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Functional Prediction of Genetic Variation within and between
Two Chicken Lines Selected for Body-Weight - With
Bioinformatic Methods

Abstract

Identifying genetic variation influencing complex traits is often a big
challenge. Paul Siegel at the Virginia Polytechnic Institute and State University
(USA) initiated a breeding experiment in the 1950s, where White Plymouth
Rock (WPR) chicken lines were bi-directionally selected for body-weight at 56
days of age. After more than 50 generations of selection, the High Weight
Selected (HWS) line is more than 10-fold bigger than the Low Weight Selected
(LWS) line. These HWS and LWS lines have become a good model to
investigate the genetic mechanisms underlying the body weight changes
under long-term selection. Moreover, as a result of the recently rapid
development of next generation sequencing technologies, with high
throughput, a large number of genetics polymorphisms have been identified
and can be used to explore the genetic factors underlying complex traits. In
this thesis, we used NGS resequencing data and several leading databases to
search for genes and mutations within previously mapped epistasic QTL
regions, which could explain the differences in growth-related traits between
the HWS and LWS lines. In consequence, a number of genetic factors have
been detected and provide a good basis for further experimental investigation
in relation to the observed effects on growth and other metabolic traits.
Additionally, we also developed three softwares, which can be useful in the
process of identifying genes and variations with phenotypic effects. One of
these softwares were also applied within genetic studies in this thesis. Our
softwares could be widely applied in many species and are likely to benefit
many other research projects.
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substitution, physico-chemical property, protein motif, expression phenotype.
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1 Introduction

Since humans started to domesticate animals, chicken has been
selectively bred for thousands of years, which has resulted in a
diversity of phenotypes. Historically, chicken has been widely used as a
good source for investigating the genetic basis of phenotypic traits. One
good example is the two divergent chicken lines for body weight
developed by Paul Siegel at the Virginia Polytechnic Institute and State
University (USA), where two chicken lines from a single founder
population of White Plymouth Rock chickens were divergently selected
for body weight at 56 days age. After 50 generations of selection, the
High Weight Selected (HWS) line was more than ten-fold bigger than
the Low Weight Selected (LWS) at 56 days of age.

A number of metabolic traits to the selection response have shown
significant differences between the HWS and LWS lines, for example, a
remarkable divergence in appetite, where the HWS lines are
hyperphagic whereas the LWS chickens have a reduced appetite
including some chickens that never start to eat (Noble et al., 1993).

Previous studies have shown that the selection responses are
caused by many quantitative trait loci (QTL), where each of them
contributes with a small effect (Jacobsson et al., 2005, Wahlberg et al.,
2009; Besnier et al. 2011), as well as by strong epistasis (Carlborg et
al., 2006; Pettersson et al.,, 2011). A great challenge is to explore the
genetic architecture underlying the selection response.

With the rapid development of technologies for high throughput
sequence analysis like Next Generation Sequencing (NGS) methods,
identifications of genetic polymorphisms have been dramatically
accelerated. The studies in this thesis include the use of resequencing
data and available bioinformatics resources as well as software
development for functional prediction to unravel the genetic



mechanisms that contributes to the observed selection responses in
the HWS and LWS lines.
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2 Background

This thesis identifies the genetic elements and structures responsible
for two chicken lines divergently selected for juvenile bodyweight.
New methods and software were also developed as described in this
thesis, to facilitate the identification of genetic factors underlying the
phenotypic differences between HWS and LWS lines.

2.1 The Chicken as an Animal Model

Animals used for breeding have been selected based on their
phenotype for 9,000 - 12,000 years (Clutton-Brock, 1995). This
approach, therefore, is called selective breeding. However, it is difficult
to evaluate the genetic factors influencing long-term artificial selective
breeding for a quantitative trait (Dunnington and Siegel 1985). As
chicken has experienced the long time selection and resulted the
diversity of phenotype, it constitutes a good model to investigate the
genetic variances underlying phenotypic traits.

In this thesis, White Plymouth Rock chicken lines divergently
selected for body-weight were used as a model to investigate genetic
mechanisms underlying growth-related traits (Dunnington and Siegel,
1996, Dunnington et al., 2013, Zhao et al., 2013).

2.1.1 The Chicken Model for Metabolic Traits - Body Weight

Body weight has been considered as a trait with moderate heritability.
It has been widely applied as the benchmark of selection experiments,
which explores both direct and correlated genetics changes in artificial
selective populations (Dunnington and Siegel 1985).

In one such selection experiment, managed by Paul Siegel since the
1950s, bi-directional selection for body-weight at 56 days of ages was
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carried out with White Plymouth Rock chickens (Dunnington and
Siegel, 1996). After more than 50 generations of selection, the
phenotype of two chicken lines have undergone a radical change,
where the HWS line has become more than 10-fold bigger than the
LWS lines (Marquez et al., 2010, Dunnington et al., 2013, Zhao et al,,
2013).

Figure 1. Two extreme chicken lines through artificial selection for body-weight at
eight weeks age have been created at Virginia Tech, USA since 1950’s. After 50
generations selection, the HWS line (right) has become more than ten-fold bigger than
LWS line. (Marquez et al., 2010, Dunnington et al.,, 2013, Zhao et al,, 2013).

Variation between the HWS and LWS lines has been observed in a
number of metabolic traits of relevance for the selection responses of
body weight, including remarkable differences in appetite, where HWS
chickens are hyperphagic whereas LWS chickens have a reduced
appetite, including some chickens that never start to eat. This makes
these chicken lines an interesting model for e.g. anorexia (Dunnington
and Siegel, 1996, Newmyer et al., 2010, Newmyer et al., 2013, Xu et al.,
2011). Moreover, the antibody response to SRBC via either
intramuscular injections or intravenous injections has shown
significant differences between two lines (Boa-Amponsem et al., 1998;
Paramentier et al., 1996; Pinard van der lann et al., 1998). The findings
demonstrate that the immune system has undergone the negative
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response under selection for increased growth, which implies the
resources are on competition between growth and immune system
(Jacobsson et al., 2005).

2.1.2 Mapped QTL Regions with effects on Chicken Body Weight

Previous studies have demonstrated that the selection response in the
Virginia chicken lines is caused by many quantitative trait loci (QTL),
each of which contributes a small effect (Jacobsson et al, 2005,
Wahlberg et al., 2009), as well as significant epistasis (Carlborg et al,
2006). Moreover, interacting loci on chromosomes 2, 3, 4, 7 and 20 that
were previously associated with epitasis QTL have been confirmed in a
recent fine mapping study using the Virginia chicken model
(Pettersson et al., 2011). Identifying the genetic mechanism underlying
these interactions could considerably advance our understanding of
biological evolutionary changes during the selection.

2.2 Next Generation Sequencing

The power of next generation sequencing technology has been widely
used to address the diverse biological issues with unprecedented
progress. The impressive throughput of the new sequencing
technology is providing rapid improvement in areas of the analysis of
genome alterations, gene expression and DNA modifications, as well as
a constantly growing number of other genetic applications.

NGS technologies include a number of methods that are
distinguished basically according to template sequence preparation,
the length of reads, and data analysis. NGS can provide higher
throughput, accuracy, and a reduced cost compared with previously
prevalent Sanger library sequencing. Shotgun, paired-end and mate-
pair procedures are often used to further increase the NGS efficiency.

2.2.1 Shotgun Library Sequencing

The Shotgun library sequencing was first developed from the classical
Sanger sequencing method, which was the most advanced technique
for genomes sequencing between 1995 and 2005. The strategy in
shotgun is still applied in the current next generation sequencing such
as 454, lllumina and SOLID sequencing, but produces shorter reads (25
- 500 bp) with many hundreds of thousands or millions of reads in a
relatively short time. (Karl et al, 2009) Thus, the coverage of target
sequences increased dramatically in comparison with Sanger
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sequencing, but the assembly process is much more computationally
expensive.

In Shotgun sequencing library preparation, the amplified genomes
are first sheared into many small pieces (25 - 500bp) at random. The
cutting fragments contained different ends. With enough coverage, the
overlapping ends of different fragments are able to assemble into a
continuous sequence across the entire the genome (Figure 2).

