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Links between soil properties and steady-state solute transport
through cultivated topsoil at the field scale
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[1] Itis known that solute transport through soil is heterogeneous at all spatial scales.
However, little data are available to allow quantification of these heterogeneities at the field
scale or larger. In this study, we investigated the spatial patterns of soil properties,
hydrologic state variables, and tracer breakthrough curves (BTCs) at the field scale for the
inert solute transport under a steady-state irrigation rate which produced near-saturated
conditions. Sixty-five undisturbed soil columns approximately 20 cm in height and diameter
were sampled from the loamy topsoil of an agricultural field site in Silstrup (Denmark) at a
sampling distance of approximately 15 m (with a few exceptions), covering an area of
approximately 1 ha (60 m x 165 m). For 64 of the 65 investigated soil columns, we
observed BTC shapes indicating a strong preferential transport. The strength of preferential
transport was positively correlated with the bulk density and the degree of water saturation.
The latter suggests that preferential macropore transport was the dominating transport
process. Increased bulk densities were presumably related with a decrease in near-saturated
hydraulic conductivities and as a consequence to larger water saturation and the activation
of larger macropores. Our study provides further evidence that it should be possible to
estimate solute transport properties from soil properties such as soil texture or bulk density.

We also demonstrated that estimation approaches established for the column scale have to

be upscaled when applied to the field scale or larger.
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1. Introduction

[2] Downward solute transport through soil is generally
heterogeneous. It mostly takes place along preferential flow
paths instead of homogeneously distributed through the
whole soil pore space. Ever-increasing evidence has accu-
mulated in recent decades that this is true at all spatial
scales from the pore scale [e.g., Carminati et al., 2008],
over the Darcy or column scale [e.g., Bloem et al., 2009;
Kasteel et al., 2005 ; Schotanus et al., 2012], the plot scale
[e.g., Bouma and Dekker, 1978 ; Flury et al., 1994], and the
field scale [e.g., Bronswijk et al., 1995; Butters et al.,
1989; Wild and Babiker, 1976] up to the regional scale
[e.g., Kurunc et al., 2011; Shaffer et al., 1995; Iversen
et al.,2011] and larger. It is crucial to take the spatial heter-
ogeneity at all scales into account for obtaining quantitative
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predictions of water flow and solute transport through soils,
which are predominantly needed at the field scale or larger,
namely, for managing environmental and agricultural
resources. However, the direct measurement of soil solute
transport properties is time consuming and cumbersome.
Due to time and budget limitations they are almost exclu-
sively restricted to small scales (Darcy scale and smaller).
It is not possible to map solute transport properties at larger
scales (regional scale and larger) by direct measurements.
[3] The heterogeneities in solute transport fronts or
plumes are subject to the soils’ pore structure, namely, the
abundance, distribution, and connectivity of pores of differ-
ent sizes [e.g., Vogel, 2000]. Meanwhile, it is possible to
create detailed 3-D images pore spaces of undisturbed soil
by means of X-ray tomography, providing resolutions in
the micrometer scale [e.g., Schlueter et al., 2011; Wang
et al., 2012]. With the help of X-ray tomography and
similar noninvasive methods as neutron beam scattering
[e.g., Carminati et al., 2008] or positron emission tomogra-
phy [e.g., Boutchko et al., 2012], it is to expect that
relationships between the soil pore-network geometry and
the water flow and solute transport will be quantifiable
within the near future. However, high-resolution imaging
methods like X-ray tomography are to our knowledge
restricted to sample sizes of a few decimeters and are pres-
ently not applicable in the field. It is therefore neither possi-
ble to deduce solute transport properties from detailed
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pore-network images at large scales. Alternative methods
are needed to infer to them.

[4] A way out may be offered by using proxy variables
like soil texture, bulk density, or land use to estimate soil
solute transport properties. The main assumption of this
approach is that specific soil pore structures, and therefore
also solute transport properties, develop not at random but
are conditional to soil properties, land use, climatic condi-
tions, etc., in other words the proxy variables stated above.
Similar approaches have been referred to as pedotransfer
functions since the late 1980s [Bouma, 1989, Wasten et al.,
2001]. They have been widely applied with reasonable
success for estimating bulk densities [e.g., Rawls, 1983;
Tranter et al., 2007] or soil hydraulic properties [e.g.,
Schaap et al., 1998 ; Vereecken et al., 1989].

[5] The potential of pedotransfer functions for soil solute
transport properties have been much less researched. This
is not surprising since solute transport depends on the
hydraulic conductivity which proved to be difficult to esti-
mate from proxy variables [Vereecken et al., 2010]. The
corresponding studies available in peer-reviewed literature
therefore focus on relatively simple experimental condi-
tions. These are predominantly experiments on small soil
columns (Darcy scale) with an inert tracer and steady-state
hydraulic initial and boundary conditions. Table 1 contains
a nonexhaustive list of respective publications. It can be
seen that foremost the clay content was found to be related
to solute transport properties. In addition, soil aggregate or
macrostructure [Vervoort et al., 1999; Shaw et al., 2000;
Vanderborght et al., 2001], flow rate [Vanderborght et al.,
2001; Koestel et al., 2012], and scale of experiment
[Vanderborght and Vereecken, 2007 ; Koestel et al., 2012]
were always found to be important when investigated.
Besides soil bulk density, organic carbon content and soil
texture in general were reported to be important (Table 1),
whereas it is to note that the hydropedological proxies used
by Jarvis et al. [2009, 2012] include all the three. For two
of the latter three soil properties, contrasting results have
been published stating that bulk density and organic carbon
content appeared to rather have a subordinate influence on
solute transport [Koestel et al., 2012].

[6] Itis reasonable for establishing relationships between
soil properties and solute transport properties to focus on
small scales since the small-scale relationships are very
likely fundamental to corresponding relationships at larger
scales [Vogel and Roth, 2003]. It must however not be for-
gotten that properties that are valid on small scales need to
be scaled up if they are to be generalized for larger scales
[e.g., Kolenbrander, 1970; Mallants et al., 1996]. There-
fore, studies relating local solute transport properties to
larger areas are likewise important. However, such studies
are very scarce. We are only aware of two that investigate
flux concentrations. One of them was undertaken by Len-
nartz et al. [1997]. They conducted bromide leaching
experiments under steady-state irrigation rates of approxi-
mately 0.033 cm h™' on the undisturbed soil columns
collected from two fields near Kiel (Germany) from a 15 m
x 15 m grid (N;=24 and N,=36) with the average clay
contents of 10%. They found that 25% of all columns
exhibited preferential flow taking the so-called “mobility
index” with values smaller than 0.35 as an indicator. The
mobility index MI was obtained by dividing the piston-

flow velocity by the velocity obtained from fitting the con-
vection-dispersion equation (CDE) [Glueckauf et al., 1949
Nielsen and Biggar, 1962] to breakthrough curves (BTCs).
The spatial distribution of MI over each of the fields was
not random, and regions with preferential flow were
clustered. The spatial correlation length appeared to be less
than the sampling distance of 15 m. The histogram of MI
was for both investigated field sites” bimodal with one peak
around 0.6 (denoted as nonpreferential flow) and another
peak around 0.15 (denoted as preferential flow); the distri-
bution of the dispersivity was highly right-skewed with the
mean values of 2.67 and 1.05 cm for the two investigated
fields, respectively, and coefficients of variation of approxi-
mately 100% for both fields.

