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Abstract 23 

The most appropriate strategy for preserving fragmented populations depends on a species’ 24 

ability to colonise distant habitat patches. Insects associated with early decay stages of dead 25 

wood are expected to have a high capacity to colonise new habitat patches. To study the 26 

dispersal ranges of beetles (Coleoptera) and flat bugs (Hemiptera: Aradidae) dependent on 27 

recently dead aspen (Populus tremula) wood in Finland, we set out 58 piles of recently cut 28 

aspen logs at various distances up to 1.6 km from forests that contained a high density of old 29 

aspen trees. We captured insects by trunk window-traps, and counted beetles’ exit holes. 30 

Habitat connectivity was measured in terms of the amount of suitable aspen-wood in the 31 

surrounding environment, with the closest dead wood items up-weighted by a negative-32 

exponential function. 33 

The log-piles attracted many saproxylic insects including four red-listed aspen-34 

specialist species. The exposure of log-piles to the sun, and high levels of habitat 35 

connectivity increased the species richness of aspen-specialists, whereas bark peeling by 36 

moose decreased richness. The spatial scale at which species richness had its strongest 37 

response to habitat was 93 m. Among individual species there was a wide variability in 38 

spatial scale of response. 39 

This study supports the view that conservation efforts in boreal forests should be 40 

concentrated on sites where colonisation by target species is most likely. Restoration of 41 

habitat by re-locating logs may be useful at localities with a rich and specialised fauna but 42 

which have too low rate of formation of dead wood by natural processes. 43 

 44 

Keywords: bark, dispersal, habitat connectivity, restoration, saproxylic insects 45 

 46 

 47 

Introduction 48 

Many organisms associated with dead wood are thought to be threatened as a result of 49 

habitat loss and fragmentation (Berg et al. 1995; Nieto and Alexander 2010). The most 50 

effective conservation strategy for preserving this fauna and flora depends to some extent on 51 

species’ dispersal ranges. For species with a limited dispersal range, it is important that 52 

conservation efforts are directed within, or close to, sites where the target species are present 53 

(Huxel and Hastings 1999), while to protect species that are able to colonise over long 54 
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distances, efforts can be directed at more distant sites where restoration efforts may be less 55 

expensive and where they may improve habitat quality quickly (Ranius and Kindvall 2006). 56 

Items of dead wood are ephemeral habitats that, for some species, remain suitable for only 57 

one or a few years. Theoretical and empirical studies suggest that species adapted to such 58 

short-lived habitats are generally more dispersive than species of more stable habitats 59 

(Southwood 1962; Johnson and Gaines 1990; Travis and Dytham 1999). 60 

The use of tethered flight to test the physiological capacity for dispersal has shown 61 

that beetles living on the fruiting bodies of bracket fungi are able to fly tens of kilometres 62 

(Jonsson 2003). However, reproductive success is usually compromised when significant 63 

amounts of resources are spent on dispersal (Gibbs and van Dyck 2010); instead, a better 64 

strategy can be to avoid risks and save energy by moving shorter distances. Consequently, 65 

the distances that an organism actually moves in the field may differ widely from its 66 

physiological capacity determined in laboratory experiments (Forsse and Solbreck 1985) and 67 

can only be revealed by field studies. Observing the colonisation of artificially created 68 

habitat patches in field conditions has been found to be a fruitful yet practically challenging 69 

approach when studying dispersal of saproxylic insects. The method has been used on 70 

beetles in bracket fungi (Whitlock 1992; Jonsell et al. 1999; Jonsson and Nordlander 2006), 71 

and bark beetles on logs (Nuorteva and Nuorteva 1968; Nilssen 1984). In the present study, 72 

we experimentally assessed the dispersal and colonisation of aspen-associated beetles and 73 

bugs by setting out piles of recently cut aspen logs at sites differing in habitat connectivity. 74 

