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Abstract 
 
Karim, S. 2007. Exploring plant tolerance to biotic and abiotic stresses. 
Doctor’s dissertation. 
ISSN 1652-6880, ISBN 978-91-576-7357-2 
 
Plants are exposed to many stress factors, such as drought, high salinity or pathogens, 
which reduce the yield of the cultivated plants or affect the quality of the harvested 
products. Arabidopsis thaliana was used as a model plant to study the responses of plants to 
different sources of stress. With Agrobacterium T-DNA mediated promoter tagging, a novel 
di-/tripeptide transporter gene AtPTR3 was identified as a wound-induced gene. This gene 
was found to be induced by mechanical wounding, high salt concentrations, bacterial 
infection and senescence, and also in response to several plant hormones and signalling 
compounds, such as salicylic acid, jasmonic acid, ethylene and abscisic acid. Atptr3 
mutants of two Arabidopsis ecotypes, C24 and Col-0, were impaired in germination on 
media containing a high salt concentration, which indicates that AtPTR3 is involved in seed 
germination under salt stress. Wounding caused local expression of the AtPTR3 gene, 
whereas inoculation with the plant pathogenic bacterium Erwinia carotovora subsp. 
carotovora caused both local and systemic expression of the gene. Atptr3 mutants showed 
increased susceptibility to infection caused by bacterial phytopathogens, E carotovora and 
Pseudomonas syringae pv. tomato, and the P. syringae type III secretion system was shown 
to be involved in suppression of the AtPTR3 expression in inoculated plants. Moreover, the 
Atptr3 mutation was found to reduce the expression of the marker gene for systemic 
acquired resistance, PR1 and the mutants accumulated reactive oxygen species (ROS) 
following the treatment of the plants with ROS generating substances. Overall results and 
observations suggest that the AtPTR3 is a novel and versatile stress responsive gene needed 
for defence reactions against many stresses.  

In a second part of the study, the yeast (Saccharomyces cerevisiae) trehalose-6-phosphate 
synthase gene (ScTPS1) was utilized to improve the drought tolerance of Arabidopsis. This 
gene codes for the first enzyme in the trehalose biosynthesis pathway of yeast, and 
expression in plants leads to improved drought tolerance but also growth aberrations. In this 
study, the ScTps1 protein was expressed in Arabidopsis using the constructs containing 
chloroplast targeting transit peptide sequence that facilitated the import of the ScTps1 into 
the chloroplast. The drought tolerance and growth phenotypes of Arabidopsis transgenics 
transformed with ScTPS1 with or without transit peptide, were characterized. The plants 
with cytosolic localization of the ScTps1 protein showed aberrant root phenotype, but the 
plants with the chloroplast targeted ScTps1 protein caused no aberration in root 
morphology. Even though both the transgenic lines showed enhanced drought tolerance, the 
relative water content of the lines was found to be similar to the wild type control. 
Moreover, both the transgenic lines showed slightly better water holding capacity or 
reduced water loss over time compared to wild type plants. The overall results indicated 
that the growth aberrations caused by cytosolic localization of ScTps1 could be uncoupled 
from the enhanced drought tolerance in the transgenic plants when the ScTps1 was targeted 
to chloroplast. 
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transporter, plant pathogen, promoter trapping, salt stress, T-DNA tagging, trehalose, 
trehalose-6-phosphate, trehalose-6-phosphate synthase. 
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Abbreviations 
 
ABA     Abscisic acid 
ABRE    ABA-responsive element 
ACC     1-aminocyclopropane-1-carboxylate 
ADH     Alcohol dehydrogenase 
AGPase    ADP-glucose pyrophosphorylase 
AtHXK    Arabidopsis hexokinase 
avr      Avirulence gene 
COR      Cold-responsive 
DRE      Dehydration responsive element 
DREB    DRE binding protein  
ET      Ethylene 
H2O2     Hydrogen peroxide  
HR      Hypersensitive response  
Hrc      Hrp conserved 
hrcC     Hrc mutant 
Hrp      Hypersensitive response and pathogenicity 
hrpA     Hrp mutant 
HSP      Heat shock proteins 
Inh II      Proteinase inhibitor II gene 
ISR      Induced systemic resistance 
JA      Jasmonic acid 
LEA      Late embryogenesis abundant 
MAPK    Mitogen-activated protein kinase 
OPT     Oligopeptide transporter 
PCD     Programmed cell death 
PDC      Pyruvate decarboxylase 
PR      Pathogenesis related 
PRR     Pathogen recognition receptors 
PsTP     Trehalose phosphorylase (Pleurotus sajor-caju) 
PTR     Peptide transporter 
R       Resistance gene 
ROS     Reactive oxygen species 
RuBisCO    Ribulose-1,5-bisphosphate carboxylase 
SA      Salicylic acid 
SAR     Systemic acquired resistance 
ScTPS1    Saccharomyces cerevisiae TPS gene 
ScTPS2    S. cerevisiae TPP gene 
SOS     Salt-Overly-Sensitive 
T6P      Trehalose-6-phosphate 
T-DNA    Transfer DNA 
TPS     Trehalose-6-phosphate synthase 
TPP     Trehalose-6-phosphate phosphatase 
TSase     Trehalose synthase (Grifola frondosa) 
TTSS     Type III secretion systems 
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Introduction 
 

Sustainable crop production is extremely important in the context of declining 
natural resources and population growth especially in developing countries. 
According to UN figures, about 60% more food will be needed to feed the world's 
growing population in the next three decades (BBC News, 2004; Myers & Kent, 
2001). A range of abiotic and biotic stresses are the major limiting factors for crop 
production. Sustaining and improving crop production in spite of abiotic and 
biotic stresses may be possible with the new knowledge and techniques developed 
in the field of plant molecular biology. While the leading question in biology is 
how organisms deal with or respond to their surrounding environment, plant 
species become the vital model system to study the responses to both physical and 
biological stress factors. 
 

The various physical stresses that a plant can experience are scarcity of water or 
drought stress, salinity or salt stress, low temperature or cold stress, heat shock 
stress by extreme temperature and anaerobic stress by melting snow or a water 
logged condition due to monsoon rain or flood water and a wide range of biotic 
stress factors plants try to avoid and adapt them through their defence response are 
bacteria, fungi, viruses, nematodes, protozoa, insects and grazing animals (Agrios, 
2005). Plants exposure to and perception of different biotic and abiotic stresses in 
their ambient condition are the crucial determinant of growth and production. As 
an adaptive and defence mechanism plants have developed complex metabolic, 
hormonal and signalling networks which are responsive in different ways to these 
stress conditions. Primarily, the signalling compounds salicylic acid (SA), 
jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA) as well as reactive 
oxygen species (ROS) play an important role through their synergistic and 
antagonistic actions that also lead to complex networks and multi direction 
crosstalk during stress responses. In the downstream of the biotic and abiotic 
defence pathways the players are the highly conserved mitogen-activated protein 
(MAP) kinase (MAPK) cascades and groups of stress responsive  transcription 
factors, which are also the central regulators of diverse molecular and biochemical 
processes in the cells, such as growth, inhibition and stress responses (Walling, 
2000; Knight & Knight, 2001; León et al., 2001; Pieterse et al., 2001; 
Thomashow, 2001; Zhu, 2001a, b; Kunkel & Brooks, 2002; Mittler, 2002; 
Blokhina et al., 2003; Dolferus et al., 2003; Wang et al., 2003a; Nürnberger et al., 
2004; Shinozaki & Yamaguchi-Shinozaki, 2007). The morphology and 
distribution of visible abiotic and biotic stress symptoms in plant parts such as the 
leaves, branches and crown levels, provide a primary diagnostic indication to 
verify the stress types and plant responses as well as to differentiate the stress 
symptoms from natural senescence symptoms (Vollenweider & Günthardt-Goerg, 
2005). 
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Abiotic stress signalling  
 
Drought 
 
A major abiotic stress factor that leads to reduction in crop production is drought 
or dehydration due to a water deficit. Plants respond to drought and make changes 
in cellular, metabolic and molecular levels to cope with the stress (Zhu, 2001a; 
Shinozaki & Yamaguchi-Shinozaki, 2007). The main outcome of drought shock is 
that it causes metabolic and osmotic imbalance in plants that leads to turgor loss 
and closure of the stomata, followed by repression of cell growth and inadequate 
photosynthesis because of limited carbon dioxide uptake due to the closure of 
stomata as well (Shinozaki & Yamaguchi-Shinozaki, 2007).  
 

A large number of genes are expressed in plants to protect the cells from stress 
damage and to restore the metabolic disorder caused by desiccation. These genes, 
can be classified into two functional groups, the first group encodes proteins 
giving improved stress tolerance. They code for proteins involved in the 
production of antifreeze proteins, water channels, transporters, detoxifying 
enzymes, all having a protective function in the cell. This group even contains 
proteins involved in the production of osmoprotecting molecules, such as amino 
acid derivates and sugars and many late embryogenesis abundant (LEA) proteins 
having uncharacterized function. LEA proteins are the most abundant hydrophilic 
proteins produced at the onset of embryo maturation and the final desiccation 
stage of seed development. They were found to be working as molecular 
chaperones protecting proteins from aggregation due to desiccation (Ingram & 
Bartels, 1996; Goyal et al., 2005). The second group includes different proteins 
having a regulatory role, such as transcription factors, protein kinases and 
phosphatases, enzymes involved in phospholipids metabolism and ABA 
biosynthesis (Chen & Murata, 2002; Yamaguchi-Shinozaki & Shinozaki, 2006; 
Shinozaki & Yamaguchi-Shinozaki, 2007). 
 

Often the same genes are expressed in plants when they are exposed to cold, 
drought or salt, most probably because all these stresses lead to physiological 
drought and the main function of the encoded proteins is to protect the cells from 
cellular dehydration under all these stress conditions (Knight & Knight, 2001; 
Knight et al., 2004). In all these situations, phytohormone ABA is the main plant 
hormone regulating stress-related gene expression, causing closure of the stomata 
and the subsequent expression of drought related genes (Zhu, 2002; Chinnusamy 
et al., 2004; Vinocur & Altman, 2005; Umezawa et al., 2006; Valliyodan & 
Nguyen, 2006; Xiong et al., 2006; Shinozaki & Yamaguchi-Shinozaki, 2007). 
Several rd (responsive to dehydration) and erd (early responsive to dehydration) 
genes encoding a wide range of proteins are ABA dependent and contain the 
ABA-responsive element (ABRE) motif. In ABA-deficient (aba) or ABA-
insensitive (abi) Arabidopsis mutants some genes are also induced by both 
dehydration and low temperature, which suggest that also ABA-independent gene 
expression is possible in response to dehydration and cold stress. Transcription 
systems regulating ABA-independent gene expression in response to dehydration 
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and cold stress include cis-acting elements DREs (dehydration responsive 
element) also referred as CRTs (C-repeat) and their DNA-binding proteins 
encoding transcription factors DREBs (DRE binding protein) or CBFs (C-repeat 
binding factor), respectively (Shinozaki & Yamaguchi-Shinozaki, 2000; 
Valliyodan & Nguyen, 2006). 
 

Many of the drought responsive genes are co-regulated not only by related 
stresses such as cold and salt, but also by wounding and pathogens (Zhu, 2002; 
Vinocur & Altman, 2005; Shinozaki & Yamaguchi-Shinozaki, 2007). In the plant, 
a distinct family of ubiquitous 14-3-3 proteins, which act as regulators for 
different regulatory proteins through protein-protein interactions, play an 
important role in cross talk between many stress responses as well as regulating 
many membrane localized proteins such as ion channels and pumps, for example 
14-3-3 regulates the activation of plasma membrane pump H+-ATPase (Bunney et 
al., 2002; Roberts et al., 2002). 14-3-3 proteins regulate the different proteins in 
the signal transduction pathways in response to different biotic and abiotic stress 
factors such as wounding and pathogen attack, salt stress and nutrient deficiency, as 
well as modulating the biochemical pathways by regulating the metabolic and 
nutritional functions such as carbon and nitrogen assimilation and starch synthesis. 
14-3-3 proteins are found to interact with elements of the ABA-induced gene 
expression machineries, which crucially regulate plant development and seed 
germination. Moreover, the presence of 14-3-3 proteins also within the chloroplast 
suggests that they may be involved in trafficking the thylacoid proteins (Fulgosi et 
al., 2002; Roberts et al., 2002; Xu & Shi, 2006).  
 
Temperature 
 
One of the most common environmental stresses is unfavourable change in the 
ambient temperature. From the equatorial regions to the arctic region plants can 
experience daytime temperatures as high as 60°C to as low as -70°C. Local 
topography and altitude also have a significant influence on the temperature of an 
area. Each plant species has an optimum temperature for growth and development, 
and the distribution of plant can be determined to a major extent by the 
temperature zone in which it can survive (Iba, 2002).   
 

When the temperature falls below zero, ice forms first in the intercellular spaces 
of plant tissues because of higher freezing point in intercellular fluid than in the 
intracellular fluid. This ice formation results in adhesions between the cell walls 
and membranes and thereby causes severe disruption of cells (Olien & Smith, 
1977). At subzero temperatures there is a decrease in the water potential outside 
the cell because of ice formation. Consequently, the unfrozen fluid or water moves 
out of the cell to the intercellular spaces and causes desiccation inside the cells, 
which then results in freezing injuries (Thomashow, 1999). Cold-induced 
desiccation can cause several physiological effects such as protein denaturation, 
precipitation of various molecules, membrane damage and lysis of the cells. The 
additional factor that causes cellular damage is the production of ROS during 
cold-induced injury (Thomashow, 1998, 1999; Pearce, 1999; Smallwood & 
Bowles, 2002).  
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The mechanisms that contribute to freezing or cold tolerance mainly act by 

preventing the induction of the factors damaging to the plant tissues. The initial 
factor responsible for triggering enhanced freezing tolerance in plants is exposure 
to low, but non-freezing temperatures, the phenomenon known as cold acclimation 
(Mohapatra et al., 1988; Hughes & Dunn, 1996). Cold acclimation is the first line 
of defence and has been found to be involved in the stabilization of plasma 
membranes against cold-induced injury. During cold acclimation, the hydrophilic 
and LEA proteins help to stabilize membranes against cold-induced damage. Low 
temperature also reduces the water absorption by roots and water transport in 
shoots and as a result desiccation shock and wilting of the plant (Uemura et al., 
1995; Thomashow, 1998, 1999; Pearce, 1999; Smallwood & Bowles, 2002). 
Therefore, many of the functional proteins such as LEA and antifreeze proteins as 
well as regulatory proteins which are involved in drought signalling are also 
involved in cold or salt stress signalling (Pearce, 1999; Thomashow, 1999; Novillo 
et al., 2004; Goyal et al., 2005; Shinozaki & Yamaguchi-Shinozaki, 2007). Plants 
are divided into three groups according to their cold responsiveness. The first 
group is susceptible and damaged by temperatures below 12°C whereas the second 
group is able to acclimate to temperatures below 12°C but unable to survive 
freezing, and the last group is freeze-tolerant and able to acclimate to survive 
temperatures significantly below freezing (Pearce, 1999; Thomashow, 1999; 
Sharma et al., 2005). 
 

