Finland. Ecol Bull
 49: 243–254
- 585 Sippola A-L, Siitonen J, Punttila P (2002) Beetle diversity in timberline forests: a
- comparison between old-growth and regeneration areas in Finnish Lapland. Ann Zool
 Fenn 39: 69–86
- 588 Steijlen I, Zackrisson O (1987) Long-term regeneration dynamics and successional trends
- in a northern Swedish coniferous forest stand. Can J Bot 65: 839–848
- 590 Stoneman GL (2007) 'Ecological forestry' and eucalypt forests managed for wood
- 591 production in south-western Australia. Biol Conserv 137: 558–566
- 592 Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the
- 593 extinction debt. Nature 371: 65–66
- 594 Vance MD, Fahrig L, Flather CH (2003) Effect of reproductive rate on minimum habitat
- requirements of forest-breeding birds. Ecology 84: 2643–2653

597Table 1. Parameter values for the five different model species. For parameter

598 designations, see *Methods*.

Species	и	Х	У	$1/\alpha$	Dead wood
				(km)	exposition
Normal	0.53	0.5	96.5	0.5	All
Long-distance	0.51	0.21	850	2	All
Short-distance	0.56	1	6.8	0.1	All
Sun-exposure	0.39	0.5	6.3	0.5	Sun-exposed
Closed forest	0.51	0.5	88	0.5	Shaded

Table 2. Mean volume of suitable Norway spruce dead wood (diameter > 10 cm, age <

602 10 years) across the landscape and change in annual growth of harvestable volume

603 compared to the *status quo* (0 % intensive forestry) for scenarios assuming varying

604 proportions of intensive plantation forestry over a period of 100 years. No compensation

605 is made to counterbalance the loss of dead wood due to intensive plantation forestry

- 606 (Scenario 1).
- 607

Plantation	Conventionally	Set aside	Dead wood in	Dead	Change in
forestry	managed (%)	(%)	managed forest	wood	harvestable
(%)			(m³ha ⁻¹)	$(m^{3}ha^{-1})$	volume (%)
0	95	5	2.08	2.32	0
5	90	5	2.08	2.22	+5
10	85	5	2.08	2.12	+10
25	70	5	2.08	1.80	+25
50	45	5	2.08	1.28	+50

608

610 Table 3. Mean volume of suitable Norway spruce dead wood (diameter > 10 cm, age <

611 10 years) across the landscape and change in annual growth of harvestable volume

612 compared to the *status quo* (0 % intensive forestry) for scenarios assuming varying

613 proportions of intensive plantation forestry over a period of 100 years. More dead wood

614 is created in conventionally managed forest to keep mean dead wood volumes constant at

- 615 the landscape scale with an increasing proportion of intensive plantation forestry
- 616 (Scenario 2).
- 617

Plantation	Conventional	Set	Dead wood in	Dead	Change in
forestry	ly managed	aside	managed forest	wood	harvestable
(%)	(%)	(%)	(m ³ ha ⁻¹)	(m ³ ha ⁻¹)	volume (%)
0	95	5	2.08	2.32	-
5	90	5	2.20	2.32	+4.7
10	85	5	2.32	2.32	+9.5
25	70	5	2.82	2.32	+23.7
50	45	5	4.40	2.32	+47.3

619 Table 4. Mean volume of suitable Norway spruce dead wood (diameter > 10 cm, age <

620 10 years) across the landscape and change in annual growth of harvestable volume

621 compared to the *status quo* (0% intensive forestry) for scenarios assuming varying

622 proportions of intensive plantation forestry over a period of 100 years. More forest is set

623 aside to keep mean dead wood volumes constant at the landscape scale with an increasing

624 proportion of intensive plantation forestry (Scenario 3).