[71 Another similar experiment was published by de
Jonge et al. [2004] and Poulsen et al. [2006]. They investi-
gated 42 undisturbed soil columns taken from a field in
Rogen (Denmark) with an average clay content of 13.4%
with a sampling distance of 5 m. Bromide was applied
under steady-state irrigation of 1 cm h™'. Poulsen et al.
[2006] did not calculate the mobility index MI. However,
they fitted the mobile-immobile model [Coats and Smith,
1964 ; van Genuchten and Wierenga, 1976] which provides
a similar parameter, namely, the ratio between the mobile
and the total water content which is often denoted as 3. By
multiplying 3 with ¢ ¢~' where ¢ (cm h™') is the water
flow rate, it can be seen that 3 bears formal similarity to
MI. Poulsen et al. [2006] found that the bromide transport
velocity (derived from fitting the mobile-immobile trans-
port model to the BTCs) as well as 3 were proportional to
the clay content and the bulk density which were also
mutually correlated. In addition, de Jonge et al. [2004]
inferred from colloid transport properties that preferential
macropore transport was only dominant in soil samples
with clay contents larger than 13%.

[8] In this paper, we present data on the spatial distribu-
tion of local soil solute transport properties over an approx-
imately 1 ha large field site, which will contribute toward
the long-term goal of establishing pedotransfer functions
for the solute transport properties of soil. Nonparametric
measures describing the shape of tracer BTCs under con-
stant rate irrigation were contrasted and compared with soil
texture, organic carbon content, and bulk density. Besides
spatial correlations, we also investigated the upscaled sol-
ute transport properties of the entire field.

2. Materials and Methods

2.1.

[9] Our experiments were carried out on soil sampled
from a field site in Silstrup, northern Denmark
(56 55'56.16"N, 8°38'43.91"E). Two soil profiles have
been described at this site, one of which was classified as
an Alfic Argiudoll and the other as a Typic Hapludoll,
according to the U.S. Department of Agriculture (USDA)
soil classification system [Lindhardt et al., 2001; Kjer
et al., 2007]. The soil texture varies between the silty loam
and the loam (USDA texture classification). Below the
plowed topsoil, the upper meter of the subsoil is heavily
fractured and bioturbated and contains 100—-1000 biopores
m 2. The field had been plowed in November 2008 to a
depth of 23 cm and harrowed twice to a depth of 5 cm in

Site and Soil Sampling
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Figure 1. The Silstrup field site with sampling locations.
The spacing between the samples from the regular
sampling grid is approximately 15 m.

March 2009. On 4 April 2009, slurry had been injected to a
depth of 10 cm and to a depth of 4-5 c¢cm in September
2009. In October 2010, 65 undisturbed columns (height
17.2-20 cm, diameter 20 cm) were collected from the top-
soil. At the time of sampling the field was cultivated with
red fescue (Festuca rubra L.). The majority of the sampling
locations were arranged in an equidistant grid with a
spacing of 15 m covering an area of approximately 1 ha.
The exact sampling locations are shown in Figure 1. The
sampling points in the grid were placed either at the grid
intersects or 1 m away from the grid intersects in random
directions, avoiding wheel tracks. This was also done
because the sampling grid was aligned with the plow
direction and plowing is expected to cause periodical
bias [Koestel et al., 2009; Petersen et al., 1997] in soil

Table 2. Texture Fractions Investigated in Our Study and the
Corresponding Abbreviations and Definitions

Range of Effective

Texture Fraction Abbreviation Grain Sizes
Clay Ciot <2 pm

Fine silt fu 2-20 pm
Coarse silt cU 20-50 pm
Silt Usot 2-50 pym
Very fine sand viS 50-63 pm
Fine sand fS 63-125 pm
Medium sand mS 125-200 pym
Coarse sand cS 200-500 pm
Very coarse sand veS 500-2000 pm
Sand Stot 50-2000 pm

properties that we sought to avoid. The columns were
pushed into the topsoil with a hydraulic press from a tractor
until the edge of the column was level with the soil surface.
The columns were carefully excavated by hand, trimmed
and sealed with plastic caps, and brought to the laboratory.
The texture of bulk soil samples was determined according
to Gee and Or [2002] by a combined sieve and hydrometer
method. Eight texture fractions were determined (Table 2).
In addition, the silt and sand fractions were lumped into
superclasses (U; and Si,;) whose grain-size boundaries
correspond to the ones defined by the USDA. The organic
carbon content OC was determined on a LECO analyzer
coupled with an infrared CO, detector (Thermo Fisher
Scientific Inc., USA). It was recently hypothesized that the
ratio between the clay content Cy, and organic carbon
content OC is a fundamental control of the structure of the
agricultural topsoil and therefore also for the soil solute
transport properties [Dexter et al., 2008; de Jonge et al.,
2009]. In the following, we refer to it as the n-index np.
We also calculated the organic matter content OM from the
organic carbon content OC, assuming a conversion factor
of 1.7. The bulk density p (g cm ) was determined from
the weights of the columns before and after drying at
105°C. The soil porosity ¢ (cm® cm ) was estimated from
the bulk density p assuming the average densities of 2.7
and 1.47 g cm > for the solid soil mineral and organic
phases, respectively. Supplementary information about the
Silstrup field site, soil and column handling, and additional
analysis carried out during the column leaching experi-
ments can be found in Norgaard et al. [2012].