Cold acclimation or the application of ABA can induce the cascade of many 
cold-responsive (COR) genes (Mohapatra et al., 1988; Hughes & Dunn, 1996; 
Thomashow, 1999). The COR genes, in Arabidopsis and in other plants are also 
designated as lti (low temperature induced), kin (cold-inducible), rab (responsive 
to ABA), rd or erd, encode proteins homologous to LEA proteins, dehydrins and 
cryoprotective proteins (Hughes & Dunn, 1996; Steponkus et al., 1998; 
Thomashow, 1999; Thomashow, 2001; Gilmour et al., 2004; Knight et al., 2004; 
Maruyama et al., 2004). Some of the COR genes encode hydrophilic polypeptides 
that have little or no homology to previously characterized proteins. These COR 
polypeptides are homologous to cryoprotective proteins which protect the plasma 
membrane from cold shock and destabilization and lead to freezing tolerance 
(Steponkus et al., 1998). One of the COR genes, kin1 from Arabidopsis, was 
reported to be homologous to the antifreeze protein of fish (Kurkela & Franck, 
1990). 
 

In Arabidopsis, during cold, drought and salt stress responses, the DREB1A or 
DREB1B transcription factors bind to the same cis-acting DRE elements. 
Therefore DRE element binding site could be the cross talk point between cold, 
drought and salt stress signalling in Arabidopsis. Along with DRE, the promoter 
element ABRE plays an integral part in this cross talk (Knight & Knight, 2001; 
Gilmour et al., 2004; Xiao et al., 2006). DREB1 family of regulatory genes 
possibly works as a “master-switch” in COR gene induction and cold acclimation 
during cold stress (Thomashow, 1999, 2001). More genes will most likely be 
identified in the future, as in Arabidopsis transcriptome profiling using Affymetrix 
GeneChips revealed about 939 cold-regulated genes of which 655 genes were 
upregulated (Lee et al., 2005). 
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Plants cope with extreme high temperatures by the induction of a group of genes 

called heat shock genes. Proteins encoded by heat shock genes enable the plant 
cell to survive in two ways. One group of heat shock proteins (HSPs) act as 
molecular chaperons that counteract protein denaturation and aggregation, and 
other HSPs, including ubiquitin and certain proteases, target non-native proteins 
for degradation (Gurley, 2000). Arabidopsis mutants that have a mutation in heat 
shock gene Hsp101 are unable to acquire tolerance to high temperature (Queitsch 
et al., 2000; Hong & Vierling, 2001). Maize heat shock protein Hsp101 
accumulated in higher levels in response to 40°C heat shock but negatively 
influenced the growth rate of the primary root (Nieto-Sotelo et al., 2002). In 
Arabidopsis, Hsp70 showed 2 to 20 fold induction by 40°C heat shock and 
conferred tolerance to heat and drought stress (Sung et al., 2001; Sung & Guy, 
2003). However, some of the HSPs, such as Spinacia oleracea Hsp70 and 
Brassica napus Hsp90, are also involved in cold acclimation of the plant 
(Anderson et al., 1994; Krishna et al., 1995; Thomashow, 1999). Not all HSPs are 
stress-inducible, but all known stresses, if sufficiently intense, were able to induce 
HSP expression (Feder & Hofmann, 1999). Plant perception, signal transduction, 
transcriptional activation as well as metabolic and physical responses to low or 
high temperature and tolerance reveal that plants have different independent and 
non-overlapping as well as parallel and similar responses to such conditions (Sung 
et al., 2003). 
 
Salt 
 
The uptake of minerals and nutrients from the soil is essential for plant growth; 
however, excessive presence of soluble salts can cause severe osmotic stress in 
plants. Saline soils generally constitute large amounts of water soluble salts such 
as sodium chloride (NaCl), sodium sulphate (Na2SO4), carbonates of sodium 
(NaHCO3 and Na2CO3), sodium nitrate (NaNO3), magnesium chloride (MgCl2), 
magnesium sulphate (MgSO4), potassium sulphate (K2SO4), calcium carbonate 
(CaCO3) and calcium sulfate(CaSO4). However, in salt-prone soils NaCl (the main 
ingredient of table salt) causes the most harmful inhibitory effects on seed 
germination and plant growth as a result of osmotic and ionic stress (Flowers et 
al., 1977).  
 

Salt stress in general reduces the water uptake capacity of the plant, which as a 
consequence reduces growth rate and metabolic activity. The initial growth 
reduction could be due to hormonal signals generated by the roots encountering 
salinity (Munns, 2002). As a more long term impact of salinity, the excessive salt 
toxicity levels lead to senescence and reduce the photosynthetic capacity due to 
the closure of stomata and limited carbon dioxide uptake, which cannot sustain 
proper growth (Zhu, 2001a; Munns, 2002). 
 

Up to certain level, the salt or NaCl concentration can enhance plant growth, but 
a harmful excessive level of salt can cause severe damage to plant growth and 
development. The main two effects of salinity in the physiological and 
biochemical phases of the plant growth are the osmotic stress due to changes in 
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osmotic potential and the ionic imbalance and toxicity in the cell. The presence of 
a higher salt concentration in the saline soil changes the osmotic potential of the 
cell, which inhibits the ability of the plant to take up water as well as necessary 
minerals and ions, such as K+ and Ca2+. Secondly, inhibition of growth and 
photosynthesis by Na+ and Cl– toxicity is the most common effect when plants are 
exposed to salinity. Na+ causes the primary damage due to ion toxicity. High Na+ 
in soil competes with other nutrients and causes their deficiency in the plant. 
Metabolic toxicity occurs because Na+ competes and substitutes the K+ that is 
essential for many enzyme activities and protein synthesis (Hasegawa et al., 2000; 
Tester & Davenport, 2003; Munns e et al., 2006). These primary damaging effects 
are followed by subsequent secondary stresses or inhibitory effects such as the 
production of ROS during salinity that cause oxidative damage to membrane lipid 
and proteins and eventually lead to programmed cell death (PCD). The inhibitory 
effect on cell growth, photosynthesis, membrane destabilization, metabolic 
toxicity and even acceleration of cell death are also evident during salt stress 
(Hasegawa et al., 2000; Apse & Blumwald, 2002; Lin et al., 2006). Slower growth 
rate is an adaptive mechanism for plant to survive in stress situation, which allows 
the plant to maintain and manipulate energy resources and survive the stress. 
During stress one of the most important effects is the inhibition of cell division 
and expansion, and consequently, the slower plant growth leading to significant 
loss of plant productivity (Zhu, 2001a). 
 

The ability to maintain the right cellular cytosolic sodium concentration is 
crucial for the growth of the plant in high salt concentration. The most essential 
way of maintaining the cellular homeostasis is by keeping the cytosolic Na+ 
concentration at a low level by minimizing Na+ influx and maximizing Na+ 
efflux. Na+ detoxification by compartmentalization into vacuoles and cellular 
osmotic adjustment are also essential for the plants ability to deal with salt stress. 
Most of the higher plants try to exclude Na+ by Na+/H+ antiport at the plasma 
membrane. Na+/H+ antiporters utilize the proton motive force generated by the 
plasma membrane H+-ATPase pump for H+ influx into the cell along its 
electrochemical gradient and Na+ efflux against its electrochemical gradient. H+-
ATPase pumps H+ out of the cell by ATP hydrolysis through an electrochemical 
H+ gradient (Blumwald et al., 2000; Tester & Davenport, 2003).  
 

The potassium ion K+ is the most abundant cation and an important 
macronutrient in higher plants. It is needed for enzyme activation, protein 
synthesis and photosynthesis and mediates osmoregulation during cell expansion, 
stomatal movements and tropisms. In contrast, closely related Na+ that compete 
with K+ has a toxic effect and causes osmotic and ionic stresses and inhibits vital 
enzyme activities. Therefore, it is very important to maintain the right K+:Na+ ratio 
in the cytosol for the normal function of cells. It has been suggested that Na+ could 
use the K+ transport channel and possibly the mechanisms for Na+ entry into roots 
is through K+ and Ca2+ transporters (Mäser et al., 2002; Xiong & Zhu, 2002).  
 

Like potassium, the calcium ion Ca2+ also plays an important role in signalling 
cell metabolism responses to abiotic stresses including temperature stress, salt 
stress, oxidative stress and anoxia. In Arabidopsis, cellular calcium mediates the 
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signalling that leads to an increased expression of abiotic stress responsive genes 
which may encode proteins having protective functions. Ca2+ uptake and transport 
are severely affected during high salinity, and as a result Ca2+ deficiency can be 
observed during salt stress (Rengel, 1992; Knight et al., 1998; Knight & Knight, 
2001; Zhu, 2002). A salt stress-induced calcium signal is most likely to induce the 
distinct Salt-Overly-Sensitive (SOS) pathways in plants in response to the ionic 
stress, particularly Na+ stress. In Arabidopsis, the sos mutants, sos1, sos2 and sos3 
are found to be hypersensitive to salt and reveal a novel calcium-regulated protein 
kinase signalling complex in response to the ionic stress (Zhu, 2000, 2003; 
Chinnusamy et al., 2004). Extensive genetic analysis reveals the mechanism 
within the SOS pathways. To maintain the K+ and Na+ intracellular homeostasis 
during salt stress, a calcium-binding protein SOS3 binds and activates a regulatory 
protein, protein kinase SOS2, which is found to be essential to salt tolerance, in a 
Ca2+-dependent manner. Under salt stress the SOS3–SOS2 kinase complex 
regulates the expression and activity of ion transporters such as SOS1, a plasma 
membrane Na+/H+ antiporter to re-establish the cellular ionic homeostasis. In 
addition to transporter activity SOS1 is possibly a sensor of Na+ (Halfter et al., 
2000; Liu et al., 2000; Shi et al., 2000; Zhu 2000, 2001a, b, 2003; Chinnusamy et 
al., 2004, 2005). 
 

During salt stress a cascade of molecular and biochemical changes occur as 
functions of different salt tolerant genes (Borsani et al., 2003). Many genes and 
transcriptional regulatory mechanisms function simultaneously in regulating 
drought, cold, or high salinity stress signal transduction pathways. The 
transcription factors could govern the expression of all these stress-inducible 
genes either cooperatively or independently, and may constitute gene networks in 
Arabidopsis (Zhu, 2001b; Shinozaki & Yamaguchi-Shinozaki, 2007). In fact, like 
in cold acclimation, whole plants can also get improved salt tolerance when being 
exposed to high but non-lethal concentrations of salt. Exposure of seedlings of 
Sorghum bicolor to a sublethal NaCl concentration (75-150 mM NaCl) for 20 days 
induced an ability to grow them at 300 mM NaCl, a lethal concentration for non-
treated plants (Amzallag et al., 1990). 
 

Plant species are divided into two groups according to their ability to grow in 
high salinity. Halophytes are tolerant to high levels of salt, such as 400 mM which 
can be as high as or even higher than sea water. On the other hand, most of the 
plant species classified as glycophytes cannot withstand high salinity (Hasegawa 
et al., 2000; Zhu, 2001a; Chinnusamy et al., 2004; Flowers, 2004). The two main 
mechanisms for salt tolerance utilized by halophytes are minimizing the entry of 
salt into the plant, and minimizing the concentration of salt in the cytoplasm and 
cell wall. Salt tolerant plants protect themselves from salinity by lowering the rate 
of Na+ and Cl- transport to leaves and compartmentalizing these ions to vacuoles 
other than cytoplasm or cell walls to avoid salt toxicity, while the salt-sensitive 
glycophytes have poor ability to exclude salt and thus accumulate toxic levels of 
salt in the cytosol (Munns, 2002). 
 

During salt stress one of the complex molecular responses in the plant is to 
produce stress proteins and compatible osmolytes that may have protective and 
scavenging functions against cell damaging ROS molecules produced during the 
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stress (Zhu, 2001a). Transgenic tobacco expressing bacterial glycine betaine (an 
osmolyte) pathway genes encoding choline dehydrogenase (CDH) and betaine 
aldehyde dehydrogenase (BADH) accumulated  small amounts of glycine betaine 
and thus exhibited increased tolerance to salt stress as well as significantly 
improved photosynthetic capacity (Holmström et al., 2000).  Transgenic rice with 
trehalose biosynthesis genes otsA and otsB from Escherichia coli showed 
enhanced growth in 100 mM salt treatment compare to nontransformed plants 
(Garg et al., 2002). In tomato, wounding enhances salt tolerance through wound 
signalling peptide systemin and JA-dependent pathways, and a Ca2+ dependent 
protein kinase LeCDPK1 might be involved in this wounding-salt stress tolerance 
signalling (Capiati et al., 2006). Finally, a halophytic plant called salt cress 
(Thellungiella halophila) is a small winter annual crucifer and can be used as a 
model system like Arabidopsis to elucidate the molecular and biochemical aspects 
of salt tolerance in plants (Inan et al., 2004; Volkov et al., 2004). 
 
Hypoxia 
 
Higher plants require access to free water for easy nutrient uptake but excess water 
in the root surroundings can be suffocating, injurious or even lethal because it 
blocks the transfer of free oxygen and other gases between the soil and the 
atmosphere (Drew, 1997). The limitation or lack of free oxygen is common in 
waterlogged soil as a result of excess rainfall, flooding, and in ice encasement 
during winter due to snow melting and refreeze which forms solid ice layer on the 
soil surface. In all these situations the gas exchange is reduced to extremely low 
level (Andrews, 1996; Drew, 1997; Vartapetian & Jackson, 1997; Dennis et al., 
2000; Blokhina et al., 2003; Jackson & Colmer, 2005). 
 

