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Abstract 
 
Yimer, F. 2007. Soil Properties in Relation to Topographic Aspects, Vegetation 
Communities and Land Use in the South-eastern Highlands of Ethiopia, Doctoral 
dissertation ISSN 1652-6880, ISBN 978-91-576-7344-2.  
 
Quantification of changes in soil properties (particularly organic carbon and total nitrogen) 
due to natural and anthropogenic influences is essential in understanding carbon fluxes 
between land and atmosphere. This thesis examines the effects of topographic aspect, 
vegetation community and land use on physical and chemical properties of soils in south-
eastern Ethiopia. Soil samples were collected under three vegetation communities, 
Schefflera abyssinica/Hagenia abyssinica (SHaD), Hypericum revoltum/Erica 
arborea/Schefflera volkensii (HESD) and shrub-sized Erica arborea (EAD), at four 
topographic aspects (north/south/east/west-facing). Soil samples were also collected from 
three land use types (native forest, cropland, grazing) between 3000-3150 m altitude.  

The soil properties examined generally exhibited significant variations with respect to 
vegetation and aspect. Sand, silt and clay content was high under EAD, HESD and SHaD 
respectively. Soil bulk density was lower in A- than B-horizons for all vegetation types and 
aspects. Available P was high under all south-facing communities and in east-facing A-
horizon soils under SHaD. Soil pH was high in both horizons under SHaD. Base cation 
adsorption in soil followed the trend Ca2+>Mg2+>K+>Na+ for all communities and aspects. 
CEC was high under south- and east-facing SHaD and EAD. Overall, percentage base 
saturation was high under SHaD across all aspects.  

Soil organic carbon (SOC) and total nitrogen (N) stocks to 1.0 m depth were highest 
under EAD (46.03 kg C m-2, 3.61 kg N m-2) and southern aspect (44.97 kg C m-2, 3.75 kg N 
m-2). Mean annual temperature was important for variations in SOC and total N stocks 
along vegetation gradients across all aspects. About 45% of SOC was held in the upper 0.3 
m, indicating that large amounts of CO2 can be released to the atmosphere if the vegetation 
communities are cleared for arable/grazing land. 

Conversion of native forest into cropland significantly increased soil bulk density and pH 
while reducing SOC, total N and CEC concentrations by 31, 32 and 38%, respectively (1.0 
m layer). Protecting remnant afroalpine/afromontane vegetation communities or improving 
existing cropping systems could mitigate nutrient losses while enhancing organic carbon 
sequestration for sustainable agriculture, ecosystem functioning and climate change 
mitigation.  
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Introduction 
 
Background 

 
Ethiopia is a tropical country located between 3-15o N and 33-48o E, with an area 
of about 1.13 million square km. It is a country of great topographical diversity. 
The climate is of tropical monsoon type with wide topography-induced variations. 
Most areas experience a seasonally wet and dry tropical highland climate, with a 
mean annual rainfall of over 1500 mm (Hurni, 1988). Despite the fact that the 
country occupies a zone of maximum insolation, tropical temperatures are not 
experienced everywhere. Mean annual temperature decreases towards the interior 
highland areas to less than 10 oC (Anonymous, 1988).  
 

Because of its geographical position, ranges of altitude, rainfall and temperature 
variations, Ethiopia has an immense ecological diversity and a huge wealth of 
biological resources. The vegetation types are highly diverse, ranging from afro-
alpine to desert vegetation. By the end of the 20th century, the natural high forest 
and their biological resources that once covered more than 42 million ha (35% of 
total land area) in the country had declined to an estimated 2.4% (Eshetu, Giesler 
& Högberg, 2004).  
 

Ethiopia also has diverse soil types. According to Woldeab (1990), about 18 soil 
types are reported to occur. Given the general conditions of the Ethiopian 
economy regarding its overdependence on agricultural production, the survival of 
about 80% of the population (living in the highlands) is inextricably linked to the 
exploitation of the soil resources (Bekele, 1988; Hurni, 1988). As a consequence 
of poor land resource management practices, soil erosion accelerated by human 
activities poses a threat to agricultural productivity (Bhan, 1990). This is 
particularly serious in the northern and central highlands, where there is high 
population pressure (Girmay, 1990) and where the land has been cultivated for 
more than 3000 years (Eshetu, Giesler & Högberg, 2004). The average soil loss 
from cultivated land is about 42 ton ha-1  yr -1 (Hurni, 1988), and the total soil 
losses in the country from different land cover types is about 1.5 billion metric 
tons, while the formation rate varies between approx. 2 and 22 ton ha-1 yr-1 (Hurni, 
1983). This is perhaps the most threatening and irreversible environmental process 
caused by Man and appears to be the single most important environmental process 
affecting the Ethiopian highland ecosystem (Hurni, 1986).  
 

The population of Ethiopia is currently estimated to be about 75 million, with 
2.31% annual growth rate (http://www.infoplease.com/ipa/A0107505.html; 2007-
02-19). The rapid increase in human and livestock populations has resulted in 
major changes in land use systems. Conversion of native forests to farmland and 
grazing has been commonly practised in the highlands for several decades. Such 
activities have caused widespread soil nutrient losses. Consequently, many 
agricultural soils have reached the point of no return, for example in the 
mountainous areas of the northern and central highlands (Getahun, 1984). Loss of 
soil fertility is manifested not only through deforestation, soil erosion and forest 
conversion, but also through the use as household fuels and animal feeds of animal 

 7 

http://www.infoplease.com/


 

dung and crop residues that would otherwise have been left on the site to replenish 
soil nutrient levels.  

 
Topographic attributes and vegetation as factors in soil 
property variations  
      
The spatial variation in soil properties is influenced by biotic and abiotic factors 
such as topography-induced microclimate differences, altitude, landscape position, 
parent material and vegetation community (Johnson, Ruiz-Mendez & Lawrence, 
2000; Ollinger et al., 2002). Topography influences local and regional climate by 
changing the pattern of precipitation and temperature (Smith & Smith, 2000; Tsui, 
Chen & Hsieh, 2004), solar radiation and relative humidity (Finney, Holowaychu 
& Heddleson, 1962; Franzmeier et al., 1969). Microclimate variations with 
altitude dramatically influence the type and composition of vegetation species, 
weathering rates and leaching intensity, resulting in feedback on soil properties 
such as amount and quality of organic matter, clay and mineralogy, cation 
exchange capacity and base saturation (Hutchins, Hill & White, 1976; Dahlgren et 
al., 1997).  
 