In many regions, aspen (Populus tremula, in Northern America: P. tremuloides) is 75 

considered an important tree species for saproxylic insects (e.g., Canada: Hammond et al. 76 

2004; Finland: Kouki et al. 2004; UK: Rotheray et al. 2009). In Finland, aspen has until 77 

recently been killed because it is an intermediate host for pine rust, a pest fungus that 78 

damages economically valuable pine trees. However, today it is recommended that aspens 79 

should be promoted in forest landscapes for enhancing biodiversity (Gustafsson et al. 2010). 80 

The efficiency of such conservation measures depends on the ability of aspen-associated 81 

species to colonize patches. Several beetle species that specialise on dead aspen wood occur 82 

in a larger proportion of items of dead wood where these are present in large aspen stands 83 

than in smaller stands (Sahlin and Schroeder 2010). This pattern may be because only large 84 

aspen patches are able to continuously provide habitat availability during forest succession 85 

(e.g. Vehmas et al. 2009). As the same amount of wood produce more individuals of target 86 

species in larger patches, efforts to create and maintain aspen dead wood should be directed 87 
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towards creating a few larger patches of living and dead aspen trees rather than many small 88 

patches. 89 

In the present study we set out piles of recently cut aspen logs and captured insects in 90 

trunk window-traps during the following three years. After three and five years we counted 91 

the number of exit holes of aspen-associated species on the logs. The strongest positive 92 

relationship between number of individuals and the amount of aspen dead wood probably 93 

occurs at a spatial scale corresponding to the distance over which colonisations most 94 

frequently take place. Furthermore, a species’ abundance may be related to characteristics of 95 

the logs that affects its suitability as breeding substrate. The first aim of this study was to 96 

evaluate to what extent transported aspen logs may be useful for aspen-associated insects. 97 

The second aim was to test the effect of habitat connectivity and identify the spatial scale 98 

with the strongest response to habitat, as this affects which spatial distribution of habitat that 99 

is desirable. To test this, we analysed the species richness of aspen-associated insects and 100 

abundance of individual species in relation with habitat connectivity and also other log 101 

characteristics. 102 

 103 

Methods 104 

Study area and experimental design 105 

The experiment was conducted in the Kakonsalo Natura 2000 area in Savonranta (62º 15’ N, 106 

29º 00’ E), eastern Finland. Although most of the Kakonsalo area has been converted to 107 

forest managed by clear-cutting during recent decades, three protected areas with aspen-rich 108 

forest remain, which together total 160 hectares (Fig. 1). These include clear-cuts with many 109 

large retained aspen-trees and old-growth forests. Numerous rare beetle species have been 110 

found in these areas, many of which are associated with aspen (Martikainen and Kouki 111 

2003). Managed forests surrounding the protected areas contain only small amounts of dead 112 

wood and few large aspen trees. 113 

We set out 58 piles of aspen logs in a way that generated a high variability in habitat 114 

connectivity among log-piles. They were set out along six forest roads, starting from 115 

different borders of two of the protected areas with a high density of aspen. At each forest 116 

road we identified a starting point, which was the outermost large aspen in the margin of the 117 

protected area. Where possible, one log-pile was located inside the protected area within 50 118 

m of the starting point, and the other piles were set outside the protected area at distances 119 

from the starting point of 0 – 25 m, 25 – 50 m, 50 – 100 m, 100 – 200 m, 200 – 400 m, 400- 120 
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800 m, and 800 – 1600 m. In some cases, dense young forest or difficult terrain along the 121 

forest road forced us to place the log piles at sites that differred slightly (usually less than 15 122 

m) from this rule. Five additional log-piles were located in the core areas of the protected 123 

areas. 124 

Each of the 58 piles consisted of six aspen-logs with two each in the following three 125 

diameter classes: 5 – 15 cm, 15 – 25 cm, and 25 – 35 cm (Fig. 2). The bottom layer 126 

comprised one log from each diameter class; the upper layer comprised one thin and one 127 

thick log, placed crosswise above the first layer; the remaining 15 – 25 cm log was 128 

positioned vertically against the other logs and secured by boards and nails. Horizontally 129 

laid logs were all 3 m long; the standing logs were all 2 m long. The volume of each pile 130 

was approximately 0.6 m
3
, which corresponds to a medium-sized aspen-tree. 131 

All experimental aspen logs were sourced from managed forests outside the study area. 132 

