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Abstract  The systematics of the avian superfamily Sylvioidea are reviewed, focusing on studies 
of relationships among families and within genera, more superficially on taxonomic studies at 
the species level. For the families Bernieridae and Phylloscopidae, new analyses based on already 
published sequence data are presented. Our understanding of relationships has been vastly improved 
in recent years due to a large number of molecular studies. However, the relationships among the 
different families remain largely obscured, probably mainly as a result of rapid divergence of the 
different primary lineages (families). Also, species level taxonomy has been much improved in recent 
years due to a large number of studies applying molecular markers and/or vocalizations and other 
life-history data. It seems likely that the number of species will continue to increase, as new groups 
are being studied with modern integrative methods.
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Introduction

The Passerida was identified by Sibley and Ahlquist 
(1990) based on DNA-DNA hybridization studies as 
the largest radiation within oscine passerine birds (cf. 
Fig. 1). These authors recognized three superfamilies 
within Passerida: Muscicapoidea (e.g. waxwings, dip-
pers, thrushes, Old World flycatchers, starlings and 
mockingbirds), Sylvioidea (e.g. nuthatches, treecreep-
ers, tits, wrens, crests/kinglets, swallows, bulbuls, bab-
blers and warblers), and Passeroidea (e.g. larks, pipits, 
wagtails, waxbills, weavers, finches, sparrows, cardinals, 

tanagers, wood-warblers, and icterids). Subsequent 
studies of DNA sequence data have indicated that both 
Muscicapoidea and Passeroidea, after minor taxonomic 
adjustments, can be recovered as monophyletic (Barker 
et al., 2002, 2004; Ericson and Johansson, 2003; Voelker 
and Spellman, 2003; Cibois and Cracraft, 2004; Beres-
ford et al., 2005; Jønsson and Fjeldså, 2006; Johansson 
et al., 2008a; Spellman et al., 2008; Treplin et al., 2008). 
However, Sylvioidea sensu Sibley and Ahlquist (1990) 
and Sibley and Monroe (1990) has not been corrobo-
rated by later studies (e.g. Chikuni et al., 1996; Sheldon 
and Gill, 1996; Barker et al., 2002, 2004; Ericson and 
Johansson, 2003; Spicer and Dunipace, 2004; Beresford 
et al., 2005; Alström et al., 2006; Fregin et al., 2012). In 
addition to Muscicapoidea, Passeroidea and Sylvioidea, 
the superfamily Certhioidea (containing treecreepers, 
nuthatches, gnatcatchers and wrens) has been proposed 
by Cracraft et al. (2004) (cf. Fig. 1).
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Fig. 1  Phylogeny of superfamily Sylvioidea based on concatenated sequences of one mitochondrial (cytochrome b) and six nuclear 
loci (FGB, GAPDH, LDHB, MB, ODC1, RAG1; in total ~6.3 kbp), analyzed by Bayesian inference (partitioned by locus). Support val-
ues are given in the order posterior probability (PP) / maximum likelihood (ML) bootstrap; ** indicates posterior probability 1.00 or 
ML bootstrap 100%; – indicates no ML bootstrap support for this node, but clade recovered in ML search for best topology. Homo-
plasy-free insertions (+) and deletions (–) are indicated. From Fregin et al. (2012), two long branches have been shortened (broken). 
The family names are those recommended by Fregin et al. (2012); a few of the generic names have been changed to reflect more recent 
taxonomic recommendations (e.g. Alström et al., 2011b; Moyle et al., 2012). 
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The superfamily Sylvioidea has received much atten-
tion in recent years, with three major studies of inter-
familial relationships (Alström et al., 2006; Johansson 
et al., 2008a; Fregin et al., 2012) and multiple studies 
focusing on different families within it (e.g. Cibois et 
al., 1999, 2001; Helbig and Seibold, 1999; Sheldon et al., 
2005; Moyle and Marks, 2006; Nguembock et al., 2007; 
Fregin et al., 2009; Gelang et al., 2009; Alström et al., 
2011a, b, 2013; Moyle et al., 2012; Olsson et al., 2013a). 
The first comprehensive study of the whole superfam-
ily (Alström et al., 2006) was based on one nuclear and 
one mitochondrial sequence. That study identified 10 
well-supported major clades, which were proposed to 
be recognized at family level (Acrocephalidae, Aegithali-
dae, Alaudidae, Cettiidae, Cisticolidae, Hirundinidae, 
Megaluridae, Phylloscopidae, Pycnonotidae and Timali-
idae), as well as three lineages comprising one to two 
species each that were not recognized nomenclatur-
ally (Donacobius, Melocichla + Sylvietta and Panurus). 
Johansson et al. (2008a) recognized also Bernieridae, 
of which Alström et al (2006) had no representatives, 
and referred to the Melocichla + Sylvietta clade as 
the “Sphenoeacus group” (comprising Macrosphenus, 
Sphenoeacus, Bradypterus victorini and two species of 
Sylvietta). Both these groupings were previously identi-
fied by Beresford et al. (2005), the former as “Malagasy 
endemic ‘warblers’” and the latter as the “Sphenoeacus 
group” (containing also Achaetops, in addition to the 
previously mentioned genera).

The finding that the type genus of Sylviidae, Sylvia, 
was nested within the large Timaliidae group (as previ-
ously discovered by Fjeldså et al., 1999; Cibois, 2003a, 
b) caused a taxonomic problem, as the older name Syl-
viidae has priority over Timaliidae (ICZN, 1999), and 
it would be inconvenient both to discard the name Ti-
maliidae and to use the name Sylviidae in a completely 
new context. To solve this difficulty, it was suggested 
that Sylviidae be suppressed, and Timaliidae used for 
the group including mostly traditional Timaliidae spe-
cies (Cibois, 2003a, b; Alström et al., 2006). However, 
Gelang et al. (2009), again based on DNA sequence 
data, resurrected Sylviidae, but restricted it to a clade 
containing mostly traditional Timaliidae species, and 
this arrangement has been followed by subsequent au-
thors (Fregin et al., 2012; Moyle et al., 2012; Gill and 
Donsker, 2013).

The latest and most comprehensive analysis of Sylvi-
oidea (Fregin et al., 2012) proposed new family names 
for the genera Scotocerca and Erythrocercus, the Scoto-

cercidae (a monotypic family) and the Erythrocercidae 
(with three species), respectively, and formally proposed 
the name Macrosphenidae for the “Sphenoeacus group”. 
They also tentatively recommended the use of Hyliidae 
for Hylia and Pholidornis, and argued against inclusion 
of Paridae, Remizidae and Stenostiridae in Sylvioidea. 
In total, their classification comprised 23 families in Syl-
vioidea (Fig. 1), containing over 1200 species in more 
than 220 genera (Gill and Donsker, 2013).

Sylvioidea is essentially an Old World radiation. Most 
of the families are either absent or represented by just 
a few species in the New World. A striking exception 
concerns the family Hirundinidae, which is well repre-
sented on all continents (excluding Antarctica), likely 
the result of the extraordinary flight capability of its 
members. 

The present review focuses on studies of relationships 
among the families within Sylvioidea, as well as on re-
lationships within genera, but only cursorily deals with 
taxonomic studies at the species level. For the families 
Bernieridae and Phylloscopidae, new analyses based on 
previously published sequence data are presented. Re-
cent advances in the species-level taxonomy of Indian 
subcontinent birds have been reviewed by Rasmussen 
(2012), which see for additional information.

Relationships among families

In the study by Alström et al. (2006), based on two loci, 
one mitochondrial and one nuclear, most of the deep 
internal nodes were unresolved. However, three of the 
relationships among the 10 clades they proposed to be 
recognized at the family level had high posterior prob-
ability (0.95–1.00): the Megaluridae + Donacobius + 
Acrocephalidae clade, the Phylloscopidae + Aegithali-
dae + Cettiidae + Hirundinidae + Pycnonotidae clade, 
and the sister relationship between Alaudidae + Panu-
rus and the other Sylvioidea. However, none of these 
clades obtained >50% parsimony bootstrap support, 
so they were not considered reliable. Johansson et al. 
(2008a), utilizing three nuclear introns (including the 
one used by Alström et al., 2006), found strong support 
for a Megaluridae + Donacobius + Bernieridae clade, 
as well as for the sister relationships between these and 
Acrocephalidae. They also found strong support for the 
position of the Alaudidae + Panurus clade and Nicator 
outside of the other Sylvioidea, but no other strongly 
supported relationships among families.

The analysis of six nuclear and one mitochondrial 
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loci by Fregin et al. (2012; Fig. 1) corroborated the 
Locustellidae (formerly Megaluridae; see below) + 
Donacobiidae (treated at family rank; see below) + 
Bernieridae clade, but found no statistical support for 
a close relationship between these and Acrocephalidae. 
They also found the Alaudidae + Panuridae clade and 
Nicatoridae (all treated at family level; see below) in 
a polytomy with the rest of Sylvioidea (the Sylvioidea 
clade excluding Alaudidae, Panuridae and Nicatoridae 
receiving 1.00 posterior probability and 74% maximum 
likelihood bootstrap support). Moreover, the Cettiidae 
+ Scotocercidae clade and the Cettiidae + Scotocerci-
dae + Erythrocercidae + Aegithalidae + Phylloscopidae 
clade were strongly supported both in the Bayesian and 
maximum likelihood analyses. The Cettiidae + Sco-
tocercidae grouping had previously been shown to be 
supported by morphological characters (Alström et al., 
2011c). However, other relationships among families 
were generally unsupported, or strongly supported by 
Bayesian inference but with poor or moderate maxi-
mum likelihood bootstrap support. Most of the deep 
nodes with poor or conflicting support were very short, 
suggesting rapid divergence resulting in difficulties in 
reconstruction of relationships (e.g. Lewis et al., 2005; 
Rokas and Carroll, 2006).

With respect to the relationships among the five pri-
mary “babbler” clades, using partly different loci, Gelang 
et al. (2009), Fregin et al. (2012) and Moyle et al. (2012) 
recovered the same topology, i.e. ((((Leiotrichidae/-inae, 
Pellorneidae/-inae), Timaliidae/-inae), Zosteropidae/-
inae), Sylviidae/-inae) (cf. Fig. 1). The latter study was 
the only one that obtained unanimously strong support 
for these relationships, whereas the overall weakest sup-
port was found in the study with the largest number of 
unlinked loci (Fregin et al., 2012). The comparatively 
poor support (especially for the Leiotrichidae/-inae 
+ Pellorneidae/-inae clade) in the Fregin et al. (2012) 
study might have been the result of the small number 
of species in each clade compared to the other studies.

Relationships within families

Alaudidae

The Alaudidae (larks) are found on all continents, al-
though by far the largest number of species are found 
in Africa, and only one species each is found in the New 
World and Australasia (de Juana et al., 2004). This is 
one of the least studied of the families within Sylvioi-

dea. The circumscription of this family has not been 
disputed, and it seems unlikely that its inclusiveness will 
change. However, the relationships within and among 
the different genera are uncertain, and the number of 
genera and their composition have fluctuated dramati-
cally over the years (e.g. Roberts, 1940; Meinertzhagen, 
1951; Vaurie, 1951; Macdonald, 1952a, b, 1953; Verhey-
en, 1958; Peters, 1960a; Clancey, 1966, 1980; Harrison, 
1966; Maclean, 1969; Wolters, 1979; Dean et al., 1992; 
Dickinson, 2003; Pätzold, 2003; de Juana et al., 2004). 
Certain genera, notably Mirafra, have acted as “dumping 
grounds”, whereas several monotypic genera (e.g. Pseu-
dalaemon, Lullula, Ramphocoris) with uncertain affini-
ties have been erected.