The partial deprivation of the free oxygen in soil is termed as hypoxia, whereas 
anoxia is the complete absence of free oxygen and both are detrimental to the 
growth and development of aerobic organism like higher plants (Crawford & 
Braendle, 1996; Vartapetian et al., 2003). Plants adapt to hypoxia and anoxia by 
avoidance of or adaptation to oxygen deficits. Avoidance occurs through 
morphological adaptation and provision of oxygen via leaves. Adaptation to 
oxygen deficit includes a by lowering of metabolic rates, removal of toxic 
products and compensating the metabolic changes such as alternation of metabolic 
pathways, endogenous oxidation, adaptive enzyme synthesis, preservation of 
membrane integrity and metabolism of anaerobic products (Crawford & Braendle, 
1996; Vartapetian et al., 2003). In hypoxic conditions like seasonal flooding, the 
first plant response is closure of stomata and wilting, similar responses to those 
found in drought stress. Plants also show reduced photosynthetic and transpiration 
rates during hypoxia. The closure of stomata is regulated by ABA accumulation 
during drought, whereas during hypoxia the closure of stomata is rather due to the 
release of ET despite repressed ABA accumulation (Else et al., 1996; Blanke & 
Cooke, 2004; Yordanova et al., 2005). One of the characteristic consequences of 
hypoxia is the generation of ROS in plant tissues due to oxygen deprivation and 
reoxygenation (Blokhina et al., 2003). In plant, oxygen insufficiency causes 
altered cellular metabolism and can dramatically reduce productivity. During 
hypoxia plants adopt to the altered carbohydrate consumption and anaerobic 
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metabolism. Under low oxygen condition the enzyme alcohol dehydrogenase 
(ADH) metabolizes the anaerobic fermentation, an alternative way of sugar 
metabolism leading also to production of ROS (Fukao & Bailey-Serres, 2004).  
 

In Arabidopsis, exposure to moderate hypoxia (5% O2) works as hypoxic 
acclimation and helps the plant to survive in extreme hypoxia (0.1% O2) but 
hypoxic acclimation did not improve tolerance to anoxia (0% O2) (Ellis et al., 
1999). Two enzymes in the glycolytic (alcoholic fermentation) pathway, ADH and 
pyruvate decarboxylase (PDC) are the members of the anaerobic polypeptides, are 
strongly induced in hypoxic conditions. Expression of the genes adh and pdc 
enhances the ethanol production and result in an increased rate of glycolysis that 
compensates the metabolic changes through altered carbohydrate consumption 
during hypoxia. In the anaerobic glycolytic pathway the first enzyme PDC non-
oxidatively decarboxylates the pyruvate into acetaldehyde and in the subsequent 
reaction ethanol is produced from acetaldedyde by the enzyme ADH (Andrews, 
1996; Hossain et al., 1996). In Arabidopsis adh and pdc genes are induced in roots 
and leaves during low oxygen conditions. Arabidopsis adh1 gene is induced by 
many stress factors such as hypoxia, cold, drought, wounding and hormone ABA 
(de Bruxelles et al., 1996; Dolferus et al., 1997, 2003). 
 

ET signalling is involved for the induction of adh during the later stages of 
hypoxia in Arabidopsis (Peng et al., 2001). The reduced expression of adh has 
been observed in hypoxic condition in two ET insensitive mutants in ET-
signalling pathways etr1 and ein2. During hypoxic conditions, ET precursor 1-
aminocyclopropane-1-carboxylate (ACC) is produced due to the increase of ACC 
synthase in plant roots and ACC is further converted to ET by ACC oxidase in 
shoots. In hypoxia, ET production is increased because of the partial availability 
of the molecular free O2 which converts ACC to ET (Drew, 1997). Recently, Xu et 
al., (2006) described the identification of a cluster of three genes at the Sub1 locus 
in the rice (Oryza sativa) chromosome, encoding putative ET response factors. 
Overexpression of one of these genes, Sub1A-1, enhance the expression of adh 
genes in a submergence-intolerant O. sativa ssp. japonica resulting in the 
enhanced submerge tolerance. 
 
Reactive oxygen species (ROS) 
 
In plants, a wide range of abiotic and biotic stress factors can induce oxidative 
stress. Salt, drought, heat, hypoxia and oxidative stress are accompanied by the 
formation of ROS molecules such as superoxide anion O2

-, hydrogen peroxide 
H2O2, and hydroxyl ion OH-, which damage membranes and macromolecules 
(Mittler, 2002; Blokhina et al., 2003). 
 

ROS substances that are activated and accumulated in response to different 
sources of stress may have dual roles, causing hypersensitive response-
programmed cell death (HR-PCD) in plant host cells and defence response to 
pathogenic invaders. The activation of protein kinase-NADPH oxidase enzyme 
cascades are involved in the release of ROS substances in plant cells and ROS 
production is the very early response in the process of cell or tissue necrosis 
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(Bolwell & Wojtaszek, 1997; Király, 1998; Heath, 2000; Kwak et al., 2003; Patel 
et al., 2006). The important plant defence signalling molecule SA has a protective 
role on H2O2 production. SA inhibits the activity of H2O2 scavenging enzymes 
catalases (CAT) or ascorbate peroxidase, APX (Chen et al.,1993, 1995; Durner & 
Klessig, 1995, 1996). However, H2O2 might have a role as second messenger of 
SA to activate the induction of defence related gene expressions that lead to plants 
systemic defence or resistance response (Chen et al., 1995; Durner & Klessig, 
1996; Ryals et al., 1996). 
 

Plants have developed several antioxidation strategies to scavenge these toxic 
compounds. Enhancement of antioxidant defence in plants can thus increase 
tolerance to different stress factors. The main way to reduce damage caused by 
ROS in plant cells is accomplished by several antioxidants (ROS scavengers) that 
include enzymes such as CAT, superoxide dismutase (SOD), APX and glutathione 
reductase, as well as non-enzyme molecules such as ascorbate, glutathione, 
carotenoids, and anthocyanins (Bowler et al., 1992; Gould et al., 2002; Mittler, 
2002; Blokhina et al., 2003;). Additional compounds, such as osmolytes, proteins 
(e.g. peroxiredoxin) and amphiphilic molecules (e.g. tocopherol), also showed 
functions as ROS scavengers (Noctor & Foyer, 1998; Mittler, 2002; Blokhina et al., 
2003). 
 
Trehalose production in plants 
 
Different stress conditions such as drought, salinity, low and high temperature and 
hypoxia cause a decrease in turgor pressure at the cellular level. During stress, 
plants usually respond by accumulating organic compounds known as compatible 
solutes or osmolytes. Osmolytes protect the cell turgor and restore the water status 
of the cell by maintaining the cellular water potential as well as acting as 
chaperones to stabilize the membranes or scavengers of ROS. Osmolytes 
accumulating during stress in different plant species can be polyols and sugars, 
such as mannitol, trehalose, and amino acids such as proline or quaternary amines 
such as glycine betaine or dimethylsulfoniopropionate. In most cases the expression 
of genes leading to the production of these compatible solutes in transgenic plants 
may improve stress tolerance (Holmström et al., 1996, 2000; Bajaj et al., 1999; 
Nuccio et al., 1999; Chen & Murata, 2002).  
 

Simple sugars, such as sucrose and trehalose, have been shown to stabilize 
biomaterials of various composition and origin (Liao, 2002; Pereira et al., 2004). 
Trehalose is a non-reducing disaccharide of glucose (α-D-glucopyranosil-1,1-α-
D-glucopyranoside) formed by two pyranose rings in the same configuration. The 
sugar possesses unique physical qualities like high hydrophilicity, and high 
chemical and heat stability. Trehalose is ubiquitous in a wide variety of organisms, 
including bacteria, yeast, fungi, insects, other invertebrates, and lower and higher 
plants. (Elbein, 1974; Wingler, 2002; Elbein et al., 2003). It has been shown that 
in a wide variety of organisms, accumulation of trehalose can protect proteins and 
cellular membranes from inactivation or denaturation caused by a variety of stress 
conditions such as drought, salinity, heat and cold and oxidation (Elbein et al., 
2003). Besides the role of trehalose as a compatible solute, it is also believed to 
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have an important role as a carbohydrate reserve in many organisms, which serve 
as a source of energy and carbon. The genes in trehalose biosynthesis pathways in 
yeast, bacteria and desiccation tolerant plants have been widely used in different 
plant species to confer stress tolerance (Holmström et al., 1996; Goddijn & van 
Dun, 1999; Zentella et al., 1999; Yeo et al., 2000; Garg et al., 2002; Blumwald et 
al., 2004). 
 
Trehalose biosynthesis 
 
Although most of the plants do not accumulate detectable amount of trehalose, it 
has been speculated that the trehalose biosynthesis pathway is present in a wide 
range of plant species (Wingler, 2002). Recent studies show that there could be 
five different trehalose biosynthesis pathways present in bacteria while only one 
can be found in eukaryotes (Avonce et al., 2006). Generally, in the metabolic 
pathway of trehalose biosynthesis, UDP-glucose or glucose-6-phosphate are 
catabolized to trehalose-6-phosphate (T6P) by the enzyme trehalose-6-phosphate 
synthase, TPS (yeast, Saccharomyces cerevisiae: ScTPS1/tps1 and E. coli: otsA) 
and T6P is subsequently converted to trehalose by the second enzyme, trehalose-
6-phosphate phosphatase, TPP (yeast: ScTPS2/tps2 and E. coli: otsB). In yeast, 
two regulatory proteins TPS3 and TSL1 are also necessary for the stabilization 
and maximal activity of the trehalose synthase complex (Vuorio et al., 1993; 
Reinders et al., 1997; Bell et al., 1998; Argüelles, 2000). In an alternative pathway 
in E. coli, an enzyme T6P hydrolase can convert T6P to glucose-6-phosphate 
(G6P) and glucose (Vuorio et al., 1993; Argüelles, 2000). In bacteria, such as 
Mycobacterium smegmatis and M. tuberculosis the TPS can utilize either GDP-
glucose or UDP-glucose, while in yeast the TPS is mostly specific for UDP-
glucose (Klutts et al., 2003). In all these organisms, trehalose can be broken down 
to glucose by trehalase (yeast: NTH1 and E. coli: treF or treA) (Boos et al., 1987; 
Horlacher et al., 1996; Wera et al., 1999; Argüelles, 2000). 
 

Bioinformatics analyses of the Arabidopsis genome reveals that there are about 
11 TPS homologues divided into two classes depending on the presence of 
phosphatase boxes in their TPP domain (C-terminal part). This classification is 
developed by homology comparison with the yeast TPS and TPP genes. Class I 
consists of four genes including AtTPS1 that lack phosphatase boxes and class II 
consists of seven genes that contain phosphatase boxes (Leyman et al., 2001; 
Eastmond et al., 2003). The Arabidopsis AtTPS1 was cloned and characterized as 
TPS by complementing the yeast mutant lacking tps1 (Blázquez et al., 1998). 
AtTPS1 is expressed in almost all Arabidopsis tissues while a mutant disrupted for 
AtTPS1 is embryo lethal (Eastmond et al., 2002; Gómez et al., 2005). In 
Arabidopsis, AtTPS1 positively regulates the cell wall biogenesis and cell division 
and influences the carbohydrate metabolism during embryo development (Gómez 
et al., 2006). A new class III of TPP genes has been reported in Arabidopsis that 
consists of ten putative TPP genes containing the TPP domain. Two of the genes 
AtTPPA and AtTPPB are already characterized as TPP by complementing the 
yeast mutant lacking tps2 gene (Vogel et al., 1998; Eastmond et al., 2003). 
Trehalase may have a regulatory role in carbohydrate metabolism and allocation in 
plants and in Arabidopsis a trehalase (AtTRE1) gene has been identified by 
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complementation of trehalase-deficient yeast mutant (Müller et al., 2001) and 
several homologues of TPS, TPP and trehalase genes have now been cloned from 
a number of other plant species such as tobacco, potato and sunflower (Goddijn & 
Smeekens, 1998). A list of AtTPS1 orthologues found in different plant species 
such as sugar beet, sugar cane, tobacco, potato, lotus, tomato, apple, soybean, 
cotton, sunflower, maize, rice, wheat, barley, sorghum, salt cress (Thellungiella 
halophila) and almond has been presented by Leyman et al. (2006). 
 

TPS, TPP and trehalase genes have been characterized in many species. A TPS 
gene of the resurrection plant Selaginella lepidophylla conferred thermotolerance 
and osmotolerance in yeast (Zentella et al., 1999) and a cotton TPS gene was 
found to be drought inducible (Kosmas et al., 2006). In rice, TPP genes OsTPP1 
and OsTPP2 were induced due to cold, drought, salinity and ABA (Pramanik & 
Imai, 2005; Shima et al., 2007), and in soybean, a trehalase gene GMTRE1 was 
constantly expressed at a low level in different tissues (Aeschbacher et al., 1999). 
Immunogold localization assay showed the existence of an AtTPS1 homologue in 
tobacco (Almeida et al., 2007). A tobacco TPP gene NtTPPL complemented the 
yeast mutant lacking tps2. NtTPPL was induced by heat stress and partially 
induced by salt and low temperature (Wang et al., 2005). In most of the higher 
plant species, whether transgenic or not for the trehalose biosynthesis gene(s), the 
trehalose-accumulation has been found to be merely detectable (Holmström et al., 
1996; Romero et al., 1997). However, trehalase inhibitor ValidamycinA treatment 
enabled the detection of trehalose accumulation in Arabidopsis and in transgenic 
tobacco and potato plants overexpressing trehalose biosynthesis genes (Goddijn 
et al., 1997; Müller et al., 2001; Karim et al., 2007). 
 