Topographic aspect is a potentially significant factor in generating differences in 
ecosystem characteristics (Sardinero, 2000; Takyu, Aiba & Kitayama, 2002). For 
example, the hydrological and solar energy regimes of mountainous topography 
differ according to aspect, leading to divergence in the composition and 
distribution of vegetation (Ganuza & Almendros, 2003), soil formation and 
organic matter decomposition (Hicks & Frank, 1984). Aspect also induces local 
variations in temperature and precipitation, which along with chemical and 
physical composition of the substrate are the main regulators of decomposition 
rates of soil organic matter (Liski & Westman, 1997; Mendoza-Vega, 2002).  

 
Land use changes as factors in soil property variations       

A change in land use, mainly through conversion of native vegetation to cropland 
and/or grazing, may influence many natural phenomena and ecological processes, 
leading to a significant change in soil physical, chemical and biological properties 
(Turner, 1989). Clearing of forests and their subsequent conversion into cropland 
reduces the soil C content, mainly through reduced production of litter, increased 
erosion rates and decomposition of organic matter by oxidation. Changes in land 
use over the past two centuries have caused a significant release of CO2 to the 
atmosphere from the terrestrial biota and soils globally (Houghton et al., 1983; 
Houghton, 2003). Changes in land use also deprive the soil of its water holding 
capacity, structural stability, nutrient supply and storage, as well as its biological 
component (Wairiu & Lal, 2003; Rasiah et al., 2004). Accordingly, many 
agricultural soils in the tropics are now below their potential production levels 
(Sombroek, Nachtergaele & Hebel, 1993).  

Grazing intensity and frequency are also important management variables that 
can affect soil properties. Grazing influences plant species composition, net 
primary productivity, and above- and below-ground allocation in plants, as well as 
soil compaction and bulk density (Burke et al., 1998). In areas where over-grazing 
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has seriously degraded vegetation cover and primary production, soil organic 
matter and associated nutrient levels are lower due to the low level of inputs from 
plant residues and increased erosion losses (Bruce et al., 1999).  

 
 

The Bale Mountains and their ecological significance 

The Bale Mountains are one of the highland divisions in south-eastern Ethiopia, 
situated approx. 6°45’N, 39°45’E (Figure 1). Mountains are important sources of 
water and energy and are storehouses of biological diversity containing many 
types of species and ecosystems (Kräuchi, Brang & Schonenberger, 2000). The 
mountainous topography and the mosaic of natural vegetation cover in the Bale 
Mountains have substantial economic, recreational, aesthetic and scientific 
importance. The vegetation is unique in character, remarkably specialised and 
exposed to a great diversity of conditions, with steep ecological gradients that are 
dependent on topographic aspect, slope, climate and soil conditions (Hillman, 
1990; Uhlig, 1990; Friis & Lamesson, 1993). These highland units are headwater 
sources for more than sixty perennial streams and major rivers that drain the 
south-eastern lowlands of Ethiopia and parts of Somalia.  
 

Apart from an initial reconnaissance soil survey (Weinert & Mazurek, 1984), 
there has been no detailed information about the soils in the Bale Mountains in 
general, or about variations in soil properties in relation to vegetation community, 
topographic aspect or variations with respect to land use changes in particular. 
This has become an issue of particular concern due to the rapid land conversion 
practices within and around the Bale Mountains National Park (BMNP), the 
sensitivity to human influences and the poor agricultural management in this 
mountainous area. Since published information on the Bale Mountains in general 
is scarce, large information gaps remain in our understanding of the influence of 
vegetation community, topographic aspect and land use changes on soil properties 
in this ecologically diverse mountain ecosystem. The upslope positions and/or 
higher altitudes of these mountain ranges, with their more or less uniform parent 
materials and soil conditions, offer an excellent opportunity to study the effect of 
vegetation community type and topographic aspect on soil properties. 
 
 
Objectives of the study 
 
The overall objective of this study was to identify drivers of change in soil 
properties in mountainous ecosystems, thus obtaining information that can be used 
in appropriate management of the fragile mountain ecosystems of the Ethiopian 
highlands. The specific objectives of the component studies were to determine: 

• Effects of topographic aspect and vegetation community on soil physical 
and chemical properties (Paper I) and more specifically soil organic 
carbon and total nitrogen stocks (Paper II).  
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• Effects of conversion of native forests into cropland and/or grazing land 
on soil organic carbon and total nitrogen content (Paper III) and other 
chemical and physical soil properties (Paper IV). 

 
 

Materials and methods 

General description of study sites 

The study was carried out in the Bale Mountains, south-eastern Ethiopian 
highlands (Figure 1). These mountains form a sharp transition zone from high 
mountain vegetation to hot savannah areas within the south-eastern highlands and 
associated lowland physiographical regions of the country. Geologically, the study 
sites are of volcanic origin with welded volcanic ash materials (Mohr, 1971; Berhe 
et al., 1987).  
 

 

 

Addis Abeba

Fig. 1. Map showing location of the study area.  
 
 

Long-term climatic records for the four study sites (north, south, east, west 
aspects) are lacking. For this reason fragmentary and discontinuous weather 
records from the nearby meteorological stations (Dodola, Goba, Rira and Delo 
Menna) were used to characterise the climate of the study sites. Moreover, from 
the available temperature records of these stations, a temperature decrease of 0.6 
°C per 100 m increase in altitude (Lundgren, 1971) was employed to calculate the 
mean annual temperature (MAT) of all sites except those with an eastern aspect 
due to lack of representative temperature data from the stations. Accordingly the 
estimated ranges of MAT were 8.6-13.4 °C, 9.7-15.2 °C, and 9.1-11.1 °C for the 

 10



 

northern, southern and western aspects, respectively. The MAT ranged from 9.2 
°C in Erica arborea-dominated (EAD) vegetation communities to 12.1 °C in 
Schefflera abyssinica/Hagenia Abyssinica-dominated (SHaD) communities. The 
mean annual precipitation (MAP) varied from 870 mm for the northern and 
western aspects to 1064 mm for the southern and 1020 mm for the eastern aspect.  

 
Physiognomically, vegetation formations in the Bale Mountains belong mainly 

to the afromontane and afroalpine (Nigatu & Tadesse, 1989), showing a marked 
vegetation zonation along altitudes. At altitudes between 2390 and 2800 m, the 
vegetation is dominated by tree species such as Schefflera abyssinica and Hagenia 
abyssinica. Above this vegetation zone and between 2800 m and approximately 
3250 m, the most characteristic vegetation community is a mixture of Hypericum 
revoltum, Erica arborea and Schefflera volkensii. The upper altitudinal limit varies 
at different aspects and gives way to a sub-afroalpine vegetation type characterised 
as Erica arborea bushland (Nigatu & Tadesse, 1989).  