Until recently, only one phylogeny of the Alaudidae, 
based on mitochondrial sequences from a small number 
of mostly African species, has been published (Tiele-
man et al., 2003). However, a phylogeny including 81 of 
the 97 species and representatives of all 21 recognized 
genera, based on two mitochondrial and three nuclear 
loci has just appeared (Alström et al., 2013). The latter 
has revealed many unpredicted relationships, including 
some non-monophyletic genera (Calandrella, Mirafra, 
Melanocorypha, Spizocorys), and proposed a revised ge-
neric classification. For example, the genus Calandrella 
is shown to be separated into two non-sister clades, 
with C. brachydactyla, C. cinerea and C. acutirostris be-
ing closely related to Eremophila, whereas the other 
Calandrella species (e.g. C. rufescens and C. cheleensis) 
are more closely related to a clade containing the two 
monotypic genera Eremalauda and Chersophilus; the 
close affinity between Eremalauda and Chersophilus was 
also totally unexpected. Alström et al. (2013) proposed 
that the name Alaudala be used for the second of these 
traditional Calandrella clades. Another surprising result 
from Alström et al.’s (2013) multilocus analysis was that 
Melanocorypha leucoptera and M. mongolica are not 
closely related, hence it was proposed that the former 
be moved to the genus Alauda.

Lark taxonomy based on morphology has received 
much attention in Africa (Meinertzhagen, 1951; Win-
terbottom, 1957; Lawson, 1961; Clancey, 1989; Ryan 
and Bloomer, 1997; García et al., 2008) and Eurasia 
(Meinertzhagen, 1951; Vaurie, 1951, 1954; Dickinson 
and Dekker, 2001). Recent studies have revealed consid-
erable hidden diversity in some taxa, such as Mirafra as-
samica, which was proposed to be split into four species 
based mainly on vocal, behavioral and morphological 
data (Alström, 1998; corroborated by molecular study 
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by Alström et al., 2013); the Calendulauda (previously 
Certhilauda) albescens complex, which was suggested 
to consist of three instead of two species based on mi-
tochondrial, morphological and vocal data (Ryan et 
al., 1998); the Certhilauda curvirostris complex, which 
was recommended to be treated as five instead of one 
species based on mitochondrial and morphological evi-
dence (Ryan and Bloomer, 1999); and Galerida cristata, 
which was shown to consist of two partly sympatric and 
largely reproductively isolated species in Morocco, G. 
cristata sensu stricto and G. macrorhyncha (Guillaumet 
et al., 2005, 2006, 2008). In an analysis of mitochondrial 
data, Alström et al. (2013) found several unexpectedly 
deep divergences between taxa presently treated as con-
specific (e.g. within Ammomanes cinctura, Ammomanes 
deserti, Calandrella brachydactyla, Eremophila alpestris), 
but also some shallow splits between currently recog-
nized species (e.g. Certhilauda brevirostris–C. semitor-
quata–C. curvirostris [cf. Ryan and Bloomer, 1999]; 
Calendulauda barlowi–C. erythrochlamys [cf. Ryan et al., 
1998]; Mirafra cantillans–M. javanica). Moreover, Zink 
et al. (2008) found a deep divergence in mitochondrial 
DNA between eastern and western populations of 
Alauda arvensis. It seems likely that the total number of 
recognized lark species is underestimated, and we pre-
dict that future studies based on molecular and/or vocal 
data will show that many of the currently recognized 
subspecies warrant recognition as separate species.

Panuridae

The family Panuridae contains the single species Panu-
rus biarmicus, which is widely distributed across the 
temperate parts of Eurasia. It was previously considered 
a babbler, closely related to parrotbills (e.g. Deignan, 
1964a; Dickinson, 2003), but molecular studies have 
unanimously recovered it as sister to the Alaudidae (Er-
icson and Johansson, 2003; Alström et al., 2006; Johans-
son et al., 2008a; Fregin et al., 2012).

Macrosphenidae

The realization that this exclusively African family ex-
ists as a distinct evolutionary lineage has gradually 
grown out of molecular evidence, which piece by piece 
brought together a morphologically diverse assemblage 
of species as a monophyletic group. Sefc et al. (2003) 
found that Sylvietta, which was placed in Acroce-
phalidae by Sibley and Monroe (1990), was not closely 

related to any other warbler taxa in their analysis of 
mitochondrial markers. Beresford et al. (2005) included 
Achaetops, Bradypterus victorini, Macrosphenus, Sphe-
noeacus and Sylvietta in their analysis of nuclear RAG1 
and RAG2 sequences and identified a clade consisting 
of these species as the “Sphenoeacus group”. The posi-
tion of Bradypterus victorini, removed from other spe-
cies in the genus, prompted a reversion to its older ge-
neric name Cryptillas. Fuchs et al. (2006) confirmed the 
close association of Sylvietta, Macrosphenus and Sphe-
noeacus based on one nuclear and one mitochondrial 
marker, and found that Melocichla was also a member 
of the “Sphenoeacus group”; Alström et al. (2006) also 
recovered a clade including Sylvietta and Melocichla. 
Johansson et al. (2008a) corroborated the existence 
of the “Sphenoeacus group” in their analysis of three 
nuclear loci by finding a clade consisting of Cryptillas 
(Bradypterus) victorini, Macrosphenus, Sphenoeacus and 
Sylvietta, but they did not consider Achaetops or Melo-
cichla. Fregin et al. (2012) used one mitochondrial and 
six nuclear markers and again found support for a clade 
consisting of Cryptillas victorini, Macrosphenus, Melo-
cichla, Sphenoeacus and Sylvietta, but did not include 
Achaetops in their analysis. Fregin et al. (2012) erected 
the family Macrosphenidae for this clade, although it 
lacks known diagnostic morphological features. In total, 
18 species in 6 genera are presently placed in this family 
(Gill and Donsker, 2013).

Cisticolidae

The family Cisticolidae (cisticolas, prinias, apalises and 
allies) is the largest of the sylvioid families, with 160 
species in 27 genera; 14 of the genera are monotypic, 
whereas the largest, Cisticola, contains more than 50 
species (Gill and Donsker, 2013). All of the genera are 
found mainly or exclusively in Africa, except Neomixis 
(Madagascar), Incana (Socotra island) and Orthoto-
mus (Asia), and the vast majority of the species occur 
in Africa (Ryan et al., 2006). The Cisticolidae was first 
identified by Sibley and Ahlquist (1990) based on DNA-
DNA hybridization data, revealing a previously unan-
ticipated cluster of warbler genera. The speciose genera 
Apalis, Cisticola and Prinia comprise the core of the 
family (Sibley and Monroe, 1990). Several later studies 
have largely corroborated Sibley and Monroe’s (1990) 
circumscription of Cisticolidae (Cibois et al., 1999; Sefc 
et al., 2003; Beresford et al., 2005; Alström et al., 2006; 
Nguembock et al., 2007, 2008, 2012; Johansson et al., 
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2008a; Alström et al., 2011c; Fregin et al., 2012). How-
ever, these later studies have also shown that the genera 
Bathmocercus, Eremomela, Neomixis, Orthotomus, Po-
liolais and Scepomycter, which were placed in Sylviidae 
by Sibley and Monroe (1990), belong to Cisticolidae. In 
contrast, the two monotypic genera Rhopophilus and 
Scotocerca, which were placed in Cisticolidae by Sibley 
and Monroe (1990) based on non-molecular data, have 
been shown by molecular analyses to have other af-
finities; the former is a “babbler” (Alström et al., 2006; 
Gelang et al., 2009; Olsson et al., 2013a), the latter sister 
to Cettiidae (Alström et al., 2011c; Fregin et al., 2012; 
placed in the monotypic family Scotocercidae by latter, 
see below).

Nguembock et al. (2007, 2012), who analyzed 15 
and 17 cisticolid genera, respectively, using one to three 

mitochondrial and one nuclear markers, and Olsson 
et al. (2013a; Fig. 2), who analyzed representatives of 
all genera believed to belong in Cisticolidae using two 
mitochondrial and two nuclear markers, are the most 
complete studies to date. These authors identified four 
main clades: (1) the speciose genus Apalis and several 
smaller (including monotypic) genera, all with exclu-
sively African distributions; (2) the large genus Cisticola 
and several smaller (including monotypic) genera, of 
which all except two species of Cisticola are restricted 
to Africa; (3) the fairly large genera Prinia (Africa, Asia) 
and Orthotomus (Asia) and the two monotypic African 
genera Heliolais and Urorhipis; and (4) the genus Neo-
mixis containing three species, all restricted to Mada-
gascar. Olsson et al. (2013a) classified these clades as 
Eremomelinae, Cisticolinae, Priniinae and Neomixinae, 

Fig. 2  Family Cisticolidae based on concatenated nuclear MB and ODC and mitochondrial cytochrome b and ND2, based on Olsson 
et al. (2013). Posterior probabilities (above) and maximum likelihood bootstrap (below) values are indicated at the nodes; an asterisk 
represents posterior probability 1.00 or maximum likelihood bootstrap 100%. Changes of generic names are indicated in red (Heliolais 
erythroptera and Urorhipis rufifrons moved to genus Prinia).
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respectively. A fifth lineage, containing the Philippine 
Micromacronus sordidus, which was shown by Oliveros 
et al. (2012) to be part of Cisticolidae, was in an incertae 
sedis position within Cisticolidae in the study by Olsson 
et al. (2013a).

Studies using molecular markers have found several 
of the cisticolid genera to be non-monophyletic, result-
ing in taxonomic revisions. The genus Apalis was shown 
by Nguembock et al. (2007) to be non-monophyletic, 
as Apalis ruwenzorii and A. pulchra were more closely 
related to Artisornis metopias than to other Apalis spe-
cies, leading to erection of the genus Oreolais for the 
two former species (Nguembock et al., 2008). More-
over, the two African taxa currently placed in Artisornis 
have previously been placed in Orthotomus (e.g. Hall 
and Moreau, 1970; Watson et al., 1986), but this has 
been shown to be incorrect as A. metopias is not closely 
related to Orthotomus (Nguembock et al., 2007, 2008, 
2012; Fregin et al., 2012; Olsson et al., 2013a). Recently, 
Orthotomus cuculatus 1 was moved from Orthotomus 
to Phyllergates, as it has been shown to be part of Cet-
tiidae (Alström et al., 2006, 2011b; Fuchs et al., 2006; 
Nguembock et al., 2007, 2012). Olsson et al. (2013a) 
synonymized Urorhipis and Heliolais with Prinia. They 
also showed that Prinia burnesii is a babbler (Pellornei-
dae sensu Fregin et al., 2012), and reinstated the generic 
name Laticilla for this species.

Sheldon et al. (2012) reconstructed the phylogeny 
of all Orthotomus species based on mitochondrial and 
nuclear DNA. They revealed e.g. a deep split and non-
monophyletic relationships within O. castaneiceps, and 
showed that several taxa previously considered subspe-
cies of O. atrogularis were highly divergent.

