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Abstract 

Azadmard-Damirchi, S. 2007. Olive Oil: Phytosterols, Tracing of Adulteration 
with Hazelnut Oil and Chemical Interesterification. Doctor’s dissertation. 
ISSN 1652-6880, ISBN 91-576-7335-0 
 
Analyses of phytosterol classes of olive and hazelnut oils collected from different 
countries by TLC, GC and GC-MS revealed considerable quantitative differences. 
The composition of 4-desmethyl- and 4-monomethylsterols was similar in both 
oils, but 4,4'-dimethylsterols composition differed. Lupeol and an unknown 
(lupane skeleton) compound were exclusively present in hazelnut oil 4,4´-
dimethylsterols and could be used as markers to detect virgin olive oil adulteration 
with hazelnut oil at levels below 4%. Conventional TLC to separate phytosterol 
classes has a low recovery rate and is time-consuming. A new SPE method to 
separate phytosterol classes was developed with stepwise elution by increasing the 
polarity of the n-hexane:diethyl ether solvent mixture. Comparison of the results 
obtained for hazelnut and virgin olive oils with those of TLC revealed that the 
SPE method was faster and gave higher sterol recovery rates. Free and esterified 
forms of sterols provide detailed information on the identity and quality of 
vegetable oils, and therefore 4,4´-dimethylsterols were investigated in hazelnut oil 
and virgin olive oil. A sample of solvent-extracted hazelnut oil was refined to 
monitor the effects of processing on 4,4´-dimethylsterol levels and on specific 
marker compounds. Of the refining processes tested, only neutralisation and 
bleaching considerably reduced 4,4´-dimethylsterols. In fully-refined hazelnut oil, 
losses of marker compounds in free form were higher than losses in their esterified 
form. GC-MS analysis showed that adulteration of olive oil with fully-refined 
hazelnut oil could be detected at levels of 2% by tracing lupeol in total/esterified 
forms of 4,4´-dimethylsterols. Olive oil has many applications in the food 
industry, e.g. blended with oils such as palm stearin to produce margarine or 
shortening by chemical interesterification. Investigation on lipid and minor lipid 
components of an olive oil-palm stearin blend during chemical interesterification 
showed that sterols were esterified with fatty acids at a higher level at 120 °C (7%) 
than at 90 °C (4%). Despite heat treatment and several steps to produce an 
interesterified product, there were minor losses in phytosterol and tocopherol 
contents and no significant increases in phytosterol oxidation. 
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Phase Extraction, SPE.  
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Introduction 

Virgin olive oil is obtained from the fruit of the olive tree (Olea europaea L.) 
solely by mechanical or other physical means under conditions, particularly 
thermal conditions, that do not lead to alteration in the oil (IOOC, 2003). Pressing, 
centrifugation and percolation are usual methods for extraction of olive oil. 
Properly extracted olive oil from fruits with good quality can be consumed in 
crude form, conserving the healthy components of the fruit (Petrakis, 2006; 
Visioli, 2006).  
 
World-wide production of olive oil during the last 20 years increased by almost 
70% (from 1.7 to 2.8 million tons) (Zampounis, 2006). Olive oils makes up a 
small proportion (<3.5%) of the volume in the world vegetable oil market. 
However, in terms of product value, olive oil has a 15% share of world trade 
(Luchetti, 2000). The price of olive oil can be two to five times higher than that of 
other vegetable oils depending on the country, category of the oil, and year 
(Luchetti, 2000). Spain is the primary world producer of olive oil, followed by 
Italy, Greece, Tunisia and Turkey. World consumption generally follows a parallel 
path to the production rate. 
 
The authenticity of olive oil is an important issue from a commercial and health 
point of view. Virgin olive oil is highly valued because it is traditionally obtained 
from olives without the use of heat and is regarded as better tasting and 
nutritionally favourable. Adulteration of olive oil can occur by mislabelling of less 
expensive products or by adding less expensive oils to in crease the volume and 
increase profits. Detection of olive oil adulteration with most other vegetable oils 
is not very difficult because of the differences in the fatty acid, triacylglycerol, or 
sterol composition of these oils (Aparicio, 2000). However, the adulteration of 
olive oil with hazelnut oil is difficult to detect with conventional methods at levels 
below 20% (Bøwadt & Aparicio, 2003). This is due to the similar chemical 
composition of the major and some minor components found in hazelnut and olive 
oils (Benitez-Sánchez et al., 2003). Therefore a new detection method which will 
provide simple, fast and inexpensive identification of such adulteration is required.   
 
Olive oil has large areas of applications in food preparation, e.g. salad oil, in 
cooking, frying, pasta sauces, as a dip for bread and etc. Olive oil can be used for 
production of margarines and shortenings by hydrogenation or interesterification 
(Gavriilidou & Boskou, 1991; Alpaslan & Karaali, 1998). Chemical 
interesterification is an established method in the edible oil industry to improve 
plasticity, crystallisation habit or functional properties of fats and oils (Rozendaal, 
1992; O´Brien, 2004). The effects of this process on physical and chemical 
properties of the end product have been widely studied (Ledóchowska & 
Wilczyńska, 1998; Zhang et al., 2005; Daniels et al., 2006; Zhang et al., 2006). 
However, there are few studies on the effects of this process on minor compounds 
of the vegetable oils, e.g. phytosterols and their oxidation products. 
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Olive oil 

Designations and definitions of virgin olive oils (IOOC, 2003)

Virgin olive oil is obtained from the fruit of the olive tree solely by mechanical or 
other physical means under conditions, particularly thermal conditions that do not 
lead to alterations in the oil, and the oil does not undergo any treatment other than 
washing, decantation, centrifugation and filtration. Virgin olive oil fit for direct 
consumption includes: 
 
(i) Extra virgin olive oil: Virgin olive oil which has a free acidity, expressed as 
oleic acid, of not more than 0.8 grams per 100 grams, and the other characteristics 
of which correspond to those fixed for this category in this standard. 
 
(ii) Virgin olive oil: Virgin olive oil which has a free acidity, expressed as oleic 
acid, of not more than 2 grams per 100 grams and the other characteristics of 
which correspond to those fixed for this category in this standard. 
 
(iii) Ordinary virgin olive oil: Virgin olive oil which has a free acidity, expressed 
as oleic acid, of not more than 3.3 grams per 100 grams and the other 
characteristics of which correspond to those fixed for this category in this 
standard. 
 
Virgin olive oil not fit for direct consumption, designated lampante virgin olive 
oil, is virgin olive oil which has a free acidity, expressed as oleic acid, of more 
than 3.3 grams per 100 grams and/or the organoleptic characteristics and other 
characteristics of which correspond to those fixed for this category in this 
standard. It is intended for refining or for technical use. 
 
Olive oil composition 
Olive oil is a complex mixture consisting of two main groups of substances: (a) 
saponifiables, which represent nearly 98% of the chemical composition, such as 
triacylglycerols (TAG), partial glycerides, esters of fatty acids or free fatty acids 
and phosphatides; and (b) unsaponifiables, which represent only ~ 2% of all olive 
oil composition, such as phytosterols, tocopherols, hydrocarbons, pigments, 
phenols, flavonoids or volatile compounds (Aparicio & Aparicio-Ruíz, 2000). 
 
Triacylglycerols and fatty acids
The TAG composition of olive oil is: OOO (40-59%), POO (12-20%), OOL 
(12.5-20%), POL (5.5-7%), SOO (3-7%) and smaller amounts of POP, POS, 
OLnL, LOL, OLnO, PLL, PLnO and LLL, LnLO, LnOP, PLP, SOP, EOO 
(Parcerisa et al., 2000; Boskou et al., 2006). The fatty acid composition of olive 
oil is: myristic acid (C14:0): ≤ 0.05%, palmitic acid (C16:0): 7.5-20%, palmitoleic 
acid (C16:1): 0.3-3.5%, heptadecanoic acid (C17:0 ): ≤0.3%, stearic acid (C18:0): 
0.5-5%, oleic acid (C18:1): 55-83%,  linoleic acid (C18:2): 3.5-21%, linolenic 
acid (C18:3): 3.5-21%, eicosanoic acid (C20:0): ≤0.6%,  gadoleic acid (C20:1): 
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≤0.4%,  behenic acid (C22:0): ≤0.2%, lignoceric acid (C24:0): ≤0.2% (IOOC, 
2003). 
 
Phenolic compounds 
The phenolic compounds present in olive oil can be classified into a lipophilic 
group and a hydrophilic group (Boskou, 2000). Olive oil is a source of at least 30 
phenolic compounds belonging to the hydrophilic group (Tuck & Hayball, 2002). 
The total polyphenolic content of olive oil ranges from 50 to 1000 ppm ((Boskou 
et al., 2006). The levels of total phenols and individual phenols in olive oil depend 
on agronomic factors, maturity of the olives, processing, packaging and storage 
(Boskou et al., 2005). The major phenolic compounds in olive oil are gallic, 
caffeic, vanillic, p-coumaric, syringic, ferulic, homovanillic, p-hydroxybenzoic 
and protocatecuic acids, tyrosol and hydroxytyrosol (Montedoro et al., 1992; 
Mannino et al., 1993). The phenolic compounds present in olive oil are strong 
antioxidants and radical scavengers. There are several reports showing good 
correlation of total polar phenol content with the stability of the olive oil (Blekas 
et al., 2002). It has been demonstrated that phenolic compounds are more effective 
than tocopherols in enhancing the stability of olive oil toward oxidation (Baldioli 
et al., 1996). Phenolic compounds, especially secoiridoids and o-diphenols, play 
an important role in the flavour of olive oil. They are also among the components 
most responsible for the nutritional and multiple pharmacological effects (Visioli 
& Galli, 1998; Yang et al., 2007). 
 
Tocopherols 
Tocopherols and tocoterienols, which belong to the lipophilic group, are 
derivatives of 2-methyl-6-chromanol with a side chain of three terpene units 
attached at C2. They are distinguished by their side chains. The terpenoid side 
chain occurs in saturated form in tocopherols and in the unsaturated form in 
tocoterienols, with double bonds in positions 3´, 7´ and 11´. Tocopherols and 
tocotrienols are further separated into individual compounds designated by the 
Greek letter prefixes α, β, γ, δ depending on the number and position of methyl 
substitution on the chromanol ring (Gregory, 1996). α-tocopherol is traditionally 
considered to be the major antioxidant of olive oil and its concentration varies 
from a few ppm up to 300 ppm (Dionisi et al., 1995; Blekas et al., 2002). β-, γ- 
and δ-tocopherols concentrations have also been reported to range from trace to 25 
ppm (Dionisi et al., 1995; Boskou et al., 2006; Cunha et al., 2006). α-, β-, and γ- 
tocotrienols have also been reported in olive oils at concentrations from non-
detectable to 3.1, 0.7, and 4.7 ppm, respectively (Benitez-Sánchez et al., 2003). 
 
