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Abstract 

Eutrophication and acidification are among the major stressors on freshwater ecosystems in 

northern Europe and North America, but possible consequences of interactions between pH 

and nutrients on ecological status assessment and species richness patterns have not 

previously been assessed. Using data from 52 river sites throughout Norway, we investigated 

the combined effects of pH and nutrients on benthic algae assemblages, specifically 1) taxa-

specific couplings between nutrient and acidity traits, 2) the degree of consistency between 

different biotic indices, separately for nutrients and acid conditions, 3) the impact of pH on 

nutrient indices and phosphorus on indices of acid conditions, and 4) the impact of pH and 

phosphorus supply on diatom and non-diatom taxon richness. We found that 1) acid-tolerant 

taxa are generally associated with nutrient-poor conditions, with only a few exceptions; this is 

probably more a consequence of habitat availability than reflecting true ecological niches; 2) 

correlation coefficients between nutrient indices and TP, as well as acid conditions indices 

and pH were barely affected when the confounding factor was removed; 3) the association of 

acid-tolerant taxa with nutrient-poor conditions means that the lowest possible nutrient index 

at a site, as indicated by benthic algae, is lower at acid than at circumneutral sites. Although 
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this may be an artefact of the datasets from which taxa-specific indicator values were derived, 

it could lead to a drift in nutrient indices with recovery from acidification; 4) the response of 

non-diatom taxon richness follows a complex pattern with a synergistic interaction between 

nutrient supply and pH. In contrast, diatom richness follows a simple additive pattern; this 

suggests structural differences between diatoms and non-diatom benthic algae in their 

response to nutrient supply and pH; diatom taxon richness tended to increase with nutrient 

supply, while non-diatom richness decreased. 
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1. Introduction 

Freshwater ecosystems have long been affected by various types of human impact, with 

negative consequences on water quality and biota (Søndergaard & Jeppesen, 2007). 

Eutrophication, manifested in excessive growth of algae and submerged macrophytes, is one 

of the most important pollution problems in lakes and rivers in the developed world (Hilton et 

al., 2006). Although improved waste water treatment, reduction of external nutrient loading, 

and restoration measures have reduced nutrient concentrations in many freshwater 

ecosystems, eutrophication still is a major impact factor in many countries (Søndergaard & 

Jeppesen, 2007). Acidification, with its associated decline in salmon and trout populations, 

has also been a key factor in some areas, including large parts of Scandinavia (Skjelkvåle et 

al., 2005) and North America (Clair et al., 2011). Although Scandinavian surface waters have 

been recovering from acidification since the early 1990s in response to lower levels of acid 

deposition (Skjelkvåle et al., 2005), acid precipitation continues to exceed the critical load of 

many surface waters in sensitive areas such as southern Norway (Wright et al., 2005). Since 

forestry can contribute to acidification by leading to a net loss of base cations as a 

consequence of whole-tree harvesting (Akselsson et al., 2007), and maritime influence and 

catchment features also are important, there is not necessarily a recovery in pH associated 

with declines in acid precipitation (Löfgren et al. 2009, 2011). Thus, both eutrophication and 

acidification will continue to be among the major impacts on freshwater ecosystems in the 

coming decades. 
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Limnologists have been aware of an interaction between pH and trophic status in some types 

of water bodies for about a century. Naumann (1929) described the difference between 

acidotrophic (low phytoplankton production, low macrophyte biomass, low pH) and 

alkalitrophic (low phytoplankton production, high macrophyte biomass, high Ca-

concentration) lake types whilst Ohle (1955) mentioned that low pH can cause oligotrophic 

conditions in lakes. Acid precipitation, however, leads to depletion of soil base cation reserves 

eventually reaching a point where further acid buffering by base cations leads to the release of 

phosphates associated with these sites and, consequently, to eutrophication (Oxley & Allen, 

2000). In addition, liming is commonly applied in many acidified areas in Scandinavia (see 

e.g. DN, 2010), and cessation of liming can lead to sudden release of phosphates from the soil 

into river systems (Oxley, 2000). Furthermore, field evidence in Scandinavia shows that both 

settlements and agriculture exist in areas affected by acidification. Freshwater ecosystems 

might therefore simultaneously be exposed to both, eutrophication and acidification pressures. 

The Water Framework Directive (WFD: European Union, 2000) requires member states of 

the European Union to regularly assess, amongst other properties, phytobenthos in rivers. 

Though most use diatoms as proxies for the complete phytobenthos assemblage, the validity 

of this approach has been questioned (Schneider et al., 2012). Indices based on species-

composition of non-diatom benthic algae have been developed for trophic status (periphyton 

index of trophic status PIT, Schneider & Lindstrøm, 2011) and acid conditions (acidification 

index periphyton AIP, Schneider & Lindstrøm, 2009) for rivers in Norway. Likewise, diatom 

based indices for nutrients/general pollution (Indice de Polluo-sensibilité Spécifique IPS 

(Coste in Cemagref, 1982) and acid conditions (ACID, Andrén & Jarlman, 2008) are used in 

Swedish rivers, while in the UK, the Trophic Diatom Index (TDI, Kelly et al., 2008) and the 

Diatom Acidification Metric (DAM, Juggins & Kelly, 2012) are used. As these countries are 

now assessing the status of nutrients and acid conditions from a single benthic algae sample it 

is important to understand how responses to nutrients and acid conditions are coupled, and the 

possible consequences for ecological status assessment (see e.g. Denys, 2004). Additionally, 

we expect that interactions between acid and nutrient conditions, if these exist, may conceal 

patterns in stressor – biodiversity relationships. This is important because ecological status in 

the WFD is defined via the structure and function of ecosystems. 

In this study, we use data from 52 river sites throughout Norway to investigate the combined 

effects of pH and phosphorus supply on river benthic algae. Based on this dataset, which 

includes data on water chemistry, as well as diatom and non-diatom benthic algae species 
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composition, we analyse 1) taxa-specific couplings between nutrient and acidity traits, 2) the 

degree of consistency between biotic indices from Norway, Sweden and UK, separately for 

nutrients and acid conditions, 3) the impact of pH on nutrient indices and phosphorus on acid 

conditions indices, and 4) the impact of pH and phosphorus supply on diatom and non-diatom 

taxon richness. Our hypothesis is that co-variation between pH and nutrient concentrations 

interferes with both nutrient indices and taxon richness patterns. 