The new Shotgun sequencing of NGS, uses the parallel sequencing
system with significantly more coverage and greater throughput than
traditional Sanger sequencing, enabling sequencing of a whole genome
in a relatively short time with unprecedented accuracy (Metzker and
Michael, 2010).

The chicken genome resequencing data used in this thesis were first
generated by shotgun sequencing, where 35 bases per read with ~5X
depth coverage in AB SOLID one fragment library was performed for
each chicken line.

Amplified genomic DNA

\ Fragments (25 — 500 bp)

ACGTGGATCGTACTGATCGTAC

Figure 2. Schematic overview of Shotgun sequencing (based on the figure at
“http://en.wikipedia.org/wiki/Shotgun_sequencing”).
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2.2.2 Paired-end library sequencing

Paired-end reads are a pair of fragments coming from each end of a
stretch of DNA sequence. The distance between the two ends is defined
by the user allowing flexible sizes, for example, Illumina Genome
Analyzer sequencing (200 - 500 bp). In addition to sequence
information, the high precision alignment is provided by both reads
with the long-range positional information.

One of the prevalent platforms to generate paired-end sequencing
library is Illumina Genome Analyzer. In the Illumina paired-end
sequencing library preparation, the amplified genome is first sheared
into multiple fragments in 200-500 bp at random. Next, the fragments
with attached adaptors are denatured to single strands DNA and
hybridized to the flow cell panel, where the captured sample DNA is
undergone the bridge amplification to generate a clonal cluster.

Next, PCR primers (SP1 and SP2) were attached to each DNA
fragments and provide sites for known sequence for sequencing
process by synthesis (Figure 3). The sequencing is preformed by four
kinds of nucleotides (ddATP, ddGTP, ddCTP, ddTTP), which contain
different cleavable fluorescent dye. The final libraries consist of two
short DNA segments with originally designed distance (200-500 bp).

17



Amplified genomic DNA

/ \ / \ Fragments (200 - 500 bp)

Ligate adaptor and denature
to a single strand

A2

A2 777

Generate clusters
Al

SP1 Sequence both ends

Figure 3. Schematic overview of Paired-End sequencing in Illumina (based on the
figure at http://professionalfarmer.github.io/blog/page2/)

2.2.3 Mate-Pair library sequencing

Mate-pair library sequencing is also called long-insert pair-end
sequencing, which generates the libraries with insert from 2 kb to 5 kb
in size. It is useful for a number of applications such as De Novo
sequencing and structural variant detection and can also be more
informative than the standard paired-end sequencing due to its long
insert size.

One of the typical platforms to generate mate-paired library is
[llumina Genome Analyzer. In the Illumina mate-paried library
preparation, the amplified genome was sheared randomly into
fragments in size 2-5 Kb (Figure 4). Next, the fragments are labelled
with biotin at each end and then circularized. The non-circularized
fragments will be cleared away by digestion. The circularized
fragments are sheared into segments with size-selection (400-600 bp).
The DNA segments ligated with biotin labels, which are corresponding
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to the ends of the original DNA fragments, are affinity purified. The
labelled DNA segment is then added to the adapter sequences and
denatured to single strands DNA that subsequently were used to
perform the steps of generating clonal cluster and resequencing with
tailed PCR primers (SP1 and SP2) (described above in paired-end
section 2.2.2). The final libraries contain two short DNA segments with
originally separated by several kb.

In this thesis, the part of genome re-sequencing was carried out by
using mate-pair libraries, where 50 bases per read with ~7X depth
coverage was performed in each chicken line.

Fragment (2 -5 kb)

Yo Biotinylate Y

e
/ \t\\ / \ Fragments (400 - 600 bp)
v

Enrich Biotinylated fragments

Ligate adaptor and denature
to a single strand

A2

*
M
s
— %
M
Z
7
i

SP2

Sequence both ends

Figure 4. Schematic overview of Paired-End sequencing in Illumina (based on the
figure at http://professionalfarmer.github.io/blog/page2/).
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2.3 Protein Analysis

Proteins are large biological molecules as a major source of energy to
participate in every biological processes including gene regulation,
signal transduction, replicating DNA, catalyzing metabolic reaction and
etc.

2.3.1 Predicting the Effects of Amino Acids Substitutions

The primary distinction between proteins is based on their sequence of
amino acids, which usually initiate the folding of a protein into a
specific three-dimensional structure that is critical for the protein
function. Recently, the development of new tools for whole genome
sequencing, such as NGS technologies, has resulted in a rapid
progression of the identification of nsSNPs that cause amino acid
substitutions (AAS). AAS have been proven to have a large impact on
the corresponding protein and be associated with most of genetic
variances known to cause disease in human and other species
(Hamosh et al, 2005). However, experimentally characterizing the
impact of AAS on protein function is time-consuming and expensive.
Thus, a computational method would be a feasible option to help
research prioritize AASs for additional study.

Many of the available AAS predictions methods are based on the
assumption that mutations influencing the corresponding protein
function are highly likely to occur at evolutionarily conserved sites.
Widely applied tools are, for example, SIFT (Ng and Henikoff, 2002; Ng
and Henikoff, 2003; Ng and Henikoff, 2003) and PolyPhen (Stitziel et
al., 2003; Stitziel et al., 2004). SIFT is based on sequence conservation
and position-specific scoring matrices with Dirichlet priors, whereas
PolyPhen uses sequence conservation and protein ternary structure to
model amino acid substitution sites combined with SWISS-PROT
annotation (Ng and Henikoff, 2006). However, for evolutionary-distant
proteins, the degree of sequence conservation is difficult to evaluate
due to a limited amount of orthologous sequences, whereas alternative
sources such as physicochemical properties of amino acid could be
valuable for functional prediction of AAS.

In this thesis, we developed PASE, a software for predicting the
effect of AAS on the hosting protein based on the changes of physico-
chemical properties. For this purpose, seven physico-chemical
properties were imported from the AAindex database based on a
previous study (Rudnicki et al., 2004), which gives every amino acid a
unique profile. AAindex is the numerical indices database, where
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various physico-chemical and biochemical properties of amino acids
are collected from experimental characterization and published
literature and represented by a set of numerical values (Kawashima et
al., 2008). Moreover, the information obtained from PASE can also be
combined with knowledge about sequence conservation to further
improved functional predictions.

2.3.2 Prediction of Protein functions

Rapid development of high throughput sequencing technologies, such
as NGS, has resulted a large number of newly identified proteins. Many
protein sequences have never been experimentally characterized their
cellular function due to the laborious and expensive wet-lab
experiment. However, further development of computational methods
for protein sequence analyses can enable protein predictions with
increased efficiency.

Protein function prediction methods are consistently based on the
information of data-intensive sources, including amino acid sequence
homology, protein domain structures, text mining of publications,
phylogenetic profiles, and protein-protein interactions. Thus, methods
of protein function prediction could be sorted into the following four
categories: (1) homology-based function prediction, (2) structure-
based function prediction, (3) genomic context-based function
prediction and (4) sequence motifs-based function prediction.

The most widely applied method is homology-based function
prediction, such as BLAST, which has conventionally relied on
detecting similarities between a query sequence (new sequence) and
protein sequences in databases with known functions and uses
statistical score as an assessment of the validity of the prediction.
However, this approach has a failure rate between 20 - 40 % in de novo
sequenced genomes (Letovsky and Kasif, 2003).

The structure-based function prediction is based on 3D protein
structure similarity between a query sequence and sequences with
know function. The Protein Data Bank (PDB) database (Berman et al,
2000) is currently the largest protein 3D structure database. The
prediction of many programs, such as FATCAT and DeepAlign, are
based on scaning an unknown protein structure against the PDB
database and report similar structure (Ye et al., 2004). However, due to
the inadequate sources of protein 3D structure, the application of this
approach is inherently limited.
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The genomic context-based function prediction relies on some types
of correlations between a query protein and proteins with annotated
functions. Many of these methods are based on the observation of
proteins sharing the same pattern. For example, two or more proteins
sharing the same signal transduction pathway in many different
genomes are most likely to have a functional link (Sleator et al., 2010;
Eisenberg et al.,, 2000).