Alcohols 
One of the major series of compounds in the unsaponifiables is the alcohols. 
Aliphatic alcohols can have an even or odd number of carbon atoms. The linear 
aliphatic alcohols in olive oil are hexacosanol (major), docosanol (approx. 35%), 
tetracosanol and octacosanol (Benitez-Sánchez. et al., 2003). Tricosanol, 
pentacosanol, and heptacosanol, aliphatic alcohols with an odd number of carbon 
atoms, may be found in trace amounts (Boskou et al., 2006).  
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Wax esters 
Wax esters occurring in vegetable oils are a group of compounds formed by 
esterification of high molecular mass alcohols with fatty acids. If the alcoholic 
group is a long chain aliphatic alcohol, it results in aliphatic waxes of 34–46 
carbon atoms (Pérez-Camino et al., 2003). Wax values in virgin olive oil, olive oil 
and refined olive oil are a maximum 250 and 350 mg/kg (EU Commission 
Regulation, 1993). Virgin olive oil has a higher content of C36 and C38 waxes 
than C40, C42, C44, and C46 waxes, whereas the reverse is true in olive pomace 
oil and refined olive oils (Morales & León-Camacho, 2000). This fact is used to 
distinguish virgin olive oil from olive pomace oil and refined olive oil. 
 
Hydrocarbons 
Squalene is an important hydrocarbon in olive oils (2500-9250 ppm) and makes 
up more than 90% of the hydrocarbon fraction. This hydrocarbon is a precursor of 
sterols in vegetable oils. Other hydrocarbons have also been found in virgin olive 
oil, such as 6, 10-dimethyl-1-undecene, various sesquitterpenes, the series of n-
alkanes from C14 to C35, n-heptadecene and n-9-alkenes (Lanzon et al., 1994).  
 
Pigments 
Olive oil also contains pigments, chlorophylls and carotenoids. Chlorophylls are 
encountered as pheophytin. Pheophytin α concentration in olive oil range from 3.3 
to 40 ppm, while pheophytin b and chlorophyll b are present in trace amounts and 
chlorophyll a has not been detected (Psomiadou & Tsimidou, 1998). The main 
carotenoids present in olive oil are β-carotene (0.3-4.4 ppm) and lutein (trace-1.4 
ppm) (Psomiadou & Tsimidou, 1998). 
 
Volatile and aromatic compounds 
Olive oil compared with other vegetable oils has a characteristic aroma and 
flavour. These sensory characteristics, together with nutritional aspects, are the 
main reasons for the increment of virgin olive oil consumption in recent years 
(IOOC, 2003). A balanced flavour of green and fruity sensory characteristics of 
high quality olive oil has a profile of volatile compounds, mainly comprising 
aldehydes, esters, alcohols and ketones (Aparicio & Morales, 1998). Volatile 
components can be used to check the quality of olive oil (Angerosa, 2002), to 
detect an adulteration (Lorenzo et al., 2002), to detect a possible off-flavours 
(Morales et al., 1997) or to determine the variety of olive (Lorenzo et al., 2002). 
 
Phytosterols 
Phytosterols comprise a major proportion of the unsaponifiables in vegetable oils. 
Total sterols content in olive oil varies between 1000 and 2300 ppm (Benitez-
Sánchez et al., 2003; IOOC, 2003). Sterol composition and content of olive oil are 
affected by cultivar, crop year, degree of fruit ripeness, storage time of fruits 
before oil extraction and method of oil extraction (Boskou et al., 2006). Since the 
research presented in this thesis concentrates mainly on phytosterols, more details 
on these compounds are presented below.  
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Chemistry and occurrence of phytosterols 

Plant sterols, also called phytosterols comprise a major proportion of the 
unsaponifiables in vegetable oils. They are biosynthetically derived from squalene 
and form a group of triterpenes (Goodwin, 1980). They are important components 
of plant cells in controlling membrane fluidity and permeability, although some 
have a specific function in signal transduction events and the activity of 
membrane-bound enzymes (Piironen et al., 2000). Phytosterols are derivatives of a 
tetracyclic perhydro-cyclopentano-phenanthrene ring system with a flexible side 
chain at the C-17 atom and 3β-monohydroxy compounds (Hartmann, 1998). Most 
phytosterols contain 28 or 29 carbons and one or two carbon–carbon double 
bonds, typically one in the sterol nucleus and sometimes a second in the alkyl side 
chain (Moreau, 2005). According to the IUPAC recommendations from 1989, 
sterol molecules consist of four rings marked as A, B, C and D with standard 
carbon numbering (Figure 1) (Moss, 1989). Three rings, A, B and C, have 6 
carbon atoms in a nonlinear structure and they are fused to one 5 carbon atoms 
ring (D). The various phytosterols found in plants differ in number of carbon 
atoms in the side chain and the position and number of the double bonds in the 
ring and in the side chain.
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 1. Basic structure of a sterol with standard carbon numbering according to the 
IUPAC (Moss, 1989).  
 
 

Phytosterol classes 
Phytosterols can be classified into three classes based on the presence or absence 
of methyl groups at the C4 position in the A ring: 4-desmethylsterols (without 
methyl group), 4-monomethylsterols (one methyl group) and 4,4´-dimethylsterols 
(triterpene alcohols, two methyl groups) (Akihisa et al., 1991). However, there is 
another group of compounds present in unsaponifiables called triterpene 
dialcohols, which are co-chromatographed with 4-desmethylsterols (Boskou et al., 
2006). Erythrodiol and uvaol are the main triterpene dialcohols present in olive 
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oils (IOOC, 2003). The structural formulae of sitosterol (a 4-desmethylsterol), 
citrostadienol (a 4-monomethylsterol), and 24-methylenecycloartanol (a 4,4´-
dimethylsterol) are shown in Figure 2.  
 
 
 
 
 
 
 
 
 
 
 
 
                                                          

OH

 
                                                  Sitosterol (4-desmethylsterol)   
 

OH

 

OH

 
 
 
 
 

 
 
 
 
Citrostadienol (4-monomethylsterol)       24-methylenecycloartanol (4,4´-dimethylsterol) 
 
Figure 2. The chemical structure of phytosterol classes. 
 
 
According to the position and number of double bonds in the B ring, 4-
desmethylsterols can be classified into Δ5-sterols, Δ7-sterols and Δ5,7-sterols 
(Moreau et al., 2002). 4-desmethylsterols include all of the common phytosterols 
with a 28- or 29-carbon skeleton, but also cholesterol with a 27-carbon skeleton 
(Moreau et al., 2002). Cholesterol occurs as a major sterol in animal cells, 
although only as a few percent in plant cells (Heupel, 1989). Chemically, it is an 
analogue to the phytosterols, differing only in the side chain. Some common 
sterols from each class are given in Table 1.  
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Table 1. Some common sterols from each class of phytosterols 
 
Common name IUPAC name 
4-desmethylsterol 

 
 

Sitosterol  5α-Stigmast-5-ene 3β-ol 
Campesterol  Ergost-5-ene 3β-ol 
Stigmasterol  5α-Stigmasta-5,22-diene 3β-ol 
Δ5-Avenasterol  5α-Stigmasta-5,24(28)-diene 3β-ol 
   
4-monomethylsterol   
Citrostadienol  4α-Methyl-24-ethylidene-5α-cholest-7-ene 3β-ol 
Obtusifoliol  4α,14α-Dimethyl-24-methylene-9β,19-cyclo-5α-cholest-8-ene 3β-ol 
Gramisterol  4α-Methyl-24-methylene-5α-cholest-7-ene 3β-ol 
Cycloeucalenol  4α,14α-Dimethyl-9β,19-cyclo-24-methylene-5α-cholestane 3β-ol 
   
4,4′-dimethylsterol   
24-Methylenecycloartanol  24-Methylen-9β,19-cyclo-5α-lanost-24-ene 3β-ol 
Cycloartenol  9β,19-Cyclo-5α-lanost-24-ene 3β-ol 
α- Amyrin  5α-Urs-12-ene 3β-ol 
β-Amyrin  5α -Olean-12-ene 3β-ol 
 
                                                                                                                                          
Methylsterols (4-monomethyl- and 4,4'-dimethylsterols) are synthesised at an early 
stage in the biosynthetic pathway and they are precursors of 4-desmethylsterols 
(Hartmann, 1998).  
 
Analysis of phytosterols 
Methylsterols usually occur in relatively smaller amounts compared with 4-
desmethylsterols in vegetable oils and therefore it is necessary to separate and 
enrich them before quantification. Table 2 shows different methods used to 
separate sterol classes and also total sterols from unsaponifiables. 
 
Table 2. Methods currently used to separate and enrich total sterols and sterol classes in 
vegetable oils 
 

 

Method Stationary 
phase 

Solvent system Reference 

Total sterols 

 

 

 

 

 

 
TLC  Silica  Hexane: diethyl ether: acetic acid  

(85:15:1) 
 Morales & León-Camacho,  

2000 
HPLC  Silica  Hexane: diethyl ether  Amelio et al., 1992 
SPE  C18  Methanol: chloroform  Toivo et al., 1998 
SPE  C18  Acetonitrile: toluene  Ham et al., 2000 
       
Sterol classes       
TLC  Silica  Hexane: diethyl ether: acetic acid  

(70:30:1) 
 Kornfeldt & Croon., 1981 

HPLC  Silica  Petroleum ether: ethyl acetate  Li et al., 2001 

Thin-layer chromatography is the conventional method to separate and enrich 
phytosterol classes. However, this method has some drawbacks. Different sterol 
fractions have close Rf values in TLC, which may cause mixing during scraping of 
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TLC bands (Kornfeldt & Croon, 1981; Kamal-Eldin et al., 1992, Morales & León-
Camacho, 2000). In addition, preparative TLC is also disadvantageous because it 
has a low recovery rate and is time-consuming and laborious (Bello, 1992; 
Bohacenko & Kopicova, 2001). Preparative HPLC has also been used to separate 
sterol fractions of vegetable oils (Li et al., 2001). However, unlike TLC, use of 
HPLC may require a high solvent volume and a also higher cost. After separation 
and enrichment, phytosterol classes are generally derivatised to their trimethylsilyl 
(TMS) ether derivatives and analysed by GC and GC-MS (Kuksis, 2004). 
 