In some organisms alternative trehalose pathways exist. Alternative trehalose 
biosynthesis genes trehalose synthase (TSase) from the basidiomycete Grifola 
frondosa Fr. or trehalose phosphorylase (PsTP) gene of edible mushroom 
Pleurotus sajor-caju could catalyze the trehalose synthesis directly from glucose 
and glucose-1-phosphate in a one step process. Interestingly, PsTP could 
complement the growth of yeast double mutants lacking tps1 and tps2 (Han et al., 
2005; Zhang et al., 2005). Many pathogens can induce trehalose production in 
plants during their symbiotic or pathogenic interaction with the plant. For 
example, a plant pathogen Plasmodiophora brassicae could induce trehalose 
production in Arabidopsis roots due to the expression of putative TPS gene 
PbTPS1. The pathogen also induced Arabidopsis native trehalase gene AtTRE1 
which indicated that trehalase was induced as a part of the plant defence system to 
break down excess trehalose that could interfere with the plant defence mechanism 
through creating a disadvantageous impact on plant sensing and signalling as well 
as the regulation of the carbon metabolism (Brodmann et al., 2002). Recent 
studies suggest that trehalose may have a regulatory influence on the expression of 
different stress related genes and many of these trehalose inducible genes support 
the JA/ET dependent signal transduction pathways (Bae et al., 2005a,b; Shima et 
al., 2007). Apart from the role of trehalose or T6P, it could also be speculated that 
similar to the situation in yeast Tps1, plant TPS could exert a regulatory function 
on sugar signalling pathways (Bonini et al., 2003; Karim et al., 2007). 
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Drought tolerance with growth aberrations 
 
The introduction of yeast TPS gene (ScTPS1) in tobacco produced enhanced 
drought tolerant transgenic plants but with multiple altered pleiotropic phenotypes 
such as lancet-shaped leaves and stunted growth (Holmström et al., 1996; Romero 
et al., 1997). Yeast ScTPS1 under the control of the CaMV 35S promoter 
increased drought tolerance in potato but also caused an abnormal phenotype 
ranging from dwarfish growth to aberrant root phenotype (Yeo et al., 2000). E. 
coli genes otsA and otsB have shown earlier to cause enhanced stress tolerance and 
higher biomass in tobacco and potato along with altered phenotypes such as larger 
or lancet-shaped leaves and growth defects (Goddijn et al., 1997; Pilon-Smits et 
al., 1998; Goddijn & van Dun, 1999). 
 

During stress, higher plants possibly use the sucrose as a transport sugar as the 
best choice (Wingler, 2002). Adding trehalose in the media strongly inhibits the 
root elongation and leaf growth, which indicates that trehalose, at least 
exogenously added, may have a toxic effect on plant cell growth (Wingler et al., 
2000; Fritzius et al., 2001). In trehalose producing plants most of the studies 
showed a higher accumulation of many sugars including glucose, fructose, 
trehalose, sucrose and starch as well as enhanced stress tolerance. It might be 
possible that excess accumulation of sugars could cause problems in the sugar 
sensing and signalling which might have an adverse effect on normal 
physiological development and growth (Brodmann et al., 2002; Eastmond et al., 
2002; Avonce et al., 2005). In Arabidopsis short root growth was observed in 
plants grown in trehalose containing media and that could be due to the induced 
expression of starch synthesis gene and higher accumulation of starch (Ramon et 
al., 2007). In the pho3 mutant of Arabidopsis which has a non functional SUC2 
gene that encodes a sucrose-H+ symporter, AGPase (ADP-glucose 
pyrophosphorylase that catalyzes the first step of starch synthesis) activity has 
found to be higher. The pho3 mutant plants accumulate huge amounts of sugars 
such as glucose, fructose, sucrose and starch and also show severe retarded growth 
(Lloyd & Zakhleniuk, 2004). 
 
Drought tolerance without growth aberrations 
 
In rice, introducing trehalose bifunctional hybrid gene TPSP from E. coli (otsA 
and otsB) enhance the trehalose accumulation about 200 fold more than the 
independent transgenic plants containing otsA or otsB alone without causing any 
growth aberrations. Transgenic plants with trehalose bifunctional genes also 
confer tolerance to drought, cold and salt and increased photosynthetic capacity 
(Seo et al., 2000; Garg et al., 2002; Jang et al., 2003). Tobacco chloroplasts 
transformed with ScTPS1 produce transgenics with enhanced drought tolerance 
without any growth defect which was obvious in nuclear transformed ScTps1 
transgenics. Trehalose accumulation was almost 25-fold higher (approximately 
400 μg/g fresh weight) in chloroplast transgenic plants over the nuclear transgenic 
plants (Lee et al., 2003). 
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Tobacco plants transformed with TSase from G. frondosa Fr. showed no 

negative growth retardation but rather showed enhance drought and salt tolerance 
(Zhang et al., 2005). Tobacco plants expressing PsTP of P. sajor-caju 
constitutively under the control of CaMV 35S promoter produced drought 
tolerance without any growth defect. Since TSase and PsTP catalyzed the 
trehalose directly from glucose and glucose-1-phosphate it could be hypothesized 
that the TPS protein or T6P produced by the common trehalose biosynthesis 
pathway might have the influencing effect on altered pleiotropic phenotypes (Han 
et al., 2005; Zhang et al., 2005). 
 

It has been shown recently that enhanced drought tolerance is believed to be 
coupled with growth aberrations due to the overproduction of yeast Tps1 in 
tobacco or Arabidopsis cytosol. Growth aberration has been observed in 
transgenic plants having only ScTps1 overproduction. These growth defects can 
be overcome through different metabolic approaches (Karim et al., 2007). First of 
all, constitutive overproduction of both ScTPS1 and ScTPS2 in tobacco 
transgenics under the control of Arabidopsis RuBisCO (ribulose-1,5-bisphosphate 
carboxylase) promoter eliminates the growth problem, while retaining the 
improved drought tolerance. Moreover, the overexpression of both ScTPS1 and 
ScTPS2 increases the trehalose accumulation in the transgenic tobacco. In another 
approach the overexpression of ScTPS1 under the control of a drought inducible 
Arabidopsis promoter AtRAB18 (Lång & Palva, 1992) showed enhanced drought 
tolerance and drought inducible trehalose accumulation without having any 
growth retardation in tobacco (Holmström et al., 1996; Karim et al., 2007). It has 
been reported that the transcription factor DREB1A that binds to dehydration 
responsive promoter element plays an important role in drought, cold and salt 
tolerance. Expressing the gene for DREB1A confers all these stress tolerances. In 
Arabidopsis, overexpression of DREB1A cDNA under the control of strong 
constitutive 35S cauliflower mosaic virus (CaMV) promoter has resulted in an 
enhanced stress tolerance as well as severe growth retardation while expression 
from a stress inducible rd29A promoter has minimized the negative growth effects 
while providing a greater tolerance to stress conditions (Kasuga et al., 1999). 
 
Role of trehalose-6-phosphate 
 
The accumulation of metabolic intermediate sugar phosphate T6P, is believed to 
have the toxic effect on plant cell growth, which causes altered growth and 
morphological phenotypes (Schluepmann et al., 2004). Human fungal pathogen 
Candida albicans contains TPS and TPP genes CaTPS1 and CaTPS2 respectively, 
and inactivation of CaTPS1 resulted in inhibition of hyphae formation and the 
virulence of the pathogen, on the other hand, disruption of the CaTPS2 resulted in 
50-fold hyper-accumulation of T6P, thermosensitivity and rapid death of the cells 
at 44°C. This indicates that the T6P is toxic and might itself elicit the stress 
response even in plants (Van Dijck et al., 2002a). However, in plants T6P is found 
to be required for sugar utilization in the cell (Goddijn & Smeekens, 1998; 
Schluepmann et al., 2003). In a recent study in Arabidopsis it has been 
demonstrated that changes in sucrose levels correlate with rapid changes in the 
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T6P content in cytosol which in turn activates AGPase that catalyzes the first step 
of starch synthesis in the chloroplasts. Thus T6P might have a signalling or 
regulatory role in sugar sensing and utilization of carbohydrate in between cytosol 
and chloroplasts (Kolbe et al., 2005; Lunn et al., 2006; Lunn, 2007). 
 

In the plant, T6P is thought to be controlling the photosynthetic capacity (Paul 
& Pellny, 2003). Introducing the E. coli TPS gene otsA into tobacco enhanced the 
photosynthetic capacity (CO2 assimilation per unit leaf area under light and 
RuBisCO activity) and it was correlated with increased T6P content rather than 
trehalose in the plant. However, plants transformed with the E. coli phosphatase 
gene otsB or trec which encodes trehalose phosphate hydrolase, produced the 
opposite effect with T6P reduced to almost half of the amount found in wild type 
as well as reduced photosynthetic capacity (Paul et al., 2001; Pellny et al., 2004). 
 

When carbohydrates are abundant, plants switch off photosynthesis in a process 
of efficient use of energy and the carbon metabolism. Glucose plays a prime role 
in this metabolism by regulating an array of genes where hexokinase, HXK acts as 
a glucose sensor. In yeast, the T6P producing enzyme ScTps1 controls sugar 
influx into glycolysis and the synthesis of T6P has been found to have an 
inhibitory effect on hexokinase activity (Thevelein & Hohmann, 1995). TPS and 
T6P regulate the hexokinase and glycolysis activity differently in yeast and plants. 
The yeast TPS system can be substituted partially by the plant TPS system for 
example the AtTPS1 can complement the yeast tps1 null mutant growth in glucose 
medium but without yeast hexokinase activity. The lower activity of plant TPS 
enzymes are due to the N-terminal domains, by truncating the N-terminal part of 
the genes could restore their full functionality in yeast in a glucose medium 
(Goddijn & Smeekens, 1998; Van Dijck et al., 2002b). In plants three different 
hexokinase-dependent/-independent glucose signal transduction pathways are 
involved. In Arabidopsis the first pathway is the Arabidopsis hexokinase HXK-
dependent pathway where the photosynthetic and sugar-regulated gene expression 
is correlated with AtHXK activity. The second one is the glycolysis-dependent 
pathway mediated by both plant hexokinase AtHXK and antagonistic yeast 
hexokinase activity. The last one is AtHXK-independent pathway through which it 
might be possible that the sugar transporters and sugar sensors such as 
extracellular sugar-binding proteins might perceive and transmit the glucose 
signalling as well as AGPase mediated sugar signalling (Xiao et al., 2000). 
Arabidopsis hexokinase AtHXK plays an important role under a wide range of 
plant development and growth conditions. AtHXK might have dual role in glucose 
signalling and metabolism and the effect on growth promotion or inhibition is 
dependent on the glucose concentration and the cell conditions. AtTPS1 
expression is AtHXK dependent and AtTPS1 positively regulates AtHXK 
expression in normal condition but represses AtHXK activity only in the presence 
of glucose. AtHXK has been found to be involved in glucose responses, cell 
proliferation, leaf expansion, root and inflorescence growth, reproduction and 
senescence as well as related gene expressions. All the physiological functions of 
AtHXK in plant growth and development, as well as the role of AtTPS1 or T6P on 
glucose and ABA signalling may be the key factors behind the drought tolerance 
and vegetative development (Moore et al., 2003; Avonce et al., 2004, 2005). 
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In a microarray analysis of Arabidopsis using the Affymetrix ATH1 chip 
containing more than 22,500 probe sets reveals that both the putative TPS and 
TPP genes of trehalose biosynthesis pathways are induced by nitrate in roots but 
not in shoots. Then it could be suggested that nitrate may have an influence on 
T6P levels. It might be possible that T6P is a regulator of the pentose phosphate 
pathway involving nitrate reduction and pentose oxidation (Wang et al., 2003b). 
 
Biotic stress signalling 
 
Wound signalling 
 
Tissue damage in plants is associated most often with insect herbivore infestation. 
Phloem-feeding whiteflies and aphids cause small wounds in plant foliage that are 
perceived as pathogens by plant defence system and activate the SA-dependent 
and JA/ET-dependent signalling pathways. On the other hand, extensive tissue 
damage caused by chewing insects such as beetles, caterpillars and cell-content 
feeders such as mites and thrips activate JA -dependent and -independent wound 
responses and herbivore responsive genes. Mechanical wounding and herbivore 
feeding is not equivalent and differently regulate the signal transduction pathways 
(Walling, 2000). For example in a microarray analysis not all genes found to be 
induced by mechanical wounding, are induced by herbivore feeding (Reymond et 
al., 2000). Insect herbivore feeding causes wound-induced responses but the 
feeding damage can even cause direct and extensive responses because of their 
highly stimulating oral secretions that work as effective elicitors and cause the 
production of volatiles and hormonal defence cascades indirectly by plants 
(Walling, 2000). Similar to insect herbivores wound signalling activates induced 
defences in plants both locally and systemically by signalling cascades involving 
systemin, jasmonate, oligogalacturonic acid (OGA) and H2O2 (Gatehouse, 2002). 
Tissue damage usually induces local osmotic stress responses that are often found 
to be a key component in the response to mechanical wounding (Reymond et al., 
2000; Denekamp & Smeekens, 2003). 
 

Higher plants have various defence responses against abiotic and biotic agents 
including the transcriptional activation of wound responsive genes (Rojo et al., 
1999). These genes generally encode wound-induced proteins. The functions of 
several wound-induced proteins are well known, such as proteases or proteinase 
inhibitors, proteins involved in the biosynthesis of plant secondary metabolites or 
defence signalling compounds and their signal transduction pathways (Ryan, 
1990; Sticher et al., 1997; Yen et al., 2001). The defence responses include either 
hypersensitive response (HR) or the production of antimicrobial secondary 
metabolites, phytoalexins and pathogenesis related (PR) proteins (Penninckx et al., 
1998) or wound healing or repair of the damage (Bowles, 1990). Some of the 
defence responsive genes are active in the site of wound, whereas others are also 
active systemically in the non-damaged parts and prevent the pest from spreading. 
The proteinase inhibitor gene family is a well-characterized example of the 
systemically inducible genes (Ryan, 1990; Titarenko et al., 1997; Ussuf et al., 
2001). The proteinase inhibitors play an important role in plants as a part of the 
natural plant defence system against a wide range of insect pests and pathogens 
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including bacteria, fungus, virus and nematodes (Pautot et al., 1991; Urwin et al., 
1998; Haq et al., 2004). There are four classes of proteinase inhibitors such as 
cysteine, serine, metallo-proteinase inhibitors and aspartyl proteinase inhibitors. 
Several insect families possess cysteine proteinases as part of their digestive 
systems and both natural and synthetic cysteine proteinase inhibitors have shown 
their inhibitory effect on digestive cysteine proteinases (Ryan, 1990). Seven 
cysteine proteinase inhibitors are identified in Arabidopsis (Martínez et al., 2005). 
Arabidopsis cysteine proteinase inhibitors AtCYS expressed in transgenic poplar 
(Populus alba L.) plants confers resistance to the larval attack of the chrysomelid 
beetle Chrysomela populi L. (Delledonne et al., 2001). 
 

