
Mapping and Functional 
Characterization of Candidate Genes 

and Mutations for Chicken Growth 

An Approach Combining Computational Genetics and 
Bioinformatics  

Muhammad Ahsan 
Faculty of Veterinary Medicine and Animal Science 

Department of Clinical Sciences 
Uppsala 

Doctoral Thesis 
Swedish University of Agricultural Sciences 

Uppsala 2014 



 

Acta Universitatis agriculturae Sueciae 
2014:49 

ISSN 1652-6880 
ISBN (print version) 978-91-576-8046-4 
ISBN (electronic version) 978-91-576-8047-1 
© 2014 Muhammad Ahsan, Uppsala 
Print: SLU Service/Repro, Uppsala 2014 

Cover: The cover picture is designed by Ronald Nelson. 
(photo: GeneticAssociation) 



 

 

Mapping and Functional Characterization of Candidate Genes 
and Mutations for Chicken Growth. An Approach Combining 
Computational Genetics and Bioinformatics 

Abstract 
Knowledge of the genetics related to growth is important for breeding chickens with 
the desired traits of rapid and efficient growth. A long-term selection experiment in the 
domestic chicken (Gallus gallus) has resulted in two highly divergent lines selected for 
juvenile body weight. These lines are a great genetic resource to identify the genetic 
basis of phenotypic variation mainly for growth traits. 

The aim of this thesis was to map the relationship between the genotype and 
phenotype and thereby reveal the genetic architecture of growth in the chicken. To this 
end, high-density genotyping and whole-genome resequencing of the lines were used to 
explore the genetics of the body weight difference between these lines. We further fine-
mapped previously identified Quantitative Trait Loci (QTLs) for body weight and used 
bioinformatics approaches to identify the most promising candidate genes, mutations 
and biological pathways for growth for further functional evaluations. We also studied 
a previously mapped radial network of interacting QTLs to reveal potential biological 
interactions by analyzing biological pathways. In addition, we developed new 
computational genetic method and tools and used them to functionally explore specific 
genetic variants in selected regions in the genome. To functionally evaluate the effect 
of identified amino acid substitutions (AAS), we developed and implemented a 
bioinformatics method in a tool called PASE. 

The predictions of PASE, using physicochemical properties of amino acids, were 
consistent with other widely available homology-based tools. Our mapping strategy 
successfully fine-mapped the QTLs, and our bioinformatic strategies were efficient in 
identifying the candidate mutations and biological pathways for growth. The methods 
we developed could be applied to the genetic dissection of other complex traits. 
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1 Introduction 

The hereditary material DNA is structured to carry the genes, the basic unit of 
heredity, in the chromosomes within the nucleus of all cells. The genetic 
information is transmitted from parent to offspring. According to the central 
dogma of molecular biology, the genetic information flows from DNA to RNA 
and finally to proteins. These proteins play a major role in determining 
different phenotypes, such as body weight, height and colour. Diploid 
organisms carry two copies of every chromosome, receiving one copy from 
each parent, therefore, receiving two copies of every gene, one from each 
parental chromosome. Different forms of the gene are called alleles. These 
alleles give rise to a genotype at a particular locus, a location on a 
chromosome. Same alleles of a gene result in homozygous genotype whereas 
different alleles give rise to heterozygoous genotypes. The adjacent set of 
alleles of different genes along a chromosome of an individual is characterized 
as a haplotype and each individual carry two haplotypes owing to homologous 
chromosomes. Related individuals resemble each other because they carry 
shared alleles (Lynch & Walsh, 1998). 

Two types of traits have been classified in plants and animals, generally 
based on the number of genes involved in their expression of phenotypes. 
Qualitative traits are influenced only by a single gene or very few genes and 
their gene effects can be easily classified into distinct phenotype classes due to 
their discrete expressions, whereas the quantitative (multifactorial or complex) 
traits are not only controlled by multiple genes but also by multiple non-
genetic environmental factors showing a continuous variation in the trait 
phenotype (Lynch & Walsh, 1998).  Mendelian traits are qualitative where, for 
instance, the phenotype of seed colour of pea plants can be classed into 
different colours. Most traits and diseases in human and animals are 
quantitative in nature and result from an interplay of genetic and environmental 
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factors, making the genetic architecture of such traits and disease challenging 
to reveal. 

DNA variation (or genetic variation) is an important contributor to the 
phenotypic differences observed among individuals of a species. Selective 
breeding for desired phenotypes of animals, such as meat and egg traits in the 
domestic chicken, has resulted in different genetic makeups of selected 
individuals and an enrichment of variants essential for the expression of traits. 
Functional annotation and characterization of the identified DNA variation is 
necessary to pinpoint the functional variants associated with complex traits. 
DNA and/or RNA sequencing is conducted in most genome projects for 
various kinds of functional genomic studies that also generate genetic variation 
data. Many bioinformatics integrated resources are freely available for 
researchers to characterize these mutations. The functional characterization of 
genetic variation enables the researchers to identify putative functional 
mutations underlying traits of interest. 

Lines of animals divergently selected for particular traits in controlled 
environments are a great genetic resource to identify the genetic basis of 
phenotypic variation in complex traits and a good model for identifying genes 
involved in the regulation of related traits in humans (Hill, 2005; Simmons, 
2008). The selected populations display greater phenotypic divergence for the 
selected phenotypes than populations, which are bred commercially for 
composite phenotypes. Such divergent lines provide opportunities for in-depth 
research of genetic factors underlying the selection response for the trait 
(Andersson & Georges, 2004). Many of the important agricultural traits in 
animals are concerned with metabolism, growth and feeding-behaviour. 
Therefore, these divergently selected lines of domesticated species of animals 
ultimately become a good model for translational studies in human medicine 
for exploring the genetic architecture of related problems of e.g. obesity and 
diabetes (Andersson, 2001). 

Initiated in 1957, a long-term selection experiment in chicken has resulted 
in two chicken lines divergently selected for either high or low body weight at 
56-days of age: the High-Weight-Selected (HWS) and the Low-Weight-
Selected (LWS) Virginia lines, which after about 50 generations of selection, 
display a 12-fold difference in body weight at selection age (Marquez et al., 
2010; Dunnington et al., 2013). Genotype data from a SNP-chip with nearly 
60,000 genetic markers and SNPs called from whole-genome resequencing of 
the divergent lines, were used to explore the genetic basis of the differences in 
body weight between these lines (Ahsan et al., 2013; Marklund & Carlborg, 
2010).  
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Quantitative Trait Loci (QTL) mapping endeavours to statistically associate 
phenotypic data of a quantitative trait with the genotypic data to explain the 
variation in the trait phenotype due to genetic variation. QTL mapping reveals 
chromosomal segments, including a single gene or many genes, which affect 
the studied phenotypes through their independent additive effects or by gene-
gene interaction (epistatic interactions). To reveal the genomic loci underlying 
different metabolic traits, body-weight and body-stature in Virginia lines, an 
F2-cross was performed in generation 40 of HWS and LWS lines, and many 
QTLs with small marginal effects on body weight at 56 days of age (BW56) 
and a network of interacting QTLs for the same trait were reported (Carlborg et 
al., 2006; Jacobsson et al., 2005; Park et al., 2006; Wahlberg et al., 2009). 
From the parents of the same F2-cross, a nine-generation Advanced Intercross 
Line (AIL) was developed to replicate and fine-map the QTLs reported in the 
earlier F2-cross studies (Besnier et al., 2011; Pettersson et al., 2011).   