 

2. Material and Methods 

2.1 Dataset 

Samples were taken at 52 river sites in Norway (Fig. 1). All river types (defined via calcium 

and total organic carbon concentration) and all ecoregions in Norway are represented, and the 

dataset spans both unimpacted “reference” sites and sites impacted by eutrophication and 

acidification (Table 1; see Schneider (2011) for a description of river types, ecoregions and 

selection of reference sites). Samples were collected during various projects between 1981 

and 2007. Water chemistry samples were taken at the sampling sites between one and 24 

times per year and the results stored in the database of the Norwegian Institute for Water 

Research (NIVA). TP was measured at 49 and pH at 46 sites, respectively, such that the 

complete dataset used for modelling taxon richness patterns included 43 sites. Water 

chemistry was analysed according to Norwegian standard (NS) procedures during all years 

(pH: NS 4720; total phosphorus (TP): NS 4725). Site-specific, mean-annual water chemistry 

data for the one year previous to the benthic algae sampling were used to characterize pH and 

TP concentrations. Average water chemistry data were used because i) the benthic algae 

indices we here analyse also were calibrated on average water chemistry data, ii) average 

chemistry often correlates better with biological response than extreme values (see e.g. 

Andrén & Jarlman, 2008), and iii) the nature of the chemistry database used prevents 

analysing anything else except the average. The terms “pH” and “acid conditions” are used 

throughout this paper to summarise all the characteristics (e.g. acid neutralising capacity, 

concentration of labile aluminium) that exert ecophysiological stresses on the aquatic biota. 

 

2.2 sampling methods 
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Benthic algae, i.e. algae that live attached to the river bottom or in close contact on or within 

patches of attached aquatic plants, were surveyed once at each site during summer/autumn 

according to European standard procedures (EN 15708:2009) along an approximately 10-m 

length of river bottom using an aquascope. At each site, percent cover was noted for each 

form of macroscopically visible benthic algae, and samples were collected and stored 

separately in vials for species determination. In addition, diatoms and other microscopic algae 

were collected from ten cobbles and small boulders with diameters ranging between 

approximately 10 and 20 cm, taken from each site. An area of about 8 x 8 cm from the upper 

side of each stone was brushed with a toothbrush to transfer the algae into a beaker containing 

approximately 1 L of river water and a subsample was taken. All samples were preserved with 

a few drops of formaldehyde to a final concentration of approximately 0.5%. The preserved 

benthic algae samples were later examined under a microscope (200 to 600  magnification) 

and all non-diatom algae identified to species level, wherever possible. The primary 

identification keys used were Geitler (1932), Komarek & Anagnostidis (2007), Gutowski & 

Förster (2009), and John et al. (2011) as well as the respective earlier editions of each of 

these. For each taxon of non-diatom benthic algae, percent cover at each site is stored in our 

database, but for this analysis, we only use presence-absence data. 

Diatom sampling, treatment, identification and enumeration followed EN 13946:2006 and EN 

14407:2007. Diatom samples were digested using a mixture of hydrogen peroxide and 

potassium hypochlorate. Permanent slides were prepared from the cleaned suspensions using 

Naphrax (refractive index = 1.74, Brunel Microscopes Ltd) as a mountant. 422 ±8 (average ± 

standard deviation) undamaged valves of non-planktonic taxa were identified and counted 

using 1000  magnification. The primary floras and identification guides used were Krammer 

& Lange-Bertalot (1986-91), Lange-Bertalot (1993, 2001), Lange-Bertalot & Moser (1994), 

Lange-Bertalot & Metzeltin (1996), and Krammer (2000) with nomenclature updated to 

reflect current practices. 

 

2.3 Indices  

We calculated the non-diatom indices for trophic status (PIT) and acid conditions (AIP) 

applied in Norway (Schneider & Lindstrøm, 2009; 2011), the diatom acid conditions indices 

applied in Sweden (ACID; Andrén & Jarlman, 2008) and the UK (DAM; Juggins & Kelly, 

2012), as well as the three most widely applied diatom indices for nutrient 
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concentration/general pollution in Europe, i.e. the IPS (Coste in Cemagref, 1982), TDI (Kelly 

et al., 2008), and TI (Rott et al., 1999). 

PIT and AIP indices are calculated by averaging indicator values of the taxa present at a site. 

PIT ranges from 1.87 to 68.91, and low values indicate low phosphorus concentrations, while 

high values indicate high phosphorus concentrations. To calculate a reliable PIT, at least two 

indicator taxa need to be present at a sampling site. The AIP index ranges from 5.13 to 7.50, 

and low values indicate acid conditions, while high values indicate neutral to slightly alkaline 

conditions. To calculate a reliable AIP index, at least three indicator taxa need to be present at 

a sampling site (see Schneider & Lindstrøm, 2009; 2011 for details on PIT and AIP indices 

and reliability). Only reliable PIT and AIP indices (52 for PIT, 47 for AIP, respectively) were 

used in our study. 

The IPS, TDI, TI and DAM are all based on the weighted average equation of Zelinka & 

Marvan (1961); the IPS was developed to reflect general pollution gradients but is usually 

strongly correlated with both nutrients and organic pollution whilst TI and TDI focus on the 

response of diatoms to inorganic nutrients. The IPS indicator values for individual taxa range 

from 1 to 5, whilst the calculated IPS index for a site ranges from 1 to 20, with low numbers 

indicating ‘very heavy pollution’, and high values indicating ‘nutrient poor to very nutrient 

poor and no pollution’ (Coste in Cemagref, 1982). For the sake of linguistic simplicity, we 

will hereafter refer to the IPS as a nutrient index. Indicator values for the TI and TDI range 

from 1 to 4 and 1 to 5 respectively, with low values indicating a preference for nutrient poor 

conditions, and high values indicating a preference for nutrient-rich conditions (see Rott et al., 

1999 and Kelly et al., 2008 for details on TI and TDI). 

DAM and ACID measure the response of diatoms to pH. ACID is the sum of two parts: the 

ratio between the circumneutral Achnanthidium minutissimum (Kützing) Czarnecki sensu lato 

and the acidophilic genus Eunotia Ehrenberg, and the ratio between the sum of all 

circumneutral, alkaliphilous and alkalibiont taxa to the sum of all acidophilic and acidobiont 

taxa (based on van Dam et al., 1994 and the subsequent updates in OMNIDIA, Lecointe et al., 

1993). ACID indicator values for individual taxa range from 1 to 5, whilst the ACID 

calculated for a site ranges from 1 to 10, with low values indicating acid conditions. ACID is 

correlated to the mean pH of the year before diatom sampling (see Andrén & Jarlman, 2008 

for details on ACID). DAM also divides diatoms into classes based on their sensitivity to pH 

but is calculated using a weighted average equation. DAM indicator values for individual taxa 



  7 

range from 1 to 5, with low values indicating acid conditions (see Juggins & Kelly, 2012 for 

details on DAM). 