2.2. Breakthrough Experiments

[10] Prior to the BTC experiments, the 65 columns were
saturated from the bottom using artificial soil water (see
Table 3) for approximately 3 days and then drained through
a ceramic plate to a matrix potential of —10 cm at the base
of the column (approximately 3 days). The columns were

Table 3. Specifications of the Water Used for Saturating and Irrigating the Soil Columns

Electrical Conductivity

NaCl (mM) KCl (mM) CaCl, (mM) MgCl, (mM) pH (mScm™h)
Artificial soil solution 0.652 0.025 1.842 0.255 6.38 0.6
Artificial rain water 0.121 0.012 0.015 5.76-7.26 0.0225-0.027
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then placed on a steel grid with a mesh size of | mm. No
suction was applied to the lower boundary. The columns
were irrigated with artificial rain water (see Table 3) with an
intensity of 1 ¢cm h™' from a rotating irrigation head
equipped with 44 needles placed randomly to ensure a ho-
mogenous application. No ponding was observed during the
onset of the experiments except for column 60, where the
ponding height remained minimal and no overflow occurred.
The effluent was collected through a funnel leading down to
24 plastic bottles rotating automatically. After steady-state
flow had been established, a 10 min pulse of tritium-spiked
(on average 957.58 kBeq/L) artificial rainwater was applied.
The effluent was collected in the plastic bottles on the turnta-
ble at sampling intervals of 10-30 min. The effluent samples
were analyzed for their tritium concentration using liquid
scintillation (TRI-CARB 2250 CA). After the breakthrough
experiments, the volumetric water contents § (cm® cm™ )
attained during steady-state flow were determined by weigh-
ing the wet and air-dried soil columns. The water saturation
S (cm cm ) was defined as the ratio between the volumetric
water content 6 and the soil porosity . Note that the here
presented water saturation S is only a proxy for the true
water saturation since the water content 6 but not the soil
porosity ¢ was explicitly measured.

2.3. Deconvolution of the BTCs

[11] We first assigned the average time of two consecu-
tive measurements f,_; and ¢, to the radioactivity C
(kBeq/L) detected at 7,,:

bt + b
{— ‘74_ (1)

[12] This corresponds to approximating the change in
tritium concentration between the two measurements as
being linear. Next, we inserted virtual measurements with a
temporal discretization of d#=0.033 h (2 min). The respec-
tive tritium concentrations C were obtained by linear
interpolation between each two consecutive measurements.
The insertion of the virtual measurements was included to
constrain the deconvolution of the BTC which is described
in the following.

[13] We numerically fitted the convolution integral

C(t) Cn(t—1)
C(,/Cof(T)dT’ )
0

where C, (kBeq/L) is the radioactivity of the tracer pulse in
the irrigation water, Cy, (kBeq/L) is the time series of the
radioactivity in the irrigation water which is Cy during the
first 10 min of each BTC experiment and zero for the
remaining time. Furthermore, ¢ (h) and 7 (h) are time varia-
bles, and f (h™') is the transfer function [Jury and Roth,
1990], also denoted as the transport-time probability den-
sity function (PDF) in the following. We applied a mixture
of two log-normal distribution functions [see Koestel et al.,
2011] to estimate f'according to

S (&) = k(wig1(£) + waga(1)), (3)

where wy and w, are the we1ght1ng factors that sum up to
one, and g, (h™') and g, (h™") are the log-normal distribu-
tion functions of the form

1 _(nz— )?
g(l) - \/2-7—1'0'1 exXp |: 20_2 :|7 (4)

where p is the log-normalized mean, o is the log-normal-
ized standard deviation of g, and £ is a correction factor for
the tracer mass, which depends not only on the mass
balance error but also on the temporal discretization dr.

2.4. Evaluation of the Solute BTCs

[14] First, we forward modeled the parameter sets
obtained from fitting equation ( 2 to the data with a tempo-
ral discretization of 10! ~15:05. =15.1..... 14.95. 19 1) Next,
we set all the values of the PDFs f{f) corresponding to an
effluent concentration smaller than the detection limit,
namely, C(#)C,' < 0.001, to zero. We then numerically
derived five nonparametric BTC shape measures from the
reconstructed transfer functions [Koestel et al., 2011]. In
the following we give a short overview of the investigated
shape measures. A more detailed description of how the
five shape measures are calculated is given by Koestel
et al. [2012]. First, we calculated the (nonparametric)
average transport velocity v (cm h™ ') and the apparent dis-
persivity App (cm). The former is defined as the ratio of the
column length L (cm) to 4 |, the normalized first moment
of f, i.e., the arithmetic mean of the transport time. The
latter is calculated as

®)

where 1, is the second central moment of f; i.e., the var-
iance of the transport time; and the ratio of /j1, and n 1 1s
the coefficient of variation of f [Jury and Roth, 1990]. The
temporal moments of the PDFs f{#) were obtained by using
the trapezoidal rule.

[15] We also calculated the ratio of the piston-flow
velocity to the average transport velocity which is here
denoted as 7:

=% ©
where ¢ is the water ﬁow rate, and 6 is the volumetric water
content, and v (cm h™ ) is the average tracer velocity,
which is defined by L(p,) . Note that the definition of
the mobility index MI [Lennartz et al., 1997] and piston-
flow-to-transport-velocity ratio 7 is formally identical.
What distinguishes 7 as defined here from MI is the fact
that different types of transfer functions were used to fit the
data: Lennartz et al. [1997] used the transfer function cor-
responding to the CDE, whereas we used a double log-nor-
mal transfer function.

[16] The fourth and fifth shape measures investigated in
this study are the relative arrival time of the first 5% of the
tracer mass pgos and the holdback H. As calculating these
two shape measures requires a good temporal resolution
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between 0.01 ,u’l <t<y 1, we forward-modeled f{r) a
second time, this time with a resolution of 0.033 h (2 min).

[17] The relative 5%-arrival time is derived from the nor-
malized arrival times T,

T:—/u (7)

and the normalized transport-time PDF, denoted as f,,

Jult) = £ (O, (8)

[18] The relative arrival time of the first 5% of the tracer
Po.os 18 calculated from the cumulative distribution function
(CDF) F, which is obtained by integrating f,,

T

Fu(T) = /ﬁdT, ©

0

as such that

F,(poos) = 0.05. (10)

[19] The 5% arrival time p s is negatively correlated
with the strength of preferential transport [Knudby and
Carrera, 2005].

[20] Another shape measure for the degree of preferen-
tial transport is the holdback factor A defined as the volume
of tracer-free water which is still in the soil column after
the passage of one effective water-filled pore volume. It
was introduced by Danckwerts [1953] but has only been
infrequently applied in the soil science community by Rose
[1973]. In contrast to pg s, the holdback H is positively
correlated with the strength of preferential transport.
Koestel et al. [2012] found that H resolves strong to very
strong preferential transport well but offers less resolution
than pg s when preferential solute transport is weaker. In
this sense, pgos and H complement each other, whereas
Po.os has the advantage that it appears to be more robust to
the choice of transfer function type used in equation (2)
[Koestel et al., 2011].

