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Abstract 
Chlorinated fatt y acids (CIFAs) have been found to account for a considerable portion of the 
extractable organically bo und chlorine in aquatic animals. Methods particularly suitable for the 
determination of CIFAs have relatively newly been developed, which may explain why the se 
compounds did not come to attention as a potentially hazardous environmental pollutant until during 
the recent decade. The presence of CIFAs in human tissues has not yet been reported, and it is not 
known if human cells can incorporate and metabolise these compounds. 

Recently a new halogen specific detector (XSD) has been introduced. It is described to be a 
sensitive, selective, and robust detector in the determination of halogenated pesticides. It has been 
dec\ared to be more stable and easier to maintain than other halogen selective detectors. The XSD 
operates in an oxidative pyrolysis mode and the sample compounds are converted into their 
oxidation products. When halogen-containing compounds enter the hot detector, the detector current 
will increase. CIF As have not earlier been studied by an XSD. 

The aim of this work was to study i) the XSD, connected to a gas chromatograph, in the 
determination of CIFA methyl esters (CIFAMEs), and ii) the incorporation and metabolism of 
CIF As in human cell lines, as determined by XSD detection. 

It was shown that the XSD provides a detection limit (0.2 ng of dichlorostearic acid methyl 
ester) and a selectivity «response CIFAMEs)/(response unchlorinated fally acid methyl esters» » 
10\ similar to that of the electrolytic conductivity detector (ELCD), commonly used in 
determination of CIFAMEs. Furthermore, the XSD was found to be very easy and stable to maintain 
in the analysis of CIFAMEs. 

In the determination of CIFAs obtained from human cell lines, it was established that human 
cells can incorporate dichlorostearic acid and degrade it to dichloropalmitic acid and 
dichloromyristic acid, probably through /3-oxidation. CIFAs were found both in the neutrallipid and 
in the phospholipid fraction of the cultured cells. Dichloromyristic acid was the shortest CIFAs 
detected and was found to be released to the culture medium to a higher extent than the other 
CIFAs. 

The XSD was found to be a good alternative to the ELCD in the determination of CIFAs and the 
XSD is suitable for use in continued studies of the turnover of CIF As in human cells. 
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Abstract 

Åkesson-Nilsson, Gunilla, 2000. Characterisation of chlorinated fatty acid metabolites in 
human cells ajter uptake of dichlorostearic acid, as determined by a halogen-specijic 
detector (XSD). 
Licentiate Thesis, Uppsala. 
ISSN 1403-977X. SLU Miljöanalys Rapport 2000:9 

Chlorinated fatt y acids (CIFAs) have been found to account for a considerable portion of 
the extractable organically bound chlorine in aquatic animals. Methods particularly 
suitable for the determination of CIFAs have relatively newly been developed, which may 
explain why these compounds did not come to attention as a potentially hazardous 
environmental pollutant until during the recent decade. The presence of CIFAs in human 
tissues has not yet been reported, and it is not known if human cells can incorporate and 
metabolise these compounds. 

Recentlyanew halogen specific detector (XSD) has been introduced. It is described to 
be a sensitive, selective, and robust detector in the determination of halogenated 
pesticides. It has been declared to be more stab le and easier to maintain than other 
halogen selective detectors. The XSD operates in an oxidative pyrolysis mode and the 
sample compounds are converted into their oxidation products. When halogen-containing 
compounds enter the hot detector, the detector current will increase. CIFAs have not 
earlier been studied by an XSD. 

The aim of this work was to study i) the XSD, connected to a gas chromatograph, in 
the determination of CIFA methyl esters (CIFAMEs), and ii) the incorporation and 
metabolism of CIFAs in human cell lines, as determined by XSD detection. 