 
In the Bale Mountains, the dominant agricultural practice is a mix of crop 

cultivation and livestock rearing, mainly for subsistence. Crop production through 
forest clearance in the southern slopes of the BMNP started in 1991 (oral 
communication with elder farmers). Barley, which is a major food crop, occurs 
almost continuously below 3300 m and may extend above depending on the soil 
and slope. Pressure to find arable land is enormous in the Bale Mountains. 
Farmers have no or limited access to commercial fertilisers due to the remoteness 
of the site and do not use manure in their farm fields away from the homesteads. 
Even though they practise combined crop cultivation and livestock rearing, 
nutrient flows between the two are predominantly one-sided, with feeding of crop 
residues to livestock around the homesteads but no dung being returned to the soil, 
indicating a negative nutrient balance. Grazing is mainly carried out on communal 
grazing land and on cropland after harvest.  
 
 
Methods 

Papers I and II  

These studies dealt with the influence of topographic aspect, vegetation 
community and their interaction on physico-chemical soil properties and soil 
organic carbon and total nitrogen stocks. For this purpose, four topographic 
aspects (north-, south-, east- and west-facing) and three vegetation communities 
(Schefflera-Hagenia-, Hypericum-Erica-Schefflera- and shrub-sized Erica 
arborea-dominated communities) within each aspect were considered (Figure 2). 
A total of 48 soil profiles (4 aspects × 3 vegetation community types × 4 replicate 
profiles) were opened at the centre of each randomly selected sample plot, and soil 
samples were taken from diagnostic horizons. All samples were passed through a 
2 mm soil sieve and sent to the National Soil Laboratory and Research Centre in 
Addis Abeba (Ethiopia) for analyses. Particle size fractions were determined by 
hydrometer after dispersion in a mixer with hexametaphosphate. Bulk density was 
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determined for each morphological horizon using volumetric cylinders (4 
cylinders per diagnostic horizon) and calculated by dividing the oven dry mass at 
105 oC by the volume of the core. Exchangeable base cations were extracted with 
1N ammonium acetate at pH 7. Calcium and magnesium were determined by 
atomic absorption spectrophotometry, while sodium and potassium were 
determined by flame emission spectrophotometry (Black et al., 1965). Available P 
was analysed according to the standard method described by Olsen et al. (1954). 
Soil pH was measured with a combination electrode in a 1:2.5 soil:water 
suspension. Cation exchange capacity (CEC) was determined titrimetrically by 
distillation of ammonium displaced by sodium (Chapman, 1965). Percentage base 
saturation was calculated by dividing the sum of the charge equivalents of the base 
cations (Ca2+, Mg2+, K+ and Na+) by the CEC of the soil and multiplying by 100. 
The results of the analyses obtained for each diagnostic horizon were averaged for 
A- and B-horizons and then grouped for each vegetation community and 
topographic aspect.  
 

For estimation of soil organic carbon (SOC) and total nitrogen (N) stocks, soil 
samples were taken at 0-0.3 m and 0.3-1.0 m soil depths from each soil pit. The 
bulk samples from each depth were aggregated and pooled into a single composite 
sample representing the sample plot. SOC was determined according to the 
Walkley and Black method (Schnitzer, 1982) while total N was measured 
following the Kjeldahl method (Bremner & Mulvaney, 1982).   
     

a
      

b c

Fig.  2.  Vegetation community types:  a) Schefflera abyssinica - Hagenia abyssinica 
(SHaD); b) Hypericum revoltum - Erica arborea - Schefflera volkensii (HESD); and c) 
shrub-sized Erica arborea (EAD). 

 
Bulk density, as a variable in the estimation of carbon and nitrogen stocks, was 

determined for each depth using volumetric cylinders (5 cylinders per depth) and 
the results from five core samples from each depth class were averaged to obtain 
representative bulk density. The SOC (kg C m-2) and total N stocks (kg N m-2) 
were calculated from concentration, bulk density and horizon thickness.  
 

SOC, total nitrogen and other physico-chemical soil property data were 
subjected to two-way analysis of variance (ANOVA) to examine the effects of 
topographic aspect and vegetation community following the generalised linear 
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model (GLM) procedure of SPSS Version 12.0.1 for Windows (Julie, 2001). In 
cases of significant ANOVA, means were compared using Tukey’s Honest 
Significance Difference (HSD) at 5% probability level. Pearson’s correlation 
coefficients were computed to examine the relationship between soil physico-
chemical properties. A linear regression analysis was also performed to establish 
the relationship between SOC and MAT. 

 
Papers III and IV  

These studies were concerned with the effect of different land uses on SOC and 
total nitrogen content and other soil physico-chemical properties. For this purpose, 
three land use types were considered; namely cropland, grazing land and native 
forest. The cropland had been under barley cultivation for 15 years after 
conversion of the native forest; the grazing land was a communal grazing field 
open for grazing by livestock but not under crop cultivation, and the native forest 
was a parcel of forest land dominated by Schefflera abyssinica and Hagenia 
abyssinica. All land use types were replicated over three altitudinal zones ranging 
from 3000 m to 3150 m at an interval of 50 m in order to get a wider spatial 
representation of the mountainous terrain. In each land use type at each altitudinal 
zone, four representative soil profiles were randomly located within similar 
physiographical conditions such as landscape position and percentage slope. A 
total of 108 soil samples (3 altitudinal zones × 3 land use types × 4 replicate 
profiles × 3 soil depths, 0-0.2, 0.2-0.4 and 0.4-1.0 m) were collected during the 
cropping period for laboratory analyses. The following variables were determined: 
SOC, total nitrogen, exchangeable base cations, soil pH, CEC and percentage base 
saturation. Details of the laboratory procedures for analysing each of these 
variables are described above under the methods for Papers I and II. 
 
  The data were then grouped and summarised according to each land use type and 
soil depth and subjected to two-way analysis of variance (ANOVA) following the 
general linear model (GLM) procedure of SPSS Version 12.0.1 for Windows 
(Julie, 2001). Means that exhibited significant differences were compared using 
Tukey’s Honest Significance Difference (HSD) at 5% probability level. Linear 
regression analysis was performed to examine the relationship between SOC and 
CEC.  
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Results 

Influences of topographic aspect and vegetation community 
(Papers I & II)  
 
Soil physical properties   

Descriptions of some selected soil profiles representing each vegetation 
community type are presented in Table 1. The soils studied are characterised by a 
well-developed black (10YR 2/1, moist) to very dark brown (10 YR 2/2, moist) A-
horizon and black (10YR 2/1, moist) to very dark brown (7.5 YR 2.5/2, moist) B-
horizon with predominantly fine to medium granular structure. Both the surface 
and subsurface horizons are very friable to friable at field moisture; non-sticky to 
slightly sticky and plastic (wet); gradual to diffuse and smooth boundaries. In 
these soils, textural fractions varied significantly with respect to both topographic 
aspect and vegetation community (p<0.001). The sand content was higher in the 
soil under the Erica arborea vegetation community than under the other 
vegetation communities. Across all vegetation communities and topographic 
aspects, the overall mean clay content in the A-horizon was generally less than 
25%. 
 