To provide a link to ecosystem structure, we additionally calculated diatom and non-diatom 

taxon richness, as well as diatom genus richness for each sample. We refer to “taxa” rather 

than “species” to recognize that entities identifiable with the light microscope and current 

literature may not always reflect true biological species. Assignment of diatoms and non-

diatoms into taxa was primarily based on the determination guides cited above. For some 

genera of filamentous green algae whose vegetative forms cannot be determined to species 

level (e.g. Spirogyra Link or Mougeotia C.Agardh) categories which are based mainly on 

filament width were used (see Schneider & Lindstrøm (2009; 2011) for further details). The 

same taxonomic levels were used consistently for analysis of all sites in our study. 

 

2.4 Data treatment  

TP-data were log-transformed to achieve normality. Visual inspection of the data clearly 

showed the absence of sites with both low pH and high TP concentrations (Fig. 2). We 

studied the consequences of this skewness on benthic algae indices and univariate taxon 

richness patterns by comparing results for the full dataset with datasets where the skewness 

was removed. To investigate the influence of pH, we used only sites with TP < 16µg L
-1

 (37 

sites; hereafter referred to as “acidity only” subset). For this subset, there is no correlation 

between log10(TP) and pH (Pearson correlation coefficient -0.04, p = 0.84), while the length 

of the gradient in pH is retained (Fig. 2). To investigate the influence of TP, we used only 

sites with pH > 6.5 (27 sites; hereafter referred to as “nutrients only” subset). Again, for these 

sites, there is no correlation between log10(TP) and pH (Pearson correlation coefficient -0.27, 

p = 0.17), while the gradient length in TP is retained (Fig. 2). 

Spearman correlation was used to test for correlations among indices, and between indices 

and water chemical parameters, because we expected the correlations to be monotonic, but not 

necessarily linear. Because each analysis represented a separate hypothesis, there was no need 

to adjust α for multiple testing (Perneger, 1998). All tests were performed with STATISTICA 

10. 
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We used quantile regression to investigate the highest and lowest values (as indicated by 95
th

 

and 5
th

 percentiles) attained by TP-concentrations and nutrient indices at different acid 

conditions (as indicated by pH and acid condition indices), because (a) quantiles are less 

affected by extreme observations, and (b) quantile regression enables estimations of the 

minimum and maximum response. Quantile regression was done using the “quantreg” 

package (Koenker, 2010) in R version 2.14.2 (R Development Core Team, 2012). 

To explore the interaction between pH and nutrient supply on taxon richness patterns, we used 

a set of multivariate linear regression models and selected the best model by using an 

information-theoretic approach. For this purpose, data were centered and standardized to 2 

SD, following the recommendations of Quinn & Keough (2002) and Schielzeth (2010). 

Centering and scaling allows using the regression coefficients as measures of effect size 

(Schielzeth, 2010; see also Wagenhoff et al. (2011), who adopted a similar approach). We 

fitted our data to a multivariate second-order polynomial function of the form: 

richness = b0+b1*pH+b2*(pH)^2+b3*logTP+b4*(logTP)^2+b5*pH*logTP 

Based on this model (called the “full model”), we used the dredge-procedure in R extended 

with the MuMIn package (Barton, 2012) to select the model best describing richness based on 

the lowest value of AICc (Akaike information criterion for small samples; Burnham & 

Anderson, 2002). When a polynomial term was retained, then the 1
st
 order term was retained 

as well. We report the standardized regression coefficients plus 95% CIs of the top model (in 

case of non-diatoms) or of the averaged models (in case of diatoms). For diatom taxon and 

genus richness, averaging of the top 2 AICc models was applied, since they had only slightly 

different Akaike weights (Burnham & Anderson, 2002). An inclusion of zero in the 95% CI 

of the regression coefficients means that the effect is not statistically significant at α = 0.05 

(Nakagawa & Cuthill, 2007). 

 

3. Results 

At the 52 sites investigated, we found a total of 178 taxa of non-diatom benthic algae, the 

majority belonging to the classical green algae (Viridiplantae; 79 taxa) and cyanobacteria (76 

taxa). The most frequent taxa were “Mougeotia a” (a narrow Mougeotia taxon with a filament 

width between 6 and 12 µm; found at 28 sites), Cosmarium sp. Corda ex Ralfs (24 sites), 
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Closterium sp. Nitzsch ex Ralfs (18 sites) and Binuclearia tectorum (Kützing) Berger ex 

Wichmann (18 sites). We also found a total of 308 diatom taxa belonging to 28 genera; the 

most frequent were Tabellaria flocculosa (Roth) Kützing (occurring at 49 sites), 

Achnanthidium minutissimum (Kützing) Czarnecki (42) sensu lato, and Fragilaria gracilis 

Oestrup (30). A total of 100 diatom, and 64 non-diatom taxa were only recorded once. All 

nutrient indices were correlated to TP, and all acid conditions indices were correlated to pH, 

indicating that both diatom and non-diatom indices reflected well the pressure they were 

expected to indicate (Tables 2 and 3). 

 

3.1 Species specific nutrient and pH indicator values 

In total, 77 non-diatom taxa have both PIT and AIP indicator values and consequently have 

rather narrow ecological amplitudes with respect to both pH and TP. With the exception of 

Microspora abbreviata (Rabenhorst) Lagerheim, all taxa indicative of nutrient rich conditions 

with a PIT ≥ 10 have an AIP index above 7 (Fig. 3a), corresponding to a pH optimum above 7 

(Schneider & Lindstrøm, 2009). Prominent taxa indicative of acidic and nutrient-poor 

conditions (bottom left hand corner of Fig. 3a) are Batrachospermum keratophytum Bory de 

Saint-Vincent, Hapalosiphon hibernicus West & G.S.West, Capsosira brebissonii Kützing ex 

Bornet & Flahault, Scytonematopsis starmachii Koválik & Komárek, Binuclearia tectorum 

(Kützing) Berger ex Wichmann, narrow Mougeotia C.Agardh taxa (10-18 µm) and several 

Stigonema C.Agardh ex Bornet & Flahault species. Prominent taxa indicative of 

circumneutral and nutrient-poor conditions (bottom right hand corner of Fig. 3a) are Hydrurus 

foetidus (Villars) Trevisan, Tolypothrix distorta var. penicillata (C.Agardh) Lemmermann, 

broad Mougeotia C.Agardh taxa (25-30 µm), broad Zygnema C.Agardh taxa (22-40µm), 

Clastidium setigerum Kirchner, Teilingia granulata (J.Roy & Bisset) Bourrelly, Lemanea 

fluviatilis (Linnaeus) C.Agardh and several Spirogyra Link taxa. Prominent taxa indicating 

circumneutral and nutrient-rich conditions (top right hand corner of Fig. 3a) are 

Chamaesiphon polymorphus Geitler, Chamaesiphon incrustans Grunow, Audouinella 

hermannii (Roth) Duby, Stigeoclonium tenue (C.Agardh) Kützing, broad Oedogonium Link 

ex Hirn taxa (>29 µ) and some Spirogyra Link taxa. 