2.5. Spatial Interpolation

[21] We interpolated the soil properties, the hydrologic
state variables, and the BTC shape measures to facilitate
visual recognition of spatial patterns. The sampling dis-
tance was approximately 15 m. It follows that the interpo-
lated images only show heterogeneities larger than this
distance, i.e., the sampling distance acts as a low-pass filter.
We advise the reader against interpreting the data between
the sampling points as known. As the sampling grid used in
this study is slightly distorted in the X direction, linear or
nearest neighbor interpolations lead to interpolations that
falsely suggest undulating patterns aligned to the sampling
grid distortions. We therefore used natural neighbor inter-
polation [Sibson, 1981] which resulted in a more isotropic
representation of the sampled data. Finally, we calculated
semivariograms [Christakos, 2000] for all predictors,
hydrologic state variables, and BTC shape measures for
estimating the respective correlation lengths.

2.6. Regression Analyses

[22] We built simple predictive relationships for the five
shape measures using linear ridge regressions with the
available texture data, i.e., Cio;, Uior, fU, cU, Sio, VIS, 1S,
mS, ¢S, and vcS (Table 2), the organic matter content OM,
the n-index np, and the bulk density p as predictors. Prior
to evaluating the regression functions, the predictors were
normalized to their respective means and standard devia-
tion. If the corresponding shape measure was log-normal
distributed, the logarithmized values were estimated rather
than the original value.

[23] We first applied a bootstrap approach to select
predictor subsets as promising candidates for the ridge
regressions. This step was included to identify weak pre-
dictors with little contribution to the regression. Exclud-
ing the weak predictors greatly shortened and simplified
the final regression functions without significantly reduc-
ing their performance. For each bootstrap sample ngg we
carried out a forward-stepwise predictor selection. In each
step we added or dropped the predictor which minimized
the Akaike information criterion (AIC) until a local mini-
mum was reached [Hastie et al., 2009]. In this fashion a
best-subset regression function was obtained for each
bootstrap sample. The performance of each regression
function was appraised by the leave-one-out (LOO) error.
The 25 regression functions with the smallest LOO errors
were selected for ridge regression, thereby implementing
a nongreedy subset selection. The bootstrap approach was
also used for appraising the importance of each of the 13
predictors. This was quantified as the percentage of all
(bootstrap) regression functions for which the predictor
was retained.

[24] Ridge regression is a shrinkage method which trades
bias for variance, i.e., the predictive relationships obtained
are slightly biased but more robust against outliers, or in
other words, overfitting is prevented by imposing a smooth-
ness constraint on the regression [Hastie et al., 2009]. It
has the form

y = Xb + byl (11
where y = (y1, V2, V35« - - » y,,,)T is the vector of the target
variable, i.e., either one of v, Aapp, po.os, H, or 7, for the
m data sets; X is an m X n matrix of the » normalized pre-
dictor vectors X,, = (X1, X2, X325 - - - » xm,,,)T which contain
m data sets corresponding to the size of one bootstrap
sample; b = (by, b, bs,. .., b,,)T is the vector of the n
regression coefficients; I is the n x n identity matrix; and b
is the intercept which is set to the mean value of y. For ridge
regression the regression coefficients b are calculated as

b= (X"X+al) Xy, (12)
where « is the penalty term which determines the degree of
shrinking applied to the regression. The penalty term « was
determined by fivefold cross validation. The final regres-
sion functions were found by applying equation (12) to the
complete data set with the size m=65, using the 25 best
predictor subsets that had been identified during bootstrap-
ping. Out of these 25 regression functions (25 for each
investigated shape measure), the one with the smallest AIC
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Figure 2. A scheme illustrating the parameterization and
validation approach used for the regression relationships.

was selected. Figure 2 illustrates the above described
approach.

2.7. Upscaling of the Column-Scale BTCs to the Field
Scale

[25] We numerically upscaled the column-scale normal-
ized PDFs f(")(t) to the field-scale PDF u,,(t) by taking the
arithmetic mean of all m (=65) data sets:

" (m)
Uy (1) = y (13)

[26] As the irrigation rate was constant for all columns
and ponding was negligible, weighting of the normalized
PDFs £ (¢) by the water flux can be dispensed with. The
upscaling approach assumes that each column-scale BTC
was representative for the area in the field where the col-
umn had been collected. Each area would correspond to
approximately 0.015 ha (65" ha). It should also be noted
that the upscaling approach only approximates the field-
scale transport characteristics with respect to the lateral
scale. The upscaled PDF is therefore only an estimate for
the field-scale solute transport through the topsoil.

[27] The field-scale shape measures were derived from
u,(t) as described in section 2.2. We applied the regression
relationships obtained for the local-scale BTC shape

measures on the arithmetic mean soil properties to obtain
estimates of the field-scale shape measures. The deviations
between the shape measures from the upscaled PDF u,,(¢)
and the estimated shape measures were discussed.

3. Results and Discussion

3.1.

[28] Figure 3a shows that the Silstrup field site exhibits a
slight gradient in the clay content C, with a larger clay
content (approximately 0.18 g g~') in the northern half of
the investigated area than in the southern half (approxi-
mately 0.15 g g ). The total sand fraction S,., and the total
silt fraction U, are relatively constant between 0.5 and
0.53 g g ' and 0.29 and 0.33 g g, respectively (Figures
3b and 3c). The only major variation in the total sand con-
tent S;,; is observed in the northwestern area of the field
where it varies between 0.45 and 0.55 g g~ ' and is nega-
tively correlated with the clay content. For the total silt
content Uy, there were only two sampling locations in the
north of the investigated area where it was slightly smaller
with the values of 0.24 g g~ '. The bulk density varies
between 1.4 and 1.6 g cm > (Figure 4a). The regions with
lower bulk density are located in the center of the investi-
gated field. The organic matter is distributed relatively
homogeneously and varies between 0.029 and 0.037 g g~ '
with its minima and maxima neighboring in the northwest-
ern quadrant of the field (Figure 4b). The pattern of the
n-index np follows the distribution of the clay content with
larger values in the northern than in the southern half of the
field (Figure 4c¢).

[29] Figure 5 depicts the distribution of the volumetric
water content 6 and the degree of saturation S under the
experimental conditions during the tracer experiments, i.e.,
steady-state irrigation of 1 cm h™'. The water content
varied between 0.38 and 0.43 cm® cm >, and its pattern
exhibited little resemblance to the soil properties discussed
above. The water saturation S, however, closely followed
the distribution of the bulk density p. All soil columns were
close to the water saturation (5>0.84). In approximately
half of them the water saturation exceeded 0.93. The water
content # and the water saturation S are shown in Table 4.