Soil bulk density (g cm-3) across all aspects and vegetation communities showed 
no significant difference for either the A- or the B-horizon. However, the overall 
average bulk density was slightly higher in the B-horizon under SHaD and HESD 
compared with EAD.  
 
 
Soil chemical properties   

Soil organic carbon and total nitrogen stocks varied significantly with respect to 
aspect (p=0.003) and vegetation community (p<0.001) The overall mean SOC and 
total N stocks to a depth of 1.0 m ranged from 32.67 to 46.03 kg C m-2 and 2.89 to 
3.61 kg N m-2 among the vegetation communities; and from 35.13 to 44.97 kg C 
m-2 and 2.90 to 3.75 kg N m-2 among topographic aspects (Figure 3). Across all 
vegetation types and topographic aspects, the SOC stock in the top 0.3 m soil layer 
was between 11.08 kg m-2 and 21.67 kg m-2, which accounted for 40-45% of the 
SOC stock held in the 0-1.0 m layer (Figure 4). The mean SOC and total N stocks 
were higher among the vegetation communities in the southern aspect than in the 
remaining aspects. Most of the variation in SOC was explained by the mean 
annual temperature (r2 = 0.47, 0.82 and 0.63 for the southern, western and 
northern aspects, respectively). The soil C/N ratio both in the topsoil (p<0.001) 
and to 1.0 m depth (p=0.033) varied significantly with vegetation community. The 
overall mean C/N ratio for all aspects and vegetation communities ranged from 12 
to 13 and 11 to 14, respectively. C/N ratio along the vegetation gradient increased 
with altitude at all topographic aspects (r = 0.58, p<0.001 for the top 0.3 m). 
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Table 1.  Selected soil profile descriptions under different vegetation community types 
 
 

             Schefflera abyssinica - Hagenia abyssinica (SHaD) 
 
O          10-0 cm; partially decomposed litter and root mat zone; black (10YR 2/1, moist); 
             abundant very fine and fine-medium roots; abrupt and smooth boundary. 
Ah1      0-40cm; Very dark brown (10YR 2/2, moist) loam; moderate fine granular structure;  
             very friable, non-sticky non plastic;  common very  fine and fine, few medium to   
             coarse roots; many very fine and fine interstitial pores; diffuse and smooth  
             boundary. 
Ah2      40-62cm;  Very dark brown (10YR 2/2, moist) loam; moderate fine granular  
             structure; non-sticky, non-plastic; common very fine and  fine, few medium and very  
             few coarse roots; many very fine and fine interstitial pores;  diffuse and smooth  
             boundary. 
 Bt         62-100+cm; Very dark brown (10YR 2/2,  moist) clay; moderate fine to medium   
             granular structure; sticky and plastic; many very fine and fine, few medium roots;  
             few very fine and fine interstitial pores. 
 
            Hypericum revoltum - Erica arborea - Schefflera volkensii (HESD)  
 O         3-0 cm; black (10YR2/1, moist), root mat and partially decomposed litter layer with  
             mosses, lichens, leaves and twigs; abundant earth worms; common very fine and  
             fine roots; abrupt and smooth boundary.   
 Ah1     0-15 cm; very dark brown (7.5YR 2.5/2, moist), silt loam; moderate fine granular;  
             very friable moist, non-sticky, non-plastic wet; common earthworm activities;   
             common very fine and fine, few medium and coarse roots; wavy and smooth   
             boundary. 
 Ah2     15-50cm; very dark brown (7.5YR 2.5/2, moist), silt clay loam; weak very fine   
             granular; very friable moist, slightly sticky, slightly plastic wet; common annelids  
             and unspecified worm channels; common very fine-fine, few medium and coarser   
             roots; diffuse and smooth boundary. 
 Bw       50-80/100cm; very dark brown (7.5YR 2.5/3, moist), silt loam; moderate fine  
             granular; friable moist, slightly sticky and slightly plastic wet; very few very fine    
             and fine, few medium to coarse roots; wavy and smooth boundary.                

 
               Erica arborea-shrub size (EAD) 
 
O           10-0cm; black (10YR 2/1, moist), litter and root mat; many very fine to fine and few  
              to very few medium roots; clear and smooth boundary.  
Ah1    0-50cm; black (10YR 2/1, moist), loam; moderate fine granular; very friable moist,   

           non-sticky, non-plastic wet; few fine to medium tubular pores (earth worm  
           channels); many very fine, fine and medium roots, and very few coarse roots;  
           diffuse and smooth boundary. 

Ah2       50-75cm; black (10YR 2/1, moist) loam; moderate-strong fine-medium            
           granular; very friable moist, non-sticky non plastic wet; few medium tubular  
           pores (earth worm &root channels); few very fine- fine, common medium and 
           few coarse roots; diffuse and smooth boundary. 

 AB        75-110+cm; very dark brown (10YR 2/2, moist) loam; moderate-strong fine    
              granular; very friable moist, non-sticky, non-plastic wet; few very fine-fine,   
              common medium and few coarse roots. 
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Fig. 3. Soil organic carbon stocks (kg C m-2) in the 0 - 1.0 m soil layer in relation to 
vegetation community and topographic aspect.  
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Fig. 4. Distribution of soil organic carbon stocks (SOC, kg m-2) with depth under different 
vegetation communities. Vertical bars (means ± SE) followed by different letters 
are significantly different (p<0.05) with respect to soil depth.  
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The concentration of available phosphorus (P) varied significantly with respect 
to topographic aspect (p=0.045 for the A-horizon and p<0.001 for the B-horizon). 
Available P was significantly higher in the southern aspect across all vegetation 
types (Figure 5). Similarly, a significantly higher concentration of available 
phosphorus in the A-horizon was found in the eastern aspect with the SHaD 
vegetation type. In the subsurface layer, however, it was only in the southern 
aspect that there was a significantly higher concentration of available phosphorus 
across all vegetation communities. 
 