JA-dependent and JA-independent pathways have been proposed for the wound 
signal transduction in Arabidopsis. Small oligosaccharides, such as fungal-derived 
chitosan or oligogalacturonides are plant cell wall derived signalling molecules 
that act as elicitors to activate the cascade of defence genes expression during 
pathogenesis and wounding (Reymond et al., 1995; Zablackis et al., 1995; 
Norman et al., 1999; León et al., 2001; Moscatiello et al., 2006). In locally 
damaged leaves, the activation of oligosaccharide-dependent signal transduction 
pathways trigger the expression of ET production which blocks the expression of 
JA-responsive genes but allows the JA-independent wound responses and gene 
expression. However, in the systemic leaves the diffusion of ET allows the 
activation of JA responsive genes and the wound signal transduction pathways 
(Rojo et al., 1999). Wound-induced resistance is usually mediated by the products 
of the octadecanoid pathway. The production of defence-related products such as 
phytoalexins and proteinase inhibitors requires signals from octadecaniods 
compounds such as JA. The interaction between ET and the octadecanoid 
pathways can be either synergistic or antagonistic (Kessler & Baldwin, 2002). In a 
wound signal transduction cascade, oligosaccharides, defence related peptide 
systemin, JA, ET, ABA, electrical pulses and hydraulic pressure form a complex 
of signalling network and the subsequent activation of proteinase inhibitors and 
wound responsive genes (Hildmann et al., 1992; Boari & Malone, 1993; Peña-
Cortés et al., 1995; O’Donnell et al., 1996; Rojo et al., 1999; León et al., 2001). 
Local tissue damage elicits a cascade of systemic defence responses against 
herbivore attack and wounding in many plants. JA confers a major module of the 
systemic wound signal network (Schilmiller & Howe, 2005).  
 

During wound induction or JA treatment, nitric oxide is produced and works as 
an inter- or intracellular mediator of the signal transduction pathways, which 
occurs within a short time and in a JA-dependent manner (Orozco-Cárdenas & 
Ryan, 2002; Huang et al., 2004). Systemin is an 18-amino-acid polypeptide, 
produced at the wound sites of tomato plants, and systemically regulates the 
activation of many herbivore and pathogen responsive defence genes. The 
systemin is a major regulatory element of wound-induced systemic defence 
responses in tomato (Ryan, 2000).  
 

Transcriptional profiling reveals that about 8% of the 8,200 genes studied in 
Arabidopsis were altered by wounding at steady-state mRNA levels. Many 
osmotic stress- and heat shock-regulated genes were highly responsive to 
wounding and a number of genes involved in SA, JA, ET and ABA pathways 
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were activated by wounding (Dong, 1998; Cheong et al., 2002, Kim et al., 2003). 
A wound inducible Arabidopsis transcription factor gene AtMYB102 is rapidly 
induced by osmotic stress, ABA or salinity (Denekamp & Smeekens, 2003). 
Furthermore, a large portion of wound inducible genes in Arabidopsis were also 
regulated by water stress (Reymond et al., 2000). Approximately 500 mRNAs 
have been estimated to constitute the insect-responsive transcriptome in tobacco 
(Hermsmeier et al., 2001). The expression of these genes can be induced by 
exposure to exogenous JA (Farmer & Ryan, 1992; McConn et al., 1997). In 
tomato, salt stress activates the wound responsive genes proteinase inhibitor II 
(Inh II), lipoxygenase (lox) and prosystemin (ps). Salt stress in plants enhances the 
wound responses locally and systemically. The simultaneous effect of wounding 
and 100 mM salt treatment almost enhanced the Inh II accumulation to double 
amount of water and wound treatments only. The Inh II accumulation was found 
to be JA-dependent. The results suggested that wounding and salt stress could 
regulate same genes (Dombrowski, 2003). A new type of tobacco transmembrane 

protein NtC7 that belongs to the receptor-like protein family is induced by not 
only wounding but also with salt and osmotic stresses (Tamura et al., 2003).  
 
Plant-pathogen interactions 
 
In addition to the abiotic stress factors, a large number of crop losses are due to 
plant diseases caused by plant pathogens. Plant pathogens can be defined as 
parasitic biotic organism that can cause disease in plants. These include a wide 
range of organisms, such as bacteria, fungi, viruses, protozoa and nematodes 
(Baker et al., 1997; Agrios, 2005). The main characteristic of a plant pathogen is 
that it acts as a plant parasite by feeding, growing or multiplying and sheltering in 
host plants. Pathogens do not just take up nutrients from the host plant but cause 
more damage to the plant by secreting different harmful substances from the 
pathogen itself and also causing the release of compounds from the host plant as a 
response mechanism. The pathogen attack and host tissues damages result in 
biochemical and functional changes, metabolic and physiological disorders 
leading to partial impairment or even complete death of the host plant. The plant 
parasitic pathogens that can only grow and reproduce in a living host are called 
biotrophs or obligate parasites. Some biotrophs that live most of their life cycle on 
living host but under certain conditions can live on dead organic matter as 
saprophytes are termed as semibiotrophs or hemibiotrophs. Other plant pathogens, 
those termed as necrotrophs or facultative parasites live and grow well on dead 
organic matter most of their life cycle but can attack and kill the living plant cells 
and show parasitism (Agrios, 2005). Pathogens frequently try to manipulate host 
defence mechanism by switching from biotrophic to necrotrophic growth during 
the course of pathogenesis (Abramovitch & Martin, 2004). 
 

Plant defence to pathogens results from a complex combination of structural 
plant characteristics, constitutive and induced defence responses. Plants achieve 
these inducible protective conditions through both local and systemic regulation of 
specific genes. Following the pathogen attack and elicitor recognition by specific 
receptors in the host plants, there initiates a cascade of cytological, molecular and 
biochemical responses in cell and tissues (Kombrink & Schmelzer, 2001). Plants 
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recognize the presence of pathogens through the detection of pathogen associated 
molecular patterns (PAMPs) and Avr proteins using plant specific pathogen 
recognition receptors (PRRs). The PAMP-triggered and Avr-triggered signal 
transduction pathways are sometimes overlapping in plants (Asai et al., 2002; 
Espinosa & Alfano, 2004; Nürnberger et al., 2004). PRRs activate the signal 
transduction pathways of MAPK cascades that subsequently activate defence 
related transcription factors. Pathogens produce protease and phosphatase to 
inhibit defence-related MAPK activity and pathogenic bacteria use type III 
effectors to suppress the signal transduction pathways activated by PRR 
surveillance and defence systems (Espinosa & Alfano, 2004; Nürnberger et al., 
2004;). Several MAPK cascades, such as wound-induced protein kinase (WIPK) 
and SA-induced protein kinase (SIPK), have been reported to be involved in the 
induction of defence responses. Moreover, the first defence response by plant, 
such as HR, is preceded by the activation of endogenous SIPK and WIPK (Jonak 
et al., 2002). During pathogenesis the phytopathogen avirulence genes avr 
function as ligands and host plant resistance genes R function as receptors in an 
interaction leading to plant resistance to disease. Avirulence genes avr determine 
the inability of a given bacterial strain to infect a plant carrying the corresponding R 
gene and this resistance reaction is referred to as gene-for-gene resistance (Van 
den Ackerveken & Bonas, 1997; Abramovitch & Martin, 2004). Several bacterial 
avr genes showed to contribute to virulence on susceptible plants lacking the 
corresponding R gene. Most of the cloned and characterized plant R genes 
contained a specific sequence motif called leucine-rich repeats (LRRs). LRRs 
were found to mediate protein–protein interactions and act as receptors for 
elicitors (the Avr or Avr-dependent proteins) of pathogens. Normally massive 
intracellular and intercellular changes occurred in plants during R–avr interaction 
(Holt et al., 2000; Dangl & Jones, 2001). 
 
Hypersensitive response (HR) 
 
Plants cope with pathogen attacks by using mechanisms of resistance that rely 
both on preformed protective defences and on inducible defences. Recognition of 
a pathogen by the plant often triggers a localized resistance reaction, known as the 
hypersensitive response (HR), which is characterized by programmed cell death or 
PCD at the site of infection and that differs from developmental PCD (Greenberg, 
1997). HR also triggers the induction of local and systemic defence responses 
including cross-linking of cell wall proteins (cell walls surrounding the lesion site 
are reinforced with callose and lignins), the synthesis of signalling molecules such 
as SA (Chen et al., 1995), JA (Creelman & Mullet, 1995), ET (Ecker & Davis, 
1987), production of ROS and NO, antimicrobial compounds phytoalexins 
(Sticher et al., 1997; Hammerschmidt, 1999; Thomma et al., 1999), secondary 
metabolites glucosinolates (Brader et al., 2001; Reichelt et al., 2002), PR proteins 
(producing digestive enzymes chitinases and glucanases) (Kombrink & 
Schmelzer, 2001) and overall the activation of MAPK cascades (Jonak et al., 
2002). In plants the immediate defence response against pest and pathogen attack 
is an inborn system also termed as innate immunity where the host specific 
receptors encoded by disease resistance genes interact with microbial effector 
genes to activate defence responses. The plant innate immune response includes 
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HR response leading to localized PCD is essential for plant development (Cohn et 
al., 2001; Nürnberger et al., 2004; Liu et al., 2005). Hypersensitive cell death is 
commonly controlled by direct or indirect interactions between pathogen 
avirulence gene products and those of plant resistance genes and it can be the 
result of multiple signalling pathways. The HR displayed by resistant plants 
against invading pathogens is a prominent feature of plant-pathogen interactions 
(Hammond-Kosack & Jones, 1996; Heath, 2000; Holt et al., 2000; Cohn et al., 
2001).  
 
Systemic acquired resistance (SAR) 
 
The induction of HR locally often triggers a non-specific resistance throughout the 
plant against a broad spectrum of organisms and contributes to a phenomenon 
known as systemic acquired resistance, SAR (Ryals et al., 1996; Sticher et al., 
1997; Métraux et al., 2002; Gozzo, 2003). Once triggered, SAR provides 
resistance to a wide range of pathogens for days or weeks. Resistance shown by an 
entire plant species to a specific parasite or pathogen is known as nonhost 
resistance, and is expressed by every plant towards the majority of potentially 
pathogenic microbes (Heath, 2000). Induced responses or defences are responsible 
for limiting pathogen growth and infection. HR is accompanied by an increase in 
SA biosynthesis, transcriptional activation of various PR genes and induction of 
structural barriers such as cell wall lignification that protect the plant against 
enzymatic degradation and the establishment of a long-lasting SAR response 
(Hammond-Kosack & Jones, 1996; Ryals et al., 1996; Sticher et al., 1997). The 
expression of PR genes has served as a reliable marker for the induction of SAR. 
Therefore, PR genes are also referred to as SAR genes (Grüner et al., 2003). 
However, even if HR may protect the plant against biotrophic pathogens that need 
to take nutrients from living cells, the HR-induced cell death may facilitate the 
growth of necrotrophic pathogens that benefit from host cell death (Govrin & 
Levine, 2000; Glazebrook, 2005). NPR1, a regulatory protein, is essential for the 
transduction of SA signal and PR gene activation. NPR1 is a key determinant in 
the signal transduction pathway in SAR response. The npr1 (nonexpressor of PR 
genes) mutants are impaired in PR gene expression and are non-responsive to 
SAR inducers (Cao et al., 1994; Kinkema et al., 2000; Spoel et al., 2003). 
 
Induced systemic resistance (ISR) 
 
In Arabidopsis, nonpathogenic, root-colonizing Pseudomonas fluorescens bacteria 
trigger an induced systemic resistance (ISR) response against infection by the 
bacterial leaf pathogen Pseudomonas syringae pv. tomato (Pieterse et al., 1998; 
van Wees et al., 2000; Ton et al., 2002). ISR induced by non-pathogenic bacteria 
follows a novel signalling pathway in which components from the JA and ET 
responses are engaged successively to trigger a defence reaction. ISR is regulated 
by NPR1 but independent of SA accumulation and pathogenesis related (PR) gene 
activation. In Arabidopsis SA-dependent SAR responses and JA/ET-dependent 
ISR responses are simultaneously active with an additive effect against bacterial 
pathogen P. syringae, which indicates that SAR and ISR pathways are compatible 
(van Wees et al., 2000; Pieterse et al., 2001; Ton et al., 2002). 
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Type III secretion systems (TTSS) in phytopathogenic bacteria 
 
Gram-negative phytopathogenic bacteria transfer virulence proteins across their 
outer membrane through a variety of secretion systems that are now classified into 
four (I-IV) major types and several minor ones. Type III secretion systems (TTSS) 
are used by plant pathogenic bacteria to suppress plant innate immunity. Bacteria 
use type III and IV secretion or transfer systems to deliver proteins or protein-
DNA complexes into the plant host cell (Baker et al., 1997). TTSS are well 
documented in Erwinia spp., P. syringae, and Xanthomonas spp. and also 
encountered in most gram-negative phytopathogenic bacteria. Agrobacterium is 
about the only gram-negative phytopathogenic genus in which this system has not 
been found (Cornelis & Van Gijsegem, 2000; Gürlebeck et al . ,  2006).  
 

TTSS consist of 15-20 Hrp (hypersensitive response and pathogenicity) proteins 
building a secretion apparatus used by virulent bacteria to transfer effector 
proteins into host plant cells. The primary role of bacterial effector proteins is to 
suppress the PCD based HR and PR protein production (Espinosa & Alfano, 2004; 
Jamir et al., 2004). Several conserved Hrp genes, designated as Hrc (Hrp 
conserved), encode membrane-associated proteins that are an essential part of the 
TTSS and direct the effector transport across the bacterial envelop during infection 
in the host tissue (Alfano & Collmer, 1997, 2004; Baker et al., 1997; Cornelis & 
Van Gijsegem, 2000). 
 