The sequence motifs-based method is based on finding annotated
protein motifs within a query sequence, providing new evidence for
similar functions. A protein motif, shorter signatures known as motifs,
is conserved and repeating patterns in amino acid sequences that are
presumed to have an independent biological function.. The
development of protein motifs databases such as Pfam (Protein
Families Database) (Finn et al, 2010) and PROSITE (database of
protein domains, families and functional site) (Sigrist et al, 2010) has
facilitated the application of this approach. The development of the
Profat software for identification of functionally related proteins based
on repeat motif sequences is presented as a part of this thesis. Once
such a group of functionally related proteins are identified, the
evolutionary distance of the non-motif part of their sequences is
computed and the function of the unknown protein assessed. Profat
can be applied to the proteome-wide studies, which can be more
sufficient than tools requires 3D protein structures. Profat also has a
broad applicability to evolutionary-distant species, where homology-
based function prediction may not be effective due to the limited
homology sources.

2.4 Parallelizing computing

Parallelizing computing is a form of high performance computing,
where many calculations are performed simultaneously. The principle
of parallelizing computing is that large tasks can often be divided into
smaller segments, which are then done concurrently - in parallel. The
parallelizing computing has a wide application in bioinformatics areas,
including analyzing the data of NGS, BLAST searching and massive
biology data mining.

2.4.1 Multiple-Thread Computing

Multiple-thread computing is one of rudimentary forms of parallelizing
computing. Multithreading is the ability of a program or an operating
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system process to handle multiple requests without having multiple
copies of the running program in the computer.

On a single processor computer, the multi-threading is generally
implemented by time division, where the processor switches between
threads at any given time. AS this switching action occurs extremely
frequently, the user perceives the threads or tasks as running at the
same time. On a multiple processor computer, threads processing can
be truly synchronal, where every processor or core executes a separate
thread simultaneously. Computer with tens of thousands of "off-the-
shelf" processors (Figure 5) are conventionally called the
supercomputer. It has been widely applied to perform massively
parallel computing across many application domains in science
including quantum mechanics, applied physics, molecular modeling,
mathematical modeling and bioinformatics.

In this thesis, we used two supercomputers (Lindgren in Royal
Institute of Technology and UPPMAX in Uppsala University) to perform
the parallelizing computing to evaluate the prediction accuracy of
Profat (Paper IV) and part of analyzing re-sequencing data of NGS
(Paper I and II).
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Figure 5. Swedish fastest computer - Lindgren. No.9 in Europe and Nr. 31 worldwide on
June 2011 Top 500 list (Photo: Xidan Li).

2.4.2 GPU Computing

The computing using a Graphics Processing Unit (GPU) through a
Central Processing Unit (CPU) is called GPU computing. GPUs were first
introduced by NVIDIA in 2007, which currently is widely used to
accelerate performances in many computation-intensive areas , for
example science, engineering, and enterprise applications., In
comparison with a CPU, a GPU consists of thousands of smaller, more
efficient cores, which was designed to managing multiple tasks in
parallel (Figure 6).

Several bioinformatics software are already implemented with GPU
computing, such as CUSHAW (parallelize aligning the multiple
sequences with GPU), GPU-BLAST (BLAST search with GPU) and GPU-
HMMER (Parallelized local and global search with profile Hidden
Markov models with GPU). Thus, developing the new versions of
software listed in this thesis by GPU computing will be of interest in
future study, which will maximize the efficiency of performances.
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CPU

VS.

GPU

Figure 6. The comparison of a CPU panel with a GPU panel (based on the figure at:

http://www.video-stitch.com/gpu-cuda-technical-insights/).
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3 Aims of the Thesis

The overall aims of the thesis were to:

» use available SNP chip and genome re-sequencing data in
previously fine mapped chromosome regions to reveal genetic
architecture that contributes to the phenotypic differences between
HWS and LWS chicken lines.

» develop efficient computational methods, algorithms and tools for

identification of mutations, genes, proteins and pathways
underlying phenotypes of interest.
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4 Summary of Studies

This thesis is based on studies described in five papers. Paper [ and II
focus on identifying the genetic variances affecting the phenotypic
differences between two divergently selected chicken line on body
weight. In the studies presented in the papers IIl IV and V, my
colleagues and I developed three softwares (PASE, Profat and DIPT),
and PASE used for the functional prediction of AAS in paper I and II.
Profat and DIPT could also be used for functional evaluation of genetics
variants. The software developed in thesis was designed to be widely
adaptive and could be feasible for many other research projects.

4.1 Paperl

The paper I is the first of the two papers that detects the genetic
variances corresponding to the phenotypic differences between HWS
and LWS chicken lines. Previous study using an advanced inter-cross
line has identified the epistasis pattern between QTL regions on
chromosome 2, 3, 4, 7 and 20 (Pettersson et al, 2011). The aim of this
study is to identify the genetic mechanism underlying these
interactions, which would make a valuable contribution to our
understanding of evolutionary changes during selection.

4.1.1 Materials and Methods

Mapped epistasic QTL regions to be explored

The epistasis QTL regions were extracted according to the result of
previous study (Pettersson et al., 2011), where five growth-related
QTL regions (Growth2, Growth4, Growth6, Growth9, and Growth12)
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were scanned by the same dataset, and each of these regions was
performed as a conditional locus in turn. Table 1 shows that the
regions demonstrate the epistasis pattern with statistical significance
threshold 95%, where the entire population (HWS and LWS) was as
the genetic backgrounds.

Table 1. The coordinates and sizes of the mapped epistasis QTL regions.

Chromosomes Start (Mbp) Stop (Mbp) Size (Mbp)
2 57.8 60.1 2.3
3 24.5 28.8 4.3
3 28.8 33.9 5.1
3 34.3 39.0 4.7
3 445 47.1 2.6
3 49.7 63.1 13.4
3 66.7 68.0 1.3
4 1.4 41 2.7
4 6.8 11.9 5.1
7 16.9 37.4 20.5
20 7.1 9.3 2.2

Genome resequencing of pooled population-samples and SNP-calling

Genome resequencing experiments were performed in two separate
runs using DNA pools samples from the HWS and LWS lines. The data
from two runs were combined to accumulate the re-sequencing
coverage in order to promote the accuracy of the SNP identification.

At first run, DNA samples are from two pools of genomic DNA,
where each pool included seven males and four females. Genome was
re-sequenced using the ABI SOLID one fragment library with 35 bases
per read on each pool, where ~5x depth coverage was obtained. At
second run, each pool of genomic DNA samples contains eight
individuals. The ABI SOLID mate-pair libraries with 50 bases per read
were applied, where ~7X depth coverage was achieved in each line. At
final, the re-sequencing datasets from the two rounds of sequencing
were combined for later SNP calling based on a total of about 12X
depth coverage in each line. The MOSAIK software (Lee et al, 2013)
was applied to perform the sequence assembling, where the RJF
genome was used as the reference sequence. The SNP-calling was
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implemented by the GigaBayes software, a newer version of PolyBayes
(Marth et al., 1999).

Identification of candidate SNPs, genes and epistasis pattern in
previously mapped QTL regions

At first stage, SNPs between HWS and LWS lines in epistasis QTL
region were detected from re-sequencing data. The Variant Effect
Predictor (VEP) (McLaren et al., 2010) from Ensembl database (Flicek
et al, 2014) was used to annotate newly discovered SNPs on known
Ensembl genes.

Next, identified SNPs on genes were here filtered out with the
greatest allele frequency differences. Moreover, for SNPs detected in
coding regions as non-synonymous mutations, we used PASE to
evaluate their effect to the hosting protein function according to the
changes of physico-chemical properties of amino acid (Li et al,2013).

Further, each gene was scanned to see if any occurred in a growth
related pathway, using the KEGG pathway database (Kanehisa et al.,
2014). If two or more genes from different QTL regions occurred in the
same growth-related pathway, they were listed as possible candidate
genes for the non-additive interaction observed from the QTL study.