It was show n that the XSD provides a detection limit (0.2 ng of dichlorostearic acid 
methyl ester) and a selectivity «response CIFAMEs)/(response unchlorinated fatt y acid 
methyl esters» » 104

, similar to that of the electrolytic conductivity detector (ELCD), 
commonly used in determination of CIFAMEs. Furthermore, the XSD was found to be 
very easy and stable to maintain in the analysis of CIFAMEs. 

In the determination of CIFAs obtained from human cell lines, it was established that 
human cells can incorporate dichlorostearic acid and degrade it to dichloropalmitic acid 
and dichloromyristic acid, probably through ~-oxidation. CIFAs were found both in the 
neutral lipid and in the phospholipid fraction of the cultured cells. Dichloromyristic acid 
was the shortest CIFAs detected and was found to be released to the culture medium to a 
higher extent than the other CIF As. 

The XSD was found to be a good alternative to the ELCD in the determination of 
CIFAs and the XSD is suitable for use in continued studies of the tumover of CIFAs in 
human cells. 

Author's address: Gunilla Åkesson Nilsson, Department of Chemistry and Biomedical 
Sciences, Kalmar University, SE-391 82 Kalmar, Sweden. 
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Objectives 

The purpose of this work was to study if the Halogen Specific Detector (XSD), 
connected to a gas chromatograph, is a suitable detector in the determination of 
chlorinated fatt y acid methyl esters. The detection limit of dichlorostearic acid 
methyl ester and the selectivity, in terms of the response ratio between the 
chlorinated and the unchlorinated species, were studied. 

The XSD was further used with the objective to study the incorporation, 
metabolism and distribution of chlorinated fatt y acids in human cell lines, 
cultured in an medium containing dichlorostearic acid. 

Introduction 

Occurrence of chlorinated fatt y acids 
Chlorinated fatt y acids (CIFAs) have been found to account for a considerable 
portion (up to 90%) of the extractable organically bound chlorine (EOCl) in 
aquatic animals (Wesen et al., 1990; 1992a; 1995; Wesen, 1995; Mu, 1996; 
Milley et al., 1997). CIFAs are bound both in storage lipids and in membrane 
lip ids (Björn et al., 1998a; Vereskuns, 1999). Well-known chlorinated 
environmental pollutants, such as PCBs, dioxins, and chlorinated pesticides 
normally contribute to on ly a minor portion « 5%) of EOCI in aquatic species 
(Lunde et al., 1976; Södergren et al., 1988; Newsorne et al., 1993). 

Several forms and isomers of CIFAs have been identified, and 9,10-
dichlorostearic acid (containing 18 carbon atoms and two chlorine atoms, on 
carbon 9 and 10) is one of those commonly found (Wesen et al., 1992b; Wesen et 
al., 1995). 

CIFAs have been found to be assimilated and transferred in the food chain 
mu ch in the same way as unchlorinated fatt y acids (Cunningham & Lawrence, 
1976, 1977abc; Vereskuns, 1999; Björn, 1999). The pattern of CIFAs in biota 
studie d tends to differ between different types of samples and seems to depend on 
the area from which the samples are collected (Wesen, 1995). High 
concentrations of CIFAs in biota have been connected to anthropogenic inputs 
such as effluents from chlorine bleached pulp production (Wesen et al., 1992a; 
Wesen, 1995; Björn et al., 1998a), which is a major source of these compounds 
(Leach & Thakore, 1977). Dichloromyristic acid (containing 14 carbon atoms and 
two chlorine atoms) was found to be the major CIFA in lobs ter, and in fish from 
remote marine waters (Milley et al., 1997; Wesen, 1995; Mu et al., 1996b; Björn 
et al, 1998a). CIFAs have also been found in several foodstuffs in the USA 
(KAN-DO Office and Pesticides Team, 1995) probably originating from 
chlorinated flour (Komo-Suwelack et al., 1983; Fukayama et al., 1986; Heikes, 
1992; 1993). 
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Determination of chlorinated fatt y acids 
Methods for the determination of trace amounts of CIFAs have relatively new ly 
been developed, which may explain why these compounds did not come to 
attention until recently. CIFAs are not persistent to the c1ean-up steps employed in 
the determination of environmental pollutants such as PCBs and DDT, but are 
destroyed or removed when the samples are treated with concentrated sulphuric 
acid. Furthermore, the electron capture detector (ECD), which is the detector most 
common ly used for analysis of persistent halogenated organic pollutants, is not 
suitable for analysis of CIFAs (Remberger et al., 1990; Sundin et al., 1992; 
Wesen et al. 1992b). The analysis of CIFAs usualIy involves extraction of the 
lipids, transesterification of the fatt y acids from glycerol esters to methyl esters, 
followed by separation by gas chromatography (GC) and detection by a halogen
selective electrolytic conductivity detector (ELCD) (Wesen et al., 1992b; Mu, 
1996; Heikes, 1993; Mu et al., 1997a) or by mass spectrometry (MS), which also 
allows for identification (Mu et al., 1996a). Consequently, MS has been an 
important technique in the identification of CIFAs (Wesen et al., 1995, Mu et al., 
1996ab; Milley et al. 1997; Vereskuns, 1999). 