Level of phytosterols in olive oil 
Table 3 shows the 4-desmethylsterol levels according to International Olive Oil 
Council trade standards (IOOC, 2003). Phytosterol composition can differ in 
virgin olive oil by cultivar, crop year, ripening, storage time, extraction methods, 
etc. Virgin oil shows a very good correlation between stability and concentration 
of total sterols, β-sitosterol and Δ5-avenasterol (Gutiérrez et al., 1999). 4-
desmethylsterols level does not vary substantially during ripening of olive fruits, 
except for a reduction in total sterols and β-sitosterol, and an increase in Δ5-
avenasterol level. The explanation for the decrease in total sterols is that sterols form 
in the first phases of ripening; as the oil content increases during this period, the sterols 
are diluted. The decrease in β-sitosterol is exactly the same as the increase in Δ5-
avenasterol, suggesting the presence of a desaturase enzyme that transforms β-
sitosterol into Δ5-avenasterol (Gutiérrez et al., 1999). The influence of storage 
temperature of olive fruits on sterol composition is more important than the 
influence of storage time. The total sterol content increases gradually with olive 
storage time. The increase is greater for olive fruits stored at ambient temperature 
than those stored at low temperature (5 °C) (Gutiérrez et al., 2000). Stigmasterol is 
related to various parameters of the quality of virgin olive oil. High levels of this 
compound correlate with high acidity and low organoleptic quality (Gutiérrez et 
al., 2000). 
 
 
Table 3. 4-desmethylsterol composition (% total sterols) of olive oil according to 
International Olive Oil Council trade standards (IOOC, 2003) 
 
Sterol Limit 
Cholesterol  

 
< 0.5 

Brassicasterol  <0.1  
Campesterol  < 4.0 
Stigmasterol  < campesterol 
Δ7-Stigmastenol  < 0.5 
Apparent β-sitosterol  ≥ 93.0% a

 
aApparent β-sitosterol comprises: β-sitosterol,  
Δ5-avenasterol, Δ5,23-stigmastadienol, clerosterol,  
sitostanol, Δ5,24-stigmastadienol 
 
 
Ntsourankoua et al. (1994) have determined the 4,4′-dimethylsterol content of 
olive oil. Identification of compounds was carried out using GC-MS and authentic 
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samples of α-amyrin, β-amyrin, lupeol, and also extracted cycloartenol, 24-
methylenecycloartanol from sunflower oil. The compounds present include 
butyrospermol (4.1%), β-amyrin (2.1%), cycloartenol (9.7%), 7,24-
tirucallalladienol (4.9%), 28-nor Δ17,18-oleanen-3β-ol (trace), 24-
methylenecycloartanol (74.3%) and some unknown compounds in virgin olive oil. 
Moreover, lupeol was not detected in any sample of olive oil. 
 
Phytosterol classes of olive oil from different countries have been studied in detail 
(Paganuzzi & Leoni, 1979; Itoh et al., 1981; Leone et al., 1984, Benitez-Sánchez 
et al., 2003). In these reports, the 4-desmethylsterols class generally includes 
sitosterol, Δ5-avenasterol, campesterol, stigmasterol and 24-methylenecholesterol, 
the 4-monomethylsterols class includes citrostadienol, cycloeucalenol, gramisterol, 
obtusifoliol and cyclobranol and the 4,4′-dimethylsterols class includes β-amyrin, 
butyrospermol, cycloartenol, tirucalla-7,24-dienol and 24-methylenecycloartanol, 
with other minor compounds. 
 
Ranalli et al. (2002) have compared the phytosterol classes of seed, pulp and 
whole olive fruit oil. Seed oil was found to have higher content of total 4-
desmethylsterols (2.3-fold higher), sitosterol, campesterol, chlerosterol, Δ5-24-
stigmastadienol, Δ7-stigmastenol and Δ7-avenasterol compared with the other 
extracted oil. Pulp and whole olive fruit oil generally had the same amounts of 4-
desmethylsterols.   In 4,4′-dimethylsterols, β-amyrin, butyrospermol; cycloartenol  
and 24-methylenecycloartanol were determined. Seed oil had a lower amount of 
total 4,4'-dimethylsterols and cycloartenol, 24-methylenecycloartanol and higher 
amount of β-amyrin, butyrospermol (not well separated) compared with other 
extracted oils. Pulp and whole olive fruit oil generally had similar levels of 4,4′-
dimethylsterols. It was concluded that seed oil did not change the phytosterol 
classes of the whole fruit oil (mixture of seed and pulp oil). 
 
Different processing methods can also affect the levels of phytosterols in olive 
oils. Oils extracted from olive pastes by the direct centrifugation mode have been 
compared with the oils produced by the indirect centrifugation (after percolation) 
mode (Ranalli et al., 2000). The directly centrifuged oils were often higher in total 
sterols and moreover exhibited higher values of the qualitative 
campesterol/stigmasterol ratio. However, 4,4′-dimethylsterol content was changed 
in different ways for different cultivars. Ranalli et al. (1999) investigated the 
effect of using an enzyme processing aid (Cytolase 0) during extraction of olive 
oil on phytosterol composition. The enzyme processing aid did not seem to 
influence the content of individual and total 4-desmethylsterols in the olive oil. 
The values of total sterols and 4-desmethylsterols were within the limits set by the 
official normal standard (EC. Regulation no. 2568, 1991). However, 4,4′-
dimethylsterols were higher for the oils resulting from the enzyme-aided 
processing system compared with the control sample.  
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Free and esterified phytosterols 
Phytosterols occur in free and esterified forms, i.e. as fatty acid esters, steryl 
glycosides or acylated steryl glycosides (Moreau et al., 2002). In free form, the 
hydroxyl group at the C3 in the A ring is underivatised, whereas in esterified form, 
the hydroxyl group is covalently bound to other constituents (Figure 3) (Moreau, 
2005). 
 
 
 
 
 
 
 
 

 OH
O

O

R

 
                     A                                                            B 
 
Figure 3. Chemical structure of 24-methylenecycloartanol (a 4,4'-dimethylsterol) in 
esterified (A) and free form (B).     
 
 
The conventional method for total sterol analysis is saponification of the oil 
sample followed by extraction of the unsaponifiables with an organic solvent. On 
the other hand, separate determination of sterols in free and esterified forms 
provides detailed information on their distribution and stability (Phillips et al., 
2002). 
 
The levels of free and esterified sterols in olive oil have been studied in detail 
(Grob et al., 1990). The concentration of free campesterol in pressed olive oil is 
below 40 ppm. In high quality extra virgin olive oil, the concentration of free 
stigmasterol is below 10 ppm. Higher concentrations are an indicator of low 
quality olives (overripe or spoiled fruits). Raw lampante olive oil contains more 
free stigmasterol than extra virgin olive oil, which is also reflected by a lower 
campesterol/stigmasterol ratio. After refining, lampante olive oil contains free 
campesterol and stigmasterol at concentrations not very different from those in 
extra virgin olive oil. However, as both components are removed during refining 
at a similar ratio, the campesterol/stigmasterol ratio remains low (Grob et al., 
1990).  
 
The concentration of sitosterol-C18-esters in high quality extra virgin olive oil is 
below 200 ppm, but up to 400 ppm must be considered acceptable. As refined 
solvent-extracted oil contains approximately 2500 ppm sitosterol-C18-esters, the 
addition of 10% such oil increases the sitosterol ester concentration by about 250 
ppm in extra virgin olive oil. The percentage of free sitosterol is a key parameter 
for assessing the quality of the olive oil. In high quality extra virgin olive oils, the 
percentage of free sitosterol exceeds 90%. The acceptable limit is around 80%. 
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Lower relative concentrations indicate the use of low quality olives or forced 
extraction procedures. This parameter might be useful for setting a limit between 
extra virgin and lampante olive oil, particularly for those oils that appear to be 
extra virgin olive oil after gentle neutralisation (Grob et al., 1990). 
 
Chryssafidis et al. (1992) have reported the amount of free and esterified 4-
monomethylsterols and 4,4′-dimethylsterols in virgin olive oil. Obtusifoliol, 
gramisterol, cycloeucalenol and citrostadienol were identified in both free and 
esterified forms of 4-monomethylsterols in which citrostadienol was the main 
sterol in this fraction mostly occurring in esterified form. β-Amyrin, 
butyrospermol, cycloeucalenol and 24-methylenecycloartanol were the sterols 
identified in the 4,4′-dimethylsterol class, in which 24-methylenecycloartanol was 
the main sterol in this fraction and occurring mostly in free form. 
 
 

Authentication 

Olive oil adulteration  
Because of the high price of virgin olive oil, there is a great temptation to 
adulterate it with oils with similar fatty acid and sterol profiles (Aparicio, 2000). 
Olive oil adulteration with most vegetable oils can be detected by conventional 
methods. For example, fatty acid composition is useful for the detection of 
adulteration of olive oil with the following vegetable oils: soybean, walnut, 
canola, rapeseed, peanut and mustard, even at levels of adulteration below 5% 
(Christopoulou et al., 2004). ΔECN42 (calculated from the difference between the 
theoretical and experimental equivalent carbon number 42 in triacylglycerols) can 
also be used to detect olive oil adulteration with the following vegetable oils: 
sunflower, soybean, cotton, corn, walnut, sesame, safflower, canola and rapeseed 
at levels as low as 1% (Christopoulou et al., 2004). Olive oil adulteration with 
sunflower, soybean, cotton, corn, walnut, sesame, safflower and canola oils can 
also be detected based on the differences in triglyceride and fatty acid composition 
between the olive oil and these vegetable oils (Christopoulou et al., 2004). 
 