3.2. Column-Scale BTCs

[30] Figure 6 shows the four examples of the BTCs with
the respective fits of the transfer function (see equations
(1)—(4)) as well as the corresponding transport-time PDFs
and CDFs. Bimodal BTCs like the one sampled from
column 29 were only observed in three cases. The column-
scale BTC shape measures are listed in Table 4. The histo-
grams of three of the considered BTC shape measures,
namely, the column-scale velocity v, and apparent
dispersivity A,pp, and the 5% arrival time pg o5, resembled
log-normal distributions, whereas the histogram of the
piston-flow-to-transport-velocity ratio i and the holdback
H were quasi-normally distributed (not shown).

[31] The spatial patterns of all the five investigated shape
measures (Figure 7) followed the spatial distributions of
the bulk density p (Figure 4) and the water saturation S
(Figure 5b). The piston-flow-to-transport-velocity ratio n
varied between 0.19 and 1.41. The median of 0.92 indicates
that the tracer was accelerated relative to the water flow in

Soil Properties and Hydraulic State Variables
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Figure 3. The soil texture fractions according to the USDA: (a) the total clay fraction Ci (<2 pm),
(b) the total silt fraction Uy (2<U<50 pm), and (c) the total sand fraction Sy (>50 pum).

the majority of the soil columns. This may be explained by
preferential flow which caused bypassing of the tracer of a
considerable fraction of the pore space [e.g., Vanderborght
and Vereecken, 2007]. The values of n were clearly larger
than the values of the mobility index MI reported by Len-
nartz et al. [1997]. However, just the fact that Lennartz
et al. [1997] used a different transfer-function type than in

our study makes it difficult to relate 1 and MI. Furthermore,
it has to be taken into account that Lennartz et al. [1997]
used an anionic tracer which favors bypassing of pore
space due to anion exclusion [Thomas and Swoboda, 1970
Rose et al., 2009].

[32] The occurrence of preferential flow is supported by
the relatively large apparent dispersivities \,p, (median of
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(a) The soil bulk density p, (b) the soil organic matter content OM, and (c) the ratio between
the clay content and the organic carbon 7p.
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19.28 cm) and also by the 5% arrival times pg s and the
holdback factors H. Both pjos and H indicated a strong
preferential transport (Figures 7d and 7e). The 5% arrival
time pg o5 in our study had a median value of 0.08, which
was clearly below the median pg s found for undisturbed
soil in the meta-analysis of Koestel et al. [2012], which
was approximately 0.25. If a pgos of less than 0.25 is
chosen as a threshold for preferential transport, then only
one column did not exhibit preferential transport (column
73 which yielded a pg o5 of 0.35).

3.3. Correlations Among Soil Properties, Hydraulic
State Variables, and BTC Shape Measures

[33] The observed similarity between the patterns of
water saturation S and all investigated BTC shape measures
was consistent with large mutual correlation coefficients
(Figure 8). The correlations were such that with increasing
S, the tracer arrived earlier, the effective water content
decreased, and the spread of the BTCs became larger.
Figure 8 shows that mainly five soil properties were
significantly correlated with the investigated BTC shape
measures. These were the bulk density p, the fractions of
very fine sand vfS and very coarse sand vcS, the organic
matter OM, and the n-index np. The spatial distributions of
the two sand fractions are depicted in Figure 9. The bulk
density p exhibited the strongest correlations with the BTC
shape measures with absolute values between 0.44 and
0.67 and was positively correlated with the strength of
preferential transport. Notably, p was also very strongly
correlated with the water saturation S (#=0.82). The very
fine sand fraction vfS was only significantly correlated with
Aapps P0.0s, and H and in contrast negatively correlated with
the strength of preferential transport with absolute Spear-
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(a) The volumetric water content 8 and (b) the water saturation S.

man rank correlation coefficients between 0.36 and 0.42.
Its correlation coefficient with the water saturation was
—0.44. The very coarse sand fraction vcS was positively
correlated with the transport velocity v (r=0.47) and nega-
tively with the piston-flow-to-transport-velocity ratio 7
(r=—0.47), i.e., the transport was by trend accelerated in
the columns containing larger amounts of very coarse sand.
The opposite was observed for the column with larger
organic matter contents OM (Figure 8), with Spearman
correlation coefficients of —0.41 and 0.4, respectively.
Notably, OM was negatively correlated with the very
coarse sand fraction vcS with a Spearman correlation
coefficient of —0.52. The correlations of the n-index np
with the transport velocity v and the piston-flow-to-trans-
port-velocity ratio 1 were opposite to the ones found for
OM (Figure 8). This is consistent with the fact that no
correlation between the clay content Cy, and any shape
measure was observed as np is defined as the ratio between
clay content and organic carbon content.

[34] In conclusion, the water saturation S was under the
experlmental conditions of steady-state irrigation of 1 cm
h™! strongly correlated with the bulk density p. The water
saturation S was, in turn, significantly positively correlated
with the strength of preferential transport. The relationship
among the bulk density p, the water saturation S, and the
strength of preferential transport portrayed by the holdback
H is also illustrated in Figure 10. It can be seen that the
spatial distributions of p, S, and H roughly matched. An
intuitive explanation for the observed correlations is the
following: the bulk density was related to reductions of the
near-saturated hydraulic conductivity, which lead to larger
water saturations under the constant water flow rate of 1
cm h™! and to the activation of larger macropores and



Table 4. Volumetric Water Contents 6, Water Saturation S, Transport Velocities v, Apparent Dispersivity A,p,, Relative 5%-Arrival
Time py s, Holdback H, Ratio Between Piston-Flow and Transport Velocity n, Coefficient of Determinations From Fitting the Transfer
Functions to the Data, and Mass Balance (MB).

Col.