In this thesis, my aim was to use genetic variation in Virginia lines to 
elucidate the underlying genetic mechanism responsible for enormous body 
weight difference between these lines, and to reveal genes and mutations that 
can be considered as candidates for further functional studies of their effects on 
growth. Specific genetic variants in coding regions of genes may cause amino 
acid substitutions (AAS) in proteins. Therefore, we started by developing a 
bioinformatics method to functionally evaluate the effect of these AAS. This 
bioinformatics method was developed and implemented in a tool to evaluate all 
these potentially functional variants based on the physicochemical properties of 
the substituted amino acids.  

Previously identified QTLs for BW56 in the Virginia chicken lines were so 
spread out along the chromosomes that it included millions of basepairs for 
further bioinformatic investigations for candidate genes and mutations for 
growth. It was imperative, therefore, to further fine-map the reported QTLs. 
Starting from a previously reported fine-mapping experiment using AIL, the 
QTLs were further fine-mapped through an imputation-based association-
mapping based approach utilizing data from 60K individual SNP-chip 
genotyping from these lines. Fine-mapped regions were analysed 
bioinformatically to identify the most promising candidate genes, mutations 
and biological pathways for body weight for further functional evaluations. A 
previously mapped radial-network of interacting QTLs (Carlborg et al., 2006; 
Pettersson et al., 2011) was also studied in detail to reveal potential biological 
interactions by analysing pathways including genes and mutations from the 
genomic regions harbouring the interacting QTLs. 

The results and methods are important for future animal improvement 
programmes, but that can be generalized to study related traits in any species 
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including humans. In this way, this thesis presents an important insight into 
complex trait genetics.  
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2 Background 

The central dogma of molecular biology describes the flow of genetic 
information from genetic material DNA (Deoxyribonucleic acid) to RNAs 
(Ribonucleic acid) to proteins. Specifically, a protein-coding gene is 
transcribed into mRNA (messenger RNA) and that, in turn, is translated into a 
protein. These proteins carry out a number of cellular functions thereby play an 
important role in determining phenotypes within a living organism. The field 
of quantitative genetics endeavours to find the relationship between genotype 
i.e. the genetic makeup of the organisms and their complex phenotypes.  

In this thesis the prime aim was to reveal the relationship of the growth, in 
terms of juvenile body weight in chicken, and the genetic variations present in 
outbred Virginia chicken lines, selected for divergent body weight at 8-weeks 
of age. These lines show an enormous difference (12-fold) in body weight at 
selection age after about 50 generations of selection (Marquez et al., 2010, 
Dunnington et al., 2013). We were particularly interested in understanding how 
this large phenotypic difference for body weight between these divergent lines 
occurred and which is the most candid underlying genetic variation 
contributing to this phenotypic variation. To achieve this aim, we, first, 
developed and implemented a bioinformatics method in a tool, called PASE 
(Prediction of Amino Acid’s Substitution Effect). The PASE uses 
physicochemical properties of amino acids to predict the effects of amino acid 
substitutions (AAS) on protein structure and function. The PASE software was 
used to evaluate the genetic variations that led to AASs in proteins in the 
selected genomic regions in these chicken lines. Second, a previous study 
mapped QTLs (Quantitative Trait Loci) of large confidence interval for body 
weight at 8-weeks of age using linkage analysis approach (Jacobsson et al., 
2005; Besnier et al., 2011). As the bioinformatic analysis of the genomic 
regions for identifying phenotype-contributing genes and mutations is more 
efficient for smaller regions including fewer genes, therefore, we developed a 
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strategy to use the information on the historical recombination of markers to 
further fine-map previously identified QTLs in a nine-generations Advanced 
Intercross Line (AIL) pedigree. Third, we developed a bioinformatics strategy 
to analyse the fine-mapped QTL regions using genotype data from 60k 
individual SNP-chip and SNPs-called on resequenced Next Generation 
Sequencing (NGS) data from these lines. This allowed us to investigate genes 
and mutations for body weight that may be contributing to the phenotypic 
variation between the lines. Fourth, a previously reported network of 
interacting loci mapped in these lines for body weight (Carlborg et al., 2006; 
Pettersson et al., 2011), was thoroughly investigated for underlying biological 
interactions given the observed QTL interactions. For further molecular studies 
for functional validation, we, finally, presented candidate genetic contributors 
in form of genes and mutations, and biological pathways for body weight in 
chicken. 

2.1 Animal Models  

Animals have been domesticated and kept by humans since ancient times for 
various reasons, such as food, company animals, transportation and protection 
etc. (Clutton-Brock, 1995) Humans preferred some individuals over other 
given a phenotypic trait and has led to selective breeding in a number of 
different species. Nowadays, this continues in commercial breeding programs 
that are improving the performance of animals through the selection of best 
individuals for particular traits. The selection of individuals of a population for 
many generations results in the enrichment of variation important for the 
specific phenotypic trait in selected individuals.  

There are many important traits in animals that are related to metabolism 
and growth. This makes these animals a great model for translational studies to 
dissect the genetic architecture of related traits in human medicine, including 
eating disorders, diabetes and obesity (Andersson, 2001). 

Animal selection lines may thus be developed through selection of 
individuals in a population that display a certain trait or disease. A selection 
line would be expected to get enriched for mutations affecting particular traits 
or diseases over generations and can be considered as animal models for 
genetic studies. In humans these models are impossible to design due to many 
ethical and social concerns. The genetic research using these animal models 
would be expected to identify genetic elements for traits and diseases. 
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2.2 Research into the Genetics of Growth: Virginia Chicken 
Lines 

To study and understand the genetic effects of divergent selection for body 
weight, a selection experiment was started in 1957 at Virginia Polytechnic 
Institute and State University (USA). Two divergent chicken lines were 
established i.e., High-Weight-Selected (HWS) and Low-Weight-Selected 
(LWS) Virginia lines. Seven partially inbred lines of White Plymouth Rock 
breed were crossed to compose a single founder base population of these lines. 
HWS and LWS have been under selection only for high and low body weight 
at 8-weeks of age, respectively, for more than 50 generations and now display 
direct effects of this selection with a 12-fold difference at selection age 
(Dunnington & Siegel, 1996; Marquez et al., 2010; Dunnington et al., 2013; 
Figure 1). The selected lines currently also exhibit correlated selection 
responses for many other metabolic and behavioural traits, such as body 
composition, appetite, anorexia and antibody response (Dunnington & Siegel, 
1996). 

Different experimental crosses were set up in Virginia lines to extensively 
study the genetic framework of body weight and different other metabolic traits 
(Jacobsson et al., 2005; Park et al., 2006; Carlborg et al., 2006; Le Rouzic et 
al., 2007; Le Rouzic & Carlborg, 2008; Wahlberg et al., 2009; Johansson et 
al., 2010; Besnier et al., 2011; Pettersson et al., 2011). The AIL has been 
developed from HWS and LWS individuals in generation 40, to fine-map 
QTLs (Besnier et al., 2011; Pettersson et al., 2011). In Paper II we used 
genotype data of founder and AIL individuals, along with body weight and 
pedigree information of the AIL. In Paper III and IV we used genotype data of 
founders and genetic variation obtained from whole-genome resequencing of 
both lines, to identify candidate genes and mutations. 

2.3 Chicken Karyotype 

The chicken haploid genome is about 1.07 Gbps, including 38 pairs of 
autosomes and a pair of sex chromosomes. There are nine pairs of macro-
chromosomes while the rest of the genome consists of cytologically distinct 
micro-chromosomes (Burt, 2002; Figure 2; Table 1). Chickens, like other birds 
show a different pairing of sex chromosomes than mammals. Male birds are 
homogametic (ZZ) while females are heterogametic (ZW). Currently, the 
Gallus_gallus-4.0 genome assembly of Red Jungle Fowl (galGal4) is the most 
recent assembly and is available on Ensembl (release 75.4; Refer to page 25; 
Flicek et al., 2014). The assembly consists of 31 chromosomes and 2 linkage 
groups. There are 14,093 unplaced scaffolds. About 95% of the genome is 
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anchored to Chromosome 1-28, 32, sex chromosomes and two linkage groups 
(Ensembl release 70; Refer to page 25; Flicek et al., 2014). Table 1 
summarizes the genomic information for galGal4.  