A total of 418 diatom taxa have both TDI and DAM indicator values and consequently are 

used in the UK for eutrophication and acidification assessment. The general picture is the 
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same as described above for the non-diatom benthic algae, i.e. taxa indicative of 

circumneutral conditions can be associated with nutrient-poor or –rich conditions whilst taxa 

associated with low pH generally also are associated with nutrient-poor conditions (Fig. 3b). 

Prominent taxa associated with acidic and nutrient-poor conditions include Eunotia exigua 

(Bréb.) Rabenhorst, Peronia fibula (Bréb ex Kütz.) Ross 1956 and Pinnularia subcapitata 

Greg. 1856. Important taxa associated with circumneutral and nutrient-rich conditions are 

Amphora pediculus (Kutz.) Grun. ex A. Schmidt and Diatoma vulgare Bory and prominent 

taxa associated with circumneutral and nutrient-poor conditions are Hannaea arcus (Ehrenb.) 

Patr. in Patr. & Reimer and Achnanthes petersenii Hust. 

The current Swedish indices include 671 diatom taxa which have an index value both for the 

IPS and for the ACID calculation. The general picture is similar to that for Norwegian and 

UK indices, i.e. taxa indicative of circumneutral conditions can have either high or low IPS 

indicator values, whilst taxa indicating acid conditions usually also have a high IPS value, 

meaning they are indicative of undisturbed conditions and usually associated with low 

nutrient concentrations (Fig. 3c). There are, again, very few exceptions to this rule; for 

example Nitzschia paleaeformis Hust. and Pinnularia sinistra Krammer are associated with 

acidic conditions though they have moderate IPS sensitivity values, indicating tolerance to 

elevated nutrient and/or organic pollution levels. Prominent diatom taxa associated with 

acidic and nutrient-poor conditions almost all belong to the genus Eunotia Ehrenberg. At the 

other end of the scale taxa such as Halamphora veneta (Kützing) Levkov or Achnanthidium 

exile (Kützing) Heiberg occur in alkaline polluted waters usually with a high nutrient content. 

Examples of taxa which indicate circumneutral/alkaline conditions in ACID and rather 

nutrient-poor conditions in the IPS are Rhopalodia gibba (Ehrenberg) O. Müller and 

Gomphonema olivaceum (Hornemann) Brébisson. 

 

3.2 Consistency among pH and nutrient indices 

All three acid condition indices were significantly correlated to each other and to pH, both in 

the full dataset and the “acidity only” subset (Table 2). Correlation coefficients between the 

three indices were slightly higher in the “acidity only” subset than in the full dataset, whilst 

correlation coefficients between the indices and pH were slightly lower in the “acidity only” 

subset. This indicates that, if anything, consistency between acid conditions indices might be 

http://www.algaebase.org/search/species/detail/?species_id=33151
http://www.algaebase.org/search/species/detail/?species_id=33151
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slightly underestimated in datasets where TP and pH co-vary. AIP was the only acid 

conditions index which also was correlated to TP concentration, but only weakly so and only 

in the full dataset, not in the “acidity only” subset. 

All four nutrient indices were significantly correlated to each other and to TP, both in the full 

dataset and the “nutrients only” subset (Table 3). With the exception of PIT-TI, correlation 

coefficients between nutrient indices were lower in the “nutrients only” subset than in the full 

dataset (Table 3) suggesting that the consistency between nutrient indices may be 

overestimated in datasets where TP and pH co-vary. All four nutrient indices were also 

correlated to pH in the full dataset, and the TI was even better correlated to pH than to TP. In 

contrast, there was no correlation between the nutrient indices and pH in the “nutrients only” 

subset (Table 3).  

Diatom acid condition indices were better correlated with each other than to the non-diatom 

based AIP. This is not surprising, since all diatom indices are calculated from the same 

species list, so any variability amongst diatom indices stems exclusively from differences in 

species indicator values, whilst the variability between diatom and non-diatom indices 

additionally includes autecological differences between taxa. This, however, did not apply to 

the nutrient indices, especially not in the “nutrients only” subset, where the PIT correlated 

better to both TI and TDI than the diatom indices correlated to each other (Table 3). With few 

exceptions, the IPS generally had the lowest correlation coefficients to the other nutrient 

indices and to TP. This was expected, as the IPS was constructed to integrate the effects of 

nutrients with the effects of organic pollution (Coste in Cemagref, 1982), while TI, TDI and 

PIT were all designed specifically to indicate eutrophication via phosphorus concentrations. 

 

3.3 Inter-relationships between pH and TP and respective indices 

Maximum values of TP (i.e. the trendline reflecting the upper 95
th

 percentile of the dataset) 

were associated with high pH, due to a lack of sites with both low pH and high nutrient 

concentrations (Fig. 4a). This is reflected in all benthic algae indices (Figs. 4b-d). A 

difference between chemistry and indices occurred, however, when nutrient concentrations 

were low. Minimum TP concentrations (i.e. the 5
th

 percentile) were around 2 µg/l and 

decreased slightly as pH increased (Fig. 4a). In contrast, minimum values of PIT increased 

with increasing AIP (Fig. 4b), and minimum values of TDI increased with increasing DAM 
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(Fig. 4c). However, maximum values of IPS (reflecting nutrient-poor conditions and no 

organic pollution) decreased only slightly with increasing ACID (Fig. 4d). The response of 

minimum values of PIT and TDI, and maximum values of IPS against pH indices is the same 

in the “acidity only” dataset (data not shown). We show here only the plots for a comparison 

of within-country indices; however, all plots of pH and acid conditions indices against 

nutrient indices showed the same picture: minimum values of nutrient indices PIT, TDI and 

TI increased with increasing pH, AIP, ACID and DAM whilst maximum values of IPS 

decreased slightly. Overall, our results suggest that the lowest possible values of nutrient 

indices tend to be lower at acid, compared to circumneutral or alkaline sites.  