Number 6 (cm® cm ™) S v(emh™) Aapp (c) D005 H n R? MB (%)
1 0.40 0.99 13.41 65.48 0.04 0.56 0.19 1.00 116.71
2 0.40 0.96 3.38 55.45 0.04 0.62 0.74 0.99 113.40
3 0.41 0.94 2.14 19.87 0.07 0.45 1.14 1.00 114.06
4 0.39 0.96 5.17 33.39 0.07 0.52 0.50 1.00 117.65
5 0.40 0.96 2.20 35.81 0.03 0.56 1.14 1.00 111.33
6 0.40 0.94 5.55 17.47 0.11 0.43 0.45 1.00 95.42
7 0.41 0.93 3.35 6.06 0.15 0.29 0.73 1.00 100.19
8 0.41 0.87 2.29 10.42 0.16 0.33 1.07 1.00 103.83
9 0.40 0.88 1.97 16.39 0.09 0.39 1.28 0.97 104.58
10 0.39 0.98 2.03 36.97 0.03 0.56 1.25 1.00 109.21
11 0.41 0.92 2.09 28.42 0.04 0.53 1.18 1.00 105.79
12 0.40 0.91 2.26 19.67 0.07 0.46 1.11 1.00 104.60
13 0.38 0.90 2.26 40.55 0.03 0.59 1.16 1.00 100.81
14 0.40 0.87 2.03 23.97 0.05 0.49 1.23 1.00 107.16
15 0.39 0.91 2.05 29.65 0.05 0.52 1.25 1.00 111.50
16 0.40 0.95 2.35 39.88 0.04 0.58 1.07 1.00 109.42
17 0.40 0.89 2.08 13.83 0.09 0.40 1.19 0.99 88.40
18 0.41 0.91 2.34 11.99 0.12 0.38 1.05 1.00 77.63
19 0.41 0.95 2.17 16.73 0.09 0.42 1.11 1.00 103.77
20 0.41 0.89 2.77 9.45 0.13 0.34 0.88 1.00 93.57
21 0.39 0.85 2.85 13.81 0.09 0.39 0.91 0.99 105.97
22 0.41 0.95 435 7.08 0.12 031 0.56 0.99 116.29
23 0.41 0.95 4.03 15.89 0.10 0.42 0.60 1.00 95.58
24 0.40 0.92 3.43 15.76 0.10 0.41 0.73 1.00 103.20
25 0.41 0.94 2.36 29.48 0.04 0.52 1.04 1.00 113.21
26 0.40 0.87 2.52 8.75 0.18 0.33 0.99 1.00 112.02
27 0.42 0.97 2.01 16.93 0.08 0.44 1.19 1.00 105.93
28 0.40 0.89 2.85 15.83 0.10 0.42 0.88 1.00 117.36
29 0.39 0.88 3.35 5.25 0.10 0.28 0.76 0.98 88.38
30 0.41 0.94 2.67 24.48 0.06 0.49 0.92 1.00 106.30
31 0.41 0.91 1.76 33.53 0.03 0.56 1.39 1.00 108.55
32 0.41 0.91 1.98 18.08 0.07 0.44 1.22 1.00 108.48
33 0.40 0.93 3.13 13.63 0.09 0.41 0.79 1.00 109.69
34 0.41 0.91 1.75 26.17 0.04 0.52 1.41 1.00 107.27
35 0.40 0.96 2.29 19.28 0.06 0.46 1.09 1.00 114.62
36 0.41 0.93 1.86 37.47 0.02 0.58 1.31 1.00 108.79
37 0.39 0.93 3.02 18.99 0.08 0.45 0.86 1.00 113.14
38 0.40 0.91 3.06 11.96 0.13 0.38 0.81 1.00 107.41
39 0.40 0.87 2.36 11.52 0.11 0.36 1.07 1.00 117.00
40 0.43 1.01 1.83 46.30 0.02 0.62 1.28 1.00 105.84
41 0.41 0.95 474 21.88 0.08 0.47 0.52 1.00 100.79
42 0.39 0.91 3.01 20.50 0.07 0.46 0.86 1.00 93.74
43 0.40 0.85 4.56 9.55 0.13 0.37 0.55 1.00 92.55
44 0.40 0.88 237 10.56 0.13 0.36 1.05 1.00 104.60
45 0.39 0.94 3.38 36.01 0.06 0.52 0.75 0.99 95.35
46 0.39 0.91 2.58 14.15 0.09 0.40 0.98 1.00 108.03
47 0.38 0.96 4.56 47.84 0.05 0.59 0.58 1.00 106.14
48 0.40 0.90 3.26 22.57 0.08 0.48 0.77 1.00 103.14
49 0.40 0.93 2.45 16.46 0.09 0.43 1.02 1.00 111.33
50 0.39 0.98 5.51 19.44 0.12 0.44 0.46 1.00 100.94
51 0.38 0.84 2.53 8.80 0.16 0.32 1.04 1.00 103.84
52 0.40 0.93 3.29 4751 0.04 0.62 0.77 1.00 102.08
53 0.41 0.92 2.00 15.52 0.09 0.41 123 0.99 113.88
54 0.39 0.88 2.83 8.65 0.15 0.33 0.91 1.00 101.81
55 0.38 0.96 6.06 19.52 0.09 0.45 0.43 1.00 93.85
56 0.41 0.95 2.89 18.60 0.08 0.44 0.85 1.00 105.64
57 0.39 0.97 6.29 23.90 0.08 0.48 0.41 1.00 100.24
58 0.40 0.90 2.94 28.11 0.06 0.51 0.86 1.00 111.99
59 0.38 0.90 5.44 23.87 0.07 0.48 0.48 1.00 93.84
60 0.40 1.00 4.90 60.36 0.03 0.61 0.51 1.00 101.97
73 0.40 0.87 2.70 3.37 0.35 0.22 0.92 1.00 102.07
74 0.40 0.92 2.50 10.90 0.11 0.37 1.01 1.00 113.59
75 0.41 0.94 243 11.07 0.05 0.38 0.99 0.98 107.27
76 0.41 1.00 436 41.66 0.05 0.56 0.56 1.00 109.06
77 0.38 0.93 3.43 49.60 0.04 0.62 0.77 1.00 101.87
Mean 0.40 0.92 321 23.26 0.08 0.45 0.90 1.00 105.13
Harmonic mean 0.40 0.92 2.76 15.89 0.06 0.43 0.78 1.00 104.50
Median 0.40 0.93 2.70 19.28 0.08 0.45 0.92 1.00 105.93
Field scale 2.71 26.73 0.03 0.55 0.92

Field scale (predicted)® 2.94 19.41 0.07 0.45 0.90

#The predicted field-scale shape measures using the arithmetic mean values of the local-scale soil properties and the regression relationships are listed

in Table 5.
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therefore stronger macropore flow and stronger preferential
transport characteristics. A definitive proof of this hypothe-
sis would however require 3-D images of the soil pore
space or measurements of the near-saturated hydraulic con-
ductivity which both were not at our disposal.

[35] It is to point out that the meta-analysis of 733 BTC
experiments of Koestel et al. [2012] yielded a negative
correlation between bulk density p and the strength of pref-
erential transport. This is in contrast to our results from the
Silstrup field site, which strongly suggests that the relation-
ships at the Silstrup site cannot be generalized in a simple
fashion for other soils.