Stress signalling and cross talk  
 
Plant signalling molecules SA, JA, ET and ABA, are involved in defence 
signalling in plants during several biotic and abiotic stresses such as wounding, 
pathogen attack, dehydration, and temperature stress and regulated by a complex 
network of signalling pathways (Dong, 1998; Grill & Himmelbach, 1998; Pieterse 
et al., 2001; Thomma et al., 2001; Devoto & Turner, 2003; Thaler & Bostock, 
2004; Glazebrook, 2005). The use of different mutant plants either insensitive or 
deficient for their biosynthesis have revealed the central role of these plant defence 
signalling molecules and their cross talk in plant defence responses (Koornneef et 
al., 1984; Guzmán & Ecker, 1990; Cao et al., 1994; Delaney et al., 1994; Feys et 
al., 1994; McConn & Browse, 1996; Xie et al., 1998; Pieterse et al., 2001; Berger, 
2002). It has been speculated that in the absence of stress, the antagonistic 
interactions among signalling pathways helps to maintain low levels of expression 
of stress responsive genes. When plants experience a specific stress, one signalling 
pathway may become dominant over the others. A specific subset of stress 
responsive genes may be induced through activation of positive regulators of gene 
expression of one pathway while they are simultaneously suppressed by other 
negative regulators of gene expression from another pathway (Rojo et al., 2003; 
Anderson et al., 2004).  
 

SA has a central role in plant defence against pathogen attack (Ryals et 
al.,1996). JA is involved in defence responses to abiotic and biotic stress factors 
and regulates wound and insect herbivore induced signalling and senescence 
(Creelman & Mullet, 1997; Walling 2000; He et al., 2002). There are both 
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synergistic and antagonistic interactions between SA and JA signalling pathways. 
The primary interaction between the SA and JA pathways are mutually 
antagonistic (Peña-Cortés et al., 1993; Norman-Setterblad et al., 2000). However, 
microarray analysis and other experiments in A. thaliana have revealed that many 
defence related genes are co-activated by both SA and JA pathways (Reymond & 
Farmer, 1998; Norman-Setterblad et al., 2000; Schenk et al., 2000; van Wees et 
al., 2000; Karim et al., 2006). The signalling molecule ET that is involved in 
defence responses and senescence shows positive and negative interactions with 
SA and JA during different stress responses in plants (Ecker & Davis, 1987; 
Reymond & Farmer, 1998; Schenk et al., 2000; Lorenzo et al., 2003; Nakano et 
al., 2006). Sometimes ET can promote the resistance phenotypes in plants similar 
to SA and JA (Norman-Setterblad et al., 2000) however, it has been also reported 
that ET can promote disease susceptibility in plants (Lund et al., 1998; Hoffman et 
al.,1999). Most of the studies have shown the synergistic interaction between JA 
and ET signalling pathways, but sometime the JA and ET pathways can regulate 
the defence related genes independently as well (Schenk et al., 2000). Both ET-
dependent and -independent SA signalling pathways also exist in plants 
(O'Donnell et al., 2001; Kunkel & Brooks, 2002). SA and ET were found to act 
synergistically on defence gene expression and antagonistically on disease 
resistance in tomato plants (Diaz et al., 2002). JA, SA and ET form a complex 
defence signalling network rather than linear and independent pathways. The 
phytohormone ABA is involved in plant metabolism during diverse physiological 
and developmental processes in every phase of plant growth and also mediates the 
tolerance and adaptation response to different abiotic stresses (Grill & 
Himmelbach, 1998; Tamminen et al., 2001; Finkelstein & Rock, 2002; Achuo et 
al., 2006). ABA has an antagonistic effect on SA or the JA-ET pathways while ET 
can act as a negative regulator of the ABA pathway (Garciarrubio et al., 1997; 
Ghassemian et al., 2000; Audenaert et al., 2002; Anderson et al., 2004). However, 
ABA acts synergistically with jasmonate-induced defences against herbivores and 
antagonistically with salicylate-based resistance to some pathogens (Thaler & 
Bostock, 2004). 
 
Peptide transporters in plants 
 
The uptake and allocation of nitrogenous compounds, including amino acids and 
peptides, is an essential process in living organisms. In eukaryotes, peptide 

transporters (PTRs) and the oligopeptide transporters (OPTs) are the two families 
of proteins that transport small peptides. Members of the OPT family can transport 
tetra- and pentapeptides (Hauser et al., 2001; Koh et al., 2002). Whereas, members 
of the PTR family transport di- and tripeptides as well as many other molecules 
(Hauser et al., 2001; Stacey et al., 2002a). PTR family members are also called 
POT family members for proton-dependent oligopeptide transporter and cause 
symport of one or more H+ simultaneously with the transported molecule. They 
are about 450-600 amino acids long and usually exhibit 12 putative α-helical 
transmembrane regions. Some PTR family members show sequence similarity 
with the protein members of a major facilitator superfamily, MFS (Paulsen & 
Skurray, 1994; Steiner et al., 1995; Pao et al., 1998; Saier, 2000; Karim et al., 
2005). MFS is one of the largest groups of transporters and membrane proteins 
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and ubiquitously present in prokaryotes, archaea and eukaryotes. These 
transporters use proton-motive force to drive the transport of a wide range of 
molecules, almost any substances of biological interest in a uniport, symport or 
antiport mode (Pao et al., 1998; Abramson et al., 2004). However, the nitrate and 
peptide transporters of the PTR family belong to prokaryotes and eukaryotes are 
classified into four broad groups depending on different topologies of 
transmembrane proteins (Chiang et al., 2004). In yeast (S. cerevisiae) a unique di- 
and tripeptide transporter Ptr2 has been characterized and so far been used as a 
model system for eukaryotic PTR characterization by complementation (Perry et 
al., 1994). In yeast, there are also two oligopeptide transporters Opt1 and Opt2 
(Hauser et al., 2000).  
 

More than fifty putative PTR-type family members have been identified in 
Arabidopsis through sequence comparison (Stacey et al., 2002a). The putative 
PTR family members in the Arabidopsis genome have been phylogenetically 
classified into four PTR subfamilies or groups, group I (19 members), group II 
(nine members including AtPTR1, At3G54140 and AtPTR2, At2G02040), group 
III (14 members including AtPTR3, At5G46050) and group IV (10 members 
including CHL1, At1G12110; NTL1, At1G69850 and NTP2, At2G26690) 
(Waterworth & Bray, 2006). In Arabidopsis there are nine putative OPT genes 
(AtOPT1 to AtOPT9), which have been identified and they show significant 
sequence similarity with the yeast OPT at the protein level (Koh et al., 2002; 
Stacey et al., 2002b, 2006).  
 

The first characterized PTR of Arabidopsis was AtPTR2-B, later renamed as 
AtPTR2. It was found to be highly expressed in embryos, germinating seeds, 
roots, stems, leaves, flowers and siliques and involved in embryo and seed 
development. It was also designated as NTR1 and identified as a high affinity 
peptide transporter having weak histidine transport activity (Rentsch et al., 1995; 
Song et al., 1996, 1997; Stacey et al., 2002a). The second characterized PTR from 
Arabidopsis, AtPTR1 was found to be a plasma membrane-localized transporter 
expressed in vascular tissues and showed low-affinity histidine transport activity. 
It also showed transport activity of several di- and tripeptides and phytotoxin 
phaseolotoxin a modified tripeptide produced by the plant pathogen P. syringae 
(Dietrich et al., 2004). AtPTR1 was found to be expressed in the hypocotyl, 
cotyledons, siliques, root tips, leaves and during seed germination (Dietrich et al., 
2004). Third Arabidopsis PTR, AtPTR3 was shown to be inducible by different 
abiotic and biotic factors (Karim et al., 2005; Karim et al., 2006).  
 

Besides small peptide transporters, some members of PTR-type transporters 
have been shown to function as nitrate transporters in Arabidopsis. The first of 
them was a dual affinity nitrate and chlorate transporter CHL1, recently renamed 
as AtNRT1.1, which was found highly active in the nascent organs of roots and 
shoots during vegetative and reproductive growth phases (Tsay et al., 1993; Wang 
et al., 1998; Guo et al., 2001). Later another homologue of CHL1 in the same 
gene family was identified as a low affinity nitrate transporter and named as 
AtNRT1.2 (Huang et al., 1999). In total, four PTR-type low-affinity nitrate 
transporters homologues in the AtNRT1 family have now been identified in 
Arabidopsis (Okamoto et al., 2003). 
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Several PTRs or PTR-type nitrate transporters have been characterized in 

different plant species. A low affinity nitrate transporter from Brassica napus, 
BnNRT1.2 showed high homology to CHL1 and was found to be expressed at a 
high level in the nitrate pre-treated roots and was found to transport nitrate and 
histidine (Zhou et al., 1998). The barley (Hordeum vulgare) PTR, HvPTR1 was 
found to be able to transport dipeptides and expressed in the scutella of 
germinating barley grain (West et al., 1998) and localized to the plasma membrane 
(Waterworth et al., 2000). A faba bean (Vicia faba) PTR, VfPTR1 with high 
homology to AtPTR2 was shown to transport dipeptides and expressed in 
germinating seeds and developing seedlings (Miranda et al., 2003). A PTR-type 
nitrate transporter and an AtNRT1.2 homologue from rice (Oryza sativa) OsNRT1 
showed higher homology to plant PTRs such as AtPTR2. OsNRT1 showed low 
affinity nitrate transport activity and was found to be expressed in root hair and 
epidermis as well as in most external layer of the root (Lin et al., 2000). 
Interestingly, another putative PTR-type rice nitrate transporter OsNRT1.3 that 
showed lower amino acid sequence similarity with OsNRT1 was found to be 
induced by drought but not with ABA or salt. OsNRT1.3 was found to be 
expressed in embryo, aleurone layer of seeds, leaves, roots and flowers (Hu et al., 
2006). Soybean (Glycine max) nitrate transporters GmNRT1.1, GmNRT1.2 and 
GmNRT1.3 showed constitutive and nitrate induced expression in the leaves or 
roots or in both (Yokoyama et al., 2001). The presence of a large number of PTRs 
in plants suggests that they have many potential roles in physiological growth, 
development and metabolism (Stacey et al., 2002a). Phylogenetic analysis with 
PTR sequences indicated the existence of many PTR-type transporters in plants, 
but it might be more practical that not all of them are transporting small peptides 
rather transporting non-peptide substrates. Moreover, 20 amino acids can generate 
thousands of di-/tripeptide substrates in different combinations and therefore, 
testing and identification of more substrates for PTR family members would help 
to pinpoint the function of plant PTRs (Waterworth & Bray, 2006). 
 
T-DNA mediated transformation as a tool in plant research 
 
During the last three decades the plant transformation and production of 
genetically engineered plants, for research and commercial purposes, using a 
natural genetic engineer bacterium Agrobacterium and its T-DNA (transfer DNA) 
transfer system has become a common practice all over the world (Gelvin, 2003). 
T-DNA insertion causes foreign DNA insertion into the plant genome either 
creating a new gene introgression or resulting in gene knockout or null mutation. 
Agrobacterium mediated T-DNA transformation has also been used as the basic 
delivery system to create overexpression mutants of native genes or to produce 
transgenic lines where the heterologous genes are introduced into new species to 
study the function of the respective genes further (Leyman et al., 2006; Karim et 
al., 2007). 
 

T-DNA mutagenesis has replaced chemical mutagenesis because the T-DNA 
provides a direct route to identify and characterize the mutated gene in situ. In 
Arabidopsis T-DNA insertion mutagenesis is a common and well practiced means 
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of introducing or disrupting gene function due to the insertion of foreign DNA 
randomly into the genome (Krysan et al., 1999; An et al., 2005; Karim et al., 
2007). The distribution of the T-DNA insertion ranged from the intragenic (exons, 
introns, 5´ and 3´ regulatory regions) to intergenic regions (Krysan et al., 2002; 
Szabados et al., 2002; Stangeland et al., 2005). T-DNA is integrated into the plant 
genome through illegitimate recombination, but a low frequency of T-DNA 
integration is possible through homologous recombination if homologous 
sequences are present in the transformed DNA (Risseeuw et al., 1997). 
 

In many cases of T-DNA insertions, single-copy T-DNA insertion has been 
found to be associated with small or large rearrangements such as deletions and/or 
duplications of target site sequences, deletions and/or duplications of T-DNA 
(including left- and right-border sequences) and vector backbone sequences, and 
gross chromosomal rearrangements such as translocations, duplications or 
deletions (De Buck et al., 2000; Tax & Vernon, 2001; Krysan et al., 2002; Meza 
et al., 2002; Forsbach et al., 2003). T-DNA inserts containing several T-DNA 
regions and binary vector backbone sequences associated with T-DNA sequences 
are often integrated in insertion lines. Possibly the integration of complete vector 
backbone sequences into the plant genome is because of a conjugative transfer 
initiated at the right border and subsequent continued copying at the left and right 
borders, which is termed as read-through. This indicates that the left border is not 
frequently recognized as an initiation site and the right border is not efficiently 
recognized as a termination site for DNA transfer (De Buck et al., 2000; Meza et 
al., 2002; Stangeland et al., 2005).  
 

The two main ways, to use the T-DNA mutagenesis to study the functions of 
unknown genes, are the loss-of-function and the gain-of-function mutants of the 
target genes. In the loss-of-function approach the functions of a gene can be 
recognized from the phenotype of the knockout mutants. One of the loss-of-
function mutagenesis approaches is the promoter-tagging or trapping by T-DNA 
insertion, in which plant promoters and genes can be identified based on the 
random insertion and integration of a promoterless reporter gene in the plant 
genome and its activation by native plant regulatory sequences (Kertbundit et al., 
1991; Bade et al., 2003; Svensson et al., 2005; Karim et al., 2006). Another such 
method, called enhancer trapping, is where the reporter gene is fused to a minimal 
promoter of the reporter gene (TATA) that is unable to drive reporter gene 
expression alone but can be activated by a native chromosomal enhancer element 
resulting in expression of the reporter gene (Springer, 2000; Ko & Kamada, 2002). 
In a similar method termed as gene-trap systems the delivery vector contains the 
promoterless reporter gene with splice acceptor sequences in the upstream. 
Expression of the reporter gene occurs due to the transcriptional fusion of 
upstream exon sequences of the native gene to the reporter gene upon the insertion 
of T-DNA into an intron and splicing by the chromosomal splice donor to the 
splice acceptor sites in the reporter gene (Springer, 2000; Ryu et al., 2004). 
 