 The overall mean soil pH was significantly higher in the two soil horizons under 
SHaD than under the HESD and EAD communities, although the average pH was 
relatively low for the southern aspect (Figure 5). The overall mean soil pH in the 
A-horizon ranged from 5.3 to 6.0, showing a significant variation (p<0.01) with 
respect to topographic aspect. The range in soil pH among vegetation communities 
at different topographic aspects was 5.3-6.1. The Pearson’s correlation results 
showed that significant negative relationships existed between pH and altitude in 
the eastern (r = -0.72, p=0.008), western (r = -0.86, p<0.001) and northern aspects 
(r = -0.85, p<0.001). 

 
Almost all exchangeable cations showed significant variation with respect to 

topographic aspect and vegetation community type (Figure 6). The overall mean 
exchangeable cation (cmol kg-1) composition of the A- and B-horizons followed 
the trend Ca2+>Mg2+>K+>Na+ for all vegetation communities and topographic 
aspects. There was more exchangeable Ca2+ and Mg2+ in SHaD than in HESD and 
EAD vegetation communities. The concentration of exchangeable Na+ in the B-
horizon soil differed significantly (p<0.001) with respect to topographic aspect 
and vegetation community. The concentration of exchangeable Na+ was high in 
the B-horizon soils with southern and eastern aspects under the SHaD and HESD 
vegetation communities. The overall mean CEC (cmol kg-1) and the percentage 
base saturation varied with respect to vegetation community and topographic 
aspect (p<0.001).  
 
 The CEC of both A- and B-horizon soils was significantly higher in the SHaD 
and EAD vegetation communities of the southern and eastern aspects (Figure 5). 
The percent base saturation was higher in soils under the SHaD than under the 
other vegetation communities across all topographic aspects. The interaction effect 
of vegetation and aspect was also significant for the A-horizon (p=0.011) and the 
B-horizon (p<0.001).  
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Fig. 5. Soil pH (1:2.5), available phosphorus, base saturation and cation exchange capacity 
(CEC) in A- and B-horizons in relation to topographic aspect and vegetation community 
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Variations in soil properties in relation to land 
use (Papers III & IV) 
 
Soil physical properties 
 
Soil textural fractions and bulk density showed significant variations in relation to 
land use and soil depth (p<0.001). The sand content was significantly higher in the 
topsoil layer and the clay content was higher in the subsurface layers below 0.4 m 
depth, compared with the remaining layers. With respect to land use type, sand 
and clay proportions were significantly higher in soils under native forest and 
cropland, respectively. Bulk density was lower in the native forest than in the 
other land use types (Paper IV). 
 
Soil chemical properties  

The effects of land use type and soil depth on SOC, total N and carbon-nitrogen 
(C:N) ratio were significant (p<0.001 for all variables). There was also a 
significant interactive effect on C:N ratio (p=0.019). The findings indicated that 
soils under the native forest had higher organic carbon (5.31 ± 0.27) and total N 
contents (0.59 ± 0.03) than soils under cropland (3.67 ± 0.31 and 0.40 ± 0.02, 
respectively) but the same content as the grazing land. The organic carbon and 
total N contents of the mineral soil were significantly lower in cropland compared 
with grazing land. There was a strong relationship between the organic carbon and 
total N contents of soils under different land use types: cropland +0.94; grazing 
+0.81, native forest +0.85 (p<0.001).  
 

The vertical distribution of organic carbon and total nitrogen also appeared to 
differ with depth. Irrespective of land use type, the topsoil to 0.2 m depth showed 
markedly higher contents of SOC (6.00 ± 0.29)  and total N (0.64 ± 0.03) 

compared with the 0.2-0.4 m (4.64 ± 0.27 and 0.49 ± 0.02, respectively) and 0.4-
1.0 m depths (3.66 ± 0.27 and 0.39 ± 0.03, respectively). The overall mean C:N 
ratio was higher in grazing land than in either cropland or native forest. 
 

Soil pH varied significantly across all land use types. The lowest pH value (5.20 
± 0. 11) occurred in soils under native forest and the highest (6.04 ± 0.08) in 
cropland. The soil pH in grazing land was also significantly lower than in 
cropland. With respect to depth, significantly lower pH was only observed below 
0.2 m depth in native forest and grazing land than in cropland. 
 

Exchangeable Na+ (p<0.001) and K+ (p=0.008) showed significant differences 
with respect to land use type. The lowest mean Na+ (0.06 ± 0.01) and K+ (0.47 ± 
0.09) occurred in soils under cropland and the highest under native forest and 
grazing land. The exchangeable K+ in soils under grazing land was also 
significantly higher than the content in cropland.  Exchangeable Ca2+ and Mg2+ 
differed significantly with respect to soil depth (p<0.001). Irrespective of land use 
type, the overall mean concentrations of K+ (1.09 ± 0.16), Ca2+ (9.84 ± 0.86) and 
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Mg2+ (3.62 ± 0.28) were higher in the topsoil and decreased with depth in the 
subsoil.  

 
The overall mean CEC and the percentage base saturation in the soils studied 

showed differences with respect to land use type (p<0.001) and soil depth 
(p<0.001 and p<0.015 for CEC and percentage base saturation, respectively). CEC 
values were lower in cropland (26.13 ± 1.09) than in native forest (41.98 ±1.51) 

and grazing (37.25 ± 1.01). Irrespective of land use type, CEC to 0.2 m depth 
varied significantly compared with the 0.2-0.4 m layer and the underlying 0.4-1.0 
m soil layer. The linear regression revealed the strong correlation between CEC 
and SOC (r2 = 0.66, p<0.001). Percent base saturation in soils under cultivation 
was higher (42.69 ± 2.70) than in native forest (25.67 ± 2.46) and grazing land 
(27.71 ± 1.39).  
 

Discussion  

Soil properties in relation to topographic aspect and vegetation 
community type 
 
In an earlier reconnaissance study, Andosols were reported to be the most 
prevalent soils in the Bale Mountains (Weinert & Mazurek, 1984). Andosols have 
low bulk density, large variable charge, large water storage capacity, high 
phosphate retention and accumulation of organic matter (Shoji, Dahlgren & 
Nanzyo, 1993; Delvaux et al., 2004; Satti et al., 2007). The dominance of sand in 
these soils under the EAD community in comparison with the remaining 
vegetation community types was probably the result of high mean annual 
precipitation, which selectively transported and/or leached fine fractions from this 
higher altitude vegetation community down the slopes, leaving behind sand 
fractions. Moreover, the low temperature conditions at this higher elevation could 
limit the rate of weathering processes. The high proportions of sand and silt in the 
solum suggest that the soils are less weathered, young and rich in weatherable 
mineral, ensuring a gradual release of nutrients to the soil (Yimer, 1996). The clay 
content in some of the profiles increased with depth (B-horizon), possibly due to 
clay translocation from the top layer to the layers below. Soil texture is also 
known to vary with landscape position in mountainous topography (Kreznor et al., 
1989; Tegene, 1997, 1998; Laurance et al., 1999; Rezaei & Gilkes, 2005a). This 
also holds true for the Bale Mountains, where the three vegetation communities 
investigated here were mantled on the steeper topographical positions.  
 