625

Plantation	Conventional	Set aside	Dead wood in	Dead	Change in
forestry	ly managed	(%)	managed forest	wood	harvestable
(%)	(%)		$(m^{3}ha^{-1})$	$(m^{3}ha^{-1})$	volume (%)
0	95	5	2.08	2.32	0
5	87.86	7.14	2.08	2.32	+2.9
10	80.72	9.28	2.08	2.32	+5.7
25	59.3	15.7	2.08	2.32	+14.3
50	23.6	26.4	2.08	2.32	+28.6

626

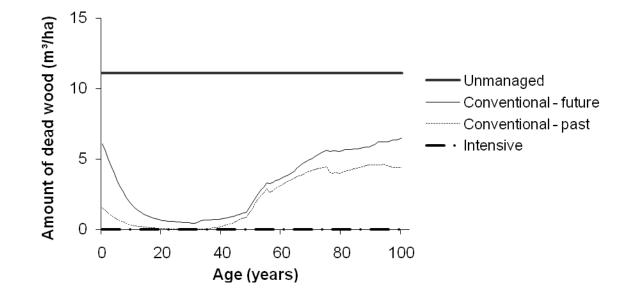
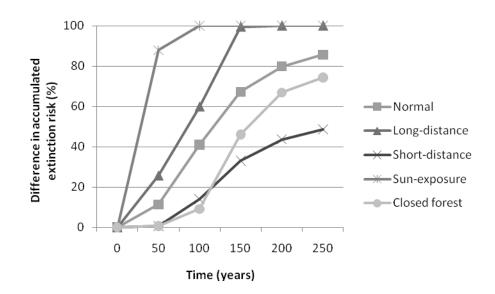
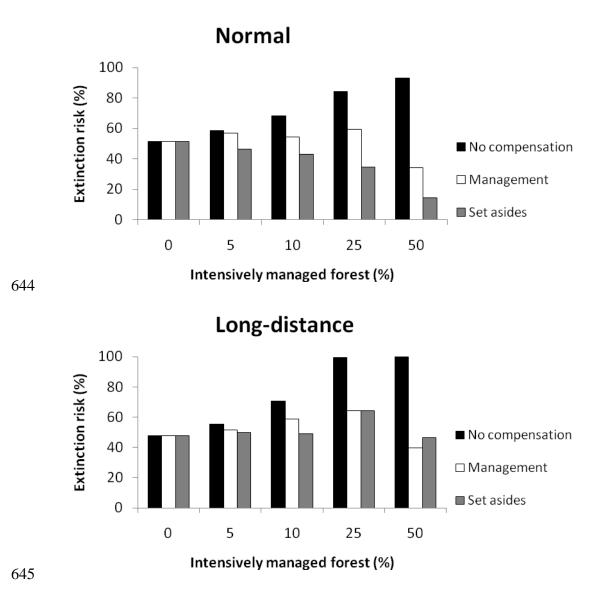
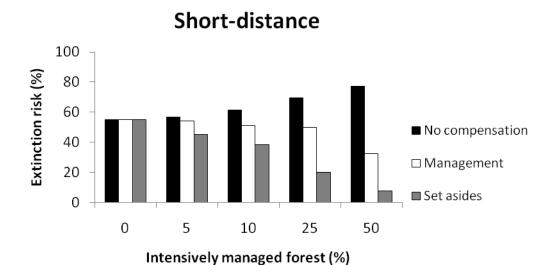
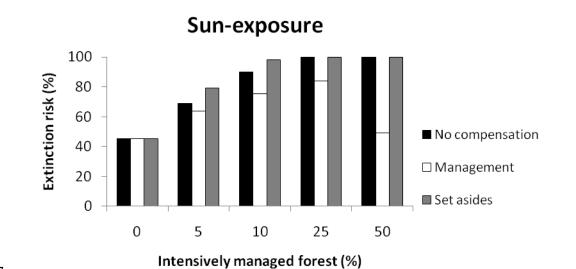



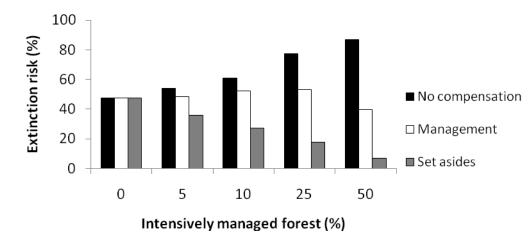
Fig. 1. Amount of dead wood of Norway spruce suitable for the model species (diameter > 10 cm,
age < 10 years) over a 100-year rotation. Output from simulations of dead wood dynamics (taking
into account forest growth, tree mortality, dead wood decay, and destruction of dead wood by
forestry operations) of unmanaged forest in the future, conventionally managed forest in the past
(until ten years ago) and future (started ten years ago), and intensively managed Norway spruce
forests.