Recently, a new halogen specific detector, XSD, has been introduced for the 
determination of halogenated compounds, such as pesticides and PCBs 
(Anonymous, 1998a; Cook & Engel, 1999). The Model 5360 Halogen Specific 
Detector (XSD) (01 Analytical, Texas, USA), is presented as comparable to the 
ELCD conceming sensitivity, and having several advantages over the ECD and 
the ELCD as a halogen detector (Anonymous, 1995; Anonymous, 1998a). lt is 
c1aimed to be easier to maintain than the ELCD, and to have a superior stability. 
It is also clairned to have a higher selectivity, expressed as the 
chlorine/hydrocarbon ratio, than the ECD. 

The XSD is made up of a temperature regulated reactor core, and a pro be 
assembly mounted inside the core: The reactor core consists of an anodic 
platinum coil, wrapped around and in contact with an alkali glass ceramic rod and 
a cathodic platinum bead at the end of the rod (Figure l in Paper I). A potential is 
applied over the anode and cathode and a background current is obtained, 
probably caused by thermal electrons emitted from the cathode at high 
temperatures. The mechanism for the XSD response to halogenated compounds is 
not weIl known. The XSD reactor operates in an oxidative pyrolysis mode and the 
sample compounds are converted into their oxidation products. When halogen
containing compounds enter the hot detector, the detector current will increase 
(Anonymous, 1998a). Halogen containing compounds have been explained to 
remove alkali from the surface of the ceramic rod c10se to the anode, leading to an 
increased detector current (Rice, 1951; Roberts, 1957). The production of charged 
species in the reactor is explained by positive surface ionisation, negative surface 
ionisation and thermal electron emission (Anonymous, 1998ab). Negative 
halogen ions are formed when free halogen atoms hit the alkali activated platinum 
cathode and positive ions are explained to be emitted from the glass ceramic rod, 
which is in contact with the anodic platinum coil (Anonymous, 1998a; Paper I). 
The energy released per electron transfer is supposed to generate a local 
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temperature increase followed by alarger flow of "thermal" electrons 
(Anonymous, 1998ab). The process responsible for the transfer of alkali from the 
ceramic rod to the cathode (the activation of the cathode) is not explained. 

The XSD has not before been used in analysis of chlorinated fatt y acid methyl 
esters (CIFAMEs), and one purpose of the study was to use CIFAMEs to evaluate 
the performance of the detector in comparison to the ELCD. Furthermore, a 
theoretical chemical equilibrium study was made with the purpose to determine 
the oxidation products formed in the XSD reactor, and a scanning electron 
microscope was used to determine the elemental composition of the XSD. 