4.1.2 Results and Discussion

In total, 230 SNPs in CpG island, 16 SNPs in UTR region, 8 SNPs in
splicing sites and 16 Non-synonymous SNPs have been detected, which
are located within 11 epistasis patterns.

The candidate SNPs in the QTL region of chromsome 7 have been
detected in all 11 epistasis patterns. This result is consistent with
previous predictions (Pettersson et al, 2011; Carlborg et al., 2006),
where the QTL in chromosome 7 has interactions with the QTL in
chromosome 2,3,4 and 20 and. Moreover, the candidate SNPs from the
QTLs in chromosome 3 and 7 (table 3) are involved in 10 of 11
epistasis patterns, which imply that the interaction between
chromosome 3 and 7 may contribute to a large effect to the phenotypic
differences between HWS and LWS lines.
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SNPs calling from 12X genome re-
sequencing in each of the HWS and
LWS lines

Annotation of newly discovered SNPs in
known Ensembl genes in mapped
epistasis QTL regions by VEP

Filtering out SNPs with high allele
frequency difference between the HWS
and LWS lines.

Predicting nsSNP effects using PASE

Identification of growth-related
pathways for all genes containing
candidate SNPs

Identification of candidate epistasis
patterns.

Figure 6. The process to identify the epistasis pattern for phenotypic differences
between the HWS and LWS lines.
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4.2 Paperll

In addition to Paper I, the study presented in Paper II also revealed
genetic polymorphisms which may contribute to the differences of
phenotypic traits between two chicken lines that have been
divergently selected for body weight at 56 days age.

Previous studies have mapped several QTL regions using an F2
inter-cross between the HWS and LWS lines (Jacobsson et al., 2005)
and an advanced inter-cross line to confirm and narrow down the QTL
regions (Besnier et al., 2011). The aim of the study presented in Paper
Il was to identify genetic elements underlying these QTL regions. In
this study, we also developed a bioinformatics strategy to explore
already identified QTL regions to identify candidate genes for growth
trait in chicken.

4.2.1 Materials and Methods

Mapped QTL regions to be explored

Seven QTLs on chromosomes 1-5, 7, and 20 have been previously
mapped on the selection of body-weight trait from generation 41
(Jacobsson et al., 2005; Besnier et al.,, 2011) (Table 2).

Table 2. Fine-mapped growth QTL regions with significance (Ahsan et al. 2013 and
Besnier etal. 2011)

Chromo- Region Size
some QTL name Start (Mbp) End (Mbp) (Mbp)
1 Growth1 C1G1 169.9 181 11.4

2 Growht2 C2G2 47.9 65.4 17.5

3 Growth4 C3G4 24 68 439
4 Grwoth6 C4G6 1.3 13.5 121

5 Grwoth8 C5G8 33.6 39 5.3

7 Grwoth9 C7G9 10.9 35.4 24.5
20 Grwoth12 C20G12 7.1 13.8 6.7

Individual genome-wide 60K SNP chip genotyping

Twenty individuals from each of the high and low lines at generation
41 have been genotyped with the 60K SNP chip in previous study
(Marklund and Carlborg, 2010). These genotype data were used to
estimate the SNPs allele-frequency differences between the HWS and
LWS chicken lines.
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The genome re-sequencing of pooled population-samples and SNP-
calling has been described in Paper I section (see above).

Genetic divergence analysis using the flanking-SNP-value method in re-
sequencing data

We used previously developed method the flanking-SNP-value (FSV)
(Marklund and Carlborg, 2010) to estimate the genetic divergence
between HWS and LWS lines. The principle of FSV is computing the
allele frequency differences between two lines for each SNP and its
flanking SNPs in both directions within an interval, where SNPs were
assumed to have a high degree of linkage disequilibrium. FSV value is
computed as,

N Np |cL H
Yo H|sH_ sk (Zj=1|5d--5d-|)
FSV — ( 1=1|"% l|) X J ]
H Ny,

where Sg. and Séi indicate the proportion of reads in HWS and LWS
lines respectively for SNP at position c; likewise, ScLij and S*, represent
the same component for SNP at position d; Ny and N, are the total
number of reads proportion of SNPs within flanking regions in the
HWS and LWS lines, respectively.

A combined scores for prioritizing the previously mapped QTL regions

To narrow down the mapped QTL region in order to facilitate
identifying the candidate genes and SNPs, we developed a
bioinformatics strategy, which was represent as a combined data score
(CDS),
CDS = {[( FSVscore + SNPchip allele freq.)/2]

+ ( Normalized score of QTL_Model_B)}

/2
where the FSVscore represents the genetics divergence between two
chicken lines; SNPchip allele freq. indicates the allele frequency
differences based on the individual 60K SNP chip genotyping;
Normalized score of QTL_Model_B represents the effect of each SNP
in the previously mapped QTL regions.

Identification of candidate genes and SNPs in previously mapped QTL
regions

We first used the CDS scores to narrow down previously mapped QTL
regions. Next SNPs identified between HWS and LWS lines from 12x
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genome re-sequencing were annotated on known Ensembl genes in
prioritized QTL regions by VEP (McLaren et al., 2010).

Genes containing candidate SNPs were filtered out with growth-
related annotation from DAVID database (Huang et al, 2009).
Moreover, we used PASE to evaluate the effect of candidate nsSNPs to
the hosting protein function according to the changes of physico-
chemical properties of amino acid (Li et al., 2013).

In consequence, several most promising candidate genes and SNPs
are identified in the prioritized QTL regions (Table 3).

Narrow down the previously mapped
QTL regions using CDS scores

12X genome re-
sequencing in each
of the HWS and LWS
lines

Annotated SNPs on known genes in
prioritized QTL regions by VEP

Extract growth-related genes annotated

from DAVID database

Predict nsSNPs effect using PASE

Identification of candidate genes and
SNPS

Figure 7. The workflow to identify the candidate genes and SNPs corresponding to the
phenotypic differences between the HWS and LWS lines.

4.2.2 Results and Discussion

In this study, we collected several top popular databases, re-
sequencing data of NGS and SNP chip, previously developed methods
and mapped epistasis QTL regions to systematically evaluate genetic
variants based on their presumed effect on gene function and
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relevance for growth. In consequence, 10 candidate SNPs are detected
to be related to the phenotypic differences between HWS and LWS
(Table 3). Three of ten candidate SNPs are detected in QTL of
chromosome 7, which implies QTLs in chromosome 7 is the key region
to regulate the phenotypic differences. It is consistent with previous
findings (Carlborg et al, 2006). Moreover, the SNP (22711910 in
chromosome 7) in the glucagon was one of strongest candidate
mutations. Glucagon has been well described to have effect on appetite
(Jacobsson et al., 2005), a trait for which HWS and LWS lines show a
striking difference.

In conclusion, our results can be used for further verification and
experimental evaluation to improve our understanding of genetic
regulation of growth-related traits.
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Table 3. Candidate mutations identified in the evaluated QTL regions. (Ahsan et al., 2013)
Chro

moso SNP(bp)1 Gene SNP location® PC 3 EC a PE 5
Score Score Score
me
1 174634021 Asparagine- CpG island, N/A N/A N/A
linked upstream
glycosylation 11
homolog
(ALG11)
2 63823523 Endothelin CpG island, N/A N/A N/A
1(EDN1) upstream
3 33678270 Cysteine rich Protein code, 0.67 0.63 0.42

transmembrane NS K/I
BMP regulator 1

(CRIM1)

4 12044024 Similar to receptorCpG island, N/A N/A N/A
upstream tyrosine kinase
(VEGFR-2)

4 12902414 Fibroblast CpG island, N/A N/A N/A
growth factor downstream
16 (FGF16)

5 38316301 Sorting nexin 6 CpG island, N/A N/A N/A
(SNX6) upstream

7 21686625 Growth factor CpG island, N/A N/A N/A
receptor-bound  downstream
protein 14
(GRB14)

7 22711910 Glucagon (GCG) CpGisland, N/A N/A N/A

downstream

7 24802616 Insulin-like Protein code, N/A N/A N/A
growth factor synonymous,
binding protein CpG island
2 (IGFBP2)

20 8715398 Baculoviral IAP Protein code, 0.29 0.14 0.04
repeat- NS I/V
containing 7
(BIRC7)

1Coordinates based on the Chicken (Gallus gallus) assembly v 2.1/galGal3; 2Location of
the SNP in gene and also amino acid substitution in case of non-synonymous (NS) SNP;
3Physico-chemical score of AAs calculated by PASE (Li et al, 2013); 4Evolutionary
conservation score of AAS calculated using PASE (Li et al., 2013); 5Combined score of
PC and EC of AAS calculated using PASE (Li et al.,, 2013).
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4.3 Paperlll

Paper III presents a development of the novel software PASE
(Prediction of Amino acid Substitution Effects) that efficiently can
predict the effect of AAS on the hosting protein function based on
changes of physico-chemical properties.