[36] Some previous studies have suggested that organic
matter may reduce preferential transport in a cultivated
topsoil [Roulier and Jarvis, 2003 ; Jarvis, 2007]. By trend,
the soil organic matter content was negatively correlated
with the transport velocity v and positively correlated with
the piston-flow-to-transport-velocity ratio 7. Hence, larger
organic matter contents supported retardation of tritium.
This may be interpreted as a reduction in preferential trans-
port. The same holds for the ratio between clay and organic
carbon, np, which is also thought to exert an important

11
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control on the aggregate structure developed under cultiva-
tion [de Jonge et al., 2009]. However, our study provides
no evidence that n, may be a superior indicator for soil sus-
ceptibility to retarded transport than OM. It is to note that
neither OM nor np where significantly correlated with any
shape measure related to the spread and earliness of the
tracer arrival. This may be due to the fact that the variabili-
ty of the organic matter content at the Silstrup field site
(2.9%—3.7%) was probably too small to lead to significant
differences in the respective features of the investigated
BTCs. It is moreover a further indication that the piston-
flow-to-transport-velocity ratio 7 carries different informa-
tion on the solute transport process than Aypp, po.os, and H,
as already observed by Koestel et al. [2012].

[37] The clay content had no directly observable effect
on the BTC shapes at Silstrup. However, this is not a
contradiction to the empirical notion that the clay content is
an important driver of preferential flow and transport. The
results of the meta-analysis of Koestel et al. [2012] suggest
that the occurrence of preferential transport depends in a
threshold-like manner on the clay content. They found a
threshold of approximately 8% clay above which
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Figure 7.
(c) the apparent dispersivity A

preferential transport was possible. Above this threshold,
the strength of preferential transport did not depend linearly
on the clay content. Similar thresholds were also reported
by Quisenberry et al. [1993] and de Jonge et al. [2004] for
much smaller data sets, at clay contents of 8% and 13%,
respectively. These clay contents roughly coincide with
that necessary to form stable aggregates [Horn et al.,
1994]. As the clay content at Silstrup (14%—19%) was well
above these thresholds, we suggest that the strong preferen-
tial transport characteristics which can be attributed to
almost all investigated BTCs were in part caused by soil
aggregation and in part also by the presence of biopores in
combination with the an irrigation rate that, lead to water
contents close to saturation. Notably, column 73, which
was the only column for which preferential transport was
not observed, still had a clay content of 15.6% but other-
wise possessed soil properties that according to the
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(a) The logarithmized transport velocity v, (b) the piston-flow-to-transport-velocity ratio 7,
app» (d) the relative 5%-arrival time pg o5, and (e) the holdback H.

observed correlation acted against the promotion of both
near-saturated conditions and preferential flow, namely, a
small bulk density p of 1.42 g cm ™, a large very fine sand
fraction vfS (0.074 g g™ "), and a small very coarse sand
fraction veS (0.065 g g~ ). It should be noted that the bot-
tom boundary condition which was a seepage face leads to
saturated conditions near the outflow. Saturated conditions
promote preferential transport in general, and the strong
preferential characteristics that were found in our study are
to an uncertain extent affected by the choice of the bottom
boundary condition.

[38] We also investigated the spatial correlation of the
predictors and BTC shape measures. Only 4 of the 13
investigated predictor variables had a correlation length
larger than the sampling distance (Figure 11a). These were
the total clay content Cy, the total sand content Sy, the or-
ganic matter content OM, and the very coarse sand content
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Figure 8. The correlation matrix of the mutual Spearman rank correlation coefficients r. The asterisks
indicate the significance with p values smaller than 0.05.
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Figure 9. The two sand fractions showing significant correlation with the investigated BTC shape

measures: (a) the very fine sand fraction v{S (50-63 pm) and (b) the very coarse sand fraction veS
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Figure 10. The distribution patterns of the predictor
variable bulk density p>1.48 g cm >, the state variable
water saturation $>>0.93, and one of the investigated shape
measures, the holdback H>0.47.

vcS. We found that only the sand content S, exhibited a
correlation length within 15 m (sampling distance) and 100
m (average scale the field). It was approximately 50 m
(Figure 11a). The nearly linear variograms of the other
three soil properties suggest strong trends of the respective
soil properties over the Silstrup field site. Of these, only the
vcS was significantly correlated with the BTC shape meas-
ures, albeit only moderately. It is therefore not surprising
that the majority of the BTC shape measures also show cor-
relation lengths of less than 15 m (Figure 11b). Only
the transport velocity v and the piston-flow-to-transport-
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Figure 11.

velocity ratio n had correlation lengths larger than the
sampling distance, but they also had a large nugget with a
semivariance of >60% (Figure 11b). We conclude that a
better spatial resolution of sampling sites (<15 m) would
be beneficial to fully characterize the spatial dependence of
solute transport properties at the Silstrup field site under
near-saturated hydraulic conditions.

3.4. Regression Analysis

[39] The results of the bootstrap and regression analyses
support the conclusions drawn from the correlation
between soil properties and BTC shape measures. All
regression equations contained the bulk density (Table 5)
which was to be expected given its large correlations to all
investigated shape measures. Notably, all regression rela-
tionships except the one for the piston-flow-to-transport-
velocity ratio 7 include the very fine or the very coarse
sand fraction as a predictor (Table 5). This suggests that
more detailed information on the soil texture than the three
USDA texture fractions clay, silt, and sand may be useful
to predict solute transport properties from soil texture.
Table 5 illustrates that the ridge-regression approach
yielded the coefficients of determination R* between 0.41
and 0.44 for the apparent dispersivity \,p, and the holdback
H. Taking into account the relatively small variability of
soil texture and organic matter content as well as BTC
shape measures in this study, a coefficient of determination
of larger than 0.4 is still a fairly good result. The transport
velocity v, the relative 5% arrival time py o5, and the piston-
flow-to-transport-velocity ratio n were less well predicted
from the investigated soil properties with R* of 0.31, 0.31,
and 0.28, respectively.