The trees were harvested and distributed to the locations of the piles in February 2005, when 133 

no colonization by insects would have been possible. Only fresh, healthy-looking logs were 134 

accepted, i.e. with no heart-rot, visible polypores or old wounds. The logs were arranged 135 

into piles in spring. Before spring many logs (44 %) had to some extent been debarked by 136 

moose, Alces alces (L.).  137 

 138 

Collection of insect and log pile data 139 

Beetles (Coleoptera) and flat bugs of the genus Aradus (Heteroptera) were monitored using 140 

trunk window-traps. Traps attached to dead trees usually capture more saproxylic beetles 141 

than traps situated away from trees (Hyvärinen et al. 2006; Sverdrup-Thygeson and  142 

Birkemoe 2009, see however Saint-Germain et al. 2006), which means that the capture in 143 

trunk window traps at least to some extent reflect what is attracted by the trees. In each pile, 144 

one trap was attached to the standing log (Fig. 2). The trap consisted of two perpendicular 40 145 

cm × 60 cm transparent plastic panes, with a funnel below the panes leading to a 1 l 146 

container partly filled with a solution of water, salt and detergent to preserve the captured 147 

insects. In this study, the number of individuals decreased during the third year, indicating 148 

that aspen wood attracts beetles mainly during the first few years. Consequently, sampling 149 

was conducted during three years, 10 June – 14 September 2005, 10 May – 8 August 2006, 150 

and 6 May – 14 August 2007. The traps were emptied 2 or 3 times per year. When 151 

identifying the trap material, only aspen specialists using dead wood items > 10 cm were 152 

considered (Table 1). Aspen specialists were defined as species for which we estimate that > 153 
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95 % of the population in our study area to develop in aspen wood or bark (Palm 1959; 154 

Ehnström and Axelsson 2002; personal observations). The species may use dead trees or 155 

rotten parts of trees that still are alive. To obtain evidence of reproduction, we assessed the 156 

occurrence of exit holes for those aspen-specialist beetles which have characteristic holes: 157 

Xylotrechus rusticus (Cerambycidae), Saperda perforata (Cerambycidae) and Trypophloeus 158 

spp. (Trypophloeus bispinulus and T. discedens; Curculionidae). For X. rusticus and 159 

Trypophloeus spp. the number of exit holes was counted, while for Saperda perforata only 160 

presence/absence was assessed since it is impossible to identify S. perforata holes without 161 

destroying the substrate. The logs were inspected for exit holes at 14 August 2007, when the 162 

majority of beetles developing in the logs had already emerged from the logs, which were by 163 

then too old for further colonization by these species. Exit holes formed by S. perforata were 164 

screened again two years later on 28 August 2009, in logs where the species were absent in 165 

2007. Because sporadic holes of Trypophloeus spp. are difficult to recognize, a positive 166 

record was only made if groups of at least five holes were found. 167 

On 14 August 2007, we measured two characteristics of the log-piles that may affect 168 

their suitability for insects – their degree of exposure to the sun (Martikainen 2001; 169 