With an increased use of NGS technologies such a large number of
nsSNPs have been identified. These nsSNPs cause amino acid
substitutions, which in many cases are associated with diseases (
Hamosh et al,, 2005). The aim of this study was to develop a software
that efficiently predicts amino acid substitution effects on protein
structure and function.

4.3.1 Implementation

Each of 20 naturally occurring amino acids has a characteristic profile
of physicochemical properties. Therefore, any amino acid substitution
may influence the final protein structure by altering its
physicochemical properties. Here, to calculate the changes of physico-
chemical properties led by AAS, we selected seven physico-chemical
properties from the AAindex database (Kawashima et al.,, 2008), which
make every amino acid unique profile (Rudnicki et al, 2004). An
euclidean norm formula was applied to compute the physicochemical
property changes of AAS between the original and the substituting
amino acid:

p="|2(aa} — aal)?

where aal and aa! indicate one of the selected seven physicochemical
properties of original amino acid and substituted amino acid,
respectively.

Moreover, sequence conservation approach has been widely applied
to predict the effect of AAS. Highly conserved degree conventionally
performs as an indicator to a functional importance of the amino acid,
where substitutions tend to be deleterious, whereas those within areas
of low conservation are often tolerated. In this study, we also
developed a new algorithm to calculate a sequence conservation score
based on the multiple sequence alignment (MSA), where the NCBI-
blastp is first used to search for functionally related protein sequences
and Clustalw is subsequently applied to generate an alignment with
multiple homologous sequences. Thus, the MSA conservation (MSAC)
score at each site is calculated by using the following formula,
C=r(1-0.95")
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where N is the number of sequences of MSA, and r is the proportion of
the amino acids of interest in the same column of MSA(Figure 8). The
formula (1 - 0.95N) (Pei et al, 2001) indicates the probability of 20
different amino acids in a position for N random equal frequent amino
acid sequences. For example, when N = 1, the probability of each amino
acid in a position is 0.05, which is consistent with 20 amino acids with
frequency 1/20 each.

Figure 8. Schematic overview of calculation of sequences conservation score

For the advanced prediction, the PASE score can be combined with
sequence conservation score (MSAC) by creating a combined score -
PASEC, which is computed as following formula,

S=PC
where S indicates PASEC score, P is the score of physico-chemical
properties changes and C is sequence conservation score (MSAC). The
score ranges from 0 to 1, where 0 is neutral, and higher ratio indicate
stronger predicted effects on the protein.

4.3.2 Results and Discussion

To verify the accuracy of PASE prediction, we tested with 3338 AASs
with functional effects previously predicted with the widely used tools
SIFT and POLYPHEN in Ensembl database. A total of 1978 and 1637
AASs were predicted as “tolerated” and “benign” with average score
0.39 and 0.37 by SIFT and PolyPhen, respectively, whereas 1351 AASs
predicted as “deleterious” by SIFT and 1162 AASs predicted as
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“probably damaging” by PolyPhen showed the average score 0.51 and
0.53 (Table 4). The Distributions of different scores were shown in
Figure 9, where PASE MSAC and PASEC scores were shown a
consistent trend with the classifications of SIFT and POLYPHEN.

Table 4. Predictions of nsSNPs from Human Chromosome 22.

MSAC PASE
Name of . Number . . PASEC
Classifications Conservati  Physicoche
tools of AAS . scores
on score mical score
tolerated 1987 0.47 0.39 0.18
SIFT
deleterious 1351 0.6 0.51 0.3
benign 1637 0.44 0.37 0.16
PolyPhen possibly- 539 0.56 0.43 0.24
damaging
probably-
. 1162 0.63 0.53 0.33
damaging
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Figure 9. The distribution of (A) PASE, (B) MSAC, and (C) PASEC scores within different
SIFT and PolyPhen prediction classes. Blue solid and dashed lines in panel (C)
correspond to the probability of deleterious/damaging prediction from AAS’s PASEC

scores.

44 PaperlV

Paper IV is another software development paper, where we present
the novel software Profat (Protein function annotation tools) that
predicts the function of unknown proteins by using a motif-profile
based analysis, where repeat motifs sequences are first used for
protein family classification and later based on a subsequent
phylogenetic analysis on non-motif sequence similarities within
protein families.

An increased use of NGS technologies has provided a large number
of identified novel protein sequences that needs to be annotated.
Experimental characterizations of the function of these proteins are
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often time-consuming and expensive. The aim of this study was to
develop bioinformatics tools that can facilitate annotation of novel
proteins.

4.4.1 Implementation

Profat applies the protein motif profile as an indicator to classify the
query sequence into a motif-containing protein family, where the
proteins are presumed to have similar functions. Next, the evolutionary
distance of the non-motif part of their sequences is computed, where
sequence could not be predicted based on available motif knowledge
i.e. the so called non-motif part of the protein sequence. To achieve
this, the motifs in each protein sequence in the motif-containing
protein family, as well as the query sequence, are identified by using
the HMMER package (Richard et al, 1998) and subsequently filtered
out by replacing them with multiple ‘X’-placeholders. BLAST (Altschul
et al,, 1998) is then used to query each filtered-out sequence against
the database of the same set of filtered-out sequences to identify
similar sequences of the non-motif part. The evolutionary distance
between two filtered-out sequences is subsequently computed using
the following formula:
ED =1-(s/(t1+t2)/2)

where t1 and t2 are the total number of hits (i.e. indicators of the
sequence similarity) of protein sequence 1 and protein sequence 2,
respectively, and s is the number of hits shared by the two proteins
sequences. Further neighbor-joining (Saitou et al., 1987) clustering is
used to build the phylogenetic tree that can visualize the evolutionary
distance between the query sequence and other sequences (Figure 10).
The prediction is based on finding the evolutionary distance between a
query sequence and protein sequences in databases with known
functions.
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Figure 10. Schematic overview of the Profat algorithm.

4.4.2 Results and Discussion

To explore the predictive ability of Profat, we selected two
representative protein sequences as examples.

gi:410910826 - a characterized protein

The protein “gi:410910826” in the Fugu rubripes genome is a
previously described as partitioning defective 6 homolog gamma-like
protein (Joberty et al, 2000) in NCBI protein annotation database.
Here, Profat has predicted it also as a partitioning defective 6 homolog
gamma protein involved in the process of cell division, which is
consistent with the annotation in NCBI database.

gi:328865585 - an evolutionary-distant protein

Many protein predictions methods, such as BLAST, consistently rely on
the sequence similarity, but are often impotent to evolutionary-distant
proteins due to the inadequate resources of orthologous sequences.
However, Profat includes the motif structure characterization in the
prediction process, which is better suited to analyze such proteins.
Protein “gi:328865585” is from Dictyostelium fasciculatum, a
species of soil-living amoeba, which is unable to be predicted in BLAST
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due to the lack of orthologous sequences. By using Profat,
“gi:328865585” first was classified to P31comet-containing protein
family, and subsequently predicted to be as MAD2L1-binding protein-
like and suggested to be involved in the regulation of exit from mitosis
(Yang et al,, 2007).

Moreover, the structural similarity is more closely related to the
protein function than the sequence similarity, and similar sequence
does not always imply the similar function. Profat uses protein motif
characterization as an indicator to perform prediction. Thus, the
prediction of profat is more convincible.