 

3.4 Influence of TP and pH on diatom and non-diatom benthic algae richness patterns 

For both non-diatom taxon richness, as well as diatom taxon and genus richness, only the 

linear term for log10(TP) was retained in the multivariate models (Table 4) whilst the 

polynomic term for pH explained more of the variation than the linear term (as indicated by 

the standardized regression coefficients; Table 4). To examine the influence of a skewed 

dataset on univariate richness patterns, we therefore fitted the response of richness to pH to a 

polynomic term, and to log10(TP) to a linear term, both for the full dataset, and the “nutrients 

only” and “acidity only” subsets (Fig. 5). 

Non-diatom taxon richness was significantly related to a hump-shaped function of pH, a 

decreasing function of log10(TP) and an increasing function of their interaction (Table 4). 

Log10(TP) had a stronger influence on non-diatom richness than pH, but the effect size of the 

interaction term was strongest (as indicated by the standardized regression coefficients; Table 

4). 48% of the total variability in non-diatom taxon richness was explained by pH and 

log10(TP) (adjusted R
2
 for the top model = 0.48). Average maximum non-diatom taxon 

richness was reached at around pH 6.4 (Fig. 5b) and at low TP concentrations (Fig. 5c). At 

higher TP concentrations, however, the observed pH maximum in non-diatom taxon richness 

had a lower value and its position was shifted towards more circumneutral conditions (Fig. 

6a). The combined effect of increased nutrients and lower pH increased taxon richness less (at 

high pH) or decreased it more (at low pH) than would be expected if the effect was additive. 

This is consistent with a synergistic interaction between nutrient supply and low pH. In acidic 

rivers, nutrient enrichment had a stronger negative effect on ecosystem structure (measured as 

decrease in non-diatom benthic algae taxon number) than in circumneutral rivers (Fig. 6a). 
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The general pattern for the univariate response of non-diatom taxon richness to both pH and 

log10(TP) was the same in the full dataset and the “acidity only” subset, but R
2
 was higher for 

pH in the “acidity only” subset compared with the full dataset, whilst it was lower for 

log10(TP). Note that the univariate analysis of the response of non-diatom taxon richness to 

pH did not result in a significant result in the full dataset (Fig. 5a). The significant response of 

non-diatom taxon richness to pH only became evident when the nutrient gradient was either 

removed (Fig. 5b) or accounted for in a multivariate model (Table 4). These results indicate 

that non-diatom richness patterns to pH may be overlooked when the effect of TP is not 

accounted for, whilst the richness in relation to log10(TP) is likely to be overestimated unless 

the effect of pH is also considered.  

Diatom taxon and genus richness was best explained by a hump-shaped function of pH and an 

increasing function of log10(TP) (Table 4). However, only the hump-shaped relation of diatom 

genus richness to pH was significant in the multivariate model (as indicated by the confidence 

intervals of the standardized regression coefficients; Table 4). In contrast to non-diatom taxon 

richness, pH explained more of the variation than log10(TP) (as indicated by the standardized 

regression coefficients; Table 4). About 26% of the total variability in diatom taxon richness 

and 30% of diatom genus richness was explained by pH and log10(TP) (adjusted R
2
 for the top 

models = 0.26 and 0.30, respectively, compared to 0.48 for non-diatoms), such that pH and 

log10(TP) explained less of the variation in diatom richness than of the variation in non-

diatom richness. We detected no interaction between log10(TP) and pH for diatom richness 

(Table 4) suggesting that, in contrast to non-diatom benthic algae, diatom richness follows a 

simple additive pattern. Maximum diatom taxon and genus richness occurred at around pH 

6.9 and 6.6, respectively, and at the upper end of the TP gradient in our data (TP 100 µg L
-1

; 

Fig. 5). Since there was no interaction term between log10(TP) and pH on diatom richness, the 

maximum value of the relationship did not change with increasing TP concentrations (Figs. 

6b, c). Consequently, the general pattern for the univariate response of non-diatom taxon 

richness to both pH and log10(TP) was similar in the full dataset and the subsets (Fig. 5). 

 

4. Discussion 

All indices of acid conditions were significantly correlated with each other and with pH, as 

were all nutrient indices with each other and with TP. This was true for both the full dataset 
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and the subsets (Tables 2, 3). We thus conclude that pH and TP affect assemblages of diatoms 

and non-diatom benthic algae in a predictable and comparable way. 

 

4.1 Confounding factors for indices and consequences for stream bioassessment 

Our results confirm the hypothesis outlined in the introduction: that pH-gradients confound 

the interpretation of benthic algal richness patterns and indices designed to reflect nutrients. 

Most biotic indices encapsulate associations between organisms and chemistry derived from 

spatial surveys and, as a consequence, will be vulnerable to factors which co-vary with the 

pressure gradients on which the indices are calibrated. In the case of nutrients and acid 

conditions, there are too few instances where low pH and elevated nutrients are combined, 

meaning that the two stressors acidification and eutrophication are not, in reality, independent 

from each other. Even though areas on Ca-poor bedrock are used for some types of 

agriculture and forestry in northern Europe, intensive agriculture and urban settlement, the 

major contributors of phosphorus to freshwater ecosystems (Ulen et al., 2007), mainly takes 

place in comparatively base-rich areas, which are buffered, to a large extent, against the 

detrimental effects of acid deposition. Conversely the most severe acidification effects are 

seen in areas with siliceous bedrock types, and thin and podsolic soils (Henriksen, 1979), 

which are poorly suited for agriculture. Consequently, surface waters in these areas have a 

lower risk of being exposed to heavy eutrophication. This situation was also reflected in our 

water chemistry data: sites with low pH tended to also have low TP concentrations, whilst 

circumneutral sites can have both high and low TP concentrations. 