Physiological effects of chlorinated fatt y acids 
Only a few studies of physiological effects of CIFAs are at hand. CIFAs have 
been indicated to affect in particular reproduction related processes (Cherr et al., 
1987; Håkansson et al., 1990; Björn et al., 1998b) but als o more general adverse 
effects (impaired cell-growth, increased ATP release, and elevated mortality of 
fish) have been suggested (H!2Sstmark et al., 1998; H!2Sstmark et al., 1999; Ewald & 
Sundin, 1993; Leach & Thakore, 1977). 

The presence of CIFAs in human tissues has not been reported, and it is not 
known if human cells can incorporate and metabolise these compounds. The 
exposure of CIF As to humans is not known, but can be expected to be lower than 
to aquatic biota (Brandt & Lindbjerg, 1997). This means that the concentration of 
CIFAs is probably much lower in human tissues than in fish tissues. 
Determination of still lower concentrations of CIFAs than in fish needs further 
development of analytical methods. However, to tell if it is possible to find CIFAs 
in human tissues, it is important to determine if it is possible for human cells to 
incorporate and metabolise CIFAs. The other pUrposes of this study, was, 
therefore, to exarnine the uptake and metabolism of CIF As in human cell lines. 

Methods 

XSD in the determination of chlorinated fatt y acid methyl esters 
(Paper I) 
To exarnine the suitability of the XSD in the determination of CIFAMEs, the 
detection limit of dichlorostearic acid methyl ester, and the selectivity, in terms of 
the (dichlorostearic acid methyl ester)/(oleic acid methyl ester) signal ratio was 
determined. CIFAMEs enriched from an earlier well-examined eel sample from 
Idefjord (Wesen et al., 1992b; Mu et al., 1996ab; Björn et al., 1998a) were 
studied by an XSD and compared to earlier ELCD studies of this eel sample. 
CIFAMEs were enriched from the eel sample according to Mu et al. (1996a). 
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Dichlorostearic acid was prepared from cis-9-0Ieic acid according to Mu et al. 
(1996a) and the corresponding methyl ester was prepared by using 20% 
borontrifluoride in methanol (Morrison & Smith, 1964). 

The XSD was connected to a GC equipped with an unpolar fused silica 
capillary column, and a manual wide bore injection technique was used. The XSD 
conditions in the determination of dichlorostearic acid methyl ester were 
optimised by selecting different detector temperatures and air flows. 

In order to better understand the function of the XSD, a used XSD reactor was 
dismantled to study the elemental composition of the detector components. The 
reactor core, ceramic rod, and jet inlet were cut to pieces. The composition of 
these pieces was analysed by a scanning electron microscope. Furthermore, the 
theoretical chemical equilibrium in the XSD was studied for the combustion of a 
chlorine-containing sample. 

Determination of chlorinated fatt y acids in cultured human cell 
lines (Paper II) 
To exarnine the possibility that CIFAs may be incorporated in human tissues, 
human cell lines were cultured in media supplemented with 9,IO-dichlorostearic 
acids, and the con tent of CIF As in the cells were studied. Two different cell lines 
were used; Intestine 407 (lNT 407), which is an epithelial cell line initiated in 
1955 from jejunum and ileum of a human embryo of about 2 months of gestation 
(Hen le & Deinhardt, 1957), and SH-SY5Y, a subclone of a human bone marrow 
metastases-derived neuroblastorna cell line SK-N-SH (Biedler et al. 1973). The 
cells were grown in monolayers in a culture medium containing 250 mg of 9,10-
dichlorostearic acidIL. The culture medium was removed after 24 hours of 
incubation and new medium, not containing any CIFAs, was added. The culture 
cell medium was then changed every fourth day. The lipids in the cells and in the 
culture medium were extracted according to the method of Bligh and Dyer 
(1959), modified by addition of KCI to ensure the complete extraction of polar 
lip ids (Folch et al., 1957). The content of CIFAs in the cells and in the medium 
was determined every see ond day by GC/XSD of the corresponding methyl 
esters. In order to determine the distribution of CIFAs in cells, the 
chloroformlmethanol-extracted lipids from the cells were separated by solid phase 
extraction (SPE), using an aminopropyl bonded phase (Bond Elut) (Kalunzy et 
al., 1985). By using elution media of different characters, neutrallipids (storage 
lipids), free fatt y acids and phospholipids (membrane lipids) can be selectively 
isolated in high yields and purities. 