Sverdrup-Thygeson and Ims 2002; Sahlin and Ranius 2009), and the extent to which bark 170 

had been stripped by moose (Sahlin 2009). We visited the piles regularly to empty the traps, 171 

and then we observed that this bark stripping took place before the sampling started in the 172 

first year. We categorised dead wood items according to sun exposure into six subjective 173 

classes from 0 (totally shaded) to 5 (in full sun). We estimated bark stripping in terms of the 174 

proportion of the total area of bark that had been lost. 175 

 176 

Collection of aspen data  177 

We estimated habitat connectivity from the amount and position of potential dispersal 178 

sources in the whole Kakonsalo study area. As our study species specialise on dead aspen 179 

wood, we defined dead aspen trees (laying and standing), and dead parts of living aspen 180 

trees, as suitable habitat. We obtained habitat data for the whole Kakonsalo area, either by 181 

own surveys, or from data collected by Metsähallitus (the forest manager). All log-piles 182 

were situated within the Kakonsalo forest estate at least 75 m from the border. Because 183 

mature aspen is rare in the intensively managed forest surrounding Kakonsalo, it probably 184 

has a negligible influence on the estimate of habitat connectivity that we only included data 185 

from the Kakonsalo area in our estimate. 186 
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For forest stands situated within 100 m of the log-piles, we made a detailed survey of 187 

living and dead aspens in October and November 2009. We surveyed the whole of smaller 188 

stands when some part of it was within 100 m of the log-piles, but for large stands we only 189 

surveyed the area within a 100 m radius of the log-pile. The positions of living and dead 190 

aspen trees were measured with a GPS with a maximum error of about 20 m. We surveyed 191 

dead trees with diameters > 10 cm at either breast height of standing dead wood, or in the 192 

middle of laying dead wood. Items of dead wood were classified into three different decay 193 

classes: ‘fresh’ - those that appeared to be less than three years old; ‘suitable’ - estimated to 194 

be 3 – 10 years old, i.e. those that potentially hosted source populations of species that may 195 

have dispersed to the log-piles when the beetle data were collected, 2 – 4 years ago; and 196 

‘old’ - estimated to be older than ten years. The volume of downed and standing dead aspen 197 

wood was calculated by using length and diameter data assuming the shape to be a cylinder.  198 

We also surveyed all living aspens with a diameter at breast height > 20 cm. For each 199 

tree, we estimated the volume (in m³), V, based on the breast height diameter (in cm), d, and 200 

tree height (in m), h, using the following equation (Eriksson 1973): 201 

 202 

V = (0.01548d² + 0.03255d²h – 0.000047d²h² - 0.01333dh + 0.004859dh²)/1000 eq. (1) 203 

 204 

For living trees we only had field data on diameter. Therefore, we estimated tree heights 205 

using the following equation: 206 

 207 

h = 1.016d – 0.009d² eq. (2) 208 

 209 

We derived this equation from data on mean diameters and heights of aspens collected in the 210 

study area by Metsähallitus. In this data set, trees had diameters up to 51 cm. With this 211 

equation, the height reached a maximum (28.7 m) when tree diameter was 56 cm. Therefore, 212 

when the tree diameter exceeded 56 cm, we assumed tree height to be constant at 28.7 m. 213 

For living trees, we obtained a proxy of the amount of dead wood by multiplying the tree 214 

volume with the proportion of the trunk surface area without bark.  215 

For forests not included in our detailed survey, i.e. those with no part < 100 m from 216 

any log-pile, and the distant parts of those stands which were only partly (< 100 m from a 217 

log-pile) surveyed, we used stand-level data of living and dead aspen from Metsähallitus. 218 

Data on living trees was based on at least three relascope plots per stand, and on dead wood 219 
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on at least three 50 m²-plots per stand. No measurements were made in stands where the 220 

total amount of dead wood was visually estimated to < 5 m³/ha. For all aspen wood, the 221 

midpoint of the stand was used as the position. We multiplied the volume of dead wood by 222 

0.20, as that was the proportion that we found to be in a suitable decay class (3 – 10 years) in 223 

our field data. For living trees, we estimated a proxy of dead wood amount by multiplying 224 

the proportion of trunk surface area without bark with the total volume of aspen per stand as 225 

measured by Metsähallitus. We estimated the proportion of trunk surface area without bark, 226 