[40] In the following, we used H in our examples which
illustrate typical details for the predictor importance and
the regression performance found for the investigated BTC
shape measures. Figure 12a depicts the frequency with
which each of the 13 predictors were selected as a best sub-
set in the 5000 bootstrap samples used for the nongreedy
best-subset evaluation. The more frequent a predictor was
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(a) The spatial correlation of the predictors and (b) the shape measures. Only the predictors

exhibiting correlation lengths larger than the main sampling distance of 15 m are shown in color.
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Table 5. Regression Relationships Between Soil Properties and

the Five Investigated BTC Shape Measures Using Ridge
Regression”

Shape

Measure Regression Function R?
v exp(—3.3792+2.7645p+5.0533vcS) 0.31
Aapp exp(—4.1167+5.1934p—11.0835v{S) 0.44
Po.os exp(2.8817—3.3669p+10.5808vfS—19.18600M) 0.31
H —0.5291+0.7297p—1.7606v{S 0.41
n 2.2342—1.5573p+16.87890M 0.28

“In addition, the respective coefficients of determinations are shown.

selected, the greater was its importance. Figure 12a illus-
trates that the bulk density p was by far the most important
predictor, followed by the very fine sand fraction vfS.
Consequently, regression functions containing only these
two variables also proved to perform best in the cross
validation. Figure 12b shows how the function in Table 5
predicts the holdback factor, while Figures 12¢ and 12d
illustrate how it reproduced the spatial pattern of H as
compared to the measured values. Finally, Figure 12e
shows the respective residuals as a percentage of the
measured holdback. Due to the smoothness constraint
used in the ridge regression, the maximum values were
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Figure 12.

(a) The frequency at which the predictor variables were included into the best subset during

the bootstrapping approach for the nongreedy subset selection for predicting the holdback H; (b) the
measured and estimated holdback H as estimated from the regression relationship shown in Table 5
(R*=0.41); (c) the measured holdback H; (d) the estimated holdback H using the regression relationship
shown in Table 5; and (e) the residuals between the measured and estimated holdbacks using the formula

(Hestmeeas)/Hmeas x 100.
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Figure 13. Column-scale and field-scale transport-time
PDFs, fn<'”) and u,, respectively. The PDFs shown in (a)
and (b) are identical. Only the scales are different, i.c.,
double-logarithmic scale for Figure 13a and linear scale for
Figure 13b.

generally underestimated, whereas the minimum values
were overestimated.

3.5. Field-Scale BTC

[41] Figure 13 shows the normalized field-scale PDF
u,(f) in comparison to the column-scale PDFs fn<m>(t). The
field-scale BTC shape measures are listed in Table 4. The
field-scale transport velocity v is upscaled by the harmonic
mean of the local-scale velocities (Table 4). The differen-
ces between the harmonic mean of the local-scale velocities
and the field-scale velocity was probably caused by numer-
ical errors. The piston-flow-to-transport-velocity ratio 7
was similar on both scales. The three related shape meas-
ures apparent dispersivity A,,p, relative 5%-arrival time
Po.os, and holdback H indicate that the strength of preferen-
tial transport was stronger at the field than at the column
scale. Table 4 also shows that using the column-scale-
derived regression functions (Table 5) for estimating the
field-scale BTC shape measures from the mean soil proper-
ties leads to values that are comparable to the median of
the column-scale shape measures, an exception being the
transport velocities. The field-scale transport velocity
would thus be overestimated, whereas the strength of pref-
erential characteristics would be underestimated.

[42] The field-scale transport-time PDF derived here
applies only to the topmost 20 cm of the soil at the Silstrup
field site. It may be speculated how the field-scale PDF
would appear at a greater soil depth, e.g., 100 cm. We con-
sider two scenarios in the following. First, if the transport
velocities in transport direction are uncorrelated, the lateral
solute mixing would approximate the convection-disper-
sion regime [e.g., Roth and Hammel, 1996]. Then, the
apparent dispersivity would remain constant, whereas the
relative 5%-arrival time would increase and the holdback
decrease with transport distance. If however the transport
velocities in the transport direction were correlated, the
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apparent dispersivity would increase [e.g., Flithler et al.,
1996]. Examples would be the triggering of additional pref-
erential transport paths at soil horizon boundaries or verti-
cal earthworm channels over the whole soil horizon. The
5% arrival time (and holdback) would then either increase
(decrease) to a lesser extent than in the above discussed
scenario or remain constant. A mix of both the above
described scenarios appears to be likely in the majority of
cases [Flithler et al., 1996]. The field-scale solute BTC at
100 cm depth will then exhibit a similar velocity and pis-
ton-flow-to-transport-velocity ratio but a larger dispersivity
and relative 5%-arrival time and a smaller holdback than at
a depth of 20 cm.

4. Conclusions

[43] We investigated the tracer BTCs on the soil columns
collected from the cultivated topsoil at the Silstrup field
site under the near-saturated hydrologic conditions. Of the
65 investigated BTC experiments, 64 showed strong prefer-
ential transport features. The correlation between the
strength of preferential transport and water saturation sug-
gests that macropore transport was the dominant process.
The observed variations in the preferential transport
strength were also positively correlated with the bulk den-
sity. This may be explained as follows: larger bulk den-
sities presumably led to a decrease in near-saturated
hydraulic conductivities and as a consequence the activa-
tion of larger macropores. Correlations between the BTC
shapes and the organic carbon content or between the ratio
between clay and organic carbon content were only
observed for the transport velocity and the piston-flow-to-
transport-velocity ratio.

[44] Our study provides further evidence that it is possi-
ble to estimate soil solute transport properties from soil
properties such as soil texture or bulk density. As a corol-
lary, our results suggest that more detailed information on
the soil texture than the three USDA texture fractions clay,
silt, and sand may be useful in this context. We demon-
strated that various BTC shape measures were relatively
well predicted using linear regression approaches involving
the bulk density and the very fine sand fraction, even
though all BTCs exhibited strong preferential transport and
the respective shape measures only showed relatively small
variability.

[45] It must be noted however that the regression func-
tions presented here for the BTC shape measures cannot be
simply generalized to other field sites. This is strongly sug-
gested by the metastudy of 733 BTC experiments of Koes-
tel et al. [2012] who found an opposite correlation between
bulk density and strength of preferential transport to the
one found in this study. An upscaling approach for estimat-
ing the field-scale BTC for the topsoil from the column-
scale BTCs suggests that the regression relationships
between soil properties and column-scale BTCs yield
wrong field-scale shape measures if applied to average
field-scale soil properties. The transport velocity would be
overestimated, and the strength of preferential transport
underestimated.

[46] It is notable that we also found that the spatial corre-
lation length of the investigated BTC shape measures was
smaller than the sampling distance of 15 m. In the future,
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studies aiming to establish predictive relationships for the
soil solute transport properties should include data from
noninvasive geophysical soil-mapping techniques like
EM38 [Saey et al., 2009] or ~-ray spectroscopy [van
Egmond et al., 2010] as a complement to traditionally
measured soil properties. This would allow a better spatial
resolution of the predictor variables and therefore also a bet-
ter characterization of the variability of the soil solute trans-
port properties. It would furthermore improve conditions for
estimating solute transport properties at the field scale.
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cide Leaching Assessment Program (www.pesticidvarsling.dk) and by the
international project “Soil Infrastructure, Interfaces, and Translocation
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