Prinia fluviatilis was recognized as a species due to its 
distinctive song (Chappuis, 1974), and P. superciliaris 
was split from P. atrogularis on the basis of morpho-
logical and vocal evidence (Rasmussen and Anderton, 
2005, 2012). Several studies underway suggest that the 
genus Prinia contains considerably more species than 
presently recognized, and this seems likely to be the case 
also in the speciose genus Cisticola.

Locustellidae 

The family Locustellidae (grassbirds, bush warblers, 
grasshopper warblers and allies) is widely distributed 
across Africa, Eurasia and Australasia, with a total of 

57 species in 9 genera (Gill and Donsker, 2013). It was 
first recognized by Sibley and Monroe (1990), partly 
based on DNA-DNA hybridization work by Sibley and 
Ahlquist (1990), as the subfamily Megalurinae, contain-
ing the genera Megalurus, Cincloramphus, Eremiornis, 
Amphilais, Megalurulus, Buettikoferella, Chaetornis, 
Graminicola and Schoenicola. Based on DNA sequence 
data from a broad selection of sylvioid genera, Alström 
et al. (2006) and Johansson et al. (2008a) recognized 
Megaluridae at the family level, comprising the genera 
Megalurus, Bradypterus, Locustella and Dromaeocercus. 
Hence, their circumscription included three of the 
genera placed in Acrocephalinae by Sibley and Monroe 
(1990). Moreover, molecular studies also revealed that 
the monotypic genus Graminicola is a babbler (Alström 
et al., 2006; Gelang et al., 2009; Olsson et al., 2013a), 
and that the aberrant Bradypterus victorini is not re-
lated to this clade (Beresford et al., 2005; now placed in 
Cryptillas – see under Macrosphenidae above). Alström 
et al. (2011a) noted that Locustellidae has priority over 
Megaluridae (as stated by Bock, 1994: 152).

The first comprehensive study of Locustellidae was 
published by Alström et al. (2011a; Fig. 3). It was based 
on a dataset comprising one mitochondrial and four 
nuclear loci for most of the species believed to belong 
in this family. The phylogeny strongly disagreed with 
earlier classifications at the generic level. All of the gen-
era with more than one representative were found to be 
non-monophyletic: Bradypterus was separated into an 
Asian and an African clade, with Locustella and Megal-
urus pryeri nested within the former, and the monotyp-
ic Malagasy Dromaeocercus within the latter; only two 
of the five Megalurus species formed a clade that did 
not include other genera, and both Cincloramphus and 
Eremiornis were nested in one of the Megalurus clades. 
The non-monophyly of Bradypterus and Locustella had 
previously been found based on mitochondrial ND2 
sequences of all Locustella, two Asian and three African 
Bradypterus and two Megalurus (M. pryeri and M. gra-
mineus) (Drovetski et al., 2004). Moreover, the affinity 
of M. pryeri to Locustella had previously been suggested 
based on morphology (Morioka and Shigeta, 1993). 
Alström et al. (2011a) proposed a revised classification 
recognizing four instead of seven genera (Fig. 3). They 
acknowledged the non-monophyly of one of these 
genera (Megalurus), but stressed that the classification 
was tentative and took account of the phylogenetic un-
certainty (i.e. conflict between their results and a study 
by Beresford et al., 2005 using another locus for five Lo-

1 Note that the frequently used spelling cucullatus is apparently 
incorrect (Gill and Donsker, 2013).
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custellidae species, as well as morphology and vocaliza-
tions).

A recent study by Oliveros et al. (2012) unexpectedly 
found that the monotypic Sulawesi genus Malia was 
nested in Locustellidae and that the Philippine Robso-
nius was sister to Locustellidae. Five putative Locustel-
lidae genera remain to be studied genetically: Amphilais 
(monotypic, Madagascar), Megalurulus (four species, 
Melanesia), Buettikoferella (monotypic, Timor), Chae-

tornis (monotypic, Indian Subcontinent) and Elaphror-
nis (monotypic, Sri Lanka) (Gill and Donsker, 2013).

The species in the traditional genera Locustella and 
Bradypterus are renowned for being difficult to identify 
by morphological characters, and there has been much 
taxonomic confusion over the years (see Bairlein et al., 
2006; Kennerley and Pearson, 2010). One new species, 
Locustella (Bradypterus) alishanensis, was described as 
recently as 2000 from Taiwan, where it had been known 

Fig. 3  Family Locustellidae based on concatenated nuclear ODC, MB, LDHB and GAPDH and mitochondrial cytochrome b 
sequences, based on Alström et al. (2011a). Species names follow revised taxonomy proposed by Alström et al. (2011c), but colors 
indicate genera according to Dickinson (2003) (red – Bradypterus; purple – Megalurus; dark blue – Dromaeocercus; pale blue – 
Cincloramphus; orange – Eremiornis). # indicates that only cytochrome b was available for analysis. Posterior probabilities and 
maximum likelihood and parsimony bootstrap values are indicated at the nodes, in this order; an asterisk represents posterior 
probability 1.00 or bootstrap 100%. B. baboecala SA and B. baboecala Nig refer to samples from South Africa (transvaalensis/tongensis) 
and Nigeria (centralis), respectively. 1 Node affected differently by different types of analyses. 2 Non-monophyletic Megalurus tentatively 
recognized due to conflicting results between present and another study based on different loci and DNA versus morphology.
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to exist for many years but with confused taxonomy 
(Rasmussen et al., 2000). Dickinson et al. (2000) revised 
the poorly known Bradypterus seebohmi complex based 
on morphology and vocalizations, and tentatively rec-
ommended recognition of four species: B. seebohmi sen-
su stricto (s.s.), B. timorensis, B. montis and B. mandelli 
(placed in Locustella by Alström et al., 2011). Alström et 
al. (2011a) analyzed mitochondrial cytochrome b from 
different populations of the latter two, and suggested 
that they were so similar that their status as separate 
species needs to be re-evaluated. Locustella timorensis 
(previously Bradypterus timorensis), until recently only 
known from two specimens collected in 1932 on Timor 
(Dickinson et al., 2000), was recently rediscovered, 
along with a putative undescribed taxon from nearby 
Alor (Trainor et al., 2012; Verbelen and Trainor, 2012). 
Another undescribed taxon in the same complex has 
recently been found on Taliabu island, Indonesia (Rhe-
indt, 2010). The L. thoracica (previously B. thoracicus) 
complex was revised by Alström et al. (2008) based on 
multiple independent datasets, and they proposed that 
three instead of one species be recognized. Locustella 
amnicola has usually been treated as a subspecies of L. 
fasciolata (e.g. Dickinson, 2003; Kennerley and Pearson, 
2010), but has also been given species status (Watson et 
al., 1986 [with a note by Ernst Mayr stating that “The 
status of this species is in doubt.”]; Stepanyan, 1990). 
Both Drovetski et al. (2004) and Alström et al. (2011a) 
showed that these two are markedly different geneti-
cally, supporting treatment as separate species. Alström 
et al. (2011a) also found deep cytochrome b divergences 
among some other taxa currently treated as conspecific, 
and suggested that species status might be warranted if 
corroborated by independent data: B. baboecala tongen-
sis + B. b. transvaalensis vs. B. b. centralis + B. b. elgonen-
sis; B. lopezi mariae + B. l. usambarae vs. B. l. ufipae; and 
M. palustris toklao vs. M. p. forbesi. Conversely, Alström 
et al. (2011a) and an earlier study by Drovetski et al. 
(2004), found slight divergences between L. pleskei and 
L. ochotensis, and noted that their status as separate spe-
cies needs to be studied further.

Bernieridae

The family name Bernieridae was proposed by Cibois 
et al. (2010) for a clade of Malagasy “warblers”. These 
were previously classified in the traditional families Ti-
maliidae, Sylviidae and Pycnonotidae, but were shown 
by mitochondrial DNA to form an endemic Malagasy 

radiation (Cibois et al., 1999, 2001; Fjeldså et al., 1999). 
Cibois et al. (2010) recognized 10 species in seven 
genera: Bernieria madagascariensis, Xanthomixis zos-
terops, X. cinereiceps, X. apperti, X. tenebrosa, Oxylabes 
madagascariensis, Thamnornis chloropetoides, Crossleyia 
xanthophrys, Hartertula flavoviridis and Cryptosylvicola 
randrianasoloi. Dickinson (2003) and Gill and Donsker 
(2013) included also Randia pseudozosterops in Berni-
eridae, although this species has not yet been included 
in any phylogenetic study. The first four species listed 
above have often been placed in the bulbul (greenbul) 
genus Phyllastrephus, and H. flavoviridis has been placed 
in the “warbler” genus Neomixis (e.g. Delacour, 1946).

The study by Fregin et al. (2012) is the most com-
plete analysis of this family thus far with respect to 
number of loci, although the study by Alström et al. 
(2011), based on four nuclear and one mitochondrial 
loci, investigated one additional monotypic genus 
(Cryptosylvicola), and the mitochondrial study by Ci-
bois et al. (2001) included two additional species in the 
genus Xanthomixis. The tree in Fig. 4, which is based on 
all previously published sequence data, is well resolved 
and well supported, except for some uncertain relation-
ships within a clade containing Oxylabes + Bernieria, 
Hartertula, Cryptosylvicola and Thamnornis.

Fig. 4  Family Bernieridae based on concatenated nuclear ODC, 
MB, LDHB, GAPDH and RAG1 and mitochondrial cytochrome 
b sequences (only cytochrome b for X. cinereiceps; no LDHB, 
GAPDH for X. zosterops; and no RAG1 for C. randrianasoloi), 
based on Cibois (1999, 2001), Alström et al. (2011c) and Fregin 
et al. (2012), reanalyzed by Bayesian inference in six partitions 
(by locus). See Supplementary Appendix for details of samples 
and analyses. Posterior probabilities and maximum likelihood 
bootstrap values are indicated at the nodes, in this order; an 
asterisk represents posterior probability 1.00 or bootstrap 100%.
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Donacobiidae

The family Donacobiidae was proposed by Aleixo and 
Pacheco (2006). It contains the single species Donaco-
bius atricapilla, which occurs in Central and South 
America. This taxon has a chequered history: it was 
placed in the family Mimidae by e.g. Mayr and Green-
way (1960), and later in the subfamily Troglodytinae 
by Sibley and Ahlquist (1990) and Sibley and Monroe 
(1990). However, Barker et al. (2004) found evidence 
for an association with Zosterops and Prinia based on 
one mitochondrial and one nuclear marker, and Al-
ström et al. (2006) confirmed that it was firmly nested 
within Sylvioidea also using one mitochondrial and 
one nuclear marker (different ones from those used 
in Barker et al., 2004). Johansson et al. (2008a) found 
strong support for the position of Donacobius in a clade 
with Locustellidae and Bernieridae based on three 
nuclear loci, and this was corroborated by Fregin et al. 
(2012) based on seven molecular markers. However, the 
relationships among these three families are uncertain, 
probably due to a short time between their separations, 
as indicated by the short internode between Donacobius 
and Bernieridae. From a biogeographical point of view, 
the distribution of Donacobius is remarkable, as all of 
its closest relatives, Locustellidae and Bernieridae, occur 
in the Old World.