The bulk density was low in the A-horizon due to the high organic matter 
content and low clay content in the upper soil layers. However, the observed 
values are within the range for forest soils reported by Fisher & Binkley (2000). 
The soil physical properties studied in the present investigation exhibited variation 
as a result of dynamic interactions between microclimatic conditions, vegetation 
community and topographic aspect. High organic matter content is recognised for 
its important role in supporting plant growth through storage and supply of water 
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and nutrients, aeration and ease of penetration for roots (Schoenholtz, Van 
Miegroet & Burger, 2000; Rezaei & Gilkes, 2005a; Salako, Kirchhof & Tian, 
2006).  

 
Various studies indicate that soil carbon stocks increase with elevation in 

mountainous areas (e.g. Bolstad, Vose & McNulty, 2001). Differences along 
vegetation gradients reflect a changing balance of soil carbon inputs and soil 
carbon losses that are potentially related to changes in both abiotic (e.g. 
temperature, precipitation, potential evapotranspiration) and biotic (e.g. litter 
quality) factors (Lal, 2005; Garten & Hanson, 2006). The SOC stocks in the soils 
studied showed variations with vegetation community- and topographic aspect-
induced differences in microclimatic conditions. On the slopes of the Bale 
Mountains, where mean annual precipitation varies between 870 mm and 1064 
mm, it is likely that moisture is a less limiting factor for decomposition and 
therefore differences in temperature are more likely to give rise to differences in 
breakdown rate. Over a range of increasing moisture contents and temperatures, 
both factors lead to increasing decomposition rates, but in areas where the 
precipitation range remains small, the influence of temperature becomes more 
significant. Although factors affecting soil formation and organic matter 
accumulation (such as mineralogy, vegetation and topography) may vary 
dramatically along elevation gradients, mean annual temperature is unquestionably 
one of the most important factors controlling SOC accumulation and turnover 
(Trumbore, Chadwick & Amundson, 1996; Garten et al., 1999). Therefore, in the 
Bale Mountains one would expect the temperature to be the dominant decisive 
factor for the decomposition and turnover rates. With temperature decreasing with 
increasing altitude, lower decomposition rate is expected at the higher altitudes. 
Naturally, the amount of litter incorporated into the soil will also influence the 
amount of carbon found in the profile, and in the long-run soil C stocks will 
approach the ratio between litter input rate and decomposition rate (Andrén & 
Kätterer, 1997). Related studies have also reported an increase in SOC levels with 
decreasing mean annual temperature (Ganuza & Almendros, 2003; Lemenih & 
Itanna, 2004; Wang et al., 2004). In addition, as the soils were derived from air-
borne volcanic materials, higher SOC contents may be expected from these 
volcanic materials than in non-volcanic soils. The minerals stabilise soil carbon 
through organo-mineral complexes and provide protection through aggregate 
formation. For instance, Powers & Schlesinger (2002) observed that SOC 
concentration was positively correlated with the amount of non-crystalline clays 
(e.g. allophone, imogolite and ferrihydrite) in the high elevation volcanic soils of 
Costa Rica. The strong bonds between amorphous material constituents inhibit the 
decomposition of the majority of the organic matter (Sombroek, Nachtergaele & 
Hebel, 1993). As a whole, SOC stocks (kg C m-2) in the studied soils of the Bale 
Mountains were higher than the global average (~ 10.6 kg C m-2, Post et al., 1982) 
and comparable with the SOC stocks of the Tibetan Plateau of China (Wu, Guo & 
Peng, 2003) and with other studies (e.g. Sombroek, Nachtergaele & Hebel, 1993; 
Batjes, 1996).  
 

About 40-45% of the SOC stock in the 0-1.0 m layer of the mineral soil was 
held in the top 0.3 m of the soil. Similar studies in Brazil (Batjes & Dijksoorn, 
1999) and China (Wang et al., 2004) reported that about 50% and 40% of the 
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carbon pool to a depth of 1.0 m was stored in the top 0.3 and 0.2 m soil, 
respectively. The deep rooting systems of the vegetation and the mixing activities 
of soil fauna would supply large amounts of organic carbon deep in the soil 
profiles. In addition, the rate of decomposition is believed to be slower with 
increasing soil depth (Cole,  Innis & Stewart, 1977; Degryze et al., 2004) and/or 
most of the carbon compounds accumulated in the deep layers are most likely 
extremely resistant to decomposition (Liski & Westman, 1997). This suggests the 
potential for large amounts of CO2 to be released from the surface soil when these 
vegetation communities are deforested and converted into grazing and cropland, or 
when changes are made in forest management practices. The relative distribution 
between the topsoil and subsoil is comparable with results for similar tropical and 
subtropical soils (Sombroek, Nachtergaele & Hebel, 1993; Batjes, 1996) and 
Andosols of the Simen Mountains National Park, Ethiopia (Yimer, 1996). 

 
Total N stocks in the study areas followed a similar pattern to SOC stock 

distribution due to the fact that most nitrogen forms part of the soil organic matter 
(Ganuza & Almendros, 2003). The mean total N stocks for the 0-0.3 m and 0.3-
1.0 m soil layers for all aspects and vegetation communities were in agreement 
with the ranges for the soils of Central and Eastern Europe (Batjes, 1996), 
although there were slightly higher total N stocks below 0.3 m depth in this study. 
A C/N ratio above 12-14 is often considered indicative of a shortage of nitrogen in 
the soil (Batjes & Dijkshoorn, 1999). The higher C/N ratios in our study areas 
could be related to a lower percentage proportion of clay. According to Hassink et 
al. (1993), physically protected organic matter [SOC] has a lower C/N ratio than 
organic matter [SOC] that is not physically protected. An increasing trend in the 
C/N ratios from the SHaD to EAD vegetation communities at all aspects could 
partly be due to an increase in the mean annual precipitation and a decrease in the 
mean annual temperature along the altitudinal gradient, factors influencing the 
mineralisation of humus.   
 