However, the repetitive sequences and many closely related gene sequences or 
genetic redundancy in the plant genome inhibits the proper elucidation of the gene 
function through the loss-of-function methods. In that case a gain-of-function 
approach is found to be helpful. In this method the novel T-DNA mutagenesis 
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vector system is used to introduce transcriptional enhancer sequences of different 
plant viruses into the plant genome. Upon insertion these viral enhancers cause 
transcriptional activation of the plant genes in close proximity and thereby activate 
the genes that are associated with inserted T-DNA. Therefore, this method is 
termed as activation tagging (Weigel et al., 2000; Chalfun-Junior et al., 2003; 
Dong & Von Arnim, 2003; Nakazawa et al., 2003; Tani et al., 2004). 
 
 
 
 
 
 
 
Aim of the study 
 
The general aim of this work was to characterize transgenic Arabidopsis plants 
showing altered stress-related phenotypes. The detailed objectives were: 
 

• Identification of the gene responsible for wound and salinity induced 
reporter gene expression in a promoter tagged Arabidopsis knockout 
mutant line 

 
• Characterization of the T-DNA insert in the identified peptide transporter 

knockout mutant 
 

• Characterization of the peptide transporter protein with yeast 
complementation 

 
• Characterization of the regulation of the peptide transporter gene 

 
• Characterization of the phenotypes of peptide transporter mutants 

 
• Generation of transgenic Arabidopsis plants, having yeast (S. cerevisiae) 

trehalose biosynthesis enzyme ScTps1 (trehalose-6-phosphate synthase) 
targeted into chloroplast 

 
• Identification of the transgenic lines, having the ScTps1 protein targeted 

into chloroplast 
 

• Characterization of drought tolerance and growth phenotypes in 
transgenic plants with different compartmentalization of the ScTps1 
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Results and discussion 
 
Identification and characterization of Arabidopsis peptide 
transporter AtPTR3 (I and II) 
 
Gene trapping by T-DNA mediated promoter tagging was utilized to identify a 
knockout mutant and to characterize its phenotype in Arabidopsis. A binary vector 
pMHA2 that contains a promoterless GUS (uidA) reporter gene and a kanamycin 
resistant marker gene in the T-DNA was used to produce transgenic lines in 
Arabidopsis ecotype C24 (I). One of the Arabidopsis lines was found to have a 
wound-induced expression of the reporter gene uidA, which suggested that in that 
line the T-DNA had caused an insertion in a wound-induced gene. This mutant 
line was further characterized in this study.  
 
Localization of the insert and identification of AtPTR3 gene 
 
To localize the T-DNA insert in the Atptr3-1 mutant, Southern analysis of mutant 
genomic DNA was performed. In the Southern analysis, a 3.8 kb fragment 
originating from HindIII-EcoRI double digestion suggested that this fragment 
might contain plant DNA because the EcoRI site is not present in the T-DNA. 
Cloning and sequencing of this fragment and an homology search with the 
sequence using BLASTN revealed that the sequence had 100 % identity with 
Arabidopsis genomic DNA in chromosome 5. This result suggests that the T-DNA 
had caused a knockout-mutation in a putative PTR-type transporter gene 
At5g46050. This gene was renamed as AtPTR3 because it is the third characterized 
gene coding for PTR-type peptide transporters in Arabidopsis (I). The predicted 
topology of AtPTR3 matched with the topology of other PTR-type transporters of 
plants (I, Chiang et al., 2004).  
 
Characterization of the insert in Atptr3 mutants 
 
The insert of the Atptr3-1 mutant was analyzed by Southern using different parts 
of the binary vector pMHA2 as probes, and the whole insert was amplified by long 
range PCR and cloned as two large fragments, 9.3 kb and 12.1 kb in size (Fig. 1a, 
II). Restriction digestion analysis and partial sequencing of the cloned insert 
revealed two tandem T-DNA inserts, separated by an entire vector backbone, and 
an additional small fragment of the vector. Neither rearrangements in genomic 
DNA nor the plant genomic DNA preceding the second gus gene were observed. 
Therefore, in spite of the large size, the Atptr3-1 mutant was concluded to carry a 
single insertion in the second intron of the PTR gene AtPTR3 (I and II). T-DNA 
inserts containing several T-DNAs and the vector backbone are frequently 
observed among T-DNA mutants of Arabidopsis (De Buck et al., 2000; Meza et 
al., 2002). The presence of the T-DNA insert in an intron is also common among 
T-DNA inserts in Arabidopsis (Krysan et al., 2002; Szabados et al., 2002; 
Stangeland et al., 2005).  
 



A T-DNA insertion mutant in the At5g46050 (salk_003119) in Arabidopsis 
ecotype Col-0 was ordered from NASC, The European Arabidopsis Stock Centre 
(Alonso et al., 2003) and renamed as Atptr3-2. The PCR analysis of the line in 
subsequent generations revealed a single T-DNA insertion in the second intron of 
the At5g46050 gene in a similar location to Atptr3-1 (II). These two independent 
mutants for the same Arabidopsis AtPTR3 gene in two ecotypes, C24 and Col-0, 
made it possible to verify that the phenotypes observed in the mutants were due to 
the T-DNA insert (II). 
 
Characterization of the transporter function of AtPTR3 protein 
 
The ability of AtPTR3 protein to transport peptides was characterized with 
complementation in a S. cerevisiae di-/tripeptide transporter ptr2Δ mutant 
auxotrophic for histidine (His), leucine (Leu) and methionine (Met). Both the 
previously characterized AtPTR2 (Song et al., 1996) and AtPTR3 supported the 
growth of the Ptr2 yeast mutant on minimal media supplemented with 1 mM 
dipeptide His-Leu, His-Phe (His-phenylalanine) and Leu-Met and tripeptides Leu-
His-Leu and Met-Leu-Gly (Met-Leu-glycine). Due to the functional OPT all of the 
tested yeast strains survived in the media containing a tetrapeptide Met-Gly-Met-
Met (II). Two previously characterized PTRs, AtPTR2 and AtPTR1 from 
Arabidopsis have been found to complement the yeast ptr2Δ mutants and restore 
growth on di-/tripeptide media (Song et al.,1996; Dietrich et al., 2004). 
 
Expression of AtPTR3 gene in Arabidopsis wild type and mutant 
lines 
 
In RT-PCR analysis no AtPTR3 transcripts were observed in either Atptr3-1 or 
Atptr3-2 mutants after wound induction, which indicated a complete knockout 
mutation of the AtPTR3 gene in the mutant lines (Fig. 1b, I). 
 

  
 
Fig. 1. (a) The whole T-DNA insert in Atptr3-1 mutant was cloned as two large fragments, 
9.3 kb and 12.1 kb in sizes by long range XL PCR (II). The PCR products were separated 
in a 0.5% agarose gel. (b) RT-PCR with AtPTR3 gene specific primers verified the 
knockout of At5g46050 transcripts in wounded Atptr3-1 and Atptr3-2 mutants, while 
transcripts were visible (arrows) only in wild type lines C24 and Col-0, respectively (I). SM 
indicates DNA size marker. 
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The activity of the AtPTR3 promoter was studied by analysing the GUS 
expression in Atptr3-1 mutant plants, which were either wounded or inoculated 
with pathogenic bacterium Erwinia carotovora subsp. carotovora, or were 
hyperhydric or senescent. Sometimes in the GUS analysis very weak and 
constitutive expression of the gus gene was observed in leaves of untreated control 
plants (Fig. 2a). In the wounded, non-inoculated plants the induced AtPTR3 
promoter expression was visible around the wounds, but no GUS activity could be 
detected in the unwounded systemic leaves, suggesting that wounding does not 
cause a systemic induction of the AtPTR3 promoter (Fig. 2b, I). The inoculated 
leaves resembled the wounded ones at the beginning of the infection, but at later 
time points the GUS activity was visible in a larger area of the inoculated leaf, 
especially around the veins as well as in the non-inoculated leaves of the plant, 
which suggested the systemic induction of AtPTR3 expression (Fig. 2c, 2d). 
Microscopic analysis of the GUS stained inoculated leaves showed that AtPTR3 is 
expressed in the tissue surrounding vascular bundle (Fig. 2d, 2e).  
 

During cultivation of the wild type C24 and Atptr3-1 plants on sterile media, 
some plantlets showed a hyperhydric (vitrified) phenotype, especially if the 
growth conditions or media composition were not optimal (Delarue et al., 1997; 
Franck et al., 2004). Hyperhydric plants are brittle and look turgid and translucent 
(Fig. 2f) and show several abnormal characteristics compared to the normal plants 
grown in optimal condition (Fig. 2a). GUS staining of the Atptr3-1 plants 
suggested that the AtPTR3 gene was expressed at a high level in hyperhydric 
plants (Fig. 2f). However, no difference in the frequency of hyperhydric plants 
was observed between the mutant line and the wild type C24. The result suggests 
that the AtPTR3 gene might be induced by the stress leading to vitrification. 
 

To study whether the AtPTR3 promoter was active in the unstressed plant, the 
GUS expression in the Atptr3-1 mutant was followed throughout the life cycle of 
the plant. GUS staining of the germinating seeds and young plants up to three 
weeks showed no GUS activity. Whereas, increasing GUS activity was observed 
in mature and flowering Atptr3-1 plants grown in media or soil for five to eight 
weeks. In these old plants GUS expression was visible in leaves, roots and young 
siliques. These results suggest that the AtPTR3 promoter is active during flowering 
or senescence (Fig. 2g). However, no phenotypic differences could be observed at 
any age between the wild type and the mutant line in the greenhouse or in vitro 
cultivation. Most of the defence signalling molecules such as SA, JA, ET and 
ABA play regulatory roles in senescence response pathways (Smart, 1994; Fan et 
al., 1997; Morris et al., 2000; He et al., 2002). It is known that all these molecules 
induce defence-related genes. Thus, one would expect to see the expression of 
these genes during senescence (Guo et al., 2004). In Arabidopsis a drought 
inducible gene erd1 was also induced by senescence (Simpson et al., 2003). 
 



 
 
Fig 2. GUS analyses on four week old media grown plants (a-f). Untreated normally 
grown Atptr3-1 mutant control plant (a). GUS expression showed the localized AtPTR3 
induction in wounded leaves (b) and systemic GUS induction in Erwinia inoculated plants 
(c). In an Erwinia inoculated leaf (d) and in the microscopic view of the GUS stained area 
(e) the staining could be seen around the veins and in the cells surrounding vascular tissue. 
Induction of AtPTR3 by GUS expression in hyperhydric plant (f). For wounding and 
inoculation photos were taken 24h after treatment. Expression of AtPTR3 in senescent 
plant. Six weeks old media grown senescing plant was subjected to GUS histochemical 
assay (g).  
 

Induction of GUS activity in Atptr3-1 mutant by salt concentrations ranging 
from 20 to 200 mM suggested salt-induced AtPTR3 expression. The salt-
containing medium caused strong induction of GUS activity in whole mutant 
plants, including cotyledons and roots (I). GUS activity was also observed, by the 
amino acids His, Leu and Phe treatments, in cotyledons and lower leaves of 
Atptr3-1 mutant plants, indicating that AtPTR3 might be induced also by amino 
acids, the building blocks of the small peptides transported by AtPTR3 (I). It has 
been shown recently in tomato plants that salt stress could cause the activation of 
wound inducible defence related genes and wounding as well as JA could induce 
enhanced salt tolerance in plants with the induction of a Ca2+-dependent protein 
kinase. This cross-tolerance between wounding and salt stresses might indicate the 
overlapping plant responses during biotic and abiotic stresses (Dombrowski, 2003; 
Capiati et al., 2006). E. carotovora-induced potato gene, Solanum tuberosum–
Erwinia induced-2 (Stei2) was up-regulated by NaCl, wounding, dehydration and 
ABA. However, treatment of the leaves with SA, methyl jasmonate (MeJA) and 
ET did not induce the Stei2 expression (Sós-Hegedüs et al., 2004). It has been 
shown in microarray gene expression analysis in Arabidopsis that plant defence 
signalling molecules ABA, JA and ET play regulatory roles during salt stress 
signalling and adaptation (Ma et al., 2006). 
 

Phytohormones, ABA, methyl ester of JA MeJA and the ET precursor ACC and 
SA induced AtPTR3 expression in four week old in vitro plants. SA treatment 
showed an increased level of GUS activity almost in the entire plant while ABA, 
ACC or MeJA showed GUS activity mostly in cotyledons and 1-2 lower leaves 
(II). Quantitative real-time PCR assays suggested that SA caused the highest 
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induction, up to 100 times higher than in the mock-treated controls, whereas 
MeJA and ABA treatments caused moderate induction (II). The low induction 
caused by MeJA and ABA might be due to the localized induction by these 
treatments and not necessarily lower activities in the cells where the induction has 
taken place. RT-PCR was also utilized to study the involvement of JA, SA and ET 
signalling pathways in wound-induced expression of the AtPTR3 in different 
signalling and biosynthesis mutant lines of Arabidopsis accession Col-0 (Fig. 3). 
In untreated wild type Col-0 plants the AtPTR3 gene was expressed at a low 
background level, which was strongly increased in wounded plants. Triple fad 
mutant, unable to synthesize JA showed a weak constitutive and inducible 
expression of AtPTR3 while, coi1-1 a JA signalling mutant showed a constitutive 
as well as a wound inducible expression of AtPTR3. The ET signalling mutant 
ein2-1 resembled the wild type in having induced expression of the AtPTR3 in 
wounded plants, but the induced level was lower than that of the wild type. NahG 
mutant plants unable to accumulate SA, and the npr1 mutant that lacks a key 
regulatory protein of SA signalling in the SAR pathway, resembled each other in 
showing an inversed expression pattern of AtPTR3. In these mutant lines the 
unwounded plants showed higher AtPTR3 expression levels than the wounded 
ones. In summary, wounding caused the down regulation of AtPTR3 in NahG 
plants distinctly, and no changes in the expression of AtPTR3 in Triple fad 
mutants as well as a weaker AtPTR3 expression in ein2-1 mutant plants compared 
to wild type plants, which suggested that all the tested pathways might be involved 
in the regulation of AtPTR3 gene in Col-0 (Fig. 3).  
 
 

 
Fig 3. Wound-induced AtPTR3 expression in signalling mutants. AtPTR3 expression was 
studied with RT-PCR in four weeks old JA signalling mutants triple fad (defective in 
jasmonate biosynthesis) and coi1 (coronatine-insensitive), ET signalling mutant ein2 
(ethylene insensitive), NahG plants unable to accumulate SA and npr1 (non-expressor of 
PR proteins) and in the corresponding wild type (Col-0). Samples were collected 24 hr after 
wound-induction (W) and unwounded control plants (C) and amplification of Actin gene 
was used as controls. 
 