Acrocephalidae

The relationships among the four genera in Acroce-
phalidae sensu Johansson et al. (2008a) and Fregin et al. 
(2009, 2012) [Acrocephalus (“reed warblers”), Hippolais (
“tree warblers”), Chloropeta (“yellow warblers”) and Ne-
sillas (“brush warblers”)] and their relationships to oth-
er taxa have long been debated based on morphology 
and oology (Hartert, 1909; Voous, 1977; Schönwetter, 
1979; Wolters, 1982; Watson et al., 1986; Haffer, 1991; 
Cramp, 1992; Dickinson, 2003) as well as DNA (e.g. 
Sibley and Ahlquist, 1990; Leisler et al., 1997; Helbig 
and Seibold, 1999; Beresford et al., 2005; Alström et al., 
2006; Johansson et al., 2008a; Fregin et al., 2009, 2012). 
The three genera Acrocephalus, Hippolais and Chlorop-
eta have been split into several genera and/or subgen-
era, and there has been much disagreement regarding 
the classification of these taxa, especially Acrocephalus 
(Grant and Mackworth-Praed, 1941; Wolters, 1982; 
Watson et al., 1986; Sibley and Monroe, 1990; Dickin-
son, 2003; Haffer, 1991; Leisler et al., 1997; Helbig and 

Seibold, 1999). Leisler et al. (1997) and Helbig and Sei-
bold (1999) came to nearly identical conclusions based 
on analyses of cytochrome b sequence data. Neither 
of them found the genera Acrocephalus and Hippolais 
to be monophyletic. Leisler et al. (1997) discussed the 
option of dividing these into a number of genera, and 
Helbig and Seibold (1999) proposed a classification 
into a number of subgenera. Helbig and Seibold (1999) 
investigated only one species of Chloropeta, C. graciliro-
stris, which was shown to belong in the clade with Acro-
cephalus and Hippolais, albeit in an unresolved position; 
Leisler et al. 1997 did not study any Chloropeta.

Fregin et al. (2009) revised the family Acrocephalidae 
based on one mitochondrial and three nuclear loci for 
32 out of the 38 species of Acrocephalus (mitochondrial 
data only for nine species), all eight Hippolais, all three 
Chloropeta and one Nesillas (Fig. 5). They recovered all 
Acrocephalus except A. aedon in one clade. The latter 
was sister to a clade with C. natalensis and C. similis as 
sisters to H. pallida and H. opaca, with H. caligata and 
H. rama as sisters to these four, and the generic name 
Iduna was erected for these seven species, with the sug-
gested option of placing I. aedon in the monotypic 
genus Phragamaticola; the latter was adopted by Ken-
nerley and Pearson (2010). The third species of Chlo-
ropeta, C. gracilirostris, was in an effectively unresolved 
position, and the monotypic genus Calamonastides was 
reinstated for it. The other four Hippolais (H. icterina, 
H. polyglotta, H. olivetorum and H. languida) formed a 
clade with two sister pairs, and the generic name Hippo-
lais was suggested to be restricted to these four species.

At the species level, several taxa have been the subject 
of taxonomic debate. Acrocephalus baeticatus has been 
considered conspecific with A. scirpaceus (Dowsett-
Lemaire and Dowsett, 1987) or regarded as a distinct 
species because of different migratory behavior and as-
sociated wing structure (Kennerley and Pearson, 2010). 
Acrocephalus dumetorum has been suggested to be a 
subspecies of A. baeticatus (Fry et al., 1974), although 
this suggestion has been refuted by molecular data 
(Leisler et al., 1997; Helbig and Seibold, 1999; Fregin 
et al., 2009). Acrocephalus tangorum has been treated 
as a subspecies of A. bistrigiceps (Williamson, 1968; 
Wolters, 1982; Watson et al., 1986; Sibley and Monroe, 
1990) or A. agricola (Vaurie, 1959; Alström et al., 1991; 
Sibley and Monroe, 1993), but based on molecular data 
(Helbig and Seibold, 1999; Leisler et al., 1997; Fregin 
et al., 2009) is now generally recognized as a separate 
species (Dickinson, 2003; del Hoyo et al., 2006; Gill and 
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Donsker, 2013). Acrocephalus arundinaceus, A. orienta-
lis, A. griseldis and A. stentoreus have been considered 
conspecific at some stage (cf. Salomonsen, 1929; Mayr, 
1948; Stresemann and Arnold, 1949; Vaurie, 1959; Wil-
liamson, 1968; Watson et al., 1986; Cramp, 1992; Eck, 
1994). Acrocephalus stentoreus was first split off, as it 
was found to breed sympatrically with A. arundinaceus 
in central Asia and Israel (Stresemann and Arnold, 
1949; Zahavi, 1957). Acrocephalus griseldis was shown 

to be distinct morphologically (Pearson and Backhurst, 
1988) and on the basis of molecular markers (Leisler et 
al., 1997; Helbig and Seibold, 1999; Fregin et al., 2009; 
cf. Fig. 5), and also A. orientalis was shown to be geneti-
cally distinct (Leisler et al., 1997; Helbig and Seibold, 
1999; Fregin et al., 2009; cf. Fig. 5).

The Acrocephalus warblers occurring on different 
islands in eastern Polynesia were previously consid-
ered a single widespread species, A.caffer (Holyoak and 

Fig. 5  Family Acrocephalidae based on concatenated nuclear ODC, MB, LDHB and mitochondrial cytochrome b sequences, based 
on Fregin et al. (2009). # indicates that only cytochrome b was available for analysis. Posterior probabilities and maximum likelihood 
and parsimony bootstrap values are indicated at the nodes, in this order; an asterisk represents posterior probability 1.00 or bootstrap 
100%. Colors represent taxonomy according to Dickinson (2003): black – Acrocephalus; blue – Hippolais; red – Chloropeta; purple – 
Nesillas.
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Thibault, 1984; Dickinson, 2003), whereas some au-
thors suggested splitting this species into three, mainly 
because of wide geographical separation: A. caffer s.s. 
on the Society Islands, A. atyphus on Tuamotu, and A. 
mendanae in the Marquesas (Pratt et al., 1987; BirdLife 
International, 2000; Cibois et al., 2011a, b). Using mi-
tochondrial sequence data, Cibois et al. (2007) showed 
that A. mendanae formed two independent lineages, 
which they proposed be treated as specifically distinct: 
A. percernis (closely related to A. atyphus) and A. men-
danae s.s. (sister to A. aequinoctialis). In a later study, 
Cibois et al. (2008) analyzed mitochondrial DNA from 
extinct Acrocephalus taxa from different Society Islands, 
and concluded that A. caffer s.l. was more appropriately 
treated as one extant species, A. caffer s.s. (Tahiti), and 
two extinct ones, A. longirostris (Mo’orea) and A. musae 
(Raiatea, Huahine). A comprehensive study of Pacific 
Acrocephalus warblers (Cibois et al., 2011a) revealed 
complex colonization histories for several taxa, and re-
vealed that A. luscinius is seprated into three distantly 
related clades, calling for a taxonomic revision.

Until recently, Acrocephalus orinus was only known 
from a single specimen collected in winter in India in 
1867, and its validity as a species was controversial. A 
series of studies, and the surprise finding of a live indi-
vidual in Thailand in March 2006, gradually led to the 
discovery of a breeding population at high elevation in 
north-eastern Afghanistan and adjacent Tajikistan, and 
has been found during the breeding season, and almost 
certainly also breeds, in Kyrgyzstan, eastern Uzbekistan 
and south-eastern Kazakhstan (Bensch and Pearson, 
2002; Round et al., 2007; Pearson et al., 2008; Svensson 
et al., 2008, 2010; Timmins et al., 2010; Ayé et al., 2010; 
Koblik et al., 2011).

The four Palearctic Iduna species (previously Hip-
polais) have long been treated as two species, H. pallida 
and H. caligata (e.g. Watson et al., 1986), although the 
former was suggested to be split into H. pallida s.s. and 
H. opaca based on morphological, vocal and behavioral 
characteristics (Svensson, 2001; Parkin et al., 2004), and 
the latter has often been split into H. caligata s.s. and H. 
rama on the same grounds, as well as sympatric breed-
ing distributions (e.g. Stepanyan, 1990; Svensson, 2001; 
Parkin et al., 2004). Helbig and Seibold (1999) found 
deep divergences within both H. pallida s.l. and H. ca-
ligata s.l. in mitochondrial DNA, later confirmed by 
Ottosson et al. (2005) in an extensive study that also in-
cluded morphological data, and by Fregin et al. (2009) 
using mitochondrial and nuclear loci (Fig. 5), further 

supporting the splits based on non-molecular data.

Hirundinidae

The globally distributed family Hirundinidae (swallows 
and martins) form a morphologically and ecologi-
cally rather homogeneous taxon, constrained by their 
aerial foraging behavior (Turner, 2004). In total, 88 
species are recognized (Gill and Donsker, 2013). Mayr 
and Bond (1943) analyzed the swallows and martins 
based on morphology and nest-building characteristics, 
and judged that they could be divided into ten natural 
groups. Phedina was judged to be “possibly related to 
Hirundo”. White-backed Swallow (Cheramoeca), Grey-
rumped Swallow (Pseudhirundo) and the African saw-
wings (Psalidoprogne) were judged to be “so clear-cut 
and isolated that they require no further comment”. The 
Barn and Cliff Swallow group consisted of Delichon, 
Hirundo and Petrochelidon. The genus Riparia was 
judged “a primitive genus without close relatives”, while 
the crag martins (Ptyonoprogne); the rough-wing swal-
low group (Alopochelidon, Neochelidon and Stelgidop-
teryx); the Atticora group (Atticora, Notiochelidon, Oro-
chelidon and Pygochelidon); the tree swallows (Tachyci-
neta, then split also into Callichelidon, Lamprochelidon, 
Iridoprocne) and the purple martin group (Progne) each 
qualified as a distinct group. 

Sheldon and Winkler (1993) performed the first mo-
lecular study of the family, using the DNA-DNA hybrid-
ization to estimate the phylogeny of a limited number 
of species, and later used the phylogeny to superimpose 
nest construction data. Their results largely corrobo-
rated the groups defined by Mayr and Bond (1943). 
Winkler and Sheldon (1993) reconstructed the nest-
excavating Psalidoprogne as sister to all other swallows, 
which were divided into two monophyletic groups, the 
mud-nesting Hirundo group, and a clade containing 
both nest excavating and cavity-nesting species. The 
ancestral mode of nest-building in this clade appeared 
to be nest-excavating, as cavity nesting is reconstructed 
as a recent apomorphy, which is only found in two lin-
eages out of three in a polytomy containing the nest-
excavating Riparia riparia, the cavity-nesting New 
World endemics (Atticora, Haplochelidon, Neochelidon, 
Progne, Pygochelidon and Stelgidopteryx) and the cavity-
nesting New World tree swallows (Tachycineta). The 
nest-excavating Cheramoeca, Phedina, Pseudhirundo 
and Riparia cincta all trace their ancestry to nodes basal 
to the cavity-nesting species.
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The most comprehensive molecular study of swallow 
phylogeny (Sheldon et al., 2005) identified the two river 
martins Pseudochelidon as sisters to all other swallows, 
albeit based on mitochondrial sequence data only. The 
combined mitochondrial and nuclear data available 
for a wide range of other swallows reconstructed two 
large clades comprising the remaining species, which 
Sheldon et al. (2005) termed “core martins, mud nesters 
and basal relicts”. The core martin clade was dominated 
by Progne, Riparia and Tachycineta, and also included 
the less speciose Alopochelidon, Atticora, Haplochelidon, 
Neochelidon, Notiochelidon, Phedina, Pygochelidon and 
Stelgidopteryx. The mud-nesters contained Cecropsis, 
Delichon, Hirundo, Petrochelidon and Ptyonoprogne. 
The basal relicts were placed as sisters to the mud-
nesters and consisted of the groups judged by Mayr and 
Bond (1943) to be highly distinct and isolated from the 
others: White-backed Swallow (Cheramoeca), Grey-
rumped Swallow (Pseudhirundo) and the African saw-
wings (Psalidoprogne). Although Sheldon et al. (2005) 
were unable to determine the exact branching sequence 
of the “core martins, mud nesters and basal relicts”, they 
concluded that excavation of nests is the ancestral con-
dition in swallows, and that the mud-nesters constitute 
a monophyletic radiation. Similarly, the core martins 
constituted a monophyletic group, within which two 
clades are cavity-nesters. The position of these two 
clades was unresolved in relation to the nest-excavat-
ing sand martins, so it was not possible to determine 
whether cavity-nesting arose once or twice.