4.5 PaperV

Paper V is another software development paper, where we present a
novel software DIPT (Detecting Interactions and Pathways Tool) that
identifies candidate causative genes underlying an expression
phenotype by searching the QTL/GWA studies regions corresponding
to expression phenotype data.

An increasing application of new tools for detecting genetic
variances like SNP arrays and NGS technologies have resulted in an
accelerated number of GWA studies or QTL mapping analyses (Flint et
al, 2012; Pettersson et al, 2011; Carlborg et al., 2006). Additionally,
the high throughput phenotyping of RNA expression, using micro-
arrays or real-time PCR, have led to the large number of expression
phenotype data (Maskos and Southern, 1992). However, the approach
to find functional interactions between expression phenotypes and
QTLs is scarce. The aim of this study was to develop a bioinformatics
tool to address the lack of high throughput analysis tools that combine
association studies with expression phenotype data.

4.5.1 Implementation

DIPT creates a link from expression phenotypes to genotypic data with
current information in bioinformatics databases. At first stage, DIPT
collects the genes from Ensembl (Flicek et al., 2013) in the flanking
region of the QTL corresponding to the phenotype genes. Meanwhile,
interaction database BioGRID (Chatr-Aryamontri et al, 2013) was
imported to retrieve all the genes known to interact with the
expression phenotype gene. Next, genes detected in both queries (i.e.
the flanking region of the QTL and the interaction database) are
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presented as candidate genes affecting the expression phenotype
(Figure 11).

a
) GWAS of FMP45 (YDL222C) expression
B '
$ . }
g
’ t
« ;. . . {,‘ N “{
Voo . : i Noae A A
. L CTW SRR S WO S w.;“..'n-:ﬂ\*'-.aﬁfw.h Manfr et
S. cerevisiae genome et
b)

Species: Results for D.LPT run on 22 January 2014
Phenotype:  v0L222C Input values:
Chromosome: xv Species: Saccharomyces cerevisiae
N Phenotype: YDL222C
Coordinate: 17436 e Ko
Flanking: 50000 Coordinate: 174364
Sant Flanking: 50000
Phenotype ID: 851304
Previous runs Phenotype Pathways: No Pathways found. Also display KEGG
Saccharomyces cerevisiac:YGR264C 11 December 2013 Interactions: pathways with
isiae: Gene ID: B
Saccharomyces cerevisiae:YOROSOW 16 December 2013 - el ot phenotype andlor
3 candidate genes

:ne 1D; 854053
it : NoPaways ound when present
Genesin
eming regfons
854072 Agl9p
iy

854063 mismatch repair ATPase MSH2
854057 hexaprenydiydroxybenzoate methylransicrase
Obtain list of genes Obtain list of genes in = R e
interacting with 50Kkb region flanking 54059 replication factor C subunit 4
phenotype: QTL: Chromosome XV 854096 e synthase
1243642224364 bp 854087
854068 slcohol dehydrogenase ADHI
854085 Nuf2p.
854079 Mam20p
854082 Thplp.
854053 Pi2p
854089 phosphoinosiide S-phosphatase INPS4
854093 ribose phosphate diphosphokinase subunit PRSS
854086 Hstlp
Avolp.
854090 Met22p
Find overlap between asa0r e
N 854005 glycerol-3-phosphate dehydrogenase (NAD(®)
interacting genes and et

genes in flanking region
and report cis and trans
interactions.

Figure 11. Schematic overview of DIPT. (a), the illustration of the expression phenotype

data and the QTL position; (b) the working process of the strategy applied in DIPT.

4.5.2 Results and Discussion

In this study, we tested a publically available yeast dataset to explore
the predictive ability of DIPT, where genotypes and expression
phenotypes on individuals were developed from crossing between a
laboratory S. cereviciae strain (BY4716 , isogenic to S288C) and a wild
isolate (RM11-1a) (Brem et al, 2005; Smith et al.,, 2008; Storey et al.,
2005). The dataset contains 109 haploid segregants, each of which was
cultivated in two conditions with either glucose or ethanol as the main
carbon energy source. The expression profiles for 4482 genes were
identified for each segregant in both treatments. For each segregant, a
set of 2956 SNP markers were genotyped, which provide an average
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marker density of one marker per 4.1 kbp for QTL further analysis. In
total, 8387 eQTL were identified for the 4482 expression phenotypes
across the two treatments (Nelson et al., 2013).

Each of the 8387 eQTL was analyzed with DIPT to search causative
genes to the corresponding expression phenotype. We selected the
different flanking region sizes 30000, 50000 and 100000 bps to
perform the analysis separately. As a result, an average number of 0.39,
0.59 and 1.13 causative genes per eQTL region were identified
respectively (Figure 12).

With screening known interaction approach, DIPT has significantly
narrow down the number of candidate genes in eQTL region. However,
it is important to realize that the size of flanking region is very
sensitive to the result, as some causative genes may be distant from the
eQTL position or some genes unrelated to the eQTL region of interest.
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Figure 12. Predict causative genes for 4482 expression phenotypes from
Saccharomyces cerevisiae. The blue and red columns indicate the average number of
interacting genes and pathways per QTL, respectively.
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5 Future research

5.1 Experimental characterization of identified genetic variants

In paper I - II, we searched the genetic variation underlying the QTL
effects on chicken body weight. We described a computational
approach where different datasets were combined to identify the most
promising candidate genes and SNPs. However, we did not confirm our
predictions by any other experimental performance. Thus,
experimental evaluation of these genetic variants would be the further
research plan, which could provide evidence for the causative
mutations with effects on growth which could be highly for our
understanding of genetic regulation of growth-related traits .

Moreover, our described approach could also be useful in many
other projects where causative mutations within chromosomal regions
need to be traced and identified.

5.2 High performance computing

A rapid growth of NGS technologies in recent years has lead to an
explosive data growth in biomedicine. However, processing and
summarizing the large amount of data have been hampered by
inefficient computing. The three softwares developed and described in
this thesis can facilitate efficient, robust and reproducible data analysis
workflows.

Recently, due to the extensive functionality in scientific
computation, the application of GPU has been rapidly accelerated. With
hundreds of processors, GPU improves the significantly stronger
efficiency and performance especially in the data-intensive
experiment. Thus, developing the GPU version of softwares listed in
this thesis would be near future project, which would maximize the
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efficiency of application and provide an all-new set of insights to
exploit the genetic data, for example, the re-sequencing data from NGS
technologies.
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6 Conclusions

6.1 PaperlandIl

We combined resequencing data of NGS, SNP chip genotyping and
bioinformatics analysis to systematically evaluate genetic variants
based on their presumed effect on gene function and relevance for
growth at previous mapped QTL regions. A list of epistasis patterns,
transcripts and SNPs have bee identified to be related to the
phenotypic differences between HWS and LWS, which will facilitate
further verification and experimental evaluation. This could help to
unravel and understand more about genetic regulation of growth-
related traits as well as other complex traits, which may benefit animal
breeding, human medicine and/or other areas of biology.

6.2 Paperlll

Here, we present a new software, PASE that used the new strategy to
predict the effect of AAS to its corresponding protein function.
Compared with other method like SIFT and PolyPhen based on the
degree of sequence conservation, PASE predicts the effect of AAS by
calculating the changes of physicochemical properties of amino acids,
which is very effective to the AAS of evolutionary-distant protein. In
this study, we also invent a new formula to calculate the degree of
sequence conservation. Moreover, we demonstrated that the score
based on both sequence conservation and physicochemical properties
is a useful way to increase the functional prediction accuracy. PASE
complements other tools and facilitates to prioritize the most
promising mutations among the large amount of candidate mutations for
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a phenotype of interest, which will help to identify the genetic factors
underlying complex traits.

6.3 PaperIV

The Profat software is based on a new strategy for functional
annotation of novel proteins, which is very effective for evolutionary-
distant proteins in comparison with other tools based on sequence
similarity. As using motif profile analysis approach, Profat can be
applied to the proteome-wide study, which is proposed as an alternative
to sequence based strategies to predict function of novel gene products
when 3D data is not available.