 
Figure 1. The figure shows a LWS bird on the back of an HWS bird, both at the selection age of 
8-weeks at generation 49 of selection (Photo: Paul B. Siegel). Note the difference in size.  

 

 
Figure 2. Chicken karyotype (Ensembl database version: 75.4) 
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Table 1. Summary statistics of Genome assembly of galGal4 (Ensembl database version: 75.4; 
Flicek et al., 2014)  

Assembly galGal4, Nov 2011 

Base Pairs 1,072,544,763 

Coding genes 15,508 

Short non coding genes 1,558 

Pseudogenes 42 

Gene transcripts 17,954 

Genscan gene predictions 40,572 

Short Variants 9,456,218 

 

2.4 Gene Mapping and Association Studies 

To study the underlying genetic basis of different traits, gene-mapping methods 
attempt to find the link between the genotypes of individuals and the 
phenotypes of interest. Simple Mendelian traits that show discrete phenotypes, 
such as blood groups, are exhibited by only a single or very few genes. But 
complex quantitative traits that show continuous phenotypes, such as growth, 
metabolic traits and many diseases, are affected not only by many contributing 
loci across the genome that have usually small effects on the phenotype but 
also by environmental factors. These contributing loci have different 
magnitudes of genetic effects on traits. These genetic effects from different loci 
may be additive and contribute the most in phenotype expression. But in some 
other instances, some loci release their genetic effects only under the control of 
other genetic loci, giving rise to a non-additive gene-gene interaction, a.k.a 
epistasis. 

I would briefly discuss two different gene-mapping strategies for complex 
traits, i.e., QTL analysis and Genome-Wide Association Studies (GWAS). The 
major difference between these methods is in the experimental designs. QTL 
analysis requires related individuals where the inheritance of linked alleles in 
pedigrees can be associated to similarities in phenotypes. The principle for 
QTL analysis is the use of long linkage blocks in pedigrees, whereas in GWAS 
we analyse general populations, most often unrelated individuals, where very 
dense markers are needed to tag the LD blocks.  

2.4.1 QTL Analysis 

QTL analysis attempts to identify chromosomal regions that are associated 
with complex traits, through linkage analysis of the marker and QTL alleles 
across the genome after recombination events take place. The analysis is 
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performed often on a crossed population originating from crosses of two or 
more founder populations. The founder populations differ in phenotype of 
interest. There are two common types of experimental crosses that are used in 
QTL mapping analysis, i.e., F2-cross and Backcross design. The F2-cross is 
advantageous over backcross in that the parents that are homozygous for 
alternative alleles produce all three genotypes in the F2 generation, i.e., 
heterozygotes and both homozygous genotypes. This allows the estimation of 
additive, dominance and epistatic genetic effects. On the other hand, a single-
backcross design would produce heterozygotes and only one homozygous 
genotype from the same parental populations. Backcrossing to both 
homozygous parental populations is therefore needed to produce all three 
genotypes. The prerequisites of QTL mapping are, therefore, (1) two or more 
founder populations that differ distinctly in the trait of interest, to produce an 
F2 or a Backcross generation and (2) genetic markers (SNPs, microsatellites 
etc.) that tags the DNA at different position preferably evenly spread through 
the genome in all three generations of the experimental cross. Parental lines are 
often assumed to be fixed for alternative alleles at QTL when they are crossed 
and produce heterozygous F1 individuals. Intercrossing of F1 individuals would 
recombine these marker and QTL alleles in F2. Through linkage analysis in F2 
individuals, the linked markers and QTLs segregating together with trait values 
can be traced and only the linked markers would show significant association 
with the phenotype. 

The simplest statistical method for QTL mapping is a single factor Analysis 
of Variance (ANOVA) modelled with different genotypes of a single marker at 
each marker loci (Broman, 2000; Model 1). A significant difference in 
phenotypes between marker genotypes indicates a marker linked to a QTL.  

 
!!" = !! + !!! + !!"   (Model 1) 
 
where !!" is the phenotype value of the ith individual with marker genotype j, ! 
is the overall mean, !! is the effect of marker j!and !!" is the residual error term 
which is assumed to be normally distributed. 

A genome-wide significance threshold is needed to cater for multiple 
testing and is usually calculated using permutation testing. 

The currently used technique for QTL analysis is Interval mapping 
(modified from Lander & Botstein, 1989), which estimates the QTL position in 
the interval between two adjacent markers and their associations with the trait. 
Test statistics of Logarithms of the Odds (LOD) score or Likelihood ratios are 
calculated to represents statistical support for QTL in this method (Figure 3). 
QTL mapping using F2-crosses results in the identification of long QTL 
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regions between very distant markers owing to only one generation of 
recombination. More generations of intercrossing (for instance, Advanced 
Intercross Lines) are needed to allow more recombinations to happen between 
linked alleles at marker and QTL in individuals. Genotyping of individuals in 
every generation at higher marker resolution may be needed to detect these 
recombination events for fine-mapping of regions with smaller confidence 
intervals. 

2.4.2 Genome-Wide Association Analysis 

GWAS require general populations, usually of unrelated individuals. Sampling 
could be from random mating populations but experimental crosses are not 
precluded from GWAS. Large sample size to increase power in association 
analysis is, however, often considered an important factor in GWAS (Wang et 
al., 2005; Liu et al., 2014). The F2-cross individuals exhibit large LD blocks 
and require fewer markers to map QTLs but in GWAS there are usually no 
such large blocks when individuals are randomly sampled from a natural 
population. Therefore, a very high-density marker map is needed to detect very 
small LD blocks in these individuals. The simplest way to test for association 
is single marker analysis. All markers can be modelled as in Model 1 for 
association analysis. A Manhattan plot represents the test statistics for all the 
tested markers along the genome to detect the associations with the phenotype 
(Figure 4). A group of markers linked to a specific chromosomal region would 
show association that could be significant. To correct for multiple testing 

Figure 3. Hypothetical test statistics (coloured red) plotted at tested position along the 
chromosome in QTL analysis. Only the positions that show scores greater than the genome-wide 
significance threshold (blue line) are considered significantly associated with the phenotype. 
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Bonferroni correction or permutation testing can be chosen to set a genome-
wide significance threshold. 

Nowadays, GWAS is the method of choice in most genetic association 
studies in humans as well as in other species due to the availability of high-
density genotyping of markers. Humans can be phenotyped for traits of interest 
and genotyped on high-density SNP arrays to carry out GWAS. 

 
Figure 4. A Manhattan plot of markers tested for association in a GWAS along the genome. X-
axis shows the tested markers on each chromosome (coloured differently to delimit markers on 
adjacent chromosomes). Y-axis represents the transformed value of the test statistic (P-value) for 
each marker in the study. Only the markers that show values greater than the genome-wide 
significance threshold (red line) are considered significantly associated with the phenotype. The 
plot is not based on a real dataset         

2.5 Genome Resequencing and High-Density SNP Genotyping 

With the advent of the Next Generation Sequencing (NGS), more and more 
genomes are being sequenced generating data at an unprecedented scale. Many 
biologically important species have their complete genomes sequenced and are 
available as a reference for resequencing of interesting populations in different 
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studies. It has now become affordable to resequence interesting sub-
populations as well as individuals to mine virtually every genetic 
polymorphism. Currently, there are several NGS platforms available and any 
of these may be chosen according to the specific needs of the research projects.  