Beside these major analyses, several studies focusing 
on particular genera have further clarified the phylog-
eny of swallows. Babin (2005) analyzed the geographic 
variation and speciation in the rough-winged swallows 
(Stelgidopteryx), shedding light on a complex picture of 
ancestral polymorphism not yet sorted among lineages. 
Dor et al. (2010) analyzed the Hirundo clade, arriving 
at results that are entirely congruent with Sheldon et 
al. (2005) but with the addition of H. megaensis and H. 
nigrorufa, which were not investigated in the latter anal-
ysis. Dor et al. (2010) and Zink et al. (2006) also un-
dertook phylogeographical studies of H. rustica. Moyle 
et al. (2008) estimated a phylogeny of the New World 
martins (Progne), and discovered remarkably intricate 
and close relationships, polyphyly and possible hybrid 
introgression, and came to the conclusion that a popu-
lation genetic perspective would probably be required 
to clarify the taxonomy, particularly among Amazonian 
populations. 

Whittingham et al. (2002), Cerasale et al. (2012) and 
Dor et al. (2012) studied the phylogeny of Tachycineta 
using different approaches. Whittingham et al. (2002) 
used concatenated mitochondrial loci, Cerasale et al. 
(2012) used complete mitochondrial genomes, while 
Dor et al. (2012) used 16 nuclear introns to compare 
concatenation to a coalescent-based species tree infer-
ence method. All these approaches yielded different 
topologies, particularly concerning the positions of 
the North American T. bicolor, Peruvian T. stolzmanni, 
Hispaniolan T. euchrysea and Bahamian endemic T. 
cyaneoviridis. Dor et al. (2012) argued that the method 
of extracting information from the variability in co-
alescence times between independent gene genealogies 
outperforms other methods of analysis, thus advocating 
their species tree as the currently most reliable hypoth-
esis. Similarly, Kirchman et al. (2000) analyzed relation-
ships among different populations of the Petrochelidon 
fulva complex, and confirmed previous suggestions that 
the South American populations are distinct (P. rufocol-
laris). 

A phylogeographical study of Riparia riparia and R. 
diluta, which were previously considered a single spe-
cies (e.g. Peters, 1960b), was undertaken by Pavlova et 
al. (2008). It corroborated fieldwork suggesting that 
these are specifically distinct (Gavrilov and Savchenko, 
1991; Goroshko, 1993), and suggested that they di-
verged sometime between the late Pliocene and middle 
Pleistocene. It also suggested a Pleistocene split between 
samples from central Siberia and Mongolia. However, 
no molecular studies have been carried out yet on the 
southern, mainly Chinese, populations, which have 
usually been treated as conspecific with R. diluta.

Pycnonotidae

The Pycnonotidae comprises approximately 150 spe-
cies (Gill and Donsker, 2013) distributed across Africa 
and southern Asia. The first major molecular study of 
bulbuls (27 species; Pasquet et al., 2001), using mito-
chondrial sequence data, focused on the genus Criniger, 
but their taxon sampling allowed general inferences 
about the family as a whole. Their results found a basal 
division into an African and a mainly Asian clade, and 
revealed that African and Asian clades of Criniger were 
not closely related. Warren et al. (2005) showed that 
the bulbuls on Madagascar and on the islands of the 
Indian Ocean (Hypsipetes) originated from Asian ances-
tors. Moyle and Marks (2006) followed up by using also 
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nuclear genes and additional taxa (in total 57 species). 
Their phylogeny provided further detail and corrobo-
rated the two major clades, of which only the Asian 
clade included taxa also occurring in Africa, namely 
representatives of the genus Pycnonotus. In addition to 
the two main clades, Moyle and Marks (2006) found 
the monotypic African genus Calyptocichla to be sister 
to the Asian clade, but with weak support. A study by 
Johansson et al. (2007a) further clarified the phylogeny 
of the Afrotropical clade, among other things placing 
Calyptocichla in this clade, and proposing a revised tax-
onomy in which the genus Atimastillas was split from 
Chlorocichla, and the polyphyletic Andropadus was di-
vided into four genera, Andropadus, Arizelocichla, Euril-
las and Stelgidillas. Oliveros and Moyle (2010) studied 
the origin of the Philippine bulbuls, adding substantial 
resolution to the Asian clade. They found a number 
of instances of high genetic divergence within species, 
e.g. three deeply divergent lineages within Ixos philip-
pinus (confirmed for two of these by Silva-Iturriza et 
al., 2010), and non-monophyly of the genus Ixos. Their 
preferred taxonomic solution was to include the genus 
Microscelis and Philippine members of Ixos in Hypsip-
etes, a genus to which they have previously been allo-
cated (e.g. Rand and Deignan, 1960).

The phylogenetic position of Neolestes torquatus, 
which was originally described as an aberrant mal-
aconotid by Cabanis (1875), has been studied geneti-
cally and morphologically, and has been shown to be 
a bulbul, belonging in the Afrotropical clade (Dowsett 
et al., 1999; Moyle and Marks, 2006; Johansson et al., 
2007a; Oliveros and Moyle, 2010; Zuccon and Ericson, 
2010). Johansson et al. (2007a) and Zuccon and Ericson 
(2010) found good support for Calyptocichla in a sis-
ter group to the Afrotropical clade, in a clade that also 
contained Andropadus importunus and A. gracilirostris. 
Today, all generally recognized genera in Pycnonotidae 
have been included in molecular phylogenies, but much 
work remains to be done at the intra- and interspecific 
levels, as illustrated by Fuchs et al. (2011), who found 
significant biometric differences between lowland and 
montane populations of Phyllastrepus debilis in Tanza-
nia. 

Timaliidae sensu lato

The “babblers” and allies, as presently circumscribed, 
comprise in total more than 450 species in five families, 
spread across Africa, Eurasia and Australasia, with par-

ticularly high diversity in temperate and sub-tropical 
parts of the Sino-Himalayan region; only one species 
(Chamaea fasciata) is found in the New World (Gill and 
Donsker, 2013). They are ecologically highly diverse, 
and exhibit a multitude of morphological and behav-
ioral adaptations that have confounded morphology-
based taxonomic judgment in the past. Reflecting the 
fact that the babblers were used as a “scrap basket” 
(Mayr and Amadon, 1951) for taxa that were difficult to 
classify with confidence, several taxa previously placed 
in this group have been removed as a result of mo-
lecular evidence. Recent molecular work on Passerida 
(Johansson et al., 2008a) and Sylvioidea (Alström et al., 
2006; Fregin et al., 2012) in general, on the large scale 
phylogeny of babblers (Cibois, 2003a; Gelang et al., 
2009; Moyle et al., 2012), and on several specific groups 
of babblers (e.g. Cibois et al., 2002; Pasquet et al., 2006; 
Reddy and Cracraft, 2007; Zhang et al., 2007; Zou et al., 
2007; Luo et al., 2009; Dong et al., 2010a, b; Reddy and 
Moyle, 2011) have gradually clarified the phylogeny of 
this complex group. These studies have revealed that 
the traditional babblers (e.g. Deignan, 1964b; Dick-
inson, 2003) do not constitute a monophyletic group, 
and some taxa have been removed from the babbler 
assemblage (e.g. the Australasian “babblers” Garritornis 
and Pomatostomus [Sibley and Ahlquist, 1990]; Mala-
gasy “babblers” Mystacornis, Oxylabes, Hartertula and 
Neomixis [Cibois et al., 1999; Johansson et al., 2008a, 
b; Fregin et al., 2012]; Chaetops frenatus [Ericson and 
Johansson, 2003; Barker et al., 2004; Beresford et al., 
2005]; Panurus biarmicus [Ericson and Johansson, 
2003; Alström et al., 2006; Fregin et al., 2012]; Erpornis 
[previously Yuhina] zantholeuca [Cibois et al., 2002; 
Barker et al., 2004]; Eupetes macrocerus [Jønsson et al., 
2007]; Robsonius, Micromacronus, Leonardina and Ma-
lia [Moyle et al., 2012; Oliveros et al., 2012]; Kakamega 
[Johansson et al., 2008a]; Pnoepyga [Gelang et al., 2009; 
Fregin et al., 2012]; and Pteruthius [Cibois, 2003; Reddy 
and Moyle, 2011]), whereas some additional taxa have 
been shown to belong there (e.g. Sylvia and Zosterops 
[Cibois, 2003; Alström et al., 2003; Gelang et al., 2009; 
Fregin et al., 2012; Moyle et al., 2012]; Chamaea fasciata 
[Sibley and Ahlquist, 1990; Cibois, 2003; Gelang et al., 
2009; Fregin et al., 2012; Moyle et al., 2012]; Liopti-
lus nigricapillus [Johansson et al., 2008a; Moyle et al., 
2012]; Parophasma galinieri [Gelang et al., 2009; Moyle 
et al., 2012]; Rhopophilus pekinensis [Alström et al., 
2006; Gelang et al., 2009], Graminicola bengalensis [Al-
ström et al., 2006; Gelang et al., 2009]; Laticilla [previ-
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ously Prinia] burnesii [Olsson et al., 2013a]). 
Five primary clades have been identified in the bab-

bler group, three of which are made up of traditional 
babblers, one of a mixture of babblers (mainly Yuhina) 
and white-eyes (latter traditionally Zosteropidae), and 
one containing babblers and Sylvia warblers (Cibois, 
2003a; Alström et al., 2006; Gelang et al., 2009; Fregin et 
al., 2012; Moyle et al., 2012). The three most recent of 
these papers all recovered the same five primary clades, 
but differed in their taxonomic recommendations. 
Gelang et al. (2009) separated Sylviidae and Timaliidae 
at the family level, and treated Leiothrichinae, Pel-
lorneinae, Timaliinae and Zosteropinae as subfamilies 
within Timaliidae. Fregin et al. (2012) recognized all 
five clades at the family level: Leiothrichidae, Pellornei-
dae, Timaliidae, Sylviidae and Zosteropidae. Moyle et 
al. (2012) took a third position in recognizing Sylviidae, 
Timaliidae and Zosteropidae at the family level, with 
Leiothrichinae, Pellorneinae and Timaliinae as subfam-
ilies in Timaliidae. We here follow Fregin et al. (2012) 
and Gill and Donsker (2013) and treat the five primary 
babbler clades at the rank of family, as we consider that 
to be in better agreement with the treatment of the 
other primary clades in Sylvioidea than the treatments 
of Gelang et al. (2009) and Moyle et al. (2012).