Hazelnut oil has been used to adulterate olive oil due to its similar composition of 
triacylglycerols, fatty acids and major sterols (Cercaci et al., 2003; Christopoulou 
et al., 2004) It is estimated that in the European Union, 4 million Euros per year 
are lost because of this adulteration (European Union Research Committee, 2001). 
It is difficult to detect olive oil adulteration with hazelnut oil at levels below 20% 
using conventional methods for detecting the adulteration with other vegetable oils 
(Bøwadt & Aparicio, 2003; Christopoulou et al., 2004). Table 4 shows the 
composition of hazelnut and olive oil. 
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Table 4. Major and some minor lipid components present in hazelnut and olive oils1

Compound Virgin olive oil Hazelnut oil 
 

TAG by carbon number (CN) (%) 

 

 

 

 
CN50  Tr-10  0.7-0.9 
CN52  17-53  16-20 
CN54  30-91  70-84 
CN56  Tr-1  0.2-0.6 
     
Fatty acids (%)     
Palmitic acid (C16:0)  7.5-20  5-7 
Stearic acid (C18:0)  0.5-5  1-3 
Oleic acid (C18:1)  55-83  70-82 
Linoleic acid (C18:2)  5-21  8-17 
Linolenic acid (C18:3)  0.0-0.9  0.1 
     
Tocopherols (ppm)     
α-Tocopherol  33-219  329-448 
β- Tocopherol  0.6-4.0  2-6 
γ-Tocopherol  0.1-11.9  5-47 
δ-Tocopherol  ND2-0.7  0.3-4.5 
     
Phytosterol classes (ppm)     
4-desmethylsterols     
Sitosterol  ≥750  1050-1700 
Campesterol  ≤40  50-95 
Stigmasterol  <campesterol  10-18 
Δ5-Avenasterol  40-140  20-80 
Total  ≥1000  1200-2000 
4-monomethylsterols      
Obtusifoliol  ND-59  Tr3-18 
Gramisterol  ND-48  Tr-17 
citrostadienol  17-576  17-122 
4,4'-dimetylsterols      
β-Amyrin  8-108  12-192 
Butyrospermol  6-104  Tr-27 
Cycloartenol  36-856  Tr-96 
24-Methylenecycloartanol  203-2190  Tr-72 
     
Wax esters (ppm)     
C36  37-74  42-186 
C38  19-55  21-97 
C40  3-53  18-80 
C42  Tr-76  Tr 
C44  13-133  1-16 
C46  7-96  3-17 
     
Aliphatic alcohols (ppm)     
C23  ND-11  ND-20 
C24  11-204  4-34 
C25  4-36  6-34 
C26  9-256  5-59 
C27  2-18  ND-12 
1 Data reported from IOOC (2003); Benitez-Sánchez et al. (2003). 
2 Not detected. 3Trace. 
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Detection of olive oil adulteration with hazelnut oil
Different methods have been proposed to detect this adulteration (Bøwadt & 
Aparicio, 2003). The sterol profile can be used as a means of differentiating 
between vegetable oils or detecting their authenticity (Itoh et al., 1973b). It is 
known that 4,4´-dimethylsterols are more variable in composition than 4-
desmethylsterols, and therefore that they are more effective for detecting vegetable 
oil adulteration (Ollivier et al., 1999; Itoh et al., 1973a). Some esterified 4-
desmethylsterols (campesterol, Δ7-stigmastenol and Δ7-avenasterol) have been 
used to detect olive oil adulteration with hazelnut oil using the Mariani ratio 
(RMAR) (Mariani et al., 1999): 
 
RMAR = (% campesterol X (% Δ7-stigmastenol)2)/ % Δ7-avenasterol 
 
For non-adulterated olive oil, RMAR is not more than 1. This method can be used to 
detect adulteration at a level of 10% (Cercaci et al., 2003). However, 70% of non-
adulterated olive oil samples tested had RMAR values higher than 1. It has been 
concluded that along with this parameter, other analytical parameters should be 
tested to check the authenticity of these types of olive oil (Cercaci et al., 2003). 
It has also been reported that using empirical mathematical models with variables 
based on the amounts of the three 4-desmethylseterols mentioned as free and 
esterified forms can give false positives, which confuses the analysis particularly 
when oil from roasted hazelnuts or adulteration of less than 5% occurs (Bøwadt & 
Aparicio, 2003).  
 
Mariani et al. (2006) have also proposed a method based on some free and 
esterified 4-desmethylstrerols in a new equation: 
 
 R2 = Free Δ7-stigmastenol (mg/kg) × (Δ7-stigmastenol free (%)/Δ7-stigmastenol ester (%) 
 
It was concluded that the proposed method is more accurate than the previously 
introduced method (using RMAR) and the adulteration could be detected at level of 
6-8%. Changes in the equation could reduce the number of false positives 
(Mariani et al., 2006).  
 
4-desmethylsterols have been used to detect olive oil adulteration with vegetable 
oils at levels as low as 5% (Bohačenko & Kopicova, 2001). Δ7-stigmastenol and 
campesterol have been used to detect olive oil adulteration with sunflower and 
soybean oil. Brassicasterol has also been used to detect olive oil adulteration with 
rapeseed oil. Different types of olive oil (virgin, refined and solvent-extracted) 
could be classified by using some 4-desmethylsterols (stigmasterol, clerosterol, 
Δ5-avenasterol, Δ7-stigmasterol and Δ7-avenasterol) as differentiating factors 
(Jiménez de Blas & Valle-González, 1996). 
 
4,4´-dimethylsterols have been used to detect virgin olive oil adulteration with 
pomace olive oil at levels as low as 5% (Ntsourankoua et al.,1994). Lupeol and α-
amyrin have also been used to detect olive oil adulteration with almond hazelnut 
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oils at levels as low as 5%, analysed by GC (Ollivier et al., 1999). However, 
detailed reports on methylsterols in hazelnut oil were lacking. 
 
Polar components have been studied for tracing olive oil adulteration with 
hazelnut oil (Zabaras & Gordon, 2004). In pressed hazelnut oil, two unknown 
polar compounds have been found that are not present in olive oil. However, 
hazelnut oil samples from Turkey, the USA and France [three sources] had the 
lowest and highest level of these unknown polar compounds; 0.37-0.71 and 6.23 
ppm, respectively. Due to the large variability in these polar components in 
pressed hazelnut oil from different origins, this method could not be used for the 
quantitative determination of the level of adulteration. 
 
TAG and unsaponifiables (tocopherols and sterols) have been determined in 
hazelnut and olive oil and different admixtures of the both oils (Parcerisa et al., 
2000). Discriminant analysis showed that TAG can be used to classify hazelnut 
and olive oil and admixtures of hazelnut oil in olive oil at levels as low as 10%. 
However, because of similarities in the tocopherol and sterol composition of both 
oils, these compounds could not be used for this purpose. In another study, it has 
been shown that TAG composition could not be used to detect olive oil 
adulteration with hazelnut oil at levels lower than or equal to 5% (Christopoulou et 
al., 2004). 
 
Vichi et al. (2001) used a combination of data obtained from free Δ7-sterols (Δ7-
stigmastenol and Δ7-avenasterol) and ΔECN42 to detect adulteration at a level of 
10%. Data obtained from analysis of free Δ7-sterols or ΔECN42 were not 
sufficient alone for this purpose. 
 
A spectrofluorimetric method combined with multivariate analysis has been used 
to assess the genuineness of olive oil in admixtures with hazelnut oil (Sayago et 
al., 2004). Stepwise linear discriminant analysis applied to each admixture showed 
that this method can be used to detect the hazelnut oil at levels higher than 5%. 
More work is needed to validate the method and to evaluate the possibilities of 
other excitation frequencies. Raman spectroscopy, together with chemometrics, 
has also been employed to detect olive oil adulteration with hazelnut oil (López-
Díez et al., 2003). It was concluded that further work should be done to accurately 
determine the lowest concentration of hazelnut oil that can be detected by Raman 
spectroscopy in adulterated olive oil. 
 
Olive oil adulteration with hazelnut oil could be detected using Fourier transform 
infrared (FT-IR) spectroscopy at levels of 25% and higher (Ozen & Mauer, 2002). 
In another study, spectroscopic analysis (FT-Raman and FT-MIR) was used with 
the entire oil and also with its unsaponifiables to detect olive oil adulteration with 
hazelnut oil (Baeten et al., 2005). The best results were obtained with the FT-MIR 
spectra of the unsaponifiable matter samples. However in some case the method 
gave false positives. The limit of detection was 8% for blends obtained by mixing 
Turkish hazelnut oil and Turkish olive oil. The limits of detection were not 
satisfactory for blends with non-Turkish edible oils and blends of Turkish hazelnut 
oil and European olive oil (15%). 
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Direct infusion electrospray ionisation (ESI) and atmospheric pressure photospray 
ionisation source (APPI), coupled to quadruple time-of-flight (QqTOF), have been 
used to check olive oil adulteration with other cheaper vegetable oils (Gómez-
Ariza et al., 2006). Mixture of an olive oil sample with a hazelnut oil sample at 
level of 10% could be distinguished using principal component analysis (PCA) 
with both ESI-MS and APPI-MS spectra (Gómez-Ariza et al., 2006). Differences 
in TAG composition of the oil samples were used for this purpose. LLL was not 
detected in the olive oil sample analysed in that study, while it was present in the 
hazelnut oil sample. It should be noted that LLL have been previously reported in 
olive oil samples elsewhere in minor amounts (Boskou, 1996; Morales & León-
Camacho, 2000). 
 
Peña et al. (2005) suggested direct coupling of headspace with mass spectrometry 
to detection of adulteration of olive oil with hazelnut oil. The system was applied 
to analysis of the volatile fraction, which can be used for detection of crude 
hazelnut oil in olive oil. It was concluded that the proposed method was rapid and 
reliable but disadvantages included the need for multivariate statistical techniques 
for data treatment. The minimum adulteration levels detected by this method were 
7 and 15% of crude hazelnut oil in adulterated refined and virgin olive oil, 
respectively. It was also noted that adulteration with refined hazelnut oil was not 
possible to detect with this method, since refined hazelnut oil contains no volatile 
components.  
 
García-González et al. (2004) used 1H and 13C nuclear magnetic resonance (NMR) 
techniques to detect olive oil adulteration with hazelnut oil. The detection of olive 
oil adulteration by NMR is based on the qualitative and quantitative chemical 
information obtained from resonance data. 1H NMR spectra provide information 
on major compounds such as fatty acids and also on minor compounds such as 
aldehydes, terpenes and sterols. 13C NMR is a technique that is capable of 
characterising vegetable oils according to the acyl positional distribution in the 
glycerol moiety. An artificial neural network based on 1H- and 13C-NMR data 
could be used to detect olive oil adulteration with hazelnut oil at a level of 8%, 
with some limitations (García-González et al., 2004). 
 
(E)-5-methylhept-2-en-4-one (filbertone) has been identified as the flavour impact 
component of hazelnuts. There are many studies on using this compound as a 
marker to detect olive oil adulteration with hazelnut oil. Filbertone could be used 
as a chiral marker to detect olive oil adulteration with hazelnut oil at levels higher 
than 10% by direct reversed-phase (RP)-LC-GC analysis under the conditions 
proposed in the study by Ruiz del Castillo et al. (1998). It has also been reported 
that identification of olive oil, hazelnut oil and mixtures of both oils (85:15) may 
be possible on the basis of the determination of the presence or absence of 
filbertone.  
 
On-line coupled reversed phase HPLC and GC have also been used to determine 
filbertone in hazelnut oil and in olive oil adulterated with hazelnut oil (Flores et 
al., 2006). This method could be used to detect adulteration of olive oil with some 
crude and refined hazelnut oil samples at levels of 5% and 12%, respectively. It 
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should be mentioned that the level of detection in this method was dependent on 
the level of filbertone in the hazelnut oil sample and when hazelnut oil with a low 
level of filbertone was used for adulteration, it was difficult to confirm the 
adulteration by this method.  
 