To study the phenotypic evolution of the body weight differences, we 
resequenced whole-genomes of Virginia lines of chickens in two separate 
experiments to reveal polymorphism in the their genomes (Ahsan et al., 2013; 
Marklund & Carlborg, 2010; Rubin et al., 2010). In both experiments, pooled 
DNA samples from HWS and LWS lines from generation 40 were sequenced 
separately with SOLiD sequencing technology. For the first experiment, pooled 
DNAs represented by seven males and four females from each line were 
sequenced to produce genomic fragment library of 35bp reads. The genome 
assembly for each line was generated with ~5X depth coverage using the 
reference genome assembly of Red Jungle Fowl (RJF; WUGSC 2.1/galGal3, 
May 2006; Hillier et al., 2004; Rubin et al., 2010, Marklund & Carlborg, 2010) 
and SNPs were called at the time. In the second experiment, two new pools of 
DNA represented by 8 individuals in each line were used to generate mate pair 
library of 50 bp reads that produced assemblies of ~7X depth coverage in each 
line, also by using the same reference assembly of RJF. 

To enhance the sensitivity of SNP detection in these lines, we merged the 
data from two experiments both in HWS and LWS line and aligned against the 
reference RJF producing a genome assembly of ~12X depth coverage in each 
line. For SNP-calling a threshold of three non-reference reads at every SNP 
position was set including the reads from both lines (~24X depth coverage) 
(Ahsan et al., 2013). 

High-density individual SNP-chip genotyping of 20 individuals each of 
HWS and LWS in generation 40 was carried out to assay about 60,000 SNPs in 
chromosome 1-28. 59% of the assayed SNPs were polymorphic within or 
between HWS and LWS lines (Marklund & Carlborg, 2010; Johansson et al., 
2010). 

High-density SNP genotyping and SNPs called on whole-genome 
resequencing data present nearly all the polymorphism in these lines. In this 
thesis the identified genetic variation in the lines was analysed further for their 
potential functional effects on growth in selected regions of genome. In Paper 
II the untyped markers in AIL were imputed in QTL regions using this high-
density SNP genotyping as a reference panel. In paper III and IV, we used 
SNPs called on resequenced NGS data to identify the regions in the QTLs that 
have diverged significantly between HWS and LWS lines after 40 generations 
of selection. Allele frequency difference (AFD) of these mutations between the 
lines was also an indicator in inferring regions of divergence in the QTLs. All 
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these mutations were annotated using Variant Effect Predictor (VEP; McLaren 
et al., 2010) to identify their locations relative to genes in chicken genome and 
their potential functional effects on proteins. Identified AASs, resulting from 
non-synonymous SNPs, were scored using PASE software to estimate their 
potential impact on protein structure and/or function. 

2.6 Genotype Imputation 

A number of factors may contribute to the lack of signal in association studies 
including no association at all, sparseness of typed SNPs and false negatives 
etc. Genotype imputation has been shown to enhance power, fine-map 
association signals and enable meta-analysis studies to be conducted after 
combining results from different studies (Marchini & Howei, 2010). The 
association signals may be boosted through testing for association at imputed 
SNPs (Figure 5). The genotype imputation methods are used mainly to impute 
untyped as well as missing SNP genotypes using reference marker data. This is 
also used to correct genotype errors that may help control false positives. In 
human studies reference data could be any of these datasets: (1) HapMap data, 
(2) 1000 genomes data, (3) SNP array data etc., but for non-human species 
only resequencing and SNP array data may be available as reference data. 
Knowledge about the haplotype structure in the population is required for 
imputation. Imputation methods usually phase individuals at all typed SNPs 
before the haplotypes from the dense reference data can be used to impute 
untyped and missing SNPs into the haplotypes of individuals that are 
genotyped for a subset of SNPs (Marchini & Howei, 2010; Daetwyler et al., 
2011). 

The fine-mapping study in this thesis (Paper II) took advantage of the 
genotype imputation to boost power and resolution of the QTLs. ChromoPhase 
software (Daetwyler et al., 2011) utilizes pedigree information to gain the 
knowledge about the haplotype structure in the population. We used 
ChromoPhase to phase and impute genotypes in a nine-generation AIL 
pedigree (1529 individuals) by using high-density SNP-chip genotypes from 
founders as a reference panel. The individuals in the pedigree are from closely 
related subsequent generations, sharing relatively long and similar haplotypes 
to help efficient and precise phasing and imputation.   
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Figure 5. Comparison of association signals from hypothetical different marker sets: The plot on 
the left shows typed (coloured green) markers only, whereas the plot on the right shows both 
typed (coloured green) and imputed (coloured orange) markers that boost the association signal. 

2.7 Functional Annotation 

Most genomic projects use DNA and/or RNA sequencing to carry out different 
kinds of functional studies. In these studies reference genomic databases are 
useful for annotation of identified genomic elements. Nowadays, many 
integrated bioinformatic resources are available online for researchers to utilize 
genomic information in their own projects. The most popular genomic 
resources include Ensembl  (Flicek et al., 2014) and UCSC (Karolchik et al., 
2014) genome browsers (Barnes, 2010). Several sources of information 
including known EST, mRNAs, genes and protein information are used to 
annotate new genes in different species. The ab initio tools for gene 
identification, such as GenScan  (Burge & Karlin, 1997) and N-Scan (Gross & 
Brent, 2006), are also used for newly sequenced species. These genome 
browsers deliver fundamental information for genomes including e.g. genes, 
genetic variation, regulatory elements and conservation. They also supply 
different levels of annotation in several species, from a single base to full 
chromosomes and by that address many problems in genomics (Pevsner, 
2009). 

To functionally characterize genes and gene products, Gene Ontology 
database (GO; Ashburner et al, 2000) is widely used in life sciences. This 
database provides consistent biological ontology that can be widely applied to 
any species. The structured and controlled vocabulary of GO terms makes it 
possible to consistently describe the biological functions of gene products (Yu 
& Hinchcliffe, 2011).  

Biological pathways are involved in metabolism, gene regulation and signal 
transduction. These pathways are comprised of interacting biological 
molecules to perform different functions. Many of these pathways are curated 
in Kyoto Encyclopaedia of Genes and Genomes (KEGG; Kanehisa et al., 2012, 
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2014). Papers III and IV in this thesis used KEGG pathways. The genes in 
selected genomic regions within QTLs were mapped to several KEGG 
pathways to reveal biological interaction networks that underlie interacting 
loci.  

There are many bioinformatic resources available for genomics research 
and investigating them individually for annotation of a large set of genes is 
laborious and very time consuming. The Database for Annotation, 
Visualization and Integrated Discovery (DAVID; Huang et al., 2009a, 2009b) 
provides functional analysis tools for batches of genes. A gene list can be 
submitted to DAVID for annotation enrichment analysis. There are almost 40 
categories to which the annotations for the submitted genes can be combined 
and analysed. These categories include e.g. GO terms, biological pathways, 
protein-protein interactions, homology, disease associations and literature 
mining. The functional analysis provides a consistent and organized annotation 
originating from several biological angles for all the genes in the batch. 
DAVID also provides the Pathway Viewer tool to visualize genes in the batch 
on pathway maps useful to decipher biological interaction networks. In Paper 
III and IV we analysed genes in selected regions of fine-mapped QTLs using 
DAVID and presented candidate genes associated with body weight in chicken.   
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3 Aims of the thesis 

This thesis aims at revealing the genetic architecture of complex trait of growth 
in the chicken using computational and bioinformatics methods. 
 