The incorporation of CIFAs was also studied with a radiolabelled tracer, 1_14C_ 
dichlorostearic acid, followed by thin-Iayer chromatography with autoradio
graphic detection, to confirm the GCIXSD and SPE results. 
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Results and Discussion 

XSD in the determination of chlorinated fatt y acid methyl esters 
(Paper I) 
Factors irifluencing the XSD response 
The XSD response is dependent on a) the flow of the combustion gas, being 
either air or oxygen, through the reactor, b) the reactor temperature, and c) the 
injected amount of sample (Anonymous, 1998a, Paper I). 

In the experiment where different air flows through the detector were studied, 
it was found that the response of CIFAMEs was constant in the flow range of 10-
20 mI/min, but when the air flow exceeded 20 mI/min or was below 10 mI/min 
the response was reduced (Paper I). An explanation to the reduced response at 
higher airflows might be that the compound will remain a shorter time in the 
detector (Anonymous, 1998a). The reas on why the response also was decreased 
when the airflow became lower than 10 mI/min is not known (Paper I). 

In the experiment where different detector temperatures were studied, it was 
found that the reactor temperature was an important factor for the detector 
response. The highest response was obtained at 1100 °C (the highest temperature 
that could be selected), and it was decreased by 50-55% and 80-85%, as the 
temperature was decreased from 1100 °C to 1000 °C and 900°C, respectively. In 
the theoretical study of the chemical equilibria obtained on combustion of 
chlorine containing compounds, free gaseous chlorine CI (g) and HCI (g) were 
found as the major components (Paper I). HCI (g) is the major compound in the 
temperature range 600-900 °C (Paper I) and CI (g) is the major compound at 
temperatures above 930°C, close to the temperature selected for the XSD analysis 
(Paper I). The calculated increment of CI (g) formation as the temperature 
increases agrees with the experimentally observed increment of the XSD response 
with increasing temperature. Furthermore, CI (g) is supposed to generate the 
increased current according to Anonymous (1998a). 

The detector response to dichlorostearic acid methyl ester was shown to be 
linear in the range of 0.2-8 ng, but when larger amounts were injected, the 
detector response became non-linear, and lower than expected (Paper I). The non
linear phenomenon is possibly caused by an insufficient access to alkali atom
activated surfaces (Paper 1). 

Except for the sensitivity, another important propert y of a halogen selective 
detector is the chlorine/hydrocarbon selectivity. The selectivity in terms of the 
(dichlorostearic acid methyl ester)/(oleic acid methyl ester) signal ratio was 
decreased when the temperature increased. The selectivity was 3 x 103 at 1100 0c. 
At 1000 °C the selectivity was 10\ which was the same value as determined for 
chlorinelhydrocarbon response (Anonymous, 1998a). At 900°C the selectivity 
was »104 (no signal was recorded from 5 Jlg of injected methyl oleic acid methyl 
ester). Thus, the highest absolute response of dichlorostearic acid methyl ester 
was obtained at 1100 °C at airflow of 10-20 mI/min, but the highest relative 
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response was obtained at 900°C. The apparent advantage of performing the 
analyses at 1100 °c is refuted by the reduced selectivity at that temperature. 