Timaliidae 

The Timaliidae clade is restricted to (southern) Asia, 
and comprises the genera Dumetia, Macronus (see 
below), Pomatorhinus (see below), Rhopocichla, Spel-
aeornis, Sphenocichla (see below), Stachyris (see below), 
Timalia and Xiphirhynchus (see below) (Cibois, 2003; 
Gelang et al., 2009; Moyle et al., 2012), in total c. 55 
species (Gill and Donsker, 2013). Macronus, Pomato-
rhinus and Stachyris, as traditionally circumscribed 
(e.g. Deignan, 1964b; Dickinson, 2003), have all been 
found to be non-monophyletic, and Moyle et al. (2012) 
suggested a number of rearrangements: resurrection 
of Mixornis (for M. gularis, M. flavicollis and M. kel-
leyi; two latter unstudied by molecular methods); 
restricting Macronus to M. striaticeps and M. ptilosus; 
reinstatement of Cyanoderma for several species placed 
in Stachyris or Stachyridopsis (e.g. C. chrysaeum, C. 
erythropterum, C. ruficeps and C. rufifrons); restricting 
Stachyris to a group containing e.g. S. nigriceps, S. strio-
lata, the recently described S. nonggangensis (Zhou and 
Jiang, 2008; not studied by molecular methods) and 
Sphenocichla; and splitting Pomatorhinus into Pomato-

rhinus s.s. (comprising most species, including P. [pre-
viously Xiphirhynchus] superciliaris) and Megapomato-
rhinus (new genus name, containing M. hypoleucos, M. 
erythrocnemis, M. erythrogenys and M. swinhoei).

The relationships within Pomatorhinus s.l. have re-
cently been examined by Dong et al. (2010a) using two 
mitochondrial and four nuclear markers for a relatively 
small number of taxa and by Reddy and Moyle (2011) 
based on the same two mitochondrial markers for a 
larger number of taxa. Both studies, as well as Moyle et 
al. (2012), inferred Stachyris s.s. nested within Pomato-
rhinus s.l., although there was conflict between the stud-
ies regarding the position of the Stachyris s.s. clade in 
relation to the primary Pomatorhinus s.l. clades. More-
over, all these, as well as Cibois (2003a) and Gelang et 
al. (2009), recovered Xiphirhynchus (see above) deep 
inside the Pomatorhinus s.l. clade. Reddy and Moyle 
(2011) found multiple deep divergences within tra-
ditional species of Pomatorhinus s.l. as well as non-
monophyletic species, and also identified 27 lineages 
with diagnosable plumage differences (i.e. phylogenetic 
species sensu Cracraft, 1989). Previously, Collar (2006) 
and Collar and Robson (2007) suggested elevation of 
several taxa treated as subspecies to the rank of species 
based on morphology and vocalizations.

Also other Timaliidae, e.g. the genus Spelaeornis, were 
revised recently, by Rasmussen and Anderton (2005, 
2012), Collar (2006) and Collar and Robson (2007) 
based mainly on morphological and vocal characters.

Leiothrichidae 

The genera Actinodura, Babax (see below), Cutia, Gar-
rulax (see below), Heterophasia, Leiothrix, Liocichla, 
Minla, Turdoides, Kupeornis (see below) and Phyllan-
thus (see below) have been recovered as members of 
the Leiothrichidae clade (Cibois, 2003; Gelang et al., 
2009; Moyle et al., 2012), in total c. 130 species (Gill 
and Donsker, 2013). They are widely distributed across 
(southern) Asia, although the Turdoides clade (includ-
ing Kupeornis and Phyllanthus; see below) has radiated 
extensively in Africa.

The genera Garrulax, Actinodura, Minla, Hetero-
phasia and Turdoides, as generally circumscribed (e.g. 
Deignan, 1964b; Dickinson, 2003), have been found to 
be non-monophyletic (Cibois, 2003; Gelang et al., 2009; 
Luo et al., 2009; Dong et al., 2010b; Moyle et al., 2012), 
and based on these results Moyle et al. (2012) suggested 
a taxonomic revision of this clade. They proposed that 
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Garrulax be divided into Garrulax, Grammatoptila 
(monotypic: G. striata), Ianthocincla and Trochalop-
teron, and Babax synonymized with Ianthocincla. More-
over, they proposed that Kupeornis and Phyllanthus be 
subsumed in Turdoides, Heterophasia annectans moved 
to Minla, and Minla cyanouroptera and M. strigula 
transferred to Actinodura. However, it should be noted 
that no molecular study has included the type species 
of Garrulax, G. rufifrons, so the circumscription of this 
genus should be considered preliminary. The reinstate-
ment of Trochalopteron was earlier proposed by Luo et 
al. (2009) based on molecular data as well as the obser-
vation that all species in that clade have speckled eggs, 
unlike any other traditional Garrulax (though eggs have 
not been studied for all species). Earlier, Rasmussen and 
Anderton (2005) and Collar and Robson (2007) pro-
posed reclassifications based on morphological features, 
and some of these agree with the molecular results, 
whereas others do not, and some have not yet been 
tested by molecular markers; Rasmussen and Anderton 
(2012) followed various genetic analyses in further re-
vising Garrulax and other laughingthrush genera.

The taxonomy of Garrulax canorus has been assessed 
by molecular markers by Li et al. (2006, 2009), who 
proposed that the Taiwanese taxon should be treated 
as specifically distinct, G. taewanus (placed in genus 
Leucodioptron in latter study). The same conclusion was 
previously reached by Collar (2006) based on morphol-
ogy. Several other taxa were also elevated from the rank 
of subspecies to species by Rasmussen and Anderton 
(2005, 2012), Collar (2006) and Collar and Robson 
(2007), mainly based on morphology and vocalizations. 
A new species, Liocichla bugunorum, was described as 
recently as 2006 (Athreya, 2006). 

Pellorneidae

The Pellorneidae clade comprises species in the genera 
Gampsorhynchus, Graminicola, Illadopsis, Jabouilleia 
(see below), Kenopia, Malacocincla, Malacopteron, Na-
pothera, Pellorneum, Ptilocichla, Ptyrticus (see below), 
Rimator (see below), Schoeniparus (formerly Alcippe; 
see below), Trichastoma (see below) and Turdinus (Ci-
bois, 2003; Gelang et al., 2009; Moyle et al., 2012), in 
total c. 70 species (Gill and Donsker, 2013). In addition, 
Laticilla (previously Prinia) burnesii was found by Ols-
son et al. (2013a) to belong in this clade. With the ex-
ception of the African Illadopsis, this family occurs only 
in Asia.

The genera Illadopsis, Napothera, Malacocincla and 
Pellorneum, as traditionally defined (e.g. Deignan, 
1964b; Dickinson, 2003), have been inferred to be non-
monophyletic (Cibois, 2003; Moyle et al., 2012), and 
in the taxonomic revision suggested by Moyle et al. 
(2012) several taxa were synonymized: Ptyrticus with 
Illadopsis; Trichastoma with Pellorneum; and Jabouilleia 
and Rimator with Napothera. These authors also moved 
some Napothera and some Malacocincla to Turdinus, 
while the remaining Malacocincla were placed in Pellor-
neum. However, the name Turdinus seems to be misap-
plied. The type species of this genus, T. macrodactylus, 
was not included in the analysis by Moyle et al. (2012), 
but in the study by Gelang et al. (2009), it was sister to 
Graminicola, with strong support, while Malacocincla 
abbotti, which was also placed in Turdinus by Moyle et 
al. (2012), was in a different clade (with high posterior 
probability but low maximum likelihood bootstrap 
support). The revised classification by Collar and Rob-
son (2007), which was based mainly on morphological 
traits, agrees in some respects but differs in others from 
the treatment by Moyle et al. (2012).

A new species, Jabouilleia naungmungensis, was re-
cently described from Myanmar (Rappole et al., 2005), 
although this was considered a subspecies of J. (=Rima-
tor) danjouei by Collar and Robson (2007) and Collar 
(2011). Graminicola bengalensis was recently suggested 
to be split into two species, G. bengalensis s.s. (Indian 
subcontinent) and G. striatus (southern China, north-
ern South-East Asia) (Leader et al., 2010).

Sylviidae sensu stricto

The circumscription of Sylviidae today is radically dif-
ferent from the traditional usage of this name (e.g. 
Watson et al., 1986; Sibley and Monroe, 1990; Dickin-
son, 2003; Bairlein et al., 2006; see introduction). The 
Sylviidae s.s. clade includes the genera Chamaea, Chrys-
omma, Conostoma (see below), Fulvetta (see below), 
Horizorhinus (see below), Lioparus (see below), Liop-
tilus, Moupinia (sometimes synonymized with Chrys-
omma), Myzornis, Paradoxornis (see below), Parisoma 
(see below), Parophasma, Pseudoalcippe (see below), 
Rhopophilus and Sylvia (Barhoum and Burns, 2002; 
Cibois, 2003; Gelang et al., 2009; Moyle et al., 2012), in 
total c. 70 species (Gill and Donsker, 2013). This family 
is geographically more widespread than the previous 
babbler clades. Although the majority occurs in south-
ern Asia, Sylvia (including Horizorhinus, Parisoma and 
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Pseudoalcippe; see below) is also distributed in northern 
Asia, Europe and Africa, Parophasma and Lioptilus are 
restricted to Africa, and Chamaea is restricted to west-
ern North America, as the only babbler representative 
in the New World. 

The genus Paradoxornis has been shown to be non-
monophyletic, with at least Conostoma nested within 
Paradoxornis (Yeung et al., 2011). In a comprehensive 
analysis of the parrotbills, Yeung et al. (2011) identified 
three major clades in both mitochondrial and nuclear 
gene trees, further supported by body size and plumage 
coloration. The monotypic genus Conostoma was con-
firmed to belong in one of these clades. However, while 
trees inferred by combined nuclear sequences support-
ed monophyly of the parrotbills, mitochondrial DNA 
suggested that one of the parrotbill clades was more 
closely related to Chamaea, Fulvetta and Lioparus (two 
latter treated in genus Alcippe) than to the other par-
rotbills; however, the latter topology received no maxi-
mum likelihood bootstrap support (but high posterior 
probability). Penhallurick and Robson (2009) proposed 
a reclassification of the parrotbills into eight genera (in-
cluding a new genus name, Sinosuthora, containing S. 
alphonsiana, S. brunnea, S. conspicillata, S. przewalskii, 
S. webbiana and S. zappeyi), based on size, plumage and 
vocalizations, backed up by a published study of mi-
tochondrial DNA (Yeung et al., 2006; see correction of 
one of these generic names in Penhallurick, 2010). Pre-
viously, King and Robson (2008) had suggested splitting 
Paradoxornis ruficeps into two species, P. ruficeps s.s. and 
P. bakeri.