This involves mapping genetic associations of the trait of growth and further 
exploring the genetic elements involved in this complex trait efficiently, 
utilizing data both from high-throughput Next Generation Sequencing (NGS) 
and high-density individual SNP-chip genotyping. This also requires the 
development of new bioinformatics methods to identify and characterize 
mutations that cause highly divergent growth phenotype in Virginia chicken 
lines. 
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4 Summaries of the investigations 

To study the effects of long-term divergent selection for juvenile body weight, 
the Virginia lines have previously been used extensively to map the genetic 
regions underlying huge body weight differences between these lines after 40 
generations of selection. We were interested in understanding how the lines 
have diverged phenotypically for body weight. Since we knew that 
polymorphisms in the mapped QTL regions existed across the genome, which 
could contribute to the differences between lines, we resequenced the HWS 
and LWS lines to identify all polymorphisms in these regions. We devised 
efficient bioinformatic strategies to prioritize and identify the candidate 
causative polymorphism. To do this, we first developed a method (Paper I) to 
evaluate which coding mutations were most likely to alter protein function. As 
the QTL regions were spread out over megabases even after fine-mapping, we 
also developed a method to narrow down the QTL regions using an association 
mapping approach that utilizes historical recombinations to increase resolution 
compared to the earlier-used linkage mapping approach (Besnier et al., 2011). 
Papers III & IV describe how such information is implemented in 
bioinformatics pipelines where multiple sources of information are integrated 
to prioritize the most interesting polymorphisms for further molecular studies.  

4.1 Paper I 

PASE: A novel method for functional prediction of amino acid substitutions 
based on physicochemical properties 

 
High-throughput Next Generation Sequencing (NGS) data of DNA from the 
resequenced individuals, when compared with genome sequence of the 
reference individuals of the same species, provides millions of DNA bases that  
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Figure 6. Algorithm of PASE 
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do not match each other and are termed as Single Nucleotide Polymorphism 
(SNP). This enormous number of SNPs presents a big challenge to actually 
characterize through molecular methods every SNP for its function. Thus, there 
is a need for efficient bioinformatic methods to predict the effects of these 
SNPs on proteins before their functional validation through molecular 
methods. Non-synonymous SNPs (nsSNP) in coding regions of genes lead to 
amino acid substitutions (AAS) in translated proteins. Such altered protein with 
a new substituted amino acid could be different in structure and/or function 
from the unaltered protein. The potential effects of these AASs on protein 
functions range from being deleterious to moderate or benign. There are many 
species-specific tools widely used, such as SIFT (Ng & Henikoff, 2003, 2006) 
and PolyPhen (Ramensky et al., 2002; Adzhubei et al., 2010) that use 
information on homology and evolutionary conservation of amino acids to 
predict functional effects of AASs in protein. Highly conserved amino acids 
are thought to be important for maintaining protein functions and when 
substituted deleterious effects are expected. To develop a tool that can be used 
in the absence of homology information and for any species, we started with 
the idea of using physicochemical properties of amino acids because of their 
importance for protein structure as well as for protein-protein interactions. A 
change in physicochemical profile at a position in protein due to an AAS may 
change the protein structure and/or function. This idea led us to develop a 
method we call PASE (Prediction of Amino Acid Substitutions’ Effect). It uses 
the physicochemical properties of amino acids at the substituted position in the 
protein to predict their effects on protein function. In addition, evolutionary 
conservation of unsubstituted amino acids across species was calculated using 
homologous proteins available in NCBI databases, which is another indicator 
of their functional importance. This further improved the functional prediction 
of AASs (Figure 6).  

4.1.1 Method implementation 

We considered seven biologically important physicochemical properties of 20 
directly-encoded amino acids previously selected by Rudnicki and 
Komorowski (2004) from amino acid index (AAindex; Kawashima et al., 
1999, 2008;Table 2). These seven properties were selected from five major 
groups of amino acid properties, which are (1) Polarity, (2) Size, (3) 
Hydrophobicity, (4) Electrostatic properties and (5) Tendency to form a 
particular secondary structure. The low pair-wise correlation within these 
selected properties preserved each amino acid’s unique identity (Kierczak et 
al., 2009).  
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Table 2. Physicochemical properties of amino acids as described in AAindex (Kawashima et al., 
1999) 

Descriptions  Terms from AAindex 

Transfer of free energy from octanol to water  RADA880102 
Normalized van der Waals volume  FAUJ880103 

Isoelectric point  ZIMJ680104 
Polarity  GRAR740102 
Normalized frequency of turn  CRAJ730103 
Normalized frequency of alpha-helix  BURA740101 

Free energy of solution in water  CHAM820102 

The physicochemical substitution score (P) due to an AAS was calculated 
using the Euclidean distance formula given by the following equation 1. 

 

! = ! !!!! − !!!!!
!!!

!  ,                                                          (Equation 1) 

where ! is the physicochemical substitution score, !!!!  and !!!!  are the seven 
physicochemical property scores of original and substituted amino acid, 
respectively. 

To calculate the conservation score of the original amino acid in a protein, its 
homologous and orthologous polypeptides were obtained using NCBI-blastp 
(Thompson et al., 1994) and were aligned using ClustalW (Larkin et al., 2007). 
The fraction of polypeptides in the multiple sequence alignment that carry the 
original amino acid was calculated and was used for the conservation score. 
Finally the conservation score (C) of the amino acid was calculated using the 
formula given by the following equation 2.  

 

! = !(1!– !0.95!)                                                                       (Equation 2) 

 where ! is the conservation score of amino acid, ! is the number of assessed 
polypeptide sequences in the alignment (p-value threshold of 0.01), ! is the 
fraction of polypeptides carrying original (non-substituted) amino acid in !. 
The term (1!– !0.95!) comes from Pei and Grishin (2001) and it implies that 
when N=1 the probability of each of the 20 amino acids is 1/20 at a particular 
position. 

 
A combined score ! is also calculated by multiplying the ! (from equation 1) 
and ! (from equation 2) scores. 
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4.1.2 Results and discussion 

The algorithm was tested on the already published and validated functional 
mutations in human Cx50 and porcine PRKAG3 genes. Higher PASE scores for 
AAS in these genes were consistent with the published deleterious effects of 
these substitutions as well as with SIFT predictions. AASs on human 
chromosome 22 were also scored with PASE, SIFT and PolyPhen to compare 
their predictions. The comparison among these tools showed that the higher 
scores of P, C and S were consistent with the severity of the predicted effects 
in SIFT and PolyPhen (Table 3; Figure 7). This shows that PASE is a good 
alternative for predicting functional effects of AASs, especially in the absence 
of or little information about their homology and conservation. This tool was 
used to characterizing AASs in paper III & IV for identifying candidate 
mutations for growth using resequenced NGS data from LWS and HWS.      

Table 3. Functional predictions of AASs in Human chromosome 22 

Tools Classifications AAS C a P b S c 

SIFT Tolerated 1987 0.47 0.39 0.18 
  Deleterious 1351 0.6 0.51 0.3 

PolyPhen Benign 1637 0.44 0.37 0.16 
  Possibly damaging 539 0.56 0.43 0.24 
  Probably damaging 1162 0.63 0.53 0.33 

a Conservation score, b Physicochemical properties change score and  c Combined score of PASE 
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Figure 7. The distribution of (A) MSAC, (B) PASE and (C) PASEC scores within different 
SIFT and PolyPhen prediction classes. Blue solid and dashed lines in panel (C) correspond 
to the probability of deleterious/damaging prediction from AAS’s PASEC scores. 