The choice of ceramic rod material is important for having a sensitive and long 
lasting detector, because the halogen mediated removal of alkali from the surface 
of the ceramic rod eventually results in a lack of alkali and the ceramic rod must 
be replaced by a new one. A material that see ms to give excellent sensitivity and 
very long constant lifetime is synthetic Leucite (K30/AI20iSi02 =1/1/4) (Roberts, 
1957). The con tent of potassium, aluminium, and silica that was found in the 
ceramic rod (Paper I) agrees with the composition of Leucite. It was not 
mentioned in Anonymous (l998a) which alkali metal was used, but in 
Anonymous (l998b) sodium is mentioned as the alkali metal present. Potassium, 
instead of sodium, probably makes the detector more sensitive, because potassium 
has a lower work function, 2.30 eV, than sodium, 2.75 eV (Handbook of 
Chemistry and Physics, 1980-1981), and consequently, the difference between the 
work function of the potassium activated platinum and the electron affinity of 
chlorine will be larger. 

XSD, an alternative to the ELCD in the determination of chlorinatedfatty 
acid methyl esters 
The XSD was found suitable as a halogen selective detector in the determination 
of CIFAs (Paper I and II). The detection limit of dichlorostearic acid methyl ester 
measured at a reactor temperature of 900°C (no response of unchlorinated 
F AMEs were observed at this temperature ) and an air flow between 10 and 20 
ml/min, was determined to be 0.2 ng (at two times the noise), which is similar to 
the detection limit in GCIELCD (Wesen et al., 1992b). The selectivity in terms of 
the (dichlorostearic acid methyl ester)/(oleic acid methyl ester) signal ratio was 
determined to be» 104

, which is comparable to that of the chlorine/hydrocarbon 
selectivity of 106 with the ELCD (FarweIl et al., 1981). The detection limit of 
dichlorostearic acid methyl ester was not notably different from that (0.1 ng) 
obtained by selected ion monitoring (Sundin et al., 1992), a sensitive mass 
spectrometric technique used for the detection of CIFAMEs (Wesen et al., 1995; 
Mu et al., 1996ab). However, in such a mass spectrometric technique only known 
ions are monitored, unknown CIFAs may remain undetected. 

Another decisive part of the work in Paper I was to compare the XSD response 
to the ELCD response, by studying an eel lipid extract containing different 
CIFAMEs, an extract which has earlier been weIl studied by ELCD (Mu et al., 
1996a). The pattem of these chromatograms and the relative intensities of the 
peaks were comfortingly equal (Figure 4 in Paper I), suggesting that the XSD is 
comparable to the ELCD also in analysis of CIFAMEs that appear in a complex 
sample matrix. 

Determination of CIFAs in cultured human cell lines demands a halogen 
selective detector that has high sensitivity for CIFAMEs and high 
chlorine/hydrocarbon selectivity. Furthermore, good stability is important when a 
long series of samples is to be analysed. In order to obtain reproducible results it 
is also important to have a detector that is easy to maintain. The XSD meets these 
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demands in the determination of CIFAs in cultured human cell lines (Paper II). 
The results were reproducible, and the response of re-injected samples was almost 
the same even if it lasted 2-3 months between injections (Paper I). Furthermore, 
the stabilisation time proved to be less than two hours, which is much shorter than 
that of the ELCD and the ECD, which is in both cases is about l day. 

XSD 
3 

1 2 

c: o 
"ö 
Q) 
-.:: 

3 Q) ELCD "'C 
Q) 1 2 > 
~ 
°00 
o c... 

-I-------.,�~----~Ir--)+ minutes 
10 20 30 

Figure 1. Comparison between gas chromatograms obtained by an XSD and an ELCD 
(using an unpolar column) of CIFAMEs derived from CIFAs released from INT 407 cells 
(af ter 6 days of metabolism). Similar amounts of FAMEs from the same extract were 
injected. The peaks correspond to the (1) dichloromyristic acid- (2) dichloropalmitic acid
and (3) dichlorostearic acid methyl esters. 