The results obtained in RT-PCR were also verified by quantitative real time 
PCR (II). The result suggested that the expression of AtPTR3 might be SA-
dependent as well as JA/ET-dependent and both the SA and JA pathways might be 
necessary for the induction of AtPTR3 after wounding. Co-induction of 
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Arabidopsis genes by both of the SA and JA pathways has been observed for 
many genes (Reymond & Farmer, 1998; Schenk et al., 2000). 
 
Phenotypic characterization of Atptr3 mutant lines 
 
The phenotypic differences between the Atptr3 mutants and the corresponding 
wild type accessions were studied when the plants were grown on salt (NaCl) 
containing media (I). Seeds of the Atptr3 mutant and the control plants 
demonstrated no difference in germination on sterile media with salt 
concentrations up to 100 mM. At salt concentrations ranging from 140 to 200 mM 
the germination frequency of the Atptr3 mutant seeds drastically decreased 
compared to the wild type seeds in both Col-0 and C24 ecotypes, which suggested 
that the AtPTR3 protein, besides being induced by salt, might be needed for 
germination under salt stress (I).  
 

The involvement of AtPTR3 in defence responses against the necrotrophic 
bacterial pathogens E. carotovora subsp. carotovora strain SCC3193 and the 
hemibiotrophic pathogen P. syringae pv. tomato strain DC3000 was studied by 
inoculating the Atptr3 mutants and wild type plants with these pathogens. Both the 
Atptr3-1 and Atptr3-2 mutants showed increased susceptibility to the infection 
caused by both the pathogens (II). The disease symptoms proceeded faster in the 
mutant plants than in the wild type plants. A virulent strain of the bacterial 
necrotrophic pathogen Xanthomonas campestris pv. campestris and an avirulent 
necrotrophic pathogen Alternaria brassicicola caused symptoms with similar 
timing and severity in both the mutant and wild type plants. These results 
suggested that resistance against some pathogens was compromised in Atptr3 
mutant plants (II). The glucosinolate and camalexin profiling showed no 
difference between Atptr3-1 mutant and the C24 wild type plants suggesting that 
these secondary metabolites were not compromised in Atptr3 mutants (II). 
 

The Atptr3-2 mutant line was inoculated with P. syringae TTSS mutants hrpA 
and hrcC. Both the wild type and the mutant plants showed similar symptoms and 
survived from the infection caused by hrpA and hrcC. AtPTR3 expression in Col-0 
plants inoculated with wild type DC3000 and the hrpA and hrcC mutants was 
studied with real-time PCR, and the AtPTR3 gene was shown to be induced at a 
higher level in plants inoculated with P. syringae hrpA mutant than in plants 
inoculated with P. syringae wild type strain DC3000. These results suggested that 
the Type III secretion system might suppress the expression of the AtPTR3 gene 
which is needed for defence in a compatible interaction between Arabidopsis and 
P. syringae pv. tomato (II). Suppression of host genes by wild type Pseudomonas 
but not by the TTSS mutants has been suggested for hundreds of genes in the 
microarray results (Thilmony et al., 2006; Truman et al., 2006).  
 

Many different stress responses cause changes in plant cell homeostasis and 
result in the production of ROS. The total ROS production is dependent on the 
balance between the ROS production and the ROS scavenging mechanism (Mittler 
et al., 2002; Rizhsky et al., 2002). Salt stress is believed to induce ROS production 
and PCD in plants (Klessig et al., 2000; Lin et al., 2006). ROS production is also 
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involved in defence against pathogens. We exposed the Atptr3-1 mutant and the 
wild type C24 to the ROS generating agents paraquat and rose bengal, known to 
generate intracellular superoxide anion and singlet oxygen, respectively that might 
cause oxidative stress in plant cells (Vicente et al., 2001; Velikova et al., 2004). 
There was no phenotypic difference observed in the plants between the wild type 
and the mutant, but the Atptr3-1 mutant lines accumulated increased levels of 
oxidative compounds superoxide radical and H2O2 (II). The ROS scavenging 
mechanism in Atprt3-1 plants might be suppressed or there was overproduction of 
ROS molecules by an unknown mechanism in Atptr3-1 mutants. The ROS 
substances that accumulated in response to different stresses may have a dual role, 
either as signalling molecules in defence responses to pathogen attack or produced 
excess toxic compounds involved in necrosis of plant cells (Király, 1998; Heath, 
2000). It is most likely that the overproduction of ROS substances in Atptr3 
mutants may have a detrimental effect on defence responses or SAR, which may 
lead to pathogen susceptibility and invasion rather than a resistance response.  
 

To study the function of SAR in the Atptr3-2 mutant, the expression level of the 
SAR marker gene PR1 was analysed with real-time PCR. The results showed 
lower PR1 expression in the Atptr3-2 mutant than in the wild type Col-0, 
suggesting that the Atptr3 mutants might be affected in the SAR response (II).  
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Drought tolerance in Arabidopsis with trehalose-6-phosphate 
synthase (ScTps1) targeted into chloroplast (III) 
 
Generation and genetic characterization of transgenic Arabidopsis 
lines expressing ScTPS1 
 
To target the yeast (S. cerevisiae) Tps1 to chloroplasts a promoter fragment from 
Arabidopsis RuBisCO small subunit gene AtRBCS1A, including the transit peptide 
from the same gene, was fused in front of the coding region of ScTPS1 (III). The 
resulting genetic construct pAtRBCS1A:TP:ScTPS1:3’g7 (pHSK003) was 
transformed into wild type Arabidopsis ecotype Landsberg erecta and two 
transgenic lines, SCTP:5 and SCTP:14, were primarily selected to study the effect 
of chloroplast-targeted ScTps1 on drought tolerance. For comparison, another 
transgenic line, SC:1, having a similar construct without a transit peptide for 
chloroplast targeting, was produced. In the SC:1 transgenic line ScTps1 protein 
was found to be localized in the cytosol. Plants of the wild type line L. erecta 
(Ler) and an empty vector control (VC) were used as controls (III). Southern 
analysis of Arabidopsis lines transgenic for ScTPS1 showed that the gene was 
integrated in the genome of SC:1 in two copies whereas SCTP:5 and SCTP:14 
contained one and three copies, respectively. This work (III) was mostly focused 
on the SCTP:5 transgenic line because of the many inserts in SCTP:14 line. 
 
Characterization of the ScTPS1 expression in transgenic lines 
 
The chloroplast targeted SCTP:5 line was found to be positive for the localization 
of the ScTps1 protein into the chloroplast. Western analysis of chloroplast proteins 
isolated from both SC:1 and SCTP:5 transgenic and wild-type plants, with 
antiserum raised against ScTps1 showed accumulation of the ScTps1 protein only 
in line SCTP:5, indicating that the transit peptide conferred importation of ScTps1 
into the chloroplasts of SCTP:5 plants (III).  
 

The regulation of ScTPS1 by the promoter pAtRbcS1A, during a 24 hour light 
cycle of 12 hours of dark period and 12 hours of light period, was monitored in 
RT-PCR experiments (Fig. 4). It was found that the specific RNA level was the 
same under the light and dark periods, which indicated a constitutive expression of 
the pAtRbcS1A promoter and consequently the constitutive production of the 
ScTps1 in the transgenics. 
   



 
 
Fig 4. Transcription analysis of RuBisCO small subunit promoter pAtRbcS1A by RT-PCR. 
Expression levels of the ScTPS1 gene under regulation of Arabidopsis RbcS1A promoter 
was studied by RT-PCR. RNA samples were collected from various time points (2h, 6h and 
12h) after the onset of light or dark periods of the light cycle. SC:1 and SCTP:5 represent 
transgenic lines, Ler indicates wild type control and VC indicates a vector control line. 
Numbers below transgenic lines, 2, 6 and 12, define hours of light (L) or dark (D) periods. 
Since the ScTPS1 primers were used in the RT-PCR analysis no signal was detected in wild 
type and vector control lines. Actin primers were used in all RT-PCR as template RNA 
quantity control. Samples were visualized on 1 % agarose gels. 
 
Phenotypic characterization and drought tolerance of the ScTPS1 
producing transgenic lines 
 
Two to three weeks old transgenic (SC:1 and SCTP:5) and wild type plants grown 
in soil or 1% MS media were subjected to drought stress. In both cases the 
transgenic lines showed improved drought tolerance and recovery after 
dehydration stress while the wild type could not survive (Fig. 5, III). The SCTP:5 
plants with ScTps1 protein targeted to the chloroplast performed better than the 
SC:1 mutant plants in drought stress tests when cultivated in 1% MS media (III). 
When the water status of the three week old unstressed transgenic (SC:1 and 
SCTP:5) and wild type control Arabidopsis plants were compared, similar relative 
water content (RWC) was observed. However, when the plants were subjected to 
drought stress at different time points up to four hours, transgenic plants exhibited 
a better water holding capacity shown by a slower moisture loss as compared to 
wild type control plants. The results indicated that the enhanced drought tolerance 
is most likely dependent on a greater retention of water, by a mechanism that still 
needs to be elucidated. 
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Fig 5. Plants of two week old soil grown Arabidopsis wild type Ler, vector control (VC), 
transgenic lines SC:1 and SCTP:5 were subjected to drought stress in the green house. 
Panel Control shows the plants before the onset of the stress. Watering the plants was 
stopped for next two weeks (Drought). Almost all the plants were wilted at the end of the 
period. Dehydrated plants were re-watered by adding 10 ml water per pot and plants were 
kept in covered plastic green houses to keep the moisture high. Three days after re-
watering, the recovery of the plants was recorded and photographed (Recovery). 
 
 

 
 
Fig 6. Root phenotype of three week old in vitro plants grown on MS media supplemented 
with 1 % sucrose and photographed through the bottom of the Petri dishes. Wild type, Ler 
plants produced normal roots, whereas the transgenic plants from line SC:1 produced 
stunted brushy roots. The plants from transgenic line SCTP:5, where the ScTps1 enzyme is 
directed into the chloroplasts also showed normal root phenotype. 
 

The transgenic Arabidopsis line, SC:1, with the ScTps1 protein localized in the 
cytosol, showed improved drought tolerance but also altered root and shoot 
phenotypes when grown in vitro on MS medium supplemented with 1 % sucrose. 
In MS medium the roots of the SC:1 plants were about 75 % shorter than the roots 
of the wild type or SCTP:5 plants (III). Retarded brushy roots and somewhat 
slower growth of the green parts were observed in SC:1 transgenic plants (Fig. 6) 
that might be due to the localization of ScTps1 and/or the intermediate sugar 
phosphate T6P in the cytosol. SCTP:5 plants showed normal root and shoot 
phenotypes similar to wild type plants (Fig. 6). This suggests that the growth 
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defects can be avoided by targeting the ScTps1 protein into the chloroplast. Lack 
of aberrant growth effects as well as enhanced drought tolerance in tobacco has 
also been reported by Lee et al., (2003) in an experiment where the yeast gene 
ScTPS1, regulated by the CaMv35S promoter, was inserted directly into the 
chloroplast genome of tobacco. The aberrant root phenotype in SC:1 plants 
growing on sucrose containing media was alleviated when the plants were 
transferred and cultivated in soil (III), which might indicate the complex role of 
ScTps1 or T6P as signalling or regulatory molecules in sugar sensing and 
metabolism influencing plant growth and development. However, it is obvious 
from the above mentioned results that the growth and developmental aberration 
are not coupled with the improved drought tolerance. 
 
 
 
 
 
Conclusion 
 
AtPTR3 is the first characterized member of the Arabidopsis PTR family, which 
has been found to be induced by different stress factors, such as wounding, 
salinity, hyperhydricity and pathogens. The induction of the AtPTR3 gene by 
different stresses suggests that peptide transport may be needed for relocation or 
uptake of nutrients needed for stress response and a similar relocation may take 
place during senescence. 
 

Results showing that AtPTR3 is predominantly induced by SA suggest that this 
gene may be involved in the SAR response. This is in accordance with the 
susceptible nature of the Atptr3 mutants of both C24 and Col-0 ecotypes against 
the infection caused by both necrotrophic E. carotovora and hemibiotrophic P. 
syringae.  
 

Targeting of the ScTps1 protein, the first enzyme in trehalose biosynthesis 
pathway, to the Arabidopsis chloroplast is found to be sufficient to avoid the 
developmental aberrations observed in transgenic plants with the enzyme localized 
in the cytoplasm. Transgenic plants with the ScTps1 targeted to the chloroplasts 
still exhibit the improved drought tolerance, similarly to the plants with 
cytoplasmic localization. The data indicate that the improved drought tolerance is 
most likely caused by improved water retention during drought stress. 



 46

Future perspectives 
 
The expression of AtPTR3 was observed in Arabidopsis by GUS assay and real 
time PCR. In some online data from microarray analyses AtPTR3 was found to be 
induced in developmental and dark-induced senescent leaves and senescing 
siliques along with many other genes. These preliminary indications could be 
further verified by real time PCR. The senescence-induced expression of AtPTR3 
can also be verified in different pathway mutants at their senescent stages to 
observe the dependence of AtPTR3 expression on SA, JA, ET and ABA pathways 
during senescence.  
 

It would be tempting to study the localization of the AtPTR3 protein by the 
expression of AtPTR3-GFP fusion protein in plant cells.  
 

It would be further interesting to study with yeast complementation, what are the 
other small peptides AtPTR3 could transport. Some PTRs in plants have been 
found to transport nitrate molecules as well. Therefore, it would be logical to study 
the role of AtPTR3 as a transporter of other molecules such as nitrate and 
ammonium. 
 

The GUS analyses and real time PCR results demonstrated the role of all major 
signalling molecules such as MeJA, SA, ET and ABA as well as salt and 
wounding on the regulation of AtPTR3 in Arabidopsis. Therefore, comparing the 
Atptr3 mutants with wild type plants with several techniques, such as proteomics, 
metabolomics and microarray profiling would be a very effective way to 
characterize whether the Atptr3 mutation affects these pathways.  
 

It would also be interesting to study and compare the influence of the proteins 
ScTps1 and ScTps2 as well as trehalose and the intermediate sugar phosphate T6P 
in plants in detail, when the proteins are targeted to different compartments. These 
studies could include monitoring the metabolome and the photosynthetic capacity 
as well as the status of the expression of the endogenous AtTPS1. 
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