There are two consequences of this coupling between nutrient concentrations and pH, and the 

relative rareness of nutrient rich-low pH sites in general: 1) indices developed from spatial 

surveys include few, if any, acidic indicator species which at the same time are indicators for 

high nutrient supply, and 2) taxon specific nutrient indicator values calculated from such 

surveys by averaging are likely to be lower for acid-tolerant species than for acid-sensitive 

species. This, in turn, will lead to the lowest possible inference of trophic status at a site being 

lower at acid than at circumneutral or alkaline sites (Figs. 4b-d; note: the scale is reversed for 

the IPS, so low pH sites will yield higher values). This is most likely an artifact of the datasets 

used for setting up the different indices rather than a true difference in ecological niche with 

respect to nutrients. For example, data from spatial surveys lead to Zygogonium Kützing sp. 

and Eunotia exigua (Brébisson ex Kützing) Rabenhorst being associated with acidic, nutrient-
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poor conditions (van Dam et al. 1994; Rott et al., 1999; Kelly et al., 2008; Schneider & 

Lindstrøm, 2009; 2011). Hargreaves et al. (1975), however, found these taxa also at highly 

acidic sites with PO4-P-concentrations up to 0.9 (Zygogonium sp.) and 1.8 mg/l (Eunotia 

exigua). 

There are serious consequences for monitoring nutrient stresses in softwater environments 

where there may be a concomitant pH stress. Naïve use of an index such as the PIT, TDI, TI 

or IPS might indicate changing nutrient status when, in fact, it is the degree of acid stress 

which is fluctuating. A large body of literature exists, describing differences in diatom 

assemblages caused by natural differences in pH related to ecoregions (e.g. Tison et al., 2005; 

Lavoie et al., 2006). We here go one step further, saying that acidification alone can influence 

the outcome of nutrient indices, such that the uninformed use of indices in a multiple stressor 

situation might lead to acidification being interpreted as reduced nutrient concentrations or 

recovery from acidification as eutrophication. This is further complicated by the interplay 

between acid and nutrient stresses: many upland freshwater ecosystems are N-limited 

(Maberley et al., 2003) and increases in pH are mostly due to reductions in sulphate, rather 

than nitrate deposition (Flower et al., 2010), such that nitrogen concentrations in these 

ecosystems still are relatively high. Most nutrient indices, however, are calibrated on 

phosphorus concentrations, while the influence of nitrogen on these indices is largely 

unknown. There is, in short, a very real need in these situations to be able to monitor 

ecological responses to both acidification and nutrient stresses, at the same time as the 

limitations in existing indices are made clear. Similarly, acid deposition has not, until now, 

been explicitly included in screening protocols for reference sites (e.g. Pardo et al., 2012) 

whereas our evidence with respect to surface water pH suggests that it may affect “expected” 

index values not just for benthic algae but also for other taxonomic groups known to respond 

to both nutrient/organic and acid pressures (Bennett et al., 2011; Moe et al., 2010; Schartau et 

al., 2008). Note that Sweden, UK and Norway all excluded sites known to suffer 

anthropogenic acidification from the dataset reported in Kelly et al. (2012).  

Although covariance might lead to indices being correlated with parameters other than the 

parameter of interest (e.g. nutrient indices being correlated with pH), this does not 

automatically mean that the indices do not provide useful insights into that parameter. 

Correlation coefficients between nutrient indices and TP, as well as acid conditions indices 

and pH were barely affected when the confounding factor was removed (Tables 2, 3). The 

most severe consequences of the confounding factor were a) the decreased consistency 
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between the different nutrient indices rather than between these and TP, and b) the minimum 

recorded values of nutrient indices drifting with pH, possibly leading to acidification being 

interpreted as reduced nutrient concentrations. While the consistency among nutrient indices 

in datasets including both a nutrient and a pH gradient is overestimated, this was not the case 

for the consistency among indices of acid conditions. This may be because pH exerts a greater 

physiological stress than nutrients, such that both diatom richness and species composition 

(Andrén & Jarlman, 2008; Fisher et al., 2010) are more closely connected to pH than to 

nutrient supply. 

 

4.2 Effects of pH and nutrients on taxon richness 

In order to better understand the underlying structural responses of benthic primary producers 

to acid conditions and nutrient supply, we also analyzed benthic algae richness patterns. 

Diatom and non-diatom samples at each study site were taken at the same time, so diatoms 

and non-diatoms were exposed to identical environmental conditions. Consequently, 

differences in diatom and non-diatom richness patterns must be explained by ecological 

differences among these two groups rather than by external environmental conditions. The 

diatom assemblage is often treated as a proxy for the whole stream phytobenthos, while non-

diatom benthic algae received considerable less attention (Kelly, 2006; Kelly et al., 2009). 

Our data show, however, that stream diatom and non-diatom benthic algae taxon richness 

show very different patterns in relation to nutrient supply and pH. 

 

Effects of pH 

Richness of both diatom and non-diatom benthic algae has a hump-shaped pattern in relation 

to pH, but non-diatom benthic algae reached their highest taxon richness around pH 6.4, while 

diatom richness had its maximum around pH 6.9 (Fig. 5b). Different factors associated with 

low pH (elevated H
+
, elevated labile Al concentration, low concentration or absence of 

HCO3
-
, reduced solubility of quartz (Stumm & Morgan, 1996), different benthic 

macroinvertebrate taxon richness and feeding types (Larranaga et al, 2010)) all impact benthic 

algae, and discriminating between the effects of these factors on primary producers is difficult 

(Sparling & Lowe, 1996). Eukaryotic algae have developed a variety of mechanisms for 
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inorganic carbon acquisition, including utilization of HCO3
-
 and different carbon 

concentrating mechanisms (Raven, 2010). The observed maximum in non-diatom taxon 

richness around pH 6.4 is very close to the point where equilibrium concentrations of CO2 and 

HCO3
-
 in open water systems are equal (Stumm & Morgan, 1996), suggesting the coexistence 

of bicarbonate and CO2 users. Note, however, that the observed maximum in non-diatom 

taxon richness towards pH shifts with increasing TP concentrations (Fig. 6a). This shift is the 

reason why non-diatom taxon richness patterns towards pH might be overlooked in datasets 

which are skewed with respect to pH and TP (Fig. 5a, where the non-diatom richness pattern 

was not significant, while a significant pattern was detected when the nutrient gradient was 

removed (Fig. 5b) or accounted for (Table 4)). 