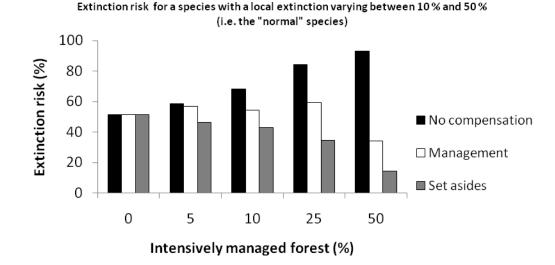

638 Fig. 2. Difference in accumulated extinction risk if 50% of the current spruce stands are


639 dedicated to intensive plantation management and no compensation measures are taken.

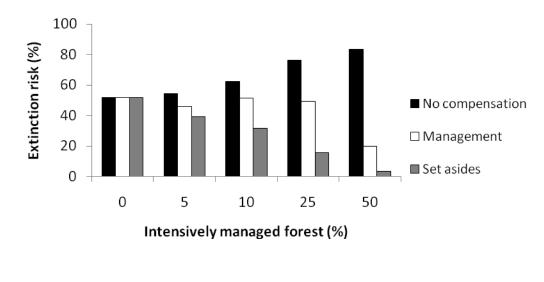

640 The difference is calculated as (Extinction risk with 50% intensive forestry – Extinction

641 risk without intensive forestry) / (1 – Extinction risk without intensive forestry). For

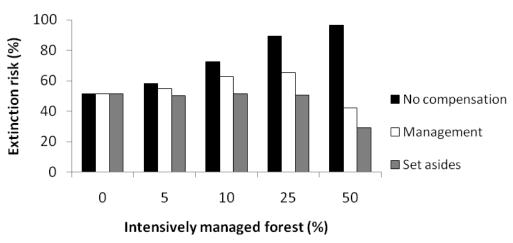

⁶⁴² species characteristics, see Table 1.



Closed forest

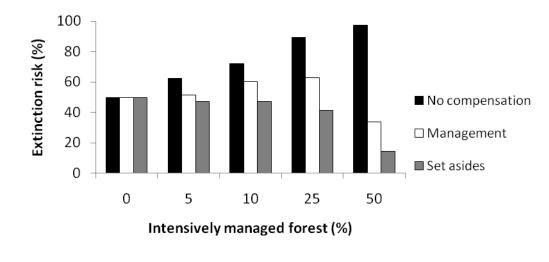

- 649
- 650 Fig. 3. Predicted extinction risk for the model species at a landscape level 250 years into the
- 651 future in relation to the proportion of intensively managed stands. "No compensation" implies that
- no compensation efforts were conducted, and consequently the mean volume of dead wood at
- the landscape level varies among the scenarios. "Management" implies that a constant dead
- wood volume was obtained through increased conservation concern in all conventionally
- managed forest, and "Set asides" implies that a constant landscape-scale dead wood volume
- 656 was obtained by setting aside a larger proportion of forest for free development.
- 657

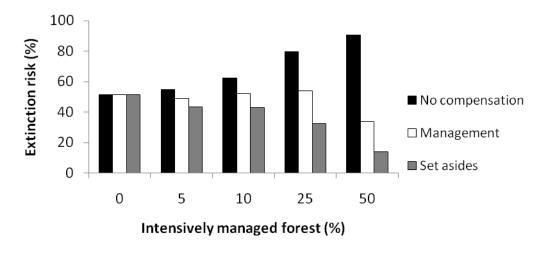
658 Appendix. Outcome from the sensitivity analyses. Four variants of the normal species (see main 659 text) are modeled, representing different ranges of variation of the local extinction risk according 660 to the local amount of dead wood. The bar diagrams show the predicted extinction risk for 661 species at a landscape level 250 years into the future in relation to the proportion of intensively 662 managed stands. "No compensation" implies that no compensation efforts were conducted, and 663 consequently the mean volume of dead wood at the landscape level varies among the scenarios. 664 "Management" implies that a constant dead wood volume was maintained through increased 665 conservation concern in all conventionally managed forest, and "Set asides" implies that a 666 constant landscape-scale dead wood volume was maintained by setting aside a larger proportion 667 of forest for free development.



668

Extinction risk for a species with a local extinction varying between 2 % and 50 %




- 669 670
- 671

Extinction risk for a species with a local extinction varying between 25 % and 50 %

Extinction risk for a species with a local extinction varying between 10 % and 20 %

Extinction risk for a species with a local extinction varying between 10 % and 80 %