The concentration of available phosphorus was higher in the southern aspect 
across all vegetation communities. The significantly higher content of phosphorus 
in the A-horizon soil of the southern aspect could be related to the faster 
mineralisation and mobilisation of phosphorus favoured by the effect of fire, as 
suggested by Weinert & Mazurek (1984), although the frequency of fire at 
different topographic aspects was not investigated in the present study. Similarly, 
a significantly higher phosphorus concentration was found in the eastern aspect 
with the SHaD vegetation community only in the A-horizon, which may be due to 
downslope leaching from soils in the upper vegetation communities. A higher 
mean annual precipitation in the eastern and southern topographic aspects may 
also have had an influence, e.g. indirectly through promoting biomass production 
and thus providing more organic material for mineralisation. The significantly 
lower levels of available phosphorus in the other topographic aspects and 
vegetation communities are probably due to increased phosphorus fixation and 
lower rates of decomposition in the B-horizon. Phosphorus adsorption properties 
sometimes vary with soil depth and increase with increasing clay content (i.e. 
larger adsorption surface area). Soils with a high clay content may have the ability 
to neutralise the acid-extracting solution and thus reduce the amounts of 
extractable phosphorus (Kamprath & Watson, 1980). Therefore, in soils with 
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similar pH values and mineralogy, phosphorus fixation tends to be higher and ease 
of phosphorus release tends to be lower in soils with higher clay contents (Brady 
& Weil, 1999). In this thesis, however, phosphorus adsorption properties of soils 
were not specifically investigated.    
 

The soils studied are characterised by medium, moderately acidic to neutral 
pH. The soil pH was significantly higher in soils under SHaD than under HESD 
and EAD. Such variations are probably the result of differences in nutrient 
cycling characteristics by the contrasting vegetation or due to the position 
occupied by the vegetation in the landscape (Dahlgren et al., 1997). Except in the 
southern topographic aspect, the soil pH showed significant negative 
relationships with altitude. Such negative relationships of pH with altitude could 
be due to the fact that increasing altitude results in increased rainfall and thus 
causes increased leaching and a reduction in soluble base cations, leading to 
higher H+ activity and manifested as decreased pH levels (Rezaei & Gilkes, 
2005b). The results from the present study are consistent with findings by Chen 
et al. (1997) in a subtropical rain forest in Taiwan and by Tegene (2000) in the 
northern highlands of Ethiopia.  

 
Almost all base cations showed differences with topographic aspect and 

vegetation community. The exchangeable cations followed the trend Ca2+>Mg2+ 
>K+>Na+ for all vegetation communities and topographic aspects. Van Breemen & 
Buurman (1998) and Sposito (1989) reported the adsorption affinity of base 
cations to the soil exchange complex to follow a similar order. The concentration 
of individual base cations elsewhere (Johnson, Ruiz-Mendez & Lawrence, 2000) 
decreased in the order Ca2+>K+>Mg2+>Na+. The dominance of Mg2+ compared 
with K+ in the studied soils of the Bale Mountains may reflect similarities in the 
parent material at all topographic aspects. The low concentrations of exchangeable 
base cations in the B-horizon compared with the A-horizon may be due to the 
effect of weathering and leaching over time (Chadwick et al., 1999) or to 
vegetation pumping bases from the subsoil. The concentrations of exchangeable 
Ca2+ and Mg2+ were higher under SHaD than under HESD and EAD, which may 
be due to Ca2+and Mg2+ redistribution from lower soil horizons to the soil surface 
(Finzi, van Breemen & Canham, 1998).  

 
CEC was significantly higher under SHaD and EAD on southern and eastern 

aspects, where there were high stocks of soil organic carbon, reflecting the large 
contribution of base cations associated with the organic matter. This result is 
consistent with other reports (e.g. Johnson, Ruiz-Mendez & Lawrence, 2000; 
Tegene, 2000; Eshetu, Giesler & Högberg, 2004) in that soils with high organic 
carbon content have a strong positive correlation with CEC.  

 
Variations in soil properties in relation to land use  

Both the soil physical and chemical properties considered in this study varied with 
land use type and soil depth. The soil textural differences might be attributed to 
natural variations in the rate of weathering and some microtopographical 
differences such as percentage slope rather than land management practices. 
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Depending on the soil type, however, the vertical distribution of soil particles 
could vary due to elluvation down the profiles affecting particle size distribution. 
Bulk densities under the native forest and in the top 0.2 m of soils were low 
because of the influence of higher soil organic matter contents. The lower organic 
carbon content was probably responsible for the higher bulk density observed in 
cropland, since the correlation between soil organic carbon and bulk density was 
highly significant. Soil compaction due to cultivation and livestock grazing is 
associated with higher bulk density (Tollner, Calvert & Langdale, 1990). 
Trampling by cattle has been reported elsewhere to cause increases in bulk density 
by compaction of the soil surface, whereas macropores are closed first by the 
mechanical impact (Taboada & Lavado, 1988; Zhang et al., 2000).   

 
The organic carbon and total nitrogen contents of the mineral soils were lower in 

the cropland compared with the grazing land and native forest, which is most 
likely the consequence of the reduced amount of organic material being returned 
to the soil system and high rates of oxidation of soil organic matter due to tillage 
and loss of organic matter by water erosion (Ohta, 1990; Aber & Melillo, 1991; 
Dalal & Chan, 2001; Jaiyeoba, 2003). Contents of organic carbon and total 
nitrogen were higher in soils under native forest as a result of higher organic 
matter accumulation due to increased above- and below-ground biomass (root 
biomass) and reduced litter decomposition rates (Reicosky & Forcella, 1998; 
Saikh, Varadachari & Ghosh, 1998). Conversion of native forest into cropland has 
depleted the SOC and total N in the upper 1.0 m soil layer by 30.9 and 32.1%, 
respectively. Related works elsewhere report a reduction of 20 to 50% 
(Schlesinger, 1986; Post & Mann, 1990; Davidson & Ackerman, 1993), 34% 
(Ellert & Gregorich, 1996) or ~ 30% (Post & Kwon, 2000) in the upper 1.0 m soil 
layer after clearing of forest and its conversion into cropland. About 58% of the 
SOC and total N contents to a depth of 1.0 m was found in the upper 0.2 m; a 
result consistent with Detwiler (1986), who reported a range of 30-80% for 
tropical soils. Cropland soils have a C/N ratio of less than 10, an indication of low 
levels of fresh organic material incorporated into the soil system (Saikh, 
Varadachari & Ghosh, 1998), or of a change in the type of organic material 
present in the soil. 

 
A change in land use from native vegetation to cropland tends to increase soil 

pH in both the surface and subsurface layers (Lumbanraja et al., 1998). In our 
study, the increase in soil pH was more pronounced in the cropland soils, most 
likely due to the traditional slash and burn practices. Burning releases nutrients in 
the ash that raise soil pH (deMoraes et al., 1996).  