In contrast to non-diatoms, diatom taxon richness increased between pH 5 and 6.9, which 

might be explained by bicarbonate utilization being widespread among diatoms (Martin & 

Tortell, 2008). Species-poor diatom assemblages in acid compared to circumneutral streams 

are a well-known phenomenon (Ledger & Hildrew, 2001); however, taxon richness-pH 

relationships for lake diatoms differ markedly among regions (Telford et al., 2006). Lakes in 

South Norway exhibit maximum diatom taxon richness at around pH 6.4, probably because 

most lakes in South Norway have a pH around this point (Telford et al., 2006). There are 

three possible explanations why the maximum diatom richness observed in our data is at a 

higher pH than observed by Telford et al. (2006): a) our data are from rivers, while Telford et 

al. (2006) analyzed data from lakes where C-limitation is likely to be more pronounced in the 

absence of flow-driven enhancement of oxygen efflux from the organism to the water, 

increasing the affinity of the RuBisCO enzyme to CO2 (Mass et al., 2010); b) Telford et al. 

(2006) analysed only data from South Norway, whilst our data also include North Norway 

where more Ca-rich bedrock occurs (Skjelkvåle & Wright, 1990), leading to higher pHs than 

reported in Telford et al. (2006); and c) both higher TP and higher pH lead to an increase in 

diatom taxon richness (Fig. 5); if the data of Telford et al. (2006) included a nutrient gradient, 

their observed richness maximum might have been biased. All three different explanations 

actually might play a role. 

 

Effects of nutrients 
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Nutrient enrichment in acidic rivers had a more negative effect on non-diatom benthic algae 

taxon number than in circumneutral rivers (Fig. 6a), perhaps indicating that acidic ecosystems 

are particularly sensitive to eutrophication. 

Non-diatom taxon richness decreased with increasing TP, whilst diatom taxon richness 

increased. This contradicts expectations, since in freshwater ecosystems, fertilization is 

assumed to generally increase primary producer taxon richness (Hillebrand et al., 2007). Our 

data indicate that non-diatom richness is more closely related to TP than to pH, while it is the 

other way round for diatom taxon richness (Table 4; see also Andrén & Jarlman, 2008; Fisher 

et al., 2010).  

Increased nutrient supply decreased non-diatom benthic algae richness, and we suggest that 

this pattern can be explained by the classical concept of niche theory, where taxon richness 

decreases with increasing nutrient supply due to the exclusion of taxa by superior competitors 

(Stevens et al., 2004; Wassen et al., 2005). It has been suggested that larger algal species in 

periphyton communities, which often are favored by fertilization, provide additional habitat 

structure for epiphytic diatoms, thus leading to enhanced species richness in fertilized 

freshwater ecosystems (Hillebrand, 2003). This, however, seems to not work for epiphytic 

non-diatom algae, since non-diatom benthic algae decreased rather than increased in eutrophic 

sites. The different patterns we observed between diatom and non-diatom taxon richness in 

relation to nutrient supply might instead be explained by different tolerances to low light 

conditions, different motility and ability to utilize facultative heterotrophism. Adnate diatoms 

are inherently well adapted to low light conditions (Steinman et al., 1992), while chlorophytes 

typically require higher light intensities (Hill, 1996). In addition, many diatom species are 

motile and can regulate their light environment through phototaxis (Hill, 1996). Likewise, 

facultative heterotrophy is common among diatoms, which enables them to survive low light 

periods in the understory of larger algal taxa (Tuchman, 1996). All these mechanisms enable 

diatoms to grow in the understory of larger algal taxa, which are often favored by fertilization, 

while less well-adapted epiphytes among the non-diatom algae might be outcompeted.  

Thus, in case of non-diatom benthic algae, our data contradict the assumption that fertilization 

consistently increases taxon richness of primary producers in freshwater habitats (Hillebrand 

et al. 2007). Earlier observations of an increasing richness of benthic primary producers in 

streams may be explained by diatoms often being either the only group of benthic algae 

studied in streams, or being analyzed to a greater taxonomic resolution than other groups. 
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Diatoms are - except in very acidic sites - usually more species rich than non-diatom benthic 

algae (see Fig. 5), such that they are likely to override the signal of non-diatom benthic algae. 

Pooling diatoms and non-diatom benthic algae into one group will thus likely result in the 

observation of an either absent or slightly increasing pattern in total taxon richness with 

nutrient supply, as observed in the meta-analysis of Hillebrand et al. (2007).  

A number of different factors interact in affecting benthic primary producer taxon richness, 

the most commonly investigated being nutrient supply and disturbance (Biggs & Smith, 2002; 

Cardinale et al., 2006), as well as dispersal limitations (Matthiessen et al., 2010). We show 

here that pH is an important additional factor influencing primary producer richness, and that 

underlying gradients in pH, when not accounted for, interfere with patterns in benthic primary 

producer richness to nutrient supply. A covariance between nutrient- and pH-gradients 

introduces considerable variability into analysis of biological response to one factor unless the 

other is accounted for.  

 

Consequences of the different richness patterns 

What are the consequences of the different richness patterns between diatoms and non-

diatoms? Diatoms and non-diatom benthic algae compete, after all, for the same nutrients, 

with the likely exception of silica (Carrick & Lowe, 2007). Nevertheless do the observed 

differences in taxon richness patterns suggest that mechanistic explanations might be different 

for diatoms and non-diatom benthic algae. The search for an explanation of observed patterns 

in diversity-productivity relationships in meta-analysis (Whittaker, 2010; Cardinale et al, 

2011) might therefore be complicated by the fact that some studies deal exclusively with 

diatoms, whilst others pool diatoms and non-diatom benthic algae richness. Our results are 

consistent with the results of Schneider et al. (2012), who described differences in stream 

diatom and non-diatom benthic algae community patterns, and suggest that benthic primary 

producers in streams are not the homogenous group they often are treated as. Moreover, 

whilst diatom and non-diatom indices both are suitable for status assessment, their assemblage 

patterns follow different ecological principles. 

Good ecological status according to the Water Framework Directive is defined via ecosystem 

structure and functioning, i.e. good ecological status is supposed to reflect a resilient 

ecosystem with a high level of adaptive capacity (Josefsson & Baaner, 2011). Ecosystem 
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productivity and resource use efficiency are important ecosystem functions, and the general 

view today is that both generally depend on primary producer taxon richness, though 

variations in the shape of the productivity-diversity relationship are observed among 

individual studies (Mittelbach et al., 2001; Ptacnik et al., 2008). Our data suggest that the 

relative influence of diatoms and non-diatom benthic algae on ecosystem structure and 

functioning will vary in response to both pH and nutrient supply. Consequently, accurate 

assessment of phytobenthos structure and function might require analysis of both diatoms and 

non-diatom benthic algae. Irrespective of the observed differences between diatoms and non-

diatom benthic algae, however, each assemblage is generally linked to nutrient supply as well 

as pH, and the resulting indices do provide a direct link to these pressures, making them 

valuable tools for river basin management. At the same time we here show that pH gradients 

add another element of complexity to the challenge of understanding ecosystem responses to 

multiple stressor situations (Ormerod et al., 2010).  
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Figure captions 

 

Fig. 1. 52 river sites were sampled in Norway between 1981 and 2007. 