The presence or absence of filbertone in 21 admixtures of olive oil with crude and 
refined hazelnut oil (more discussion below) obtained using various processing 
techniques from different varieties and geographical origins has been evaluated by 
solid phase microextraction and multidimensional gas chromatography (SPME-
MDGC) (Flores et al., 2006). The presence of filbertone could occasionally be 
detected in olive oil adulterated with 7% and 10-20% of crude and refined 
hazelnut oil, respectively. However, in some cases, this method was not able to 
detect adulteration at ranges of 5 to 15% due to extremely low levels of filbertone 
in the hazelnut oil, probably obtained from unroasted nuts. 
 
Detection of olive oil adulteration with refined hazelnut oil 
All crude oils obtained after solvent extraction contain variable amounts of non-
triglyceride components such as fatty acids, mono- and diglycerides, phosphatides, 
and etc. The amount of the non-triglycerides varies with the oil source, extraction 
process, season and geographical source. Removal of non-triglyceride constituents 
from the oil with the least possible damage to the triglycerides and minimal loss of 
desirable constituents is the objective of the refining process. Low quality 
vegetable oils are also refined to produce suitable products for edible purposes. 
Refining processes generally comprise various steps: degumming, neutralization, 
bleaching and deodorisation (O´Brien, 2004). Table 5 shows the various steps of 
the refining process and the undesirable compounds removed at each step. 
Refining can affect minor components present in the unsaponifiable fraction of 
vegetable oils. During refining processes, particularly during deodorisation and 
bleaching, trans fatty acids and steradienes are also formed (Ferrari et al., 1996). 
 
Table 5. Substances removed during the vegetable oil refining process1 

 
Refining step  Substances removed 
Degumming  Phospholipids and gums 

 
Neutralisation  Free fatty acids, residual phospholipids and metals 

 
Bleaching  Pigments, residual soaps and phospholipids 

 
Deodorisation  Volatile oxidation products and other contaminants 
1Adapted from Čmolík & Pokorny (2000). 
 
 
Virgin olive oil adulteration with refined vegetable oils can be detected using 
trans fatty acid or steradienes as markers (Lanzón et al., 1989; Grob & Bronz 
1994). Refined olive oil can also be adulterated with refined hazelnut oil, which is 
much cheaper. Detection of this adulteration is much more difficult because, trans 
fatty acid and steradienes are present in both kinds of oil. In addition, other marker 
compounds used to detect the adulteration of olive oil with crude hazelnut oil, 
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such as filbertone or other volatile compounds, can also be lost mainly during 
deodorisation process (Flores et al., 2006). These losses depend on how drastic the 
refining conditions are. It has also been reported that other chemical structures can 
be altered during the refining processes, so that significant interference from other 
compounds can give very dirty chromatograms and make the tracing of the 
filbertone much more difficult and complicated (Flores et al., 2006). It has been 
noted that filbertone may be easily removed upon gentle deodorisation of the oil 
(Blanch et al., 1998). Nevertheless, no reliable method is known to detect 
adulteration of refined olive oil with refined hazelnut oil. 
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Industrial applications of olive oil 

Chemical interesterification 
 
Most native vegetable oils have limited applications in their original form due to 
their specific chemical composition. Vegetable oils can be modified to widen their 
commercial use, either physically by fractionation or blending, or chemically by 
hydrogenation or interesterification (Hauman, 1994; Anderson, 1996). Blending 
does not result in chemical modification of the TAG composition. In addition, if 
the blended oils have very different physical properties, this can result in phase 
separation during storage. Fats can also be modified by hydrogenation. However, 
during partial hydrogenation, some cis double bonds are isomerised into their 
trans forms. In the past few years, several nutritional studies have suggested a 
direct relationship between trans fatty acids and increased risk for coronary heart 
disease (Lichtenstein, 1993; Enig, 1996).  
 
Chemical interesterification is an established process to improve plasticity, 
crystallisation habit or functional properties of fats and oils (Rozendaal, 1992). 
During interesterification, fatty acids are exchanged within (intraesterification) 
and among (interesterification) TAGs until a thermodynamic equilibrium is 
reached. Fatty acids are distributed in a random manner among the TAG 
molecules and degree of unsaturation or isomeric state of the fatty acid does not 
change during this process (Noor Lida et al., 2002). 
 
Chemical interesterification of olive oil with vegetable oils 
 
There are several reports on interesterification of olive oil blended with other 
vegetable oils. Chemical interesterification has been used as an alternative to 
hydrogenation to obtain zero trans olive oil products. This is done by chemical 
interesterification of refined olive oil and tristearin blends (Gavriilidou & Boskou, 
1991). Olive oil has been interesterified with distilled fatty acids from waste 
soapstock and changes in melting and crystallisation properties of the blends 
before and after interesterification have been evaluated (Sessa et al., 1996). 
Refined olive oil and palm oil blends have been interesterified to produce plastic 
fats similar in composition and properties to soft and package type margarine 
(Alpaslan & Karaali, 1998). In another study, olive oil, as the source of oleic acid, 
has been interesterified with completely hydrogenated high erucic rapeseed oil, as 
the source of behenic acid, to prepare low-calorie structured lipids (Tynek & 
Ledochowska, 2005).  
 
Minor lipid components and chemical interesterification 
 
There are many reports on effects of chemical interesterification on physical and 
chemical properties of the end product. Chemically interesterified fat/oil blends 
have been studied regarding melting properties (Rousseau et al., 1996; Norizzah et 
al., 2004;  Karabulut et al., 2004; Mat Dian et al., 2006) oxidative stability 
(Ledóchowska & Wilczyńska, 1998, Daniels et al., 2006), storage stability (Zhang 
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et al.,  2005; Zhang et al., 2006), triacylglycerol modification (positional 
distribution of fatty acid in TAGs) (Zeitoun, 1993; Rousseau et al., 1996, 
Norizzah et al., 2004), crystallisation (Zeitoun, 1993), and nutritional properties 
(Ray & Bhattacharyya, 1995). However, there are few reports on effects of 
chemical interesterification on sterols (Ferrari et al., 1997). In addition, there are 
no reports on the effects of this process on phytosterol oxidation. 
 
Reports on sterol changes during interesterification have mainly focused on 
alteration of the esterified sterol content of vegetable oils (Ferrari et al., 1997). 
Phytosterols are important from a nutritional point of view because they contribute 
to lowering serum cholesterol levels in humans (Moreau, 2004). These compounds 
can be also oxidised like other unsaturated lipids and produce phytosterol 
oxidation products (POPs) when exposed to air, heat, light or catalysts (Dutta, 
2004). Recently, the POPs content of oils and foods with higher amounts of fats 
has gained interest due to their possible negative biological effects (Adcox, et al., 
2001; Dutta et al., 2007). The effects of sterol structure, temperature, lipid 
medium, fat and oil refining on POPs have also been studied (Bortolomeazzi et al., 
2003; Dutta et al., 2007). However, scientific literature on the effects of chemical 
interesterification on phytosterol and POPs content is lacking.  
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Objectives 

This project was initiated in order to develop a rapid and simple way to detect 
adulteration of olive oil with hazelnut oil. The other objective was to study the 
effects of chemical interesterification of olive oil with other fats/oils on lipids and 
minor lipid components. 
 
Specific objectives for the present work were to investigate: 
   

• Phytosterol classes in hazelnut and olive oil collected from different 
countries  

 
• Utilisation of characteristic sterols as markers to detect olive oil 

adulteration with hazelnut oil  
 

• Development of a rapid and reliable SPE method to separate phytosterol 
classes in vegetable oils  

 
• Free and esterified 4,4′-dimethylsterols in hazelnut and olive oil oils  

 
• Effects of vegetable oil refining processes on 4,4′-dimethylsterols in 

hazelnut oil 
 

• Effects of chemical interesterification of an olive oil/palm stearin blend 
on lipids and minor lipid components  
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Materials and methods 

This section gives a short description of the materials and methods used in the 
present study (Table 6). Further details are given in Papers I-IV. 
 
Materials 
A sample of hazelnuts was collected from Iran (Rodsar, Iran). Other hazelnut 
samples from Germany (Atco Haselnusskerne, Hamburg, Germany) and Italy 
(Besana, Italy) were purchased from local supermarkets (Uppsala, Sweden). A 
sample of refined hazelnut oil from Italy (Lazeo, Italy), a refined and winterised 
hazelnut oil sample from Turkey (Ordu Soya Industries, Inc., Ordu, Turkey), a 
commercial hazelnut oil from France (Philippe Vigean, France), a cold pressed 
hazelnut oil sample (Bayoils Co, Blenheim, New Zealand) and a hazelnut oil made 
from fresh roasted hazelnuts (Hazelwood Hazelnuts, Amberley, New Zealand) 
were used in this study. Virgin olive oil samples from Italy (Bertolli, Italy) and 
Spain (Sierra de Genave, Genave-Jaen, Spain) were obtained from local 
supermarkets (Uppsala, Sweden). Another virgin olive oil sample was obtained 
from Norwood olive oil, New Zealand. Refined olive oil and palm stearin were 
obtained from AarhusKarlshamns Sweden AB. 
 
Authentic samples of 4-desmethylsterols were obtained from Research Plus, Inc. 
(Bayonne, NJ, USA). Before GC and GC-MS analysis, sterols were silylated using 
Tri-Sil reagent (Pierce Chemical Co., Rockford, USA). The capillary GC columns 
were purchased from J&W Scientific (Folsom, CA). Silica SPE cartridges were 
from IST (Mid-Glamorgan, UK). All other chemicals and solvents used in this 
study were of analytical grade and purchased from VWR International AB 
(Stockholm, Sweden) unless otherwise stated. Table 6 shows a summary of the 
materials, methods, aims and analyses carried out in this thesis. 
 
Oil extraction 
Oil samples were extracted from hazelnuts according to the method described by 
Savage et al. (1997). 
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Table 6. Overall summary of the Papers I-IV  
 
 Paper I Paper II Paper III Paper IV 
Aim 

 
To study phytosterol 
classes and detection of 
olive oil adulteration  
 

 
To develop a rapid SPE 
method to separate 
phytosterol classes 

 
To monitor effects of 
refining processes on 4,4'-
dimethylsterols  

 
To investigate effect of 
chemical 
interesterification on 
lipid components 
 

Sample  Hazelnut and virgin olive 
oils 
 

 Hazelnut and virgin 
olive oils 

 Hazelnut and virgin olive 
oils 

 Refined olive oil and 
palm stearin 

Treatment  Saponification, separation 
of phytosterol classes by 
TLC 
 

 Saponification, rapid 
separation of phytosterol 
classes by SPE  
 

 Refining of solvent 
extracted hazelnut oil 

 Chemical 
interesterification  

Analysis & 
achievement 

 Phytosterol classes by GC 
and GC-MS; detection of 
adulteration ~ 3.5% 

 Phytosterol classes by 
GC and GC-MS 

 4,4'-dimethylsterols by GC 
and GC-MS; detection of 
adulteration ~ 2% 

 TAG by GC; fatty acid, 
sterols, POPs by GC & 
GC-MS; tocopherols by 
HPLC 
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Separation and enrichment of phytosterol classes with TLC (Paper I) 
Sterol classes of hazelnut and olive oil samples collected from different countries 
were separated by TLC according to the method described by Kornfeldt & Croon 
(1981). For this purpose, oil samples were saponified and unsaponifiables were 
applied on TLC and developed in hexane/diethyl ether/acetic acid (70: 30: 1). The 
zones of 4-desmethyl-, 4,-monomethyl-, and 4,4′-dimethylsterols on the TLC were 
then scraped off and extracted with solvent. Each fraction was derivatised to TMS 
ether and analysed by GC and GC-MS. The recovery of 4-desmethylsterols was 
evaluated to determine the level of sterol loss during the work-up procedure. 
 