The costs for running the XSD were acceptable, 10 m3 of medical air, one 
reactor core, one reactor assembly, and one O-ring were consumed in one year of 
operation, and the cost for this was about 16 000 SEK. The corresponding cost for 
the ELCD is slightly less than 10 000 Swedish crowns. However, the ELCD is 
more laborious to handle compared to the XSD, because the ELCD is a more 
complex detector than the XSD. Except for mass transfer processes over gas-solid 
interfaces (occurring both in the ELCD and in the XSD), the function of an ELCD 
additionally is based on mass transfer over gas-liquid interfaces. Less transfer 
processes and media in the XSD makes this detector easier to handle, and thus 
cheaper compared to the ELCD to maintain, when also the labour needed is 
accounted for. 
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The XSD results from the cell study were validated by subjecting a number of 
samples from the study to ELCD analysis. The relative intensities of the peaks 
were comfortingly equal in the XSD and in the ELCD chromatograms (Figure l). 

Incorporation of dichlorostearic acid in INT 407 cells (Paper II) 
In the study where INT 407 cells were grown in media containing dichlorostearic 
acid, it was found that INT 407 cells incorporated extracellular dichlorostearic 
acid (Figure 2a; Paper II). CIFAs were found both in the neutral lipid and the 
phospholipid fractions (Figure 2 in Paper II). Similar results have been obtained 
for fish by other researchers (Björn et al., 1998a; Ewald et al., 1996; Vereskuns, 
1999). Dichlorostearic acid was the predominating CIFA being incorporated, 
representing about 80% in both lipid fractions (Paper II). The presence of minor 
amounts of dichloropalmitic acid (containing 16 carbon atoms and two chlorine 
atoms) and dichloromyristic acid in the cultured cells (Figure 2a), however, 
indicates that dichlorostearic acid to some extent was metabolised by ~-oxidation 
before being incorporated in the celllipids. Free CIFAs, supposed to appear in the 
free fatt y acids SPE fraction, were not detected, or were present at very low levels 
compared to the amounts in neutrallipids and phospholipids. This result agrees 
with what is the case for normal, unchlorinated fatt y acids, which seldom occur 
free in living cells (Voet & Voet, 1995). The result of thin-Iayer chromatography 
separating the radiolabelled tracer agreed with the SPE result, concerning 
incorporation of CIF As in phospholipids (Paper II). 

Metabolism of incorporated chlorinated fatt y acids (Paper II) 
In energy production, fatt y acids are dismembered through ~-oxidation (the fatt y 
acid chain is degraded, from the carboxyl end, by the sequential removal of two
carbon units) to yield acetyl-CoA units, (Voet & Voet, 1995; Stryer, 1995). 
CIFAs may also undergo degradation by ~-oxidation (Conacher et al., 1984, 
Björn 1999, Mu et al. 1997b; Paper II). The time dependent decrease of 
dichlorostearic acid in the INT 407 cells (Figure 2a, 2b and 2c) and in the SH
SY5Y cells (Figure 7 in Paper II) toge the r with the parallei increase of 
dichloropalmitic acid and dichloromyristic acid suggested that dichlorostearic 
acid was metabolised through ~-oxidation (Paper II). Cellular metabolites shorter 
than dichloromyristic acid were not found (Paper II), which might indicate that 
further ~-oxidation was hindered. These findings agree with previous studies 
where dichloromyristic acid was found to be the shortest CIF As with an even
numbered carbon chain (Conacher et al., 1984; Vereskuns, 1999; Wesen, 1995; 
Mu, 1996; Milley et al., 1997). 
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Figure 2. Relative distribution of CIFAs in INT 407 cells and their sUlTounding culture 
medium from day O to day 6. Day O shows the relative distribution of CIFAs in the cell 
af ter 24 hours of incubation. The cul ture medium was changed day O and day 4. This is a 
compilation of the results in figure 4 and figure 6 in Paper II. 