 

Fig. 2. pH and TP measured at the sampling sites. Note the lack of sites in the top left hand 

corner, which is typical for data derived from spatial surveys. Lines indicate the data-

subdivision into the “acidity only” subset (including all data points to the right-hand side of 

the vertical line; pH=6.5) and “nutrients only” subset (including all data-points below the 

horizontal line; TP=16). 

 

Fig. 3. Taxa specific index values for pH plotted against nutrients (general pollution in case of 

IPS); (a) 77 non-diatom benthic algae taxa which are indicative in both AIP and PIT 

(Norwegian assessment system); (b) 418 diatom taxa which are indicative in both DAM and 

TDI (UK assessment system); (c) 671 diatom taxa which are indicative in both ACID and IPS 

(Swedish assessment system). Low ACID, DAM and AIP values generally denote acid-

tolerant taxa, while high PIT and TDI values denote taxa preferring high nutrient 

concentrations; however, high IPS values denote pollution sensitive taxa, i.e. taxa usually 

associated with nutrient poor conditions.  

 

Fig. 4. Acid conditions plotted against nutrient supply at 52 sites in Norway; (a) pH against 

total phosphorus concentration (TP, in µg/l); (b) Norwegian bioindication methods: AIP 

(acidification index periphyton) against PIT (periphyton index of trophic status); (c) UK 

bioindication methods: DAM (diatom acidification metric) against TDI (trophic diatom 

index); (d) Swedish bioindication methods: ACID (Swedish diatom pH index) against IPS 

(Indice de Polluo-sensibilité Spécifique); Lines indicate 95th and 5th percentile. 

 

Fig. 5. Non-diatom algae taxon richness, diatom taxon and genus richness plotted against pH 

and log10(TP) (in µg/l). Left hand figures (a, c): full dataset; (b) “acidity only” subset, (d) 

“nutrients only” subset. Lines indicate second order polynomial models for pH, and linear 

models for logTP; significant p-values (ANOVA) are in marked in bold.  

 

Fig. 6. Relationships between TP, pH and taxon richness. Note that all data are centered and 

scaled, that means a value of zero represents the sample average, while positive and negative 

values are larger and smaller than the average, respectively. pH: mean = 6.60, SD = 0.77; 

logTP: mean = 0.92, SD = 0.43. S.c.pH = centered and scaled pH, S.c.log.TP = centered and 

scaled logTP. Dark colors indicate higher taxon numbers. 
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Table 1. Summary statistics of abiotic variables and biotic indices at 52 sites in Norway. AIP 

= acidification index periphyton; DAM = diatom acidification metric; ACID = Swedish 

diatom pH index; PIT = periphyton index of trophic status; IPS = Indice de Polluo-sensibilité 

Spécifique; TDI = trophic diatom index; TI = Trophieindex. 

minimum average maximum

cond (µS/cm) 9.0 61.8 290.0

Ca (mg/l) 0.3 5.2 24.4

TOC (mg/l) 0.5 4.2 17.1

Tot-N (µg/l) 46 508 4400

pH 4.8 6.6 7.6

Tot-P (µg/l) 1.9 13.9 100.0

AIP 5.5 6.6 7.2

PIT 3.9 9.2 26.5

ACID 1.2 6.1 9.8

IPS 6.7 18.3 20.0

DAM 1.1 3.6 4.9

TDI 1.0 1.8 3.5

TI 0.6 1.3 3.0

taxon number non-diatom algae 3.0 13.6 25.0

taxon number diatoms 9.0 30.0 72.0

genus number diatoms 4.0 9.6 17.0
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Table 2. Spearman rank correlation coefficients between acid condition indices, pH and total 

phosphorus (TP) for all 52 sites, and for the “acidity only” subset (in brackets); AIP = 

acidification index periphyton; DAM = diatom acidification metric; ACID = Swedish diatom 

pH index; bold values are significant at p < 0.05. 

 

AIP ACID DAM pH

ACID 0.80 (0.86)

DAM 0.82 (0.84) 0.95 (0.96)

pH 0.91 (0.90) 0.66 (0.65) 0.66 (0.63)

TP 0.39 (0.31) 0.23 (0.23) 0.18 (0.21) 0.16 (-0.05)
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Table 3. Spearman rank correlation coefficients between nutrient indices, TP and pH for all 

52 sites, and for the “nutrients only” subset (in brackets); PIT = periphyton index of trophic 

status; IPS = Indice de Polluo-sensibilité Spécifique; TDI = trophic diatom index; TI = 

Trophieindex; bold values are significant at p < 0.05. 

 

 

PIT IPS TDI TI TP

IPS -0.75 (-0.66)

TDI 0.82 (0.79) -0.80 (-0.54)

TI 0.85 (0.88) -0.90 (-0.77) 0.87 (0.69)

TP 0.72 (0.75) -0.63 (-0.61) 0.68 (0.69) 0.63 (0.67)

pH 0.64 (-0.19) -0.62 (0.15) 0.59 (-0.21) 0.74 (-0.01) 0.16 (-0.30)
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Table 4. Standardized regression coefficients and their confidence intervals (CI) for the top 

model (non-diatoms) and averaged top 2 AICc models (diatoms). Note that standardized 

(centered and scaled) regression coefficients can be used as measures of effect size and that an 

inclusion of zero in the 95% CI of the regression coefficients means that the effect is not 

statistically significant at α = 0.05. Significant coefficients are marked in bold. 

standardized 

regression 

coefficient CI (2.5%) CI (97.5%)

standardized 

regression 

coefficient CI (2.5%) CI (97.5%)

standardized 

regression 

coefficient CI (2.5%) CI (97.5%)

intercept 0.01 -0.17 0.19 0.10 -0.10 0.30 0.25 0.04 0.45

pH -0.01 -0.32 0.29 0.27 -0.08 0.62 -0.01 -0.37 0.35

pH2
-0.55 -1.05 -0.06 -0.56 -1.15 0.03 -1.03 -1.64 -0.43

logTP -0.76 -1.03 -0.50 0.19 -0.09 0.46 0.22 -0.06 0.50

pH*logTP 0.84 0.17 1.51

non-diatom taxon richness diatom taxon richness diatom genus richness