Detection of olive oil adulteration with hazelnut oil (Paper I) 
Mixtures of hazelnut and virgin olive oils were prepared at two levels. A hazelnut 
oil sample was mixed with a virgin olive oil sample at 3.5% and 5% (w/w). A few 
4,4′-dimethylsterols were used as markers to detect olive oil adulteration with 
hazelnut oil at levels as low as 3.5% by GC-MS. 
 
Separation and enrichment of phytosterol classes by a new SPE 
method (Paper II) 
A new SPE method was developed to separate and enrich phytosterol classes of 
vegetable oils. This was done with stepwise elution by increasing the polarity of 
the hexane:diethyl ether solvent mixture (Figure 4). The dissolved unsaponifiables 
in hexane (5 mL) obtained from 0.5 g saponified oil were loaded onto an SPE 
silica cartridge (1 g silica), previously conditioned with 5 mL n-hexane. The SPE 
cartridge was washed with 40 mL hexane:diethyl ether (99:1). Pure 4,4´-
dimethylsterols were then eluted with 40 mL and 10 mL hexane:diethyl ether 
(99:1) and (98:2), respectively. After 4,4´-dimethylsterol elution, the cartridge was 
washed with 10 mL hexane:diethyl ether (98:2). Pure 4-monomethylsterols were 
eluted with 20 mL hexane: diethyl ether (98:2). After washing the cartridge with 5 
mL hexane:diethyl ether (98:2), pure 4-desmethylsterols were eluted with 10 mL 
hexane:diethyl ether (60:40). The method was applied to samples of hazelnut and 
olive oils and the results obtained were compared with those of preparative-TLC 
method. Recovery of 4-desmethylsterols was also tested to investigate the 
efficiency of the new method. 
 
Free and esterified 4,4´-dimethylsterols in hazelnut and olive oils 
(Paper III) 
Total free and esterified sterols of hazelnut and olive oils were separated by the 
SPE (500 mg silica) method developed. The oil sample (approx. 0.5 g) was 
dissolved in 1 mL hexane and loaded onto the SPE cartridge (500 mg silica) 
previously conditioned with 3 mL hexane. The esterified sterol fraction was eluted 
with 9 mL hexane, and then free sterol fraction was eluted with 6 mL 
hexane:diethyl ether (4:6). Oil samples and separated total free and esterified 
sterols were saponified. 4,4´-dimethylsterols from these saponified samples were 
separated according to the previously developed SPE method (Paper II), and 
analysed by GC and GC-MS.  



 

 32 

                              Unsaponifiables (dissolved in 5 mL hexane) 
 
 

Loading onto SPE cartridge (conditioned with 5 mL hexane) 
 
 

Step 1. Washing non-sterol compounds using 
40 mL hexane: diethyl ether (99: 1) [Discarded] 

 
 

Step 2. Eluting the pure 4,4´-dimethylsterols using 
40 mL hexane:diethyl ether (99: 1) 

                                    10 mL hexane:diethyl ether (98: 2) [Collected for further analysis] 
 
 

                                                                    Step 3. Washing with 10 mL 
                                                                   hexane:diethyl ether (98: 2) 

                                         [Discarded] 
 

Step 4. Eluting the pure 4-monomethylsterols using 
20 mL hexane:diethyl ether (98: 2) [Collected for further analysis] 

 
 

                                                                  Step 5. Washing with 5 mL 
                                                                    hexane:diethyl ether  (98: 2) 

                                         [Discarded] 
 

Step 6. Eluting the pure 4-desmethylsterols using 
10 mL hexane:diethyl ether (60: 40) [Collected for further analysis] 

 
Figure 4. Flow chart of the SPE method to separate phytosterol classes in vegetable oils for 
further analysis by GC and GC-MS. 
 
Refining of hazelnut oil (Paper III) 
Solvent-extracted hazelnut oil was subjected to vegetable oil refining processes 
(degumming, neutralisation, bleaching and deodorisation) at laboratory scale. The 
effects of refining processes on total, free and esterified 4,4′-dimethylsterols were 
determined. GC-MS analysis was used to detect adulteration of olive oil with the 
sample of fully refined hazelnut oil at levels as low as 2% by tracing lupeol in total 
or in esterified forms of 4,4´-dimethylsterols. 
 
Chemical interesterification of olive oil and palm stearin (Paper IV) 
An olive oil and palm stearin blend (1:1) was interesterified using sodium 
methoxide as a catalyst (0.5%) at two different temperatures: 90 and 120 °C for 1 
hour.  
The following parameters were determined before and after chemical 
interesterification of the blend: 
 
Triacylglycerol profiles were determined by GC according to the method 
described by Farmani et al. (2006). Fatty acid composition of fat blends was 
determined by GC. Esterified sterols of fat blends were separated by TLC and 
after scraping off and extraction of esterified sterols from TLC, they were 
methylated and FAMEs were analysed by GC. Tocopherols and tocoterienols were 
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analysed by HPLC according to the method described by Dutta et al. (1994) with 
slight modification. Free and esterified sterols of oil samples were determined 
according to the method developed in Paper III. 
 
To determine POPs content, fat blends were transesterified according to the 
method described by Schmarr et al. (1996) after slight modification. POPs were 
separated and enriched according to the SPE method newly developed at our 
laboratory. Figure 5 shows the work-up steps of the SPE method for separation 
and enrichment of POPs. After enrichment, POPs were derivatised to TMS-ether 
and analysed by GC and GC-MS. 
 
 
                Transesterified lipid dissolved in 1 mL hexane:diethyl ether (9:1) 
 
 
 
                 Loading onto SPE cartridge (1g silica) (conditioned with 5 mL hexane) 
 
 
 
                                 Washing with 15 mL hexane:diethyl ether (9:1) 
 
 
 
                                 Washing with 10 mL hexane:diethyl ether (1:1) 
 
 
 
            Elution of pure POPs with 10 mL acetone (collected for further analysis) 

 
Figure 5. Work-up steps of the SPE method to separate and enrich POPs for further 
analysis by GC and GC-MS.  
 
 
GC and GC-MS analysis of phytosterols and POPs (Papers I-IV) 
After separation and enrichment of phytosterol classes by TLC and SPE, they 
were derivatised to TMS-ether and analysed by GC and GC-MS. In Papers I and 
II, a fused-silica capillary column DB-5MS (30 m x 0.25 mm, 0.50 µm) was used. 
In Paper III, the columns used were combination of DB5-MS (10 x 0.18 mm, 
0.18 µm) and DB17-MS (10 m x 0.18 mm, 0.18 µm) to improve the separation of 
sterols compared with single DB-5MS column. In Paper IV, TMS-ether 
derivatives of total, free and esterified sterols and POPs were also analysed using 
another combination of DB-5MS (15 x 0.18 mm, 0.18 µm) and DB-35MS (10 m x 
0.2 mm, 0.33 µm). In all GC analyses, helium and nitrogen were used as carrier 
and make up gases, respectively. The GC-MS analyses were performed on a 
GC8000 Top Series gas chromatograph (Thermo Quest Italia S. P. A., Rodano, 
Italy) coupled to a Voyager mass spectrometer with MassLab data system version 
1.4V (Finnigan, Manchester, UK). The full scan mass spectra were recorded at EI+ 
mode at electron energy of 70 eV and ion source temperature of 200 ºC. The 
column and conditions for the analysis were the same as used for GC analysis. 
More details on the GC and GC-MS analysis are given in the Papers I-IV.  
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Results and discussion 

Phytosterol classes in hazelnut and olive oils (Paper I) 
 
Phytosterol classes of hazelnut oil from Iran, Italy, New Zealand and Turkey and 
virgin olive oil from Italy, New Zealand and Spain were separated and enriched by 
TLC and determined by GC and GC-MS. Considerable quantitative differences 
were observed in the relative proportions of sterol fractions for both types of oils 
(Table 7).  
 
In hazelnut oil, 4-desmethylsterols had the highest proportion (ranging from 86 to 
91%), while 4-monomethyl and 4,4´-dimethylsterols showed lower amounts 
(ranging from 4 to 8% and 3 to 8%, respectively) of total sterols. Olive oil showed 
the lowest amount of 4-monomethylsterols (ranging from 9 to 11%) while 4-
desmethyl and 4,4´-dimethylsterols ranged from 51 to 57% and 32 to 40%, 
respectively, of total sterols. Generally, the 4-desmethylsterol content of hazelnut 
oil was qualitatively and quantitatively rather similar to that of virgin olive oils. 4-
monomethylsterols were similar in composition in both kind of oil but differed in 
content (2-3 times lower in hazelnut oil than in olive oil) (Table 7). These results 
concur with literature data showing the level of 4-desmethyl-, 4-monomethyl-, and 
4,4-dimethylsterols content (Benitez-Sánchez et al., 2003). 
 