P, using the mean diameter of aspens, and the following equation derived from our own 227 

field data on living aspen trees: 228 

P = 0.00366 + 0.00068d eq. (3) 229 

 230 

Statistical analyses 231 

We analysed the number of individuals of each species (for species with > 10 individuals), 232 

and species richness, in relation to the characteristics of each log pile and its surroundings. 233 

For all analyses we used a generalized linear model with a log-link function, assuming a 234 

Poisson distribution. We identified the most parsimonious statistical model using Akaike’s 235 

Information Criterion (AIC). The AIC value was calculated as –2 log-likelihood + 2 k, 236 

where k is the number of parameters in the model plus the spatial scale parameter, as that 237 

was also estimated in the statistical test. When building the model, ‘sun exposure’ and ‘bark 238 

peeled by moose’ were added in order of explained deviance, after which we added the 239 

habitat connectivity variable. Variables were added only when they generated a decrease in 240 

the AIC value. There were no statistically significant relationships between these three 241 

variables (p < 0.05; for connectivity, 1/α was set to 93 m), which implies that there is little 242 

risk that observed relationships with species occurrence are due to confounding effects of 243 

these variables. We estimated habitat connectivity using the following equation:  244 

 245 

jij

n

1  j

i V d exp(-α  S 


, for all j ≠ i eq. (4) 246 

where Si = habitat connectivity of log-pile i; dij = distance between the log pile i and j; n = 247 

total number of dead wood items in the Kakonsalo area; Vj = volume of dead wood item j; 248 

and α is a parameter related with the spatial scale of the connectivity. Within a radius < 100 249 

m, j are individual dead wood items, and at further distances midpoints of the forest stands. 250 
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This function is based on the assumption that all dead wood items are potential dispersal 251 

sources, and items that are large-sized and situated closely are up-weighted in comparison to 252 

those that are small and far away. This function has been found to be useful in connectivity 253 

measures for animal species (Moilanen and Nieminen 2002; Prugh 2009). The volumes of 254 

dead wood items were calculated as described above (Collection of aspen data). We 255 

identified the scale that generated the minimum residual deviance for the total statistical 256 

model by graphically comparing spatial scales (i.e. 1/α, in whole meters) within an interval 257 

from 10 to 1,000 m. For each independent variable, we calculated the explained deviance 258 

(%), which is an analogue to R². 259 

 260 

Results 261 

We collected 13 aspen specialists: 12 beetle species and one flat bug species (Table 1). For 262 

Xylotrechus rusticus and Trypophloeus spp. the number of exit holes was counted, which 263 

revealed that the number of individuals that had emerged from the log-piles during three 264 

years (666 and 685) was one order of magnitude higher than the number of individuals 265 

captured in traps during the same period (35 and 49, respectively).  266 

Species richness of aspen specialists was positively related with sun exposure and 267 

habitat connectivity and negatively related with the degree of bark peeling by moose (Table 268 

2, Fig. 3). The effect of habitat connectivity and degree of bark peeling was stronger during 269 

the second and third year than the first (Fig. 4). Even though the relationship between 270 

species richness and amount of aspen dead wood in the surrounding was clearly significant 271 

(p = 0.010, linear regression analysis), the explained deviance was rather moderate (Fig. 4). 272 

Where log-piles were surrounded by very small amounts of aspen dead wood (< 1 m³ / ha), 273 

the number of aspen-specialist species sampled was usually between 2 and 5, while for those 274 

surrounded by large amounts of aspen dead wood (> 10 m³ / ha), the number of aspen-275 

specialist species sampled was usually between 4 and 6 (Fig. 5). The spatial scale at which 276 

species richness had its strongest response to habitat was 93 m (Fig. 6). 277 

Abundance of individual species was negatively related with the degree of bark 278 

peeling by moose for three species (statistically significant for two); positively related with 279 

sun exposure for four species (statistically significant for three); and positively related 280 