Shirihai et al. (2001) and Voelker and Light (2011) 
inferred the relationships of the genus Sylvia based on 
mitochondrial DNA, and found that the African species 
previously placed in the genus Parisoma were nested 
within the essentially Palearctic Sylvia. The latter au-
thors, and previously Voelker et al. (2009), also found 
that Horizorhinus dohrni and Pseudoalcippe abyssinica 
formed a sister clade to Sylvia borin, and placed both 
in the genus Sylvia; P. abyssinica had previously been 
found to be closely related to Sylvia (S. melanocephala) 
by Cibois (2003a). This was later corroborated by Moyle 
et al. (2012; using P. atriceps), who also found Liopti-
lus nigricapillus to be part of this clade. Several groups 
of Sylvia warblers have been the subject of taxonomic 
studies based on multiple character sets, usually includ-
ing DNA, which have resulted in the recognition of a 
larger number of species, e.g. the splitting of S. crassiro-
stris from S. hortensis (Shirihai et al., 2001), S. balearica 

from S. sarda (Shirihai et al., 2001), and S. subalpina 
(synonym S. moltonii) from S. cantillans (Brambilla 
et al., 2008a, b, c). The long-standing uncertainty over 
species limits in the S. curruca complex (e.g. Watson et 
al., 1986; Cramp, 1992; Martens and Steil, 1997; Shiri-
hai et al., 2001; Loskot, 2001, 2005; Bairlein et al., 2006) 
was recently investigated using mitochondrial DNA 
(Olsson et al., 2013b), but although six long-separated 
clades representing the taxa althaea, blythi, curruca, 
halimodendri, margelanica and minula were recovered, 
the gene tree partly disagreed with morphological evi-
dence, and it was concluded that independent data were 
required to resolve the issue.

Zosteropidae

The following genera have been found to belong in the 
Zosteropidae clade: Chlorocharis, Cleptornis, Heleia, 
Lophozosterops, Oculocincta, Rukia, Speirops, Sterrhop-
tilus, Yuhina, Woodfordia, Zosterops and Zosterornis 
(latter placed in Stachyris in earlier studies) (Cibois et 
al., 2002; Cibois, 2003a; Zhang et al., 2007; Gelang et 
al., 2009; Moyle et al., 2009, 2012). Most of these have 
been represented by single species in these analyses, but 
those that have been represented by two or more spe-
cies (Lophozosterops, Yuhina, Zosterops and Zosterornis) 
have been found to be non-monophyletic. For exam-
ple, Yuhina is separated into at least three (Moyle et al., 
2012) or four (Zhang et al., 2007; Moyle et al., 2009) 
monophyletic groups, with Y. diademata being sister to 
all Zosteropidae, and one of these Yuhina clades is sis-
ter to the rest of the Zosteropidae. The main Zosterops 
clade, which also includes at least Chlorocharis, Rukia, 
Speirops and Woodfordia, has been termed a “great spe-
ciator” by Moyle et al. (2009), as it shows evidence of 
an exceptionally rapid speciation rate and expansion 
over a vast area covering subsaharan Africa, much of 
southern Asia and Australasia. The monotypic genus 
Hypocryptadius was previously considered related to 
Zosterops, but was recently shown to be a forest-adapt-
ed sparrow (Fjeldså et al., 2010). A thorough taxo-
nomic revision of the Zosteropidae is obviously greatly 
needed.

Detailed studies in Zosterops have been carried out on 
both Australian (Degnan and Moritz, 1992), Philippine 
(Jones and Kennedy, 2008), Indian Ocean (Warren et al., 
2006; Milá et al., 2010) and South African (Oatley et al., 
2011, 2012) species complexes, often revealing complex 
patterns of genetic and morphological divergence.
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Alcippe sensu lato

The genus Alcippe provides one of the most extreme 
examples of the difference between past taxonomic 
judgments based on morphology (e.g. Deignan, 1964b; 
Dickinson, 2003) and recent molecular phylogenies. In 
a study based on mitochondrial DNA by Pasquet et al. 
(2006) the genus was found to consist of four different 
unrelated clades, the positions of which have gradually 
been clarified in multilocus analyses by Gelang et al. 
(2009) and Moyle et al. (2012). One clade, Schoeniparus 
(containing S. cinereus, S. castaneceps, S. rufogularis, 
S. brunneus and S. dubius), was found to be nested in 
Pellorneidae; two clades, Fulvetta (including e.g. F. ci-
nereiceps, F. ruficapilla and F. vinipectus) and Lioparus 
(monotypic: L. chrysotis), were nested in Sylviidae; 
whereas the position of the Alcippe s.s. clade (compris-
ing e.g. A. poioicephala and A. morrisonia) is somewhat 
uncertain. The latter clade was recovered by Gelang et 
al. (2009) as sister to Pellorneidae with good support, 
whereas Moyle et al. (2012) recovered it as sister to 
Leiothrichidae, also with good support. The latter au-
thors remarked that the position of this clade is mainly 
weakly supported or even contradicted by single loci. 
More research is needed to establish where the Alcippe 
s.s. clade belongs in the babbler phylogeny.

Phylogeographical studies of the Alcippe morrisonia 
complex by Zou et al. (2007) and Song et al. (2009) 
revealed unexpectedly deep divergences between dif-
ferent geographical areas (oldest split dated to 11.6 
million years ago by Song et al., 2009). Moreover, Zou 
et al. (2007) found that one of these clades (A. m. frater-
cula from Yunnan, China) is more closely related to A. 
peracensis annamensis (Vietnam) than to other taxa 
treated as A. morrisonia. Based on these results, Gill and 
Donsker (2013) split A. morrisonia into four species: 
A. morrisonia s.s. (Taiwan), A. davidi (Shaanxi, Gansu, 
Sichuan, Hunan, Guangxi Provinces in China, northern 
Vietnam), A. fratercula (Yunnan Province in China to 
central Myanmar and northern Thailand) and A. hueti 
(Fujian, Guangdong and Hainan Provinces, China). 
Collar (2006) and Collar and Robson (2007) revised the 
taxonomy of several species of Fulvetta and Alcippe s.s. 
based mainly on morphological characters; several of 
these have a contorted taxonomic history.

Phylloscopidae

The family Phylloscopidae, as presently circumscribed, 

comprising the genera Phylloscopus and Seicercus, was 
proposed by Alström et al. (2006). Sibley and Ahlquist 
(1990) and Sibley and Monroe (1990) placed these 
genera in the subfamily Acrocephalinae together with 
many other genera, while Dickinson (2003) put them 
in the subfamily Phylloscopinae, together with Tickellia, 
Abroscopus, Eremomela, Sylvietta and Graueria. Neither 
of the classifications by Sibley and Ahlquist (1990), Sib-
ley and Monroe (1990) or Dickinson (2003) are con-
sistent with phylogenetic studies (Beresford et al., 2005; 
Alström et al., 2006; Johansson et al., 2007b; Fregin et 
al., 2012; Olsson et al., 2013a), although Graueria has 
not yet been studied phylogenetically. The most compre-
hensive phylogeny of Phylloscopidae to date (Johansson 
et al., 2007b) was based on two mitochondrial and one 
nuclear loci for 55 of the 68 species recognized at that 
time (Dickinson, 2003). Other studies based on smaller, 
but partly different datasets have been published (Rich-
man and Price, 1992; Martens et al., 2004, 2008; Olsson 
et al., 2004, 2005; Päckert et al., 2004, 2009). Figure 6 
shows a tree for all of the species in these studies based 
on the same sequences, but reanalyzed here. As has al-
ready been remarked in some of the previous studies, 
the tree shows that Seicercus is nested within Phyllosco-
pus, rendering the latter genus non-monophyletic. The 
tree also suggests that Seicercus is non-monophyletic, 
although this has poor statistical support. As has also 
been suggested by previous authors, the taxonomic im-
plications are that either Seicercus be synonymized with 
Phylloscopus or the complex be split into more than two 
genera. We await a more complete taxonomic study that 
is in preparation.

The genera Phylloscopus and Seicercus have under-
gone dramatic taxonomic changes in the past 20 years, 
due to studies of especially vocalizations and DNA. 
No fewer than six species new to science have been de-
scribed in that period: P. hainanus (Olsson et al., 1993), 
P. emeiensis (Alström and Olsson, 1995), S. omeiensis 
(Martens et al., 1999), S. soror (Alström and Olsson, 
1999), P. occisinensis (Martens et al., 2008) and P. cal-
ciatilis (Alström et al., 2010). Moreover, taxonomic 
revisions have led to the recognition of several new spe-
cies: P. canariensis and P. ibericus (previously treated as 
subspecies of P. collybita; P. ibericus formerly incorrectly 
called P. brehmii) (Helbig et al., 1996; Salomon et al., 
1997; Helbig et al., 2001; Bensch et al., 2002; Salomon 
et al., 2003); P. orientalis (previously subspecies of P. 
bonelli; Helbig et al., 1995); P. borealoides (previously 
synonym of P. tenellipes; Martens, 1988); P. chloronotus 
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(previously subspecies of P. proregulus; Alström and 
Olsson, 1990; Martens et al., 2004); P. forresti (previous-
ly synonym of P. proregulus chloronotus; Martens et al., 
2004); P. kansuensis (previously synonym of P. p. proreg-
ulus; Alström et al., 1997; Martens et al., 2004); P. yun-
nanensis (previously synonym of P. proregulus chlorono-
tus; Alström et al., 1990, 1992 [described as P. sichua-

nensis in latter study]; Martens et al., 2004); P. claudiae, 
P. goodsoni and P. ogilviegranti (two former previously 
subspecies of P. reguloides, third previously subspecies 
of P. davisoni; Olsson et al., 2005; Päckert et al., 2009); 
P. examinandus and P. xanthodryas (previously subspe-
cies of P. borealis; Saitoh et al., 2006, 2008, 2010; Reeves 
et al., 2008; Martens, 2010; Alström et al., 2011d); S. 

Fig. 6  Family Phylloscopidae based on concatenated nuclear MB and mitochondrial cytochrome b and 12S sequence data, based on 
Olsson et al. (2004, 2005), Alström et al. (2006, 2010, 2011d), Saitoh et al. (2010) and Johansson et al. (2007), reanalyzed by Bayesian 
inference in three partitions (by locus). See Supplementary Appendix for details of samples and analyses. Posterior probabilities and 
maximum likelihood bootstrap (MLBS) values are indicated at the nodes, in this order; an asterisk represents posterior probability 
1.00 or bootstrap 100%. 1 P. calciatilis + P. cantator 85% MLBS; 2 P. borealis + P. examinandus 60% MLBS; 3 S. castaniceps + S. 
grammiceps MLB 87%.
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valentini, S. whistleri and S. tephrocephalus (previously 
subspecies of S. burkii; Alström and Olsson 1999, 2000; 
Martens et al., 1999; Olsson et al., 2004; Päckert et al., 
2004). The taxonomic rank of some currently recog-
nized species, e.g. P. subaffinis and P. humei, has been 
debated over the years, but has been settled due to re-
cent studies of vocalizations and/or DNA (Alström and 
Olsson, 1992; Irwin et al., 2001b). In the case of the P. 
trochiloides–P. plumbeitarsus–P. nitidus complex, the 
debate is still ongoing due to different interpretations 
of the available data (Irwin, 2000; Irwin et al., 2001b, 
2005, 2008; Knox et al., 2002; Dickinson, 2003; Gill and 
Donsker, 2013). One species, P. xanthoschistos, has been 
transferred from Seicercus to Phylloscopus (Olsson et al., 
2005; Päckert et al., 2009), and one subspecies from one 
species to another, P. fuscatus weigoldi to P. fuligiventer 
weigoldi (Martens et al., 2008). See reviews by Irwin et 
al., (2001a), Rheindt (2006) and Martens (2010).