4.2 Paper II 

Evaluation of an imputation-based fine-mapping strategy in an outbred 
chicken Advanced Intercross Line (AIL) 

 
In previous studies, QTLs for weight differences between divergent Virginia 
chicken lines were mapped in an F2-cross of founders in generation 40 of the 
selection experiment (Jacobsson et al., 2005). In a follow-up study these QTLs 
were replicated and fine-mapped in a nine generation Advanced Intercross 
Line (AIL) that was developed from the crosses of HWS and LWS parents in 
generation 40 but genotyped with higher resolution of markers (~1 marker/cM) 
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across nine QTLs (Besnier et al., 2011). In this study the aim was to evaluate 
the possibilities of further increasing marker resolution and of further 
improvements downstream the fine-mapping analysis. The strategy included 
the use of high-density 60K SNP-chip genotyping of markers in founders in the 
AIL pedigree for imputing founder markers in all AIL individuals and finally 
evaluating single marker association analysis for body-weight at 56 days of age 
(BW56) of individuals. 

4.2.1 Materials and methods 

The nine generation AIL pedigree, developed from the reciprocal crosses of 29 
HWS and 30 LWS founders in generation 40, comprised 1529 individuals 
which were genotyped for 304 markers across nine evaluated QTL regions and 
phenotyped for BW56. 20 founders each from both the lines were previously 
high density genotyped for almost 60,000 markers across the whole genome. 
The nine QTL regions being evaluated here represented 6607 of these markers 
from high-density genotyping. 304 AIL markers and 6607 founder markers 
across nine QTL regions were physically ordered according to the base pair 
positions in the reference genome assembly of May 2006 (galGal3) for 
imputing founder markers in all the AIL individuals. After imputation and 
phasing of genotypes in nine QTL regions in AIL, 6911 markers were available 
for the following single marker association analysis for BW56. A general 
linear model for factorial Analysis of Variance (ANOVA) was used here 
(Model 2). Three distinct marker genotypes, two distinct sexes and seven 
distinct phenotyped generations of the AIL were fitted in Model 2 for the 
response variable BW56 in an overparameterized model using indicator 
variable approach of categorical variables. This additive genetic effects model 
estimates the allele substitution effects by replacing a high weight allele with 
the low weight allele, and the heterozygotes exhibit an intermediary phenotypic 
value between the values of two homozygotes. R language and environment (R 
Core Team, 2012) was used for the whole statistical analysis.   
 

!!"#$ = !!"# !+ !! !!+ !!! !+ !! !+ !!"#$                 (Model 2) 

 
where !!"#$ is the BW56 of individuals, !!"# is the intercept, !! ,!! !and!!! are 
fixed effects of marker genotype, sex and AIL-generation, respectively, and 
!!"#$ is the residual error term which is normally and independently distributed, 
and i, j and k are the levels of the three fixed effects, respectively, and l is the 
total number of individuals. 
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4.2.2 Results and discussion 

The imputation of markers in all the AIL individuals through high density 
genotyping increased the marker density 20 times across the nine QTL regions 
being evaluated here (Table 4). 

Table 4. Genotyped and imputed markers across the nine analysed QTL regions 

GGA QTL a Start 
(Mb) b 

End  
(Mb) b 

QTL Size 
(Mb) 

Markers 
AIL c 

Markers 
60k d 

Markers 
Total e 

Marker 
Density f 

1 Growth1 169.6 181.1 11.5 27 504 531 46 
2 Growth2 47.9 65.5 17.6 36 667 703 40 
2 Growth3 124.3 133.6 9.3 19 395 414 45 
3 Growth4 24.0 68.1 44.0 61 1885 1946 44 
4 Growth6 1.3 13.6 12.2 24 514 538 44 
4 Growth7 85.4 88.9 3.4 15 141 156 46 
5 Growth8 33.6 39.1 5.4 5 221 226 42 
7 Growth9 10.9 35.5 24.6 88 1397 1485 60 
20 Growth12 7.1 13.9 6.8 29 883 912 134 

a QTL names as in Jacobsson et al. (2005); b Base pair position according to Chicken genome 
assembly of May 2006; c Markers as in Besnier et al. (2011); d Markers as in Johansson et 
al.(2010a); e Total markers in c and d; f Markers/Mb 

Our approach of imputation-based association analysis showed seven regions 
with experiment-wide significant signals in nine QTLs. The resolution of the 
associated regions was also increased in the imputation-based analysis as 
compared to previously used linkage-based analysis by Besnier et al., (2011), 
mostly to 2-3 Mb (~1 cM) (Figure 8). The strongest experiment-wide 
significant markers in each QTL region with their estimated genotypic effects 
are summarized in Table 5. Further, We found multiple associated regions in 
several QTLs, revealing the complex nature of their genetic architecture and 
showing that the combined effects are probably due to multiple, linked causal 
loci on independent haplotypes that segregate among the founders of the 
population. We concluded that imputation-based association analysis is a 
promising approach for the fine-mapping of outbred AIL, but to validate the 
approach, further analyses based on genotyping of selected markers in the 
newly-detected associated regions will be necessary. 
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4.3 Paper III 

Identification of candidate genes and mutations in QTL regions for chicken 
growth using bioinformatic analysis of NGS and SNP-chip data 
 
This study describes the 
development and use of a 
bioinformatic strategy to 
efficiently utilize various 
genomic information to 
determine the most divergent 
regions between chicken lines in 
fine-mapped QTLs for the 
identification of candidate genes 
and mutation for phenotypes of 
interest. In previous studies 
several QTLs were mapped for 
growth in an F2-cross of outbred 
and divergently selected Virginia 
chicken lines for high or low 
body-weight at 56 days of age 
(Dunnington et al., 2013; 
Marquez et al., 2010) and these 
QTLs were subsequently 
replicated and fine-mapped in an 
AIL pedigree (Besnier et al., 
2011). In this study the aim was 
to identify candidate genes and 
mutations for growth in chicken 
for further functional validation 
studies but the QTL regions to be 
investigated were spread out 
across many megabases even 
after fine-mapping and presented 
a large set of genes to begin with 
the identification of the 
candidates. It was expected that 
the divergent lines had been  
nearing fixation for functional 

2nd 7X genome resequencing 

Variant effect predictor (VEP) annotations of SNP-
called data in selected candidate segments 

Selection of candidate segments in each fine-
mapped QTL for further bioinformatic analysis of 

candidate genes and mutations 

Available datasets 
1: Fine-mapped QTLs 
2: 60k SNP chip genotyping 
3: 1st round of whole genome resequencing 
4: SNP-calling from 1st 5X resequencing 

SNP-calling on merged datasets from 1st and 2nd 
round of whole genome resequencing 

Genetic divergence analysis using the flanking SNP 
value (FSV) method on SNP-called data in fine-

mapped QTLs 
 

Functional prediction of amino acid substitutions 
using the PASE software 

Annotating Ensembl genes in candidate segments 
with DAVID bioinformatics resources 

Analysis of DAVID-annotated Ensembl genes 
along with VEP annotations and PASE predictions 

Candidate genes and mutations for further 
functional validation studies 

Figure 9. Bioinformatic analysis method used here 
to identify candidate genes and mutations 
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alleles after 40 generations of selection. We developed a strategy to identify the 
most divergent regions in terms of allele frequency differences in the QTLs 
between the HWS and LWS lines using whole genome NGS and high-density 
individual SNP-chip genotyping data from these lines.  

4.3.1 Materials and methods 

A bioinformatic strategy was devised here to identify the most likely candidate 
mutations for growth in chicken in previously fine-mapped QTLs (Figure 9). 
First, we used a method called the Flanking SNP Value (FSV; Marklund & 
Carlborg, 2010), which uses the SNP information from resequenced NGS data 
from both of the chicken lines together to identify the most divergent regions 
between lines using the below equation below (Equation 3). High FSV scores 
indicate high allele frequency differences between the lines and vice versa. 

 

!"# = ! !!!
! !!!!!!

!!!
!!!

!!
!× !

!!!
! !!!!!!

!!!
!!!