In Paper I we used traditional TLC methods to separate and enrich phytosterol 
classes of oil samples. In order to evaluate the efficiency of the method and check 
the possible loss of sterols during enrichment, a recovery test was performed under 
similar conditions used to fractionate the total unsaponifiable matters of oils. The 
recoveries were 61%, 61%, and 65% for campesterol, stigmasterol and sitosterol, 
respectively. Losses may have occurred during the extraction of unsaponifiable 
matters from saponified oil sample, and recovery of sterol fractions in silica gel 
scraped from TLC plates. 
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Table 7. Contents of phytosterols (ppm) in hazelnut and virgin olive oils1

Sterol Hazelnut oil 
(n=5) 

Virgin olive oil 
(n=3) 

4-desmethylsterol 

 

 

 

 
Cholesterol  4-7  4-8 
Campesterol  34-41  18-30 
Campestanol  2-4  1-2 
Stigmasterol  4-12  4-5 
Sitosterol  476-785  414-757 
∆5-Avenasterol  25-75  31-67 
∆5,24-Stigmastadienol  3-11  2-3 
∆7-Stigmastenol  1-5  1 
∆7-Avenasterol  3-7  1 
Unknown  14-53  8-17 
Total   593-984  506-884 
     
4-monomethylsterols     
Obtusifoliol  3-11  9-21 
∆7-Sterol  1  3-5 
Gramisterol  1-4  4-8 
Cycloeucalenol  Tr3  13-16 
∆7& ∆8-Sterol  1-5  2-3 
∆7,22-Sterol  1-2  2-4 
Citrostadienol  11-30  40-81 
Unknown  9-13  18-20 
Total  29-66  91-152 
     
4,4´-dimethylsterols     
X  1-6  ND 
δ -Amyrin  1-7  10-20 
Taraxerol  ND4  7-24 
β-Amyrin  1-2  26-58 
Cycloartenol  2-5  75-152 
Lupeol  3-9  ND 
∆7-Sterol  1-2  2-3 
24-Methylenecycloartanol  6-18  168-303 
Unknown  13-19  29-105 
Total  31-67  329-695 
 

1 Data are from Paper I.  2An unknown compound X detected  
exclusively in hazelnut oil. 3Not detected. 4Trace amount (<0.1μg/g oil). 
 
 
4,4′-dimethylsterols were different in composition and in content in hazelnut and 
olive oil. The total amount of these compounds was approx. 10 times lower in 
hazelnut oil than in olive oil. At least two compounds, lupeol and an unknown 
compound X (containing a lupane skeleton), were present exclusively in hazelnut 
oil. Figure 6 shows the mass spectra of these two compounds. Taraxerol was also 
present only in olive oil samples. β-Amyrin, δ-amyrin, cycloartenol, ∆7- sterol and 
24-methylenecycloartanol were detected in both oils (Table 7). 
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Figure 6. Full scan mass spectra of two 4,4´-dimethylsterols present exclusively in hazelnut 
oil. A) compound X; B) lupeol.   
 
 
Detection of olive oil adulteration with hazelnut oil (Paper I) 
 
Marker compounds, lupeol and the unknown compound X were used to detect the 
adulteration of olive oil with hazelnut oil. The 4,4´-dimethylsterol fraction of olive 
oil adulterated with hazelnut oil at different levels was enriched and separated with 
TLC and analysed by GC-MS to trace the marker compounds. It was possible to 
detect hazelnut oil at levels as low as 3.5% in adulterated virgin olive oil by GC-
MS. 



 

 37 

New SPE method to separate and enrich phytosterol classes (Paper II) 
 
Our main aim was to develop a rapid and reliable SPE method to separate and 
enrich sterol classes, particularly 4,4´-dimethylsterols in vegetable oils. 
Previously, we used prep-TLC method to separate and enrich the sterol classes 
from unsaponifiables of hazelnut and olive oils but this method has several sample 
preparation sequences, with many possible sources of error. Sterol classes have 
close RF values on TLC, which may cause mixing during scraping of TLC bands 
(Kornfeldt & Croon, 1981). Additional drawbacks of prep-TLC are that it has low 
recovery rates and is time-consuming and laborious. The new method was tested 
on hazelnut and virgin olive oil for composition and quantification of their sterol 
classes. 
 
Due to additional numbers of methyl groups, the polarity of the three sterol classes 
decreases in the order 4-desmethylsterols > 4-monomethylsterols > 4,4´-
dimethylsterols. Because of the polarity of sterol fractions, 4,4´-dimethylsterols 
are a weakly retained isolate, followed by 4-monomethylsterols. 4-
desmethylsterols are retained more strongly than methylsterols on the silica 
sorbent and were eluted as a last sterol class in this method. Samples of hazelnut 
and virgin olive oil collected from different countries were separated for their 
sterol classes using this new SPE method and the results were compared with a 
previously published prep-TLC method. 
 
The total 4,4´-dimethylsterol content in the oil samples analysed was higher (p < 
0.05) when quantified with the SPE method compared with prep-TLC (Table 8). 
All 4,4´-dimethylsterols identified were recovered in higher amounts by the SPE 
method in hazelnut and olive oil than by the TLC method. Lupeol and the 
compound X, potential markers to detect virgin olive oil adulteration with hazelnut 
oil, were obtained at approx. twofold higher rates with this new SPE method than 
with TLC. Total 4-monomethylsterol content was higher (p<0.05) with SPE 
compared with TLC. Values of individual 4-monomethylsterols in hazelnut oil 
samples were higher with SPE compared with TLC. Values were generally similar 
with SPE and TLC in virgin olive oil samples. In general, the results for total and 
individual 4-desmethylsterols obtained with SPE were also significantly higher 
(p<0.05) compared with prep-TLC (Table 8).  
 
Table 8. Content of total phytosterols in hazelnut and olive oils obtained with TLC and SPE 
methods 
 
Total sterol Hazelnut oil 

(n=2) 
Virgin olive oil 

(n=2) 
 

 

TLC  SPE 

 

TLC  SPE 
4-desmethylsterols  731-984b 

 
 1229-1306a  506-585b  824-866a

4-monomethylsterols  48-57b 

 
 65-93a  91-107b  121-126a

4,4'-dimethylsterols  33-72b  89-146a  329-403b  589-765a

 

a-b Denotes statistically significant differences (p<0.05). 
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A recovery test was performed under similar conditions to fractionate the total 
unsaponifiable matter of oils by prep-TLC and SPE methods. Recoveries for 
campesterol, stigmasterol and sitosterol were 61%, 61%, and 65%, and 91%, 94%, 
and 96%, respectively with prep-TLC and SPE methods.  
 
Free and esterified 4,4´-dimethylsterols in hazelnut and olive oils 
(Paper III) 
 
4,4′-dimethylsterols like other sterol classes can occur as free and esterified forms 
in vegetable oils. The conventional method for total sterol analysis is 
saponification of the oil sample followed by extraction of the unsaponifiables with 
an organic solvent. On the other hand, separate determination of sterols in free and 
esterified forms provides detailed information on their distribution and stability 
(Phillips et al., 2002). Therefore, in this study (Paper III), we determined free and 
esterified 4,4′-dimethylsterols in hazelnut and olive oil samples from different 
countries. Furthermore, a combination of two columns with different polarity, DB-
5MS and DB-17MS, was also investigated to improve the separation of 4,4´-
dimethylsterols by GC. 
 
In GC analysis using the DB-5MS column, α-amyrin was co-eluted with 
cycloartenol and lupeol from hazelnut oil (Table 9). Similarly, tirucalla-7,24-
dienol was co-eluted with cycloartenol in virgin olive oil (Table 9). In this study, a 
combination of two columns: a non-polar DB-5MS column (10 m x 0.18 mm, 0.18 
µm) and a mid-polar DB-17MS column (10 m x 0.18 mm, 0.18 µm) was used in 
GC and GC-MS analysis. These separated 4,4´-dimethylsterols more effectively 
compared with the single DB-5MS column (30 m x 0.25 mm, 0.50 µm) previously 
used (Table 9). 
 
 
Table 9. Relative retention times (RRT) of TMS ether derivatives of 4,4´-dimethylsterols 
separated on two different GC column systems 
 
Sterol RRT RRT 
 

 
DB-5MS 

 
DB-17MS/DB-5MSa

Compound X  1.25  1.33 
Taraxerol  1.26  1.35 
δ-Amyrin  1.28  1.37 
β-Amyrin  1.30  1.39 
Butyrospermol  b  1.41 
Cycloartenol  1.39  1.47 
Tirucalla-7,24-dienol  c  1.49 
α-Amyrin  c  1.50 
Lupeol  1.40  1.53 
24-Methylencycloartanol  1.49  1.57 
 

aCombination of two columns : DB-5MS and DB-17MS, joined together by a universal  
press-fit connector. bOverlapping with β-Amyrin. cOverlapping with cycloartenol  
and lupeol. 
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In hazelnut oil samples, levels of total 4,4´-dimethylsterols were higher in the 
esterified form (23-53 ppm) compared with those in free form of these compounds 
(13-38 ppm). Of the marker compounds, lupeol was 6-16 ppm in esterified form 
and 6-10 ppm in free form, while compound X was 1-5 ppm in esterified form and 
0.8-5 ppm in free form (Table 10). 
 
In olive oil samples, levels of 4,4´-dimethylsterols were higher in esterified form 
compared with those in free form, except for cycloartenol and 24-
methylenecycloartanol (Table 10). Total content of 4,4´-dimethylsterols in free 
form was higher (293-448 ppm) than that in esterified form (180-315 ppm). We 
could also detect two compounds, tirucalla-7,24-dienol, and taraxerol, in 4,4′-
dimethylsterols of olive oil samples that were not present in hazelnut oil samples 
(Table 10). To our knowledge, this is the first report on free and esterified forms 
of 4,4´-dimethysletrols in hazelnut oil. 
 
Table 10. Content of free and esterified 4,4'-dimethylsterols in hazelnut and virgin olive 
oils1  
 
Sterol Hazelnut oil 

(n= 5) 
Virgin olive oil 

(n=2) 
 

 

Free  Esterified 

 

Free  Esterified 
Compound X2  1-5  1-5  ND  ND 
Taraxerol  ND3  ND  1  2-8 
δ-Amyrin  1-2  3-5  1-2  12-19 
β-Amyrin  0.1-2  0.2-2  1  6-12 
Butyrospermol  Tr4-2  Tr- 8  5-10  41-53 
Cycloartenol  1-7  3-5  68-167  17-75 
Tirucalla-7,24-dienol  ND  ND  1-2  41-53 
α-Amyrin  1-3  1-12  Tr  Tr 
Lupeol  6-10  6-16  ND  ND 
24-methylencycloartanol  2-10  7-12  217-264  61-95 
Total  13-38  23-53  293-448  180-315 
1Data are from Paper III.  2An unknown compound X detected exclusively in hazelnut oil. 
3Not detected. 4Trace amount (<0.1μg/g oil).  
 
 
Effects of refining processes on 4,4´-dimethylsterols in hazelnut oil 
(Paper III) 
 
Refining processes generally comprise various steps: degumming, neutralisation, 
bleaching and deodorisation (O´Brien, 2004). Each step can cause specific 
changes in oil properties, particularly in minor constituents such as sterols and 
tocopherols (Table 11) (Verleyen et al., 2002; Bortolomeazzi et al., 2003; Dutta et 
al., 2007). In order to study the effects of the refining processes, a sample of 
hazelnuts was extracted for oil with solvent and was refined at laboratory scale by 
degumming, neutralisation, bleaching and deodorisation. Total 4,4´-
dimethylsterols as well as free and esterified 4,4′-dimethylsterols of refined 
hazelnut oil were determined after each refining process.  
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Generally the degumming process did not alter qualitatively or quantitatively alter 
the 4,4´-dimethylsterol composition in this study. Total 4,4´-dimethylsterols were 
reduced by 22% during neutralisation. In this refining process, free and esterified 
forms of 4,4´-dimethylsterols were reduced by 23 and 17%, respectively, during 
neutralisation. It is known that free sterols can be reduced by transferring to the 
soapstock formed (Verleyen et al., 2002). The slight reduction in esterified forms 
of 4,4´-dimethylsterols was probably due to hydrolysis of the esterified sterols to 
free forms during the neutralisation process. This has been demonstrated 
previously on the level of sterol losses during neutralisation, which was up to 9-
22% of sterols (Leone et al., 1976). 
 