D Dichlorostearic acid 
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Fatt y acids in storage lipids are normally metabolised completely by p
oxidation for energy production (Voet & Voet, L995). The supposed p-oxidation 
of CIFAs might be hindered due to bulkiness of halogen atoms when these "come 
too dose" to the carboxylic moiety of the molecule, (Figure 3; Ewald & Sundin, 
1993), which might explain why dichloromyristic acid was found to be the major 
CIFAs in certain aquatic animals from remote areas (Mu, L996b; Milley et al. , 
L 997) and the shortest CIF As found in the incubated human cells (Paper II). 
Another degradation pathway of fatt y acids is w-oxidation (oxidation of the "last" 
carbon atom , at the terminal , methyl end), probably an unusual fatt y acid 
oxidation pathway (Voet & Voet, 1995). The formed dicarboxylic can then be 
further dismembered by p-oxidation. Highly substituted molecules have been 
found to be initially catabolised through w-oxidation (Gurr & Harwood, L 996). 

Figure 3. A supposed, stericaIly hindered p-oxidation of 5,6-dichloromYlistic acid (a 

metabolite, which is supposed to be formed by p-oxidation of 9, IO-dichlorostearic acid). 
The active site of the enzyme (mm'ked as red scissors) cannot reach the p-cm'bon and Cllt 
the bond (mm'ked in red) . 

The relative distribution of CIFAs in the phospholipid fraction and the neutral 
lipid fraction of the lNT 407 cells was changed af ter further incubation (Figure 9 
in Paper 11). Initially, dichlorostearic acid was the predominating CIFAs in both 
membrane and storage lipids. Af ter 6 days , the amount of dichloropalmitic acid 
was significantly higher (Two-sided paired Student's t-test) than the amounts of 
dichlorostearic acid and dichloromyristic acid in the phospholipid fraction , in 
opposite to the neutral lipid fraction , where the amount of dichloropalmitic acid 
was significantly lower than the amounts of dichlorostearic acid and 
dichloromyristic acid af ter 6 day s (Figure 9 in Paper II) . ClFA bound in storage 
lipids are indicated to have a turnover rate different from that of CIFAs bound in 
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membranes, which agrees with earlier studies of fish lipids (Mu, 1996; Björn, 
1999). Changes in the fatt y acid profiles of membranes can affect the maintenance 
of the normal cellular functions, because the ratio between e.g. saturated and 
unsaturated fatt y acids in membrane phospholipids is an important factor in 
determining membrane fIuidity and permeability (Stubbs & Smith, 1984). The 
incorporation of CIF As in the membrane might be the explanation for the 
increased release of ATP observed in cells exposed to dichlorostearic acid (Ewald 
& Sundin, 1993). 

CIFAs, especially dichloromyristic acid, were found to be secreted into the 
culture medium by the INT 407 cells (Figure 2b, 2c and 2e) and the SH-SY5Y 
cells (Figure 8 in Paper II). It seems reasonable to suspect that the presence of 
CIFAs above a certain level in a cell might hamper normal cellular functions 
(Cherr et al., 1987; Håkansson et al., 1990; Björn et al., 1998b; Vereskuns, 1999). 
The release of dichloromyristic acid in both cell lines might suggest that the 
mechanisms responsible for the cellular removal of CIFAs is widely distributed 
among different cell types, and possibly of general importance in the cellular 
treatment of xenobiotic fatt y acids (Paper II). 

Conclusion 

The XSD is a good alternative to the ELCD in determination of CIFAMEs 
released from complex samples. The XSD is stable, simple to handle and not too 
expensive to maintain. The XSD can be used e.g. in continued studies of the 
tumover of CIF As in human cells. 

Human cells can incorporate extracellular dichlorostearic acid, and degrade it 
to dichloropalmitic acid and dichloromyristic acid, probably though ~-oxidation. 
Dichloromyristic acid tends to be the shortest CIFA formed, and is released to the 
culture medium. 
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