 
Exchangeable Na+ and K+ were reduced by 75 and 54%, respectively, as a result 

of conversion of the native forest to cropland. The lower concentrations of base 
cations in the subsurface horizons compared with the topsoil suggest that the 
vegetation pumps bases from the subsoil to the topsoil. Furthermore, the higher 
topsoil base concentration (in spite of the lack of fertiliser amendment) might also 
be related to the slash and burn process. The results indicated that concentration of 
Ca2+and Mg2+ generally followed the pH trend, as also reported by Young & 
Hammer (2000). The range in Mg2+ concentration of the studied soils under 
different land use types was higher than the critical level of 0.5 cmol kg-1 reported 
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for both tropical and temperate soils (Landon, 1991; McAlister, Smith & Sanchez, 
1998).   

  
Changes in the CEC of soils with changes in land use were also quite 

significant. The CEC values across all land use types varied significantly due to 
differences in the amounts of soil organic carbon. Taking the fairly low clay 
content into consideration, it is obvious that the contribution to CEC by organic 
substances is critical. Topsoils under 15 years of crop cultivation showed a 36.7% 
reduction in CEC compared with the adjacent topsoils of native forest. Studies 
elsewhere (e.g. Saikh, Varadachari & Ghosh, 1998) also report soils cultivated for 
5 and 16 years showing a respective 43 and 27% decline in CEC compared with 
forest soils. The high value of CEC in the native forest soil in the present study is 
consistent with other findings showing a strong relationship between CEC and soil 
organic carbon content (e.g. Ohta, 1990; Chen et al., 1997; Osher & Buol, 1998; 
Poudel & West, 1999; Tegene, 2000; Eshetu, Giesler & Högberg, 2004). The 
percentage base saturation of the studied soils was significantly higher in the 
cropland than in the native forest. Base cations stored in trees and shrubs are 
released during burning and replace the hydrogen at the exchange sites of the soil, 
thereby increasing the base saturation. The fewer exchange sites with smaller 
amounts of organic matter and more base cations also lead to higher base 
saturation.   

 
 
Conclusions 

 
Variations in soil properties in high mountain ecosystems are linked to 
topographic attributes such as landscape position, aspect and elevation-induced 
differences in temperature and precipitation, even though the soils are derived 
from the same parent material. Changes in land use, mainly through conversion of 
native vegetation to arable land and/or grazing land, are principal anthropogenic 
factors causing variations in soil properties. Characterising soils along vegetation 
gradients at different topographic aspects and on agricultural landscapes are basic 
requirements for the prediction of soil behaviour and its response to management 
options. This thesis evaluated the spatial variability in soil properties over wide 
ranges of the Bale Mountains in relation to topographic aspect, vegetation 
community and land use. Based on the findings, the following conclusions can be 
drawn:  

 
• The investigated soils under native forest are young, fertile and rich in 

weatherable minerals and have excellent structure, low bulk density and 
definitely good porosity, favouring high moisture-holding capacities. Such 
conditions also permit good aeration and consequently deep rooting 
systems. The soils could retain all these ‘qualities’ as long as they are not 
subjected to disturbance.  

 
• Most of the soil physical and chemical properties examined in this study 

exhibited variability in relation to topographic aspect and vegetation 
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community. Soil pH, available phosphorus, percentage base saturation, 
CEC and exchangeable base cations were higher in the Schefflera-Hagenia 
(SHaD) vegetation community type. Further studies are required to fully 
identify the interactive relationships among topographic attributes such as 
aspect and landscape position, vegetation and soil properties for site-
specific soil resource management practices.  

 
• The empirical data obtained from this study show that aspect-induced 

differences in soil organic carbon stocks are highly variable between the 
vegetation communities. In the studied case of the Bale Mountains, higher 
altitudes were seen to result in a higher amount of carbon stock in 
comparison with lower altitudinal sites, suggesting that SOC and total N 
accumulations were regulated mainly by the mean annual temperature. 
Thus, aspect-induced variations in SOC can be used as an important 
parameter in prioritising mountainous areas for better ecosystem 
management practices and thereby improving the potential of soils to 
sequester more organic carbon and mitigate climate change.  

 
• Vegetation and soils can accumulate carbon, thus reducing the rate of CO2 

build-up in the atmosphere, which is responsible for climate change. 
Despite the higher SOC stocks, the soils were considered to have a 
substantial potential as carbon sinks and sources. Therefore, the vegetation 
and soils of the Bale Mountains should be protected and properly managed. 
Otherwise, changing these native ecosystems to different unmanaged land 
use practices through deforestation could result in the release of large 
amount of CO2 to the atmosphere.          

 
• Soils under natural vegetation store almost all essential nutrients, as the 

falling litter is returned to the soil system through decomposition 
processes. When converted to agricultural land, however, rapid 
deterioration in soil properties is evident, more particularly in the contents 
of organic carbon and total N. Soil structure also deteriorates; 
concentrations of exchangeable cations, CEC and pH (in the topsoil) 
decline; and bulk density increases. Losses as high as 31% of the original 
amount of SOC were observed after cultivation for 15 years. SOC 
reductions generally decrease crop productivity and alter the capacity of 
the soil to act as a sink for atmospheric CO2 and thus impact on global 
climate change. The large and relatively rapid changes in SOC with 
cultivation indicate that there is a considerable potential to enhance the 
rate of organic carbon sequestration in soil with management activities 
that reverse the effects of cultivation on SOC pools. Therefore, soil 
organic matter (carbon) and total N as key components of any terrestrial 
ecosystem should be protected and maintained through appropriate land 
resource management practices. 
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Future studies 
 
Further research is needed to address the potential of different vegetation 
community types and soils in sequestering organic carbon or above- and below-
ground carbon allocation, as well as nutrient fluxes and dynamics. Soil 
classification is in this case of secondary importance, but it is certainly still of 
scientific interest to identify the soil types in the Bale Mountains. Small changes in 
some environmental factors such as microclimate and topographic differences may 
lead to very different soil formation processes and therefore to very different soils. 
Therefore, further studies are recommended to characterise the soils over the wide 
ranges of the Bale Mountains. 
 
 On a broader perspective, consideration should be given to the unique 
vegetation in the Bale Mountains and how it can be protected, while at the same 
time allowing farmers to use small, selected areas for agricultural production in a 
way that ensures sustainability. This implies that it is important to further study 
how different agricultural systems influence the potential for sustained production. 
In such systems the incorporation into the soil of organic material produced on the 
site is of crucial importance. Promoting the use of chemical fertilisers on land with 
food production could be another alternative.  
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