(significant for all) with habitat connectivity for all seven species for which we had 281 

abundance data. The spatial scale at which species had their strongest response to habitat 282 
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varied widely among species (between 10 m and 1000 m, which were the minimum and 283 

maximum values tested, respectively).  284 

 285 

Discussion 286 

For all species, there was a positive relationship between habitat connectivity and abundance 287 

(except S. perforata, for which individuals per pile were not counted; for X. rusticus the 288 

relationship was statistically significant for one of two response variables tested). Thus, 289 

items of dead wood attract more aspen-specialists if they are situated close to (within a few 290 

hundred metres) rather than further away from dispersal sources. However, aspen logs 291 

several hundred metres from other aspen logs are also used by saproxylic insects; our data 292 

shows that even when the amount of habitat in the surrounding area is very low, several 293 

aspen-specialists can be present (Fig. 5). Furthermore, isolated aspen logs may be colonised 294 

by a higher proportion of dead wood generalists (Sahlin and Schroeder 2010), but such 295 

species were not analysed in the present study. 296 

The spatial scale at which species respond to habitat was smaller or similar in this 297 

study in comparison to previous studies of saproxylic beetles (Holland et al. 2005; Gibb et 298 

al. 2006; Schroeder et al. 2006; Franc et al. 2007; Ranius et al. 2010; Saint-Germain and 299 

Drapeau 2011). For three taxa out of nine, the strongest relationship was obtained using the 300 

largest spatial scale tested (1000 m; Table 2). This indicates that these taxa may respond to 301 

habitat connectivity even stronger at a larger scale than tested in this study, while for the 302 

majority of the species, the limitation in the spatial scale in this study does not seem to be a 303 

problem. Given that the study species are restricted to using a brief stage in the decay of 304 

wood, we expect that they belong to the more dispersive species among saproxylic insects. 305 

Although the studied species may very well be able to move tens of kilometres, as has been 306 

shown for other saproxylic beetles (Jonsson 2003), our results show that the spatial 307 

distribution of dead wood at a rather small scale may be important for how much it is used 308 

by these species. 309 

In this study, we analysed the abundance of species based on exit holes on the logs, as 310 

well as on adults collected with window-traps. Counting exit holes gives reliable 311 

information on the extent to which dead wood items are used by insects, while window-traps 312 

give data that is more difficult to interpret. The effect of habitat connectivity on abundance 313 

from window-trapping data was higher during the second and third year (when trapped 314 

individuals may include those emerging from the aspen piles) than during the first year 315 



11 

 

(when only individuals attracted by the logs were trapped; Fig. 4). This is consistent with the 316 

view that the relationship with habitat connectivity is indeed reflecting where species are 317 

breeding and not only to which log piles flying insects have been attracted. 318 

As far as we are aware, this is the first study to report a negative effect of bark peeling 319 

by moose on saproxylic insects. The effect was only found during the second and third years 320 

(Fig. 4), which suggests that it is not the attraction to the log piles, but the development of 321 

insects that is affected. Other studies have found that when moose populations are high, the 322 

regeneration of aspen and other deciduous trees may be rendered impossible by the high 323 

grazing pressure (Edenius and Ericsson 2007; Kouki et al. 2004). Consequently, the high 324 

moose population density that currently prevails means that there will be less aspen wood in 325 

the future. Bark peeling is probably a smaller problem than grazing: in our study 25 % of the 326 

bark was peeled, which is similar to the levels observed in an area in central Sweden (Sahlin 327 

2009). However, in contrast to grazing, bark peeling has an immediate effect on the 328 

population sizes of threatened insects that specialise on aspen wood. 329 

Sun exposure increased total species richness and for Platysoma deplanatum, 330 

Trypophloeus bispinulus, and Xylotrechus rusticus there was a positive relationship between 331 

sun exposure of logs and abundance (Table 2). Also previous studies have revealed that sun 332 

exposure affects the species composition of beetles associated with dead aspen and several 333 

species are favoured by sun exposure (Martikainen 2001, Sverdrup-Thygeson and Ims 2002, 334 