During bleaching, total 4,4´-dimethylsterols were reduced by approx. 24% in 
hazelnut oil. Both free and esterified 4,4´-dimethylsterols were affected by  the 
bleaching process. The loss of esterified sterols (29%) was greater than the loss of 
free sterols (18%) during this refining step (Table 11). The reduction in esterified 
forms of sterols during bleaching has been explained by acid-catalysed hydrolysis 
of the esterified sterols on the acid-activated bleaching earth (Verleyen et al., 
2002).   
 
During deodorisation, total 4,4´-dimethylsterols were reduced by 13%. Among 
free and esterified forms of 4,4´-dimethylsterols, the free form was affected 
considerably (21%). In contrast, esterified 4,4´-dimethylsterols were generally not 
affected by deodorisation (Table 11). In fully refined hazelnut oil, total 4,4´-
dimethylsterols were reduced by 48% compared with crude hazelnut oil. Free and 
esterified 4,4´-dimethylsterols losses were 52 and 41%, respectively, compared 
with their levels in crude hazelnut oil. These results demonstrate that esterified 
4,4′-dimethylsterols are more stable than free forms during refining. To our 
knowledge there is no published data on free and esterified 4,4'-dimethylsterols to 
compare with our results. 
 
Table 11. Losses of free and esterified 4,4'-dimethylsterols in a sample of hazelnut oil 
during refining processes 
 
Process/Condition Loss of sterols (%)1

 
 

Free   Esterified  
Degumming/ Treatment of crude oil with warm water 
followed by centrifugation to separate gums 
 

 Generally 
no effect 

 Generally 
no effect 

Neutralisation/ Reaction of degummed oil with alkaline, 
followed by water washing and separation of residual soap 
by centrifugal separation 
 

 23  17 

Bleaching/ Treatment of neutralised oil with bleaching clay, 
followed by separation of the spent bleaching clay by 
filtration 
 

 18  29 

Deodorisation/ Treatment of bleached oil at high temperature 
under vacuum 

 21  Generally 
no effect 

1Each value is the mean of triplicate analyses. 

http://web5s.silverplatter.com/webspirs/doLS.ws?ss=Leone-A-M+in+AU
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Detection of olive oil adulteration with refined hazelnut oil (Paper III) 
 
Lupeol and the compound X belonging to the 4,4'-dimethylsterols were lost by 18 
and 37% in the esterified form, respectively. The losses of these two compounds 
in the free form were 26 and 72%, respectively. To our knowledge, there are no 
published data on the effects of vegetable oil refining on free and esterified 4,4´-
dimethylsterols. Nevertheless, our results on the retention of 4,4´-dimethylsterols 
during refining are generally comparable with published results on free and 
esterified 4-desmethylsterols. It has been shown that esterified 4-desmethylsterols 
in vegetable oils decrease by minor levels compared with free 4-desmethylsterols 
after complete refining (Ferrari et al., 1996; Verleyen et al., 2002). In order to 
investigate the possibility of detecting olive oil adulteration with fully refined 
hazelnut oil, a sample of virgin olive oil was mixed with 2% refined hazelnut oil. 
Total and esterified 4,4´-dimethylsterols of the adulterated olive oil sample were 
analysed and the marker compounds were traced by GC-MS. We were able to 
detect lupeol at this level in adulterated olive oil under the present analytical 
conditions. Therefore, tracing the esterified fraction of 4,4´-dimethylsterols alone 
can be used to detect adulteration of olive oil with refined hazelnut oil. This 
achievement was for the first time showing that adulteration of olive oils with 
refined hazelnut oil can be detected as low as 2%.  
 
Chemical interesterification of olive oil with palm stearin (Paper IV) 
 
Paper IV monitored the effects of chemical interesterification on minor lipid 
components, i.e. phytosterols and POPs. In addition, changes in tocopherols and 
tocoterienols and fatty acid composition of esterified sterols were investigated 
during this process. Interesterification altered the TAG profiles of the starting oil 
blend but no changes were observed in the fatty acid composition of the oil blend. 
There was a slight reduction in the sterol content of the oil blend after 
interesterification of 3.2 and 5.5% at 90 and 120 °C, respectively (Table 12). 
However, the distribution of sterols remained unchanged. Interesterification 
caused an increase in esterified sterol content of the oil blend of 4.0 and 6.6% at 
90 and 120 ºC, respectively.  
 
In the esterified sterols of the starting oil blend, oleic acid was the dominant fatty 
acid, followed by palmitic acid and eicosanoic acid. Myristic, linolenic and 
gadoleic acid were not present in the esterified sterols. During interesterification, 
palmitic, oleic and linoleic acid content increased in the esterified sterols, whereas 
eicosanoic, behenic and lignoceric acid content decreased.  
 
POPs were enriched and separated by single-step SPE and analysed by GC and 
GC-MS. The POPs identified were 24-hydroxycampesterol; 7α-hydroxysitosterol; 
6β-hydroxycampestanol; 24-hydroxysitosterol; 6β-hydroxysitostanol; 24-
methylcholest-4-ene-6α-ol-3-one; 25-hydroxystigmasterol; 25-hydroxysitosterol; 
and 7-ketositosterol. However, there were some peaks that we could not identify. 
Among the POPs identified, 6β-hydroxysitostanol dominated, followed by 6β-
hydroxycamestanol, and generally their levels were not changed during chemical 
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interesterification (Table 12). The total amount of POPs was rather low, possibly 
due to the low phytosterol content in the starting oil blend. 
 
 
Table 12. Effects of chemical interesterification of an olive oil and palm stearin blend on 
minor lipid components (ppm)1

 
Oil/Fat Total 

tocopherols 
Total 
tocoterienols 

Total 
sterols 

Total 
POPs 

Starting blend 

 

211 

 

133 

 

509 

 

4.3 
 

Interesterified at 90 °C  210  130  493  4.6 
 

Interesterified at 120 °C  205  122  481  4.6 
1Each value is the mean of triplicate analyses. 
 
 
Tocopherols and tocoterienols have antioxidant properties. These compounds can 
prevent lipid oxidation and phytosterol oxidation (Rudzińska et al., 2004). Only 
two tocopherols were quantified, of which α-tocopherol dominated (91%), 
followed by γ-tocopherol (9%). Among the tocoterienols, γ-tocoterienol 
dominated (52.4%), followed by α-tocoterienol (27%), δ-tocoterienol (14%) and 
β-tocoterienol (7%). Interesterification caused a slight reduction in tocopherol and 
tocoterienol content (Table 12). Thus, the interesterification conditions used in this 
study caused some losses of tocopherols and negligible oxidation of phytosterols.   
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Conclusions 

To achieve the main aims of this study, determination of the authenticity and 
industrial applications of olive oil, we developed rapid and simple SPE methods to 
separate sterol classes, free and esterified sterols, and enrichment of POPs. Sterol 
classes and their free and esterified forms are important parameters not only in 
vegetable oils but also in cereals and other foods containing these compounds 
because of their potential nutritional benefits. POPs have also gained interest 
during recent years because of their possible negative health effects. Therefore, the 
methods developed here can facilitate identification of these compounds in foods 
and food ingredients. 
 
The findings of the present thesis can be summarised as follows: 
 
a) Qualitative and quantitative differences were found among the three phytosterol 
classes of hazelnut and olive oil. At least two 4,4´-dimethylsterols, lupeol and an 
unknown compound X, were detected in the hazelnut oil which were absent in the 
olive oil. These two compounds were utilised as markers to detect olive oil 
adulteration with hazelnut oil by GC-MS. 
 
b) A novel SPE method was developed to separate and enrich phytosterol classes. 
This new SPE method is advantageous in comparison with traditional prep-TLC 
for isolating and enriching sterol classes. The SPE method proved to be simple, 
rapid and gave higher recovery of sterols than the TLC method. In this SPE 
method, 4,4´-dimethylsterols were eluted prior to 4-monomethyl- and 4-
desmethylsterols. This is an advantage when other sterol classes are not required 
for further analysis.  
 
c) A simple and rapid SPE method was developed to separate free and esterified 
sterols in vegetable oils. GC separation of 4,4´-dimethylsterols was improved by 
using a combination of a non-polar DB-5MS column (10 m x 0.18 mm, 0.18 µm) 
and a mid-polar DB-17MS column (10 m x 0.18 mm, 0.18 µm) compared with the 
single DB-5MS column (30 m x 0.25 mm, 050 µm). 
 
d) Free and esterified forms of 4,4´-dimethylsterols in hazelnut oil and their 
retention during refining processes were studied. Among the refining processes, 
degumming generally caused no effects, deodorisation caused minor decreases, 
and neutralisation and bleaching caused a considerable loss of 4,4´-dimethylsterols 
in a sample of hazelnut oil. In fully refined hazelnut oil, total 4,4´-dimethylsterols 
were reduced to a level 48% compared with crude hazelnut oil. 
 
e) Esterified 4,4´-dimethylsterols were retained to a greater extent compared with 
free forms of these compounds during refining of hazelnut oil. Therefore, for the 
first time, lupeol in the esterified fraction alone was used to detect olive oil 
adulteration with fully refined hazelnut oil at levels as low as 2%. 
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f) Despite several treatments to produce an interesterified product (heat, catalysis, 
citric acid treatment, washing and filtration), there were minor losses in 
phytosterol and tocopherol contents. The levels of POPs in starting oil blends were 
not changed considerably in the interesterified product. 
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Future prospects 

Based upon the research in this thesis, the following future research is planned: 
 
a) Studies of the detailed sterol composition of hazelnut oil from different origins, 
species and varieties. 
 
b) Studies of changes in phytosterol content in hazelnuts grown in selected 
geographical locations over time. 
  
c) Studies of changes in the 4,4′-dimethylsterols in different maturation stages of 
hazelnut. 
 
d) Studies of the effects of roasting and storage on 4,4′-dimethylsterols in hazelnut 
oil. 
 
e) Studies of different parameters in the refining process for hazelnut oil, in order 
to monitor the changes in phytosterol classes. 
 
f) Studies of the structure of compound X, one of the marker compounds used to 
detect olive oil adulteration with hazelnut oil. 
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