!!
  ,                                 (Equation 3)      

where !!!! and !!!!  are the resequencing scores in the HWS and LWS line, 
respectively, for SNP i detected in the HWS at position coordinate c. Likewise, 
!!!! !and !!!!  are the corresponding scores for SNP j detected in the LWS at 
position coordinate d. !! and !! are the total number of HWS SNPs and LWS 
SNPs, respectively, scored within the flanking regions. (Marklund & Carlborg, 
2010) 
 
Whole genome resequencing of HWS and LWS lines was performed using a 
pooled DNA approach in two separate experiments, and data from both 
experiments were combined separately for each line to maximize the 
sensitivity of SNP detection in both lines against the reference Red Jungle 
Fowl assembly of May 2006 (galGal3). 
     We combined three sources of information in each QTL region, which were 
FSV estimates from NGS-SNP data, allele frequencies from individual SNP-
chip genotyping and QTL score statistics of model B from the fine-mapping 
study of Besnier et al. (2011) so that a combined data score (CDS, equation 4) 
was calculated for every SNP position in the nine QTLs. Model B (Besnier et 
al., 2011) takes into account the random polygenic effect for detecting QTLs, 
whereas model A does not. The CDS was used to identify the most promising 
divergent regions between lines. 
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!"# =
{[(!"#!"#$%!! + !!"#$ℎ!"_!""#"#!!"#$%#&'()/2] +
!(!"#$%&'()*!!"#$%!!"!!"#_!"#$%&)}/2,                      (Equation 4) 
 
Identified divergent regions were investigated for genes and mutations using 
the Ensembl (version 70; Flicek et al., 2014). To identify growth relevant 
genes, the DAVID bioinformatics resource (Huang et al., 2009, 2009a) was 
used to extensively annotate the genes in these regions. The Variant Effect 
Predictor tool (VEP; McLaren et al., 2010) was used to annotate mutations 
found in the regions, which were detected through SNP-calling on the whole 
genome resequenced NGS data of the lines. The in-house developed software, 
PASE, (Li et al., 2013) was used to functionally evaluate the amino acid 
substitutions (resulting from non-synonymous mutations) on protein functions.
   
    

4.3.2 Results and discussion 

Nine QTL regions, which are being evaluated here, are taken from Besnier et 
al. (2011). The bioinformatics method applied here to find highly divergent 
regions between lines identified 37% (~45 Mb) of the original fine-mapped 
QTL regions (Table 6; Figure 10). Because these regions are found to be 
divergent, we believe that the genetic variation underlying the observed QTL 
effects on body weight lies in these sub-regions. Finally combining all the 
information for growth-relevant genes along with allele frequency differences 
between lines and predicted functional effects for their mutations, we present a 
prioritised subset of mutations for growth in chicken to be used in further 
functional validation studies (Table 7). 
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Figure 9. Two of the fine-mapped growth QTL regions (A: Growth1, B: Growth12) based on 
QTL model B (QTL Support), and their significance threshold (QTL Sign.Threshold as in 
Besnier et al. (2011)). The FSV curve represents FSV computations from resequenced NGS 
data from the HWS and LWS lines (Marklund and Carlborg, 2010), the SNP chip curve 
represents allele frequency differences between HWS and LWS from SNP genotyping, and 
the combined data score curve represents the CDS from all of the above stated dataset 
curves. The Selected Region line represents the selected candidate regions for bioinformatic 
analysis of genes and mutations. 
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Table 6. Candidate regions selected based on QTL data and allele frequency differences between 
the lines inferred from SNP chip genotyping and FSV computation from resequencing.  

GGA QTL 
Name a 

Start 
(Mbp) b 

End 
(Mbp) b 

Size 
(Mbp) 

QTL 
Support c 

Ensembl 
Genes d 

1 Growth1 169.6 175.0 5.4 5.4 97 

2 Growth2 59.7 65.4 5.7 2.1 52 

3 Growth4 24.1 35.8 11.7 10.3 142 

4 Growth6 10.6 12.9 2.3 0.0 62 

5 Growth8 34.2 36.8. 2.6 0.0 20 

5 Growth8 38.2 39.0 0.8 0.0 16 

7 Growth9 20.4 35.4 15.0 4.3 209 

20 Growth12 8.3 9.5 1.2 1.2 38 

Total    44.7 23.3 636 

aQTL names as in Jacobsson et al. (2005); bBase pair position according to Chicken genome 
assembly of May 2006; cSize of the selected regions significant with QTL model B (Besnier et al., 
2011); d Number of Ensembl genes in the initial list in the selected regions 
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4.4 Paper IV 

Revealing candidate biological interactions underlying epistatic QTLs for 
chicken growth. 
 
The aim of this paper is to explore 
genetic elements underlying the 
radial network of interacting QTLs 
for body-weight at 56 days of age 
(BW56) in Virginia chicken on 
chromosomes 2, 3, 4, 7 and 20, 
previously mapped in an F2-cross of 
outbred divergent Virginia chicken 
lines and subsequently replicated in a 
follow-up study in an AIL pedigree 
(Carlborg et al., 2006; Pettersson et 
al., 2011). We assumed that the 
pathways that carried strong 
mutations within growth-relevant 
genes, of many interacting QTLs 
simultaneously, might be considered 
as candidate pathways for the 
observed QTL interaction effects to 
be validated further. Therefore, to get 
a biological interpretation of the 
interaction found in radial-network of 
interacting QTLs in replication study, 
the genes and mutations in these 
QTLs need to be explored 
extensively for interactions in the 
available biological pathways 
databases. 

4.4.1 Materials and method 

In the replication study of Pettersson 
et.al. (2011) replicated interacting QTLs were screened for evaluating the pair-
wise interactions, using the conditioned subset of data where each growth 
QTL, in turn, served as a conditioning locus for the screening of the rest of 
growth QTLs. We analysed these QTL screening data to extract significantly 

Variant Effect Predictor  (VEP) annotation of 
called SNPs 

Candidate pathways, genes and mutations of 
highest priority 

Analysis of KEGG Pathway using genes and 
mutations in significant regions of epistatic 

QTLs 

Available datasets 
1: Replicated Epistatic QTLs + Fine-mapped 
QTLs 
2: SNP-calling on merged datasets from 1st 
and 2nd round (5X and 7X coverage, 
respectively) of whole genome resequencing 

Functional annotation of the Ensembl genes 

Functional prediction of amino acid 
substitutions using the PASE software 

Allele frequency differences of SNPs 
 

Figure 11. Flow diagram of the bioinformatic 
analysis for candidate pathways 
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associated regions in these QTLs. These regions are not independent QTLs but 
represent only the significant regions within replicated growth QTLs. The 
imputation-based fine-mapping study (Paper II) provided higher resolution of 
mapped QTLs that are interacting in the radial network of loci. The 
significantly associated regions from Paper II in the replicated interacting 
QTLs (Pettersson et al., 2013) were also analysed. We investigated these 
regions here for candidate biological pathways including candidate genes and 
mutations from interacting QTLs for growth trait in chicken (Figure 11) 
      The Ensembl genes (version 70; Flicek et al., 2014) in these regions were 
extracted and extensively annotated with DAVID bioinformatics resources 
(Huang et al., 2009a, 2009b). Growth-relevant genes were identified in each 
region. SNPs from resequencing NGS data in these regions were characterized 
using Variant Effect Predictor (VEP; McLaren et al., 2010). The PASE was 
employed here to predict functional effects of AASs on proteins in the regions. 
Allelic differences between HWS and LWS lines were investigated at each 
SNP position. Biological pathways from Kyoto Encyclopaedia of Genes and 
Genomes (KEGG; Kanehisa et al., 2012, 2014) database were analysed with 
annotated genes and mutations in these fine-mapped regions. Finally, taking 
into account all the extracted information about genes and pathways, growth-
related pathways carrying growth-related genes and mutations represented 
from interacting QTLs were presented as candidates for further functional 
validation. 