Jonsell et al. 2004, Lindhe et al. 2005, Sahlin and Ranius 2009, Schroeder et al. 2011). One 335 

reason why the effect of sun exposure was relatively weak in this study may be that there 336 

was a relatively limited variability in sun exposure among the piles studied. 337 

 338 

Conclusions 339 

In this study we transported aspen logs from managed forests with a limited number of 340 

aspen specialists in their fauna, to an area known to be a hotspot for this fauna. The 341 

transported logs were shown to attract threatened saproxylic insects. Restoration by log 342 

transportation may therefore be useful at localities that harbour a rich and specialised fauna, 343 

but which have too low a rate of formation of new dead wood habitat. 344 

The spatial distribution of dead wood items affects the extent to which they are used 345 

by wood-inhabiting species. Even though we studied a group of species that is probably 346 

more dispersive than many other saproxylic insects, we found a clear positive effect of 347 

habitat connectivity on species’ abundance at a scale of tens to hundreds of metres. The 348 
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present study therefore lends support to the view that conservation efforts in boreal forests 349 

should be concentrated in space, given that the goal is to maintain species richness at a 350 

landscape level. Thus, in a stand with a relatively high proportion of older deciduous trees, 351 

for instance, it would be desirable to retain all such trees, while single trees of the same 352 

quality should be given lower priority, because they would not be used to the same extent by 353 

habitat specialists. This conclusion applies to retention tree recommendations (for a recent 354 

review on current retention recommendations, see Gustafsson et al. 2010), but also to those 355 

cases where aspen is actively restored, for instance, by log transports. 356 
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 485 

Table 1. Aspen specialists using large diameter ( > 10 cm) dead wood items observed in 486 

2005-2007, including 12 beetle species and one flat bug (Aradus truncatus). Red-list 487 

categories according to Rassi et al. (2010). Total number of individuals captured with trunk 488 

window-traps and number of exit holes, and percentage of piles with the species present. 489 

 490 

Species¹ 
Red-
list2 

Number of 
individuals  

Piles 
(%) 

  2005 2006 2007 Sum  

Collected beetles       

Aradus truncatus Fieber, 1861 NT 0 1 2 3 5.2 

Cerylon deplanatum Gyllenhal, 1827 LC 64 45 17 126 89.7 

Cyphea curtula (Erichson, 1837) LC 2 42 17 61 62.1 

Enicmus lundbladi Palm, 1956 LC 1 0 0 1 1.7 

Obrium cantharinum (Linnaeus, 1767) LC 0 2 0 2 3.4 

Platysoma deplanatum (Gyllenhal, 1808) LC 9 4 2 15 20.7 

Ptilinus fuscus Geoffroy, 1785 LC 17 27 10 54 56.9 

Quedius microps Gravenhorst, 1847 NT 1 0 0 1 1.7 

Saperda perforata (Pallas, 1773) LC 1 3 0 4 6.9 

Trypophloeus bispinulus Eggers, 1927 LC 3 31 1 35 36.2 

Trypophloeus discedens Palm, 1950 NT 8 6 0 14 20.7 

Xyletinus tremulicola Y.Kangas, 1958 VU 0 1 0 1 1.7 

Xylotrechus rusticus (Linnaeus, 1758) LC 16 10 9 35 34.5 

Sum  122 172 58 352  

 
 
Observed exit holes       

Saperda perforata
3 

LC x x x 19
4
 32.8 

Xylotrechus rusticus
3
 LC x x x 666 53.4 

Trypophloeus spp
3
  x x x 685 41.4 

 491 

¹ In addition to the aspen-specialists above, we also made observations of another threatened 492 
species: Xylomya czekanovskii Pleske, 1925. 493 
2 VU = vulnerable; NT = near threatened; LC = least concern. 494 
3 