6.4 PaperV

The DIPT software can help us reveal the genetic mechanisms
underlying an expression phenotype by searching genetic variants
from QTL/GWA studies regions corresponding to the expression
phenotype. Results of DIPT could help prioritizing the most promising
genes for further experimental investigation.

50



Reference

Ahsan, M,, Li, X,, Lundberg, A.E.,, Kierczak, M., Siegel, P.B., Carlborg, O. and Marklund, S.
(2013). Identification of candidate genes and mutations in QTL regions for chicken
growth using bioinformatic analysis of NGS and SNP-chip data. Front Genet. 4: 226.

Altschul. S., Gish, W., Miller, W., Myers, E., Lipman, D. (1998). Basic local alignment
search tool. Journal of Molecular Biology, 215 (3): 403-410.

Berman, H.M., Westbrook, |, Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov,

Besnier, F., Wahlberg, P., Ronnegard, L., Weronica, EK., Andersson L., Siegel P.B., et al.
(2011). Fine mapping and replication of QTL in outbred chicken advanced
intercross lines. Genet. Sel. Evol. 43 3.10.1186/1297-9686-43-3

Boa-Amponsem, K., Dunnington, E.A. & Siegel P.B. (1998). Diet and humoral
responsiveness of lines of chickens divergently selected for antibody response to
sheep red blood cells. Avian Dis, 42, 565-71

Brem, R.B. and Kruglyak, L. (2005). The landscape of genetic complexity across 5,700
gene expression traits in yeast. Proc Natl Acad Sci U S A, 102: 1572-1577.

Carlborg, O., Jacobsson, L., Ahgren, P., Siegel, P.B., Andersson, L. (2006). Epistasis and
the release of genetic variation during long-term selection. Nature Genetics 38:418-
20.

Chatr-Aryamontri, A., Breitkreutz, B.]., Heinicke, S., Boucher, L., Winter, A,, Stark, C,, et
al. (2013)The BioGRID Interaction Database: 2013 update. Nucleic Acids Res;
41(D1):D816-D823.

Clutton-Brook, J. (1995). A natural history of domestic animals. Cambridge: Cambridge
Univ Press. Second edition.

Dunnington, E.A,, and Siegel, P.B. (1985). Long-term selection for eight-week body
weight in chickens-direct and correlated responses. Theor. Appl. Genet. 71:305.

Dunnington, E.A,, Siegel, P.B. (1996). Long-term divergent selection for eight-week
body weight in White Plymouth Rock chickens. Poultry Sci 75: 1168-1179.

Eisenberg, D., Marcotte, E.M., Xenarios, I., Yeates T.0. (2000). "Protein function in the
post-genomic era". Nature 405 (6788): 823-826. d0i:10.1038/35015694.

PMID 10866208.

51



Finn, R.D., Mistry, |, Tate, ]., Coggill, P., Heger, A., Pollington, ].E., Gavin, O.L., et al.
(2010). The Pfam protein families database. Nucleic Acids Res 38: D211-222.
doi:10.1093/nar/gkp985. PMC 2808889. PMID 19920124.

Flicek, P., Ahmed, 1., Ridwan, A.M., Barrell, D., Beal, K., Brent, S., et al. (2013).

Searle Ensembl 2013. Nucleic Acids Research, 41 Database issue:D48-
D55 do0i:10.1093 /nar/gks1236

Flint, ], and Eskin, E., (2012). Genome-wide association studies in mice. Nature Reviews
Genetics, 13, 807-817.

Hamosh, A,, Scott, A.F., Amberger, ].S., Bocchini, C.A., McKusick, V.A. (2005) Online
Mendelian Inhertiance in Man (OMIM), a knowledgebase of human genes and
genetic disorders. Nucleic Acids Res, 2005 33:D514-17.

Huang, D.W., Sherman, B.T., Lempicki, R.A. (2009). Bioinformatics enrichment tools:
paths toward the comprehensive functional analysis of large gene lists. Nuclei Acids
Res. 37 1-13.10.1093 /nar/gkn923
LN., Bourne P.E. (2000). "The Protein Data Bank". Nucleic Acids Res 28 (1): 235-
242.doi:10.1093/nar/28.1.235. PMC 102472. PMID 10592235.

Jacobsson, L., Park, H.B., Wahlberg, P., Fredriksson, R., Perez-Enciso, M., Siegel, P.B,, et
al. (2005). Many QTLs with minor additive effects are associated with a large
difference in growth between two selection lines in chickens. Genet. Res. 86 115-
125.10.1017/S0016672305007767

Joberty, G., Petersen, C., Gao, L., Macara, L.G. (2000). The cell-polarity protein Paré links
Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol., 2(8): 531-539.

Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2014).
Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic
Acids Res. 42,D199-D205.

Karl, V, et al. (2009). "Next Generation Sequencing: From Basic Research to
Diagnostics". Clinical Chemistry 55 (4): 41-47.doi:10.1373/clinchem.2008.112789

Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T., and
Kanehisa, M. (2008). AAindex: amino acid index database, progress report 2008.
Nucleic Acids Res. 36, D202-D205 (2008).

Lee, W.P,, Stromberg M., Ward A., Stewart C., Garrison E., Marth G.T. (2013). MOSAIK: a
hash-based algorithm for accurate next-generation sequencing read mapping. arXiv
preprint arXiv: 1309.1149.

Letovsky, S, Kasif, S. (2003). Predicting protein function from protein/protein
interaction data: a probabilistic approach. Bioinformatics, 19:1197-i204

Li, X, Kierczak, M., Shen, X., Ahsan, M., Carlborg, 6., Marklund, S. (2013). PASE: a novel
method for functional prediction of amino acid substitutions based on
physicochemical properties. Front. Genet. 4:21.10.3389 /fgene.2013.00021

Marklund, S., Carlborg 6. (2010). SNP detection and prediction of variability between
chicken lines using genome resequencing of DNA pools. BMC Genomics 11
655.10.1186/1471-2164-11-665

52



Marth, G.T., Korf, L., Yandell, M.D., Yeh, R.T., Gu, Z.J., Zakeri, H., et al. (1999). A general
approach to single-nucleotide polymorphism discovery. Nat. Genet. 23 452-
456.10.1038/70570

Maskos, U. and Southern, E.M. (1992) Oligonucleotide hybridizations on glass
supports: a novel linker for oligonucleotide synthesis and hybridization properties
of oligonucleotides synthesised in situ.Nucleic Acids Res 1992, 20 (7): 1679-84.

McLaren, W., Pritchard, B., Rios, D., Chen, Y.A,, Flicek, P., Cunningham, F. (2010).
Deriving the consequences of genomic variants with the Ensembl API and SNP
effect predictor. Bioinformatics 26 2069-2070.10.1093 /bioinformatics/btq330

Nelson, R.M.,, Pettersson, M.E,, Li, X. and Carlborg 0. (2013). Variance heterogeneity in
Saccharomyces cerevisiae expression data: trans-regulation and epistasis. PLoS
ONE 8(11): e79507.d0i:10.1371/journal.pone.0079507

Newmyer, B.A., Nandar, W., Webster, R.L, Gilbert, E. and Siegel, P.B. (2013) Behav Brain
Res, 236:327.

Newmyer, B.A,, Siegel, P.B. and Cline, M.A. (2010) Neuropeptide AF differentially
affects anorexia in lines of chickens selected for high or low body weight. J.
Neuroend. 22:1-6.

Ng, P.C,, Henikoff, S. (2002). Accounting for Human Polymorphisms Predicted to Affect
Protein Function. Genome Res, 12(3):436-46.

Ng, P.C.,, Henikoff, S. (2003). SIFT: predicting amino acid changes that affect protein
function. Nucleic Acids Res; 31(13):3812-4.

Ng, P.C,, Henikoff, S. (2006). Predicting the Effects of Amino Acid Substitutions on
Protein Function. Annu Rev Genomics Hum Genet, 7:61-80.