4.4.2 Results and discussion 

The joint analysis of results from the replicated interacting QTLs (Pettersson et 
al., 2011) and the fine-mapped QTLs from imputation-based analysis (Paper 
II) revealed that many regions of association from both studies either 
overlapped or were in close proximity. Table 8 shows the positions of strongly 
associated markers in the interacting QTLs from imputation-based analysis and 
also the significant regions from replication study. The significant regions both 
from the replication study and the imputation-based analysis overlap in 
Growth4 and Growth9, whereas, the imputation-based analysis could not find 
any significant region in Growth2. Moreover, imputation-based analysis 
revealed strongly associated markers only 1.6 and 2.3 Mb downstream of the 
significant regions of the replication analysis, in Growth6 and Growth12, 
respectively. The strategy of finding growth-relevant biological pathways 
represented by growth-related genes, which are represented from interacting 
QTLs revealed 11 candidate pathways for further validation (Table 9). Most 
importantly, these pathways were represented from at least one gene from 
Growth9 because the genotype at this QTL always determines the release of 
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genetic effect from other QTLs in the radial network of interacting loci 
(Carlborg et al., 2006). Growth4 was represented in 10 of these pathways 
implying an important interaction between this QTL and Growth9 for a good 
proportion of phenotypic variation. Furthermore, most of the mutations in all 
the genes are regulatory in nature and only a few are non-synonymous SNPs. 
The MAPK signalling pathway (gga0401), focal adhesion pathway 
(gga04510), ECM-receptor interaction pathway (gga04512), notch-signalling 
pathway (gga04330) and Jak-STAT pathway (gga04630) are the most 
interesting candidates for growth in the chicken due to the presence of 
comparatively many regulatory and nsSNPs from many genes in the replicated 
interacting QTLs.   

Table 8. QTL regions for bioinformatics investigation for candidate mutations and biological 
pathways 

GGA QTL a Start 
(Mbp) b, c 

End 
(Mbp) b, c 

Marker 
Position b, d 

Start 
(Mbp) b, d 

End 
(Mbp) b, d 

Size 
(Mb) e 

2 Growth2 47.9 65.5 - 57.7 60.1 2.4 

3 Growth4 24.0 68.0 25.8, 37.7 24.5 39.0 14.5 

3 Growth4 24.0 68.0  44.5 63.1 18.6 

3 Growth4 24.0 68.0  66.7 68.0 1.3 

4 Growth6 1.3 13.5 13.5 1.4 11.9 10.5 

7 Growth9 10.9 35.5 23.7 16.9 37.4 20.5 

20 Growth12 7.1 13.9 11.6 7.1 9.3 2.2 

a QTL names as in Jacobsson et al. (2005); b Base pair position according to Chicken genome 
assembly of May 2006; c Coordinates of the Growth QTLs; d Positions of the strongly associated 
markers in imputation-based fine-mapping analysis (Ahsan et al., unpublished); d Coordinates of 
significant regions from replicated interacting QTLs of Pettersson et al., 2011; e Size of the 
significant regions calculated from  d. 
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5 Future Research Strategies 
There are many aspects regarding future research strategies from my work. 
Here I mention some of them: 

It would be appropriate that the QTL results could be replicated to validate 
their genetic effects in other populations. We have developed a multi-locus 
Introgression Line using the High-Weight-Selected (HWS) and Low-Weight-
Selected (LWS) lines to replicate these genetic effects in a more homogeneous 
background (Ek et al., 2011). We are currently analysing the data from this 
line. 

Fine-mapping study (Paper II) in this thesis used the nine-generation 
Advanced Intercross Line (AIL) pedigree to evaluate the marker imputation 
strategy. Intercrossing in AIL is ongoing and we have the data for seven more 
generations. The data for all the generations can be combined to increase the 
power in an analysis to validate the identified associations. Moreover, highly 
significant imputed markers can be typed in future generations of AIL to 
validate their genetic effects. This will also confirm whether the imputation 
strategy is precise and efficient. 

The candidate mutations presented in paper III and IV need to be further 
investigated in molecular studies to elucidate their presumed effects on growth 
in the chicken. So far, all our focus in dissecting the genetic basis underlying 
growth trait is at the DNA level. Tissue sampling, on the other hand, can 
provide information at RNA level, which would enable us to unravel the 
genetic mechanisms further. Tissue samples from HWS, LWS, AIL and 
Introgression Line are at currently at our disposal. Using these samples RNA-
seq analysis can be planned to study the gene expression of the candidate genes 
presented in Paper III & IV. Moreover, the candidate mutations can also be 
confirmed through RNA-seq analysis. 
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6 Conclusions 

To understand the genetic control of the phenotypic diversity is one of the most 
challenging problems in biology. Genetic association studies have shown to be 
fruitful in mapping genomic regions, which anchor mutations that contribute to 
the expression of polygenic traits of interest (Stranger et al., 2011). Typically, 
the identified regions harbour a huge number of mutations and not all are 
equally functional in contributing their effects in the expression of such traits. 
However, the task of actually pinpointing the functionally most important 
mutations has proved to be much more challenging (Stranger et al., 2011). 
With the advances in Next Generation Sequencing and being able to afford 
resequencing of populations for their complete genomes, and the availability of 
high-density genotyping methodologies, we are now well set to evaluate all the 
mutations in the identified regions and predict their functional roles through the 
development of bioinformatics algorithms, methods and tools.   

In this thesis I developed a strategy to fine-map genomic regions associated 
with juvenile body weight in chicken, devised a set of bioinformatics pipelines 
to identify first and then predict the functional effects of all mutations in these 
regions that are made available through high-density genotyping and 
resequencing of studied populations. These methods identified and functionally 
characterized most likely candidate genes, mutations and biological pathways 
underlying the observed QTL effects on juvenile body weight. Therefore, this 
thesis provides an important insight into the understanding and dissecting 
genetic basis of complex traits. The specific conclusions from each study are 
presented below.  

6.1 Paper I 

The PASE software we developed and described here is a useful tool to predict 
functional effects of amino acid substitutions on proteins. Changes in 
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physicochemical properties at an amino acid position due to a substitution in a 
protein may have effects ranging from being neutral to deleterious with regards 
to functional effect on a protein. The PASE not only uses these properties but 
also includes the degree of conservation of original amino acid in homologs 
and orthologs to predict these effects efficiently. Its results are consistent with 
widely used homology-based tools.        

6.2 Paper II 

The strategy to further increase marker resolution in AIL pedigree through 
imputation of genotypes from densely genotyped founders was shown to be 
effective. The following single marker association analysis approach for 
mapping has produced results that have replicated and fine-mapped many of 
the studied QTLs. But a further genotyping of the markers in the newly 
identified associated regions in subsequent generations would be necessary to 
validate these markers and associations in further analyses. 

6.3 Papers III and IV 

The aim of these two studies was to untangle the underlying biological 
mechanisms of the observed QTL effects on growth in Virginia chicken lines 
using NGS and high-density genotyping data in fine-mapped QTL regions. In 
paper III the additive QTLs were investigated bioinformatically to detect 
highly divergent regions between lines and a subset of highly prioritized 
candidate mutations in growth-related genes in the chicken were presented for 
further molecular characterization. In paper IV the radial network of epistatic 
QTLs was investigated for underlying biological interactions in terms of the 
presence of mutations of genes from interacting loci in biological pathways 
related to growth. Biological pathways with growth-related genes and 
mutations contributing from interacting loci were presented as the most 
interesting candidates for further functional validation.  
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