Exit holes were not counted every year in 2005-2007, and consequently only one summary 495 

value is given.  496 
4
 Number of log-piles with exit holes present. 497 

 498 
499 
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 500 
Table 2. Aspen-specialists analysed in relation with characteristics of logs and their 501 

surroundings (including only species with > 10 individuals collected). Generalized linear 502 

models with a log-link function (logit-link function for presence/absence of S. perforata 503 

holes). Response variables: number of individuals collected with trunk window-traps 2005-504 

2007; presence/absence of exit holes of S. perforata in 2009; number of exit holes of X. 505 

rusticus and Trypophloeus spp. (in 2007); and species richness of aspen specialists 506 

according to Table 1. Explanatory variables: Moose = proportion of bark peeled by moose; 507 

Connectivity = habitat connectivity; 1/α = spatial scale of response (in m; see eq. 4). “ns” 508 

means that the variable was not included in the most parsimonious model according to 509 

Akaike Information Criterion. 510 

 511 

 Moose 

Sun 

exposure Connectivity 1/α 

C. deplanatum ns ns 0.00348*** 1000 

C. curtula -1.06 ns 0.00797** 274 

P. deplanatum ns 0.612* 0.0103* 1000 

P. fuscus ns ns 0.0120*** 282 

T. bispinulus -3.20*** 0.282* 0.00926*** 481 

T. discedens ns 0.349 0.0182*** 306 

X. rusticus ns 0.486*** ns (14) 

S. perforata holes ns 0.578 ns (88) 

X. rusticus holes -2.64*** 0.636*** 0.521*** 10 

T. spp. holes -2.73*** ns 0.00699*** 1000 

Species richness -0.654* 0.149* 0.0125* 93 

 512 

Significance levels: *, P < 0.05; **, P < 0.01; ***, P < 0.001513 
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 514 
 515 

Figure 1. The Kakonsalo Natura 2000 area with three protected aspen-rich reserves (grey). 516 

Asterisks represent experimental log piles. 517 

 518 

519 
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 520 
 521 

Figure 2. A pile of six aspen logs, with a trunk window-trap attached to the standing log. 522 

Photo by P. Martikainen. 523 

 524 

 525 

 526 

 527 

 528 

529 
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531 
Figure 3. The increase in explained deviance (%) of Poisson regression models when adding 532 

different independent variables to the most parsimonious model but with this variable 533 

absent. Response variables: number of individuals collected with trunk window-traps 2005-534 

2007; presence/absence of exit holes of S. perforata in 2009; number of exit holes of X. 535 

rusticus and Trypophloeus spp. (in 2007). Explanatory variables: Moose = proportion of 536 

bark peeled by moose. All relationships with Moose were negative, and all with sun 537 

exposure and connectivity were positive. If inclusion of the variable did not lower the AIC 538 

value, the explained deviance was reported as 0. 539 

540 
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  541 
Figure 4. Explained deviance (%) of the three predictor variables estimated as (deviance 542 

with the other two predictor variables – deviance with all predictor variables) / (deviance 543 

with the other two predictor variables). Response variables: species richness per year of 544 

aspen specialists according to Table 1.   545 

546 
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 547 

 548 

Figure 5. Total number of aspen-specialist beetle and bug species collected per log-pile 549 

during three years, in relation to the amount of dead aspen wood (dead trees and dead parts 550 

of living trees) within a radius of 232 m. This radius was chosen because it resulted in the 551 

strongest statistical relationship (p = 0.010, linear regression analysis). 552 

553 
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 554 

 555 

Fig. 6. The relationship between the spatial scale of the connectivity measure (1/α in eq. (4)) 556 

and the deviance between the statistical model and data. The deviance reached its minimum 557 

at 1/α = 93 m. 558 