Noble, D.O., Dunnington, E.A. and Siegel, P.B. (1993). "Ingestive behavior and growth
when chicks from lines differing in feed consumption are reared separately or
intermingled." Appl. Anim. Behav. Sci. 35:359-368.

Parmentier, H. K,, Nieuwland, M. G,, Rijke, E., De Vries Reilingh, G. & Schrama, ]. W.
(1996). Divergent antibody responses to vaccines and divergent body weights of
chicken lines selected for high and low humoral responsiveness to sheep red blood
cells. Avian Diseases 40, 634 - 644.

Pei, ]., Grishin, N.V. (2001). AL2CO: calculation of positional conservation in a protein
sequence alignment. Bioinformatics, 17(8): 700-12.

Pettersson, M., Besnier, F., Siegel, P.B., Carlborg, 0. (2011). Replication and explorations
of high-order epistasis using a large advanced intercross line pedigree. PLoS
Genet.7,e1002180.10.1371/journal.pgen.1002180

Pinard van der Laan, M., Siegel, P.B. & Lamont, S.J. (1998). Lessons from selection
experiments on immune response in the chicken. Poultry Avian Biology Reviews
9,125 - 141.

Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
ISBN 0-521-62971-3
Richard, D., Eddy, S.R., Krogh, A., Mitchison, G. (1998). Biological Sequence Analysis:

53



Rundicki, W. (2004). Feature synthesis and extraction for the construction of
generalized properties of amino acids. Proc of Rough Sets and Current Trends in
Computing: 4th International Conference, Uppsala, Sweden, June 1-5, p. 786 - 791.

Saitou, N., Nei, M. (1987). The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Molecular Biology and Evolution, volume 4, issue
4, pp. 406-425.

Sigrist, C.J, Cerutti, L., de Castro, E., Langendijk-Genevaux, P.S., Bulliard, V., Bairoch, A,
Hulo, N. (2010). "PROSITE, a protein domain database for functional
characterization and annotation". Nucleic Acids Res 38: 161-166
doi:10.1093 /nar/gkp885. PMC 2808866. PMID 19858104.

Sleator, R.D., Walsh P. (2010). "An overview of in silico protein function prediction".
Arch Microbiol 192: 151-155. d0i:10.1007/s00203-010-0549-9. PMID 20127480.

Smith, E.N. and Kruglyak, L. (2008) Gene-environment interaction in yeast gene
expression. PLoS Biol, 6(4): e83. d0i:10.1371/journal.pbio.0060083

Stitziel, N.O., Binkowski, T.A., Tseng, Y.Y., Kasif, S., Liang, ]. (2004). topoSNP: a
topographic database of non-synonymous single nucleotide polymorphisms with
and without known disease association. Nucleic Acids Res, 32:D520-22.

Stitziel, N.O., Tseng, Y.Y., Pervouchine, D., Goddeau, D., Kasif, S., Liang, ]. (2003).
Structural location of disease-associated single-nucleotide polymorphisms. J. Mol
Biol, 327:1021-30.

Storey, ].D., Akey, ].M., Kruglyak, L. (2005). Multiple locus linkage analysis of
genomewide expression in yeast. PLoS Biol, 3(8): e267.
d0i:10.1371/journal.pbio.0030267

Wahlberg, P., Carlborg, 0., Foglio, M., Tordoir, X., Syvanen, A.-C., et al. (2009). Genetic
analysis of an F(2) intercross between two chicken lines divergently selected for
body-weight. BMC Genomics 10: 248.

Xu, P, Siegle, P.B., Denbow, D.M. (2011) Genetic selection for body weight in chickens
has altered responses of the brain’s AMPK system to food intake regulation effect of
ghrelin, but not obestatin. Behav. Brain Res, 221:226.

Yang, M,, Li, B., Tomchick, D.R., Machius, M,, Rizo, ]., Yu, H., Luo, X. (2007). p31comet
blocks Mad2 activation through structural mimicry. Cell, 131:744-755.

Ye, Y., Godzik, A. (2004). "FATCAT: a web server for flexible structure comparison and
structure similarity searching". Nucleic Acids Res 32: W582-W585.
doi:10.1093 /nar/gkh430. PMID 15215455

54



Acknowledgements

The works of this thesis were performed at Department of Clinical
Science, Swedish University of Agriculture Science. The Swedish
Foundation for Strategic Research was gratefully acknowledged for
financial supports.

Behind this thesis lies effort from many people. I would like to
express my sincere gratitude to all of my friends and colleagues help
me and support me during that time. My special thanks to:

Stefan Marklund - my main supervisor: this thesis could not have
been done without your genuine, generous and cogent supports. You
not only served as my supervisor for my academic career, but also
become a good friend of mine and encourage me when I was in a plight.
Your humor, optimism and kindness give me a bright light in a dark
and gloomy tunnel. The small paragraph could not express my
gratitude to you. Here, [ would like to have my best wish for your new
career.

Orjan Carlborg - my co-supervisor: thank you for accommodating me
in your group, introducing the world of quantitative genetics and
providing experiences comments on my manuscripts. Thanks you for
inviting me to the baking party in your house, which is really nice!

Simon Forsberg - Thank you for being nice and trying to challenge me
in the gym. P.S. I don’t think you could beat me ©.

Marcin Kierczak - Thank you for collaborating the PASE paper and
introducing me the world of amino acid property.

55



Monika Brandt - Thank you for your kindness and caring. Best wish
for your coming Ph.D study!

Muhammad Ahsan - thank you for working together for four years.
Your cookies are really delicious!

Xia Shen - Thank you for introducing the information of the group
when [ was in interview. Good luck for your new job in UK!

Mats Pettersson - Thank you your experienced suggestions on my
studies, which really help me a lot!

Zheya Sheng - Thank you for providing amusing news, which really
give me a happy mood!

Ronald Nelson - Thank you for making the amazing cover picture of
the thesis, and sharing the information and skills of the website.

Yanjun Zan - Thank you for your kindness. Best wish for your future
Ph.D study!

To my friends in Stockholm - Fabio O, Cristina m, Pedro, H, Lena A,
Rafiel A, Alain C, Liming B, Allessandra C, Dawei X, Xiaomei D,
Elina L, Lennart E, Varinia G, Karina G, Eveline H, Xiang H, Sanna ],
Kyriakos K, Magda L, Magnus L, Anqua L, Chunyan L, Lui W, Tara
M, Junmei M, Guomin O, Deniz O, Lola H, Dongliang Q, Ewa S,
KengLing W, JianLiu W, Shen X, Katta F. I remember the building we
live, the birthday party you made for me, the dumplings we made on
Chinese new year eve, the community pub we usually sit in, the lake we
often have picnic, the firework we watch every new year eve, the big
party of Stockholm 750 ar. The time with you are awesome, thanks
buddies!

To my friends in Gothenburg -Mari C, Zhen C, Santosh D, Marcela D,
Himanshu ], Ying G, Kristin L, Parhati H, Fatima K, Tiange L,
Huagqing L, Xue W, Lumi M, Xin L, Ziyu L, Ban W, Zsofia M, Szilard N,
Rauan §, Julia S, Si C, Antonio M, David N, Feifei D, Joacim K, Olga R,
Alberto C. When I recall my time in Gothenburg, the first thing coming
to my mind is not Chalmers, but weekly afterwork party, plane
adventures, basketball matches, pool parties, BBQ in a rainy day,

56



dancing pub, cooking weekly rotation, conference together in Uem3,
and desperately preparing the exam (I hardly forget ®). You give me a
wonderful time in Gothenburg, thanks buddies!

To my friends in Uppsala - Chrisitina B, Ulrika B, Xiaodong L, Lovisa
B, Feifei X, Erik L, Marta S, Da W, Annelie L, Ruixue X, Sofie L,
Boyang L, Juliet BL. | know Uppsala is small and peaceful town. Living
here, | may sometimes feel boring but fortunately I meet you guys. I
really appreciate the time we spend in downtown cafeteria, cinema,
local pub, Italian restaurant, adventure in Stockholm and the new year
eve. Thank you for being with me in these four years, all of you are
wonderful!

57