Cettiidae

Alström et al. (2006) found that, based on sequence 
data from two loci, one mitochondrial and one nuclear, 
that two species of Cettia, one species each of Uros-
phena, Tesia, Abroscopus and Tickellia, and Orthotomus 
cuculatus formed a clade, well separated from a diverse 
number of other passerines. They proposed the family 
name Cettiidae for this group. This clade (limited to 
one species each of Cettia, Abroscopus and Tickellia) was 
corroborated by Johansson et al. (2008a) based on three 
nuclear loci. Irestedt et al. (2011) concluded, based on 
four loci, that Hemitesia is also part of this clade. Two of 
these studies (Alström et al., 2006; Irestedt et al., 2011) 
indicated that the genus Cettia is non-monophyletic. 
Alström et al. (2011a) revised the family based on one 
mitochondrial and three nuclear loci (Fig. 7). They 
confirmed the previous findings, including the strong 
non-monophyly of the genus Cettia, as this genus is 
scattered across the entire family tree. Based on these 
results, they proposed a revised classification in which 
Cettia is divided into Cettia s.s. and Horornis and one 
species (C. pallidipes) transferred to Urosphena (where 
it was sometimes placed previously); Oligura (Tesia) 
castaneocoronata moved to Cettia; Hemitesia synony-
mized with Urosphena; and Phyllergates reinstated as 
the generic name for O. cuculatus (Fig. 7). Previously, 
King (1989) proposed a new classification of some Tesia 
and Urosphena based on morphology, vocalizations 
and behavior, which is partly in agreement with the 

molecular study of Alström et al. (2011a).
Two of the species, Horornis carolinae and H. haddeni, 

were recently described (Rozendaal, 1987; LeCroy and 
Barker, 2006; respectively). Moreover, the taxonomy of 
several taxa has been much debated. Horornis diphone 
has variously been treated as a single species, or split 
into H. diphone s.s. and H. canturians, generally without 
explanation (cf. Delacour, 1942–1943; King and Dickin-
son, 1975; Morony et al., 1975; Watson et al., 1986; Sib-
ley and Monroe, 1990; Inskipp et al., 1996; Baker, 1997; 
Dickinson, 2003; Bairlein et al., 2006; Kennerley and 
Pearson, 2010). According to mitochondrial DNA, the 
Japanese H. diphone cantans and central Chinese H. d. 
canturians were recently found to form a clade separate 
from the northern H. d. borealis (cf. Fig. 7). This is in-
consistent with morphology, as the two latter are simi-
lar in plumage and structure, while the first one is more 
divergent. The authors concluded that a more compre-
hensive study was needed before any conclusions could 
be drawn. Furthermore, Horornis seebohmi has often 
been treated as a subspecies of H. diphone s.l. (e.g. Dela-
cour, 1943; Watson et al., 1986; Baker, 1997), although 
some authors considered H. seebohmi to be a distinct 
species, based on unpublished differences in song and 
lack of the pronounced sexual size dimorphism of H. 
diphone/H. canturians (King and Dickinson, 1975; In-
skipp et al., 1996; Dickinson, 2003). The specific status 
of H. seebohmi has recently been supported based on 
vocalizations and mitochondrial DNA (Hamao et al., 
2008) as well as multilocus data (Alström et al., 2011a). 

Horornis acanthizoides has recently been split into H. 
acanthizoides s.s. and H. brunnescens based on a study 
of morphology, vocalizations and mitochondrial DNA 
(Alström et al., 2007). Olsson et al. (2006) concluded, 
based on congruence of gene trees from one mitochon-
drial and one nuclear loci, that H. vulcanius is nested 
within H. flavolivaceus, and that some of the subspecies 
of H. flavolivaceus be moved to H. vulcanius. This was, 
however, contradicted in the study by Alström et al. 
(2011a; Fig. 7), which comprised a larger number of loci 
and samples (including all of the samples from Olsson 
et al., 2006). The latter study inferred deep divergences 
between two main H. flavolivaceus clades, with the 
taxon intricatus represented in both (Fig. 7). The au-
thors concluded that more data, including unsampled 
subspecies, would be needed to resolve this issue. Deep 
divergences have also been found between different 
populations of Horornis fortipes (Alström et al., 2011a; 
cf. Fig. 7), although contradictory results from different 
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Fig. 7  Family Cettiidae based on concatenated nuclear ODC, MB and GAPDH and mitochondrial cytochrome b sequence data 
(only cytochrome b for the three species indicated with *, and for most of the samples of different subspecies), based on Alström et 
al. (2011b). Species names follow revised taxonomy proposed by Alström et al. (2011b). Names in black were previously placed in 
Cettia. # indicates node with poor support. Illustrations by Ren Hathway (Phyllergates), Brian Small (U. neumanni) and Jan Wilczur 
(Abroscopus, Tickellia) from Bairlein et al. (2006), and by Brian Small (others) from Kennerley and Pearson (2010).
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analyses prevented taxonomic conclusions from being 
drawn. The same study also found that western and 
eastern populations of Cettia cetti were separated into 
rather divergent clades (cf. Fig. 7), calling for additional 
studies.

Scotocercidae

The family Scotocercidae was recently proposed, com-
prising the single species Scotocerca inquieta (Fregin et 
al., 2012). This was based on molecular (Alström et al., 
2011c; Fregin et al., 2012) and morphological data (Al-
ström et al., 2011c). The earlier of these studies also sug-
gested that western and eastern populations might be dif-
ferent at the species level, and called for further studies.

Erythrocercidae

The Afrotropical genus Erythrocercus has been recon-
structed in an unresolved position in relation to Cet-
tidae and Aegithalidae (Alström et al., 2011c; Fregin et 
al., 2012). The three species in the genus (Dickinson, 
2003; Gill and Donsker, 2013) are morphologically and 
ecologically divergent from both Cettidae and Aegithal-
idae, and Fregin et al. (2012) proposed the family name 
Erythrocercidae based on molecular, morphological 
and ecological evidence.

Aegithalidae

The family Aegithalidae, bushtits (or long-tailed tits), is 
one of the smallest families within Sylvioidea, compris-
ing only 13 species (Gill and Donsker, 2013). Nine of 
these are Eurasian Aegithalos, two are Asian Leptopoe-
cile, one is the Javan endemic Psaltria, and one is the 
North and Central American Psaltriparus. Psaltria does 
not appear to have been investigated in any molecular 
phylogeny, but three multilocus studies have shown 
Aegithalos and Psaltriparus to be sisters, with Leptopoe-
cile sister to these (Johansson et al., 2008a; Päckert et 
al., 2010; Fregin et al., 2012). Dai et al. (2010) analyzed 
mitochondrial DNA for four Chinese Aegithalos species, 
while the relationships among all Aegithalidae species 
except Psaltria were studied by a combination of mito-
chondrial and nuclear markers by Päckert et al. (2010). 
The latter study obtained a well-resolved and strongly 
supported tree, except for a surprising lack of differ-
entiation among four of the species recognized by Gill 
and Donsker (2013): A. fuliginosus, A. iouschistos, A. 

bonvaloti and A. sharpei. Additionally, they found deep 
splits among different populations of especially A. con-
cinnus. Dai et al. (2011, 2013) confirmed the existence 
of deeps splits within A. concinnus, and evaluated their 
causes. In a study of mitochondrial DNA of A. cauda-
tus sampled across Russia, Zink et al. (2008) found no 
strong geographical structure.

Hyliidae

Few taxa can show a record of taxonomic volatility as 
extreme as that of the Afrotropical Pholidornis, which 
has been placed in Dicaeidae, Estrildidae, Hyliidae, Me-
liphagidae, Nectariniidae, Remizidae and Sylviidae (Sefc 
et al., 2003 and references therein). The uncertainty 
regarding the Afrotropical Hylia has been less extreme, 
but opinion has been divided. The most favored posi-
tions have been to treat it as a sunbird (Sclater, 1930; 
Bannerman, 1948; Brosset and Erard, 1986) or a war-
bler (Chapin, 1953; Sibley and Monroe, 1990; Dowsett 
and Dowsett-Lemaire, 1993; Keith, 1997), but e.g. Me-
liphagidae (Beecher, 1953) and Paridae (Keith, 1997) 
have also been suggested. There is morphological evi-
dence for a relationship between the two genera in the 
form of a brush-tipped tongue and a long hyoid with 
flattened epibranchial horns, characters that also sug-
gest a relationship with Nectarinidae (Bannerman and 
Bates, 1924). These similarities prompted Bates (1930) 
to erect the family Hyliidae, but this was not widely ac-
cepted by subsequent authors, most of whom did not 
consider Pholidornis and Hylia as members of the same 
family. The phylogenetic position of both Hylia and 
Pholidornis continued to be contentious up to the first 
molecular analysis by Sefc et al. (2003), who showed 
that they were closely related and belong in Sylvioidea, 
later corroborated for Hylia by Beresford et al. (2005), 
Fuchs et al. (2006), Irestedt e al. (2011) and Fregin et 
al. (2012). Fregin et al. (2012) tentatively proposed that 
the family Hyliidae should be resurrected for Hylia and 
Pholidornis.

Marks (2010) revealed the existence of four (five) 
markedly divergent haplotype groups within Hylia pra-
sina, indicating that further taxonomic studies are war-
ranted.

Pnoepygidae

The Asian Pnoepyga wren babblers were classified as 
babblers (Timaliidae s.l.) until Gelang et al. (2009) 
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found that they were not closely related to any of the 
babbler clades, and erected the monotypic family Pno-
epygidae. The family contains only four species (Gill 
and Donsker, 2013). The taxonomy of the Taiwanese 
endemic P. formosana has been debated, and it has 
variously been treated as conspecific with P. pusilla 
(Deignan, 1964b; Cheng, 1987) or with P. albiventer 
(Dickinson, 2003; Liu et al., 2010). Collar (2006) sug-
gested, based on morphological evidence, that the Tai-
wanese taxon should be considered a distinct species, 
and the same conclusion was reached by Päckert et al. 
(2012) based on DNA sequence data and analyses of 
songs. Päckert et al. (2012) also found both molecular 
and acoustic evidence of a divergence within P. albiven-
ter. They proposed that the Chinese taxon should be 
treated as a species, P. mutica, but refrained from sug-
gesting any taxonomic action for a genetically equally 
divergent Myanmar population within the P. albiventer 
complex, for which they lacked acoustic data. 

Nicatoridae

The Afrotropical genus Nicator, with just three species, 
has variously been placed in the shrike family Laniidae 
(Reichenow, 1902–1903; Sclater, 1930; Wolters, 1979) or 
with the Pycnonotidae (Chapin, 1953; Hall and Moreau, 
1970; Rand and Deignan, 1960), based on morphologi-
cal criteria. DNA-DNA hybridization studies (Sibley 
and Ahlquist, 1985) and feather protein electrophoresis 
(Hanotte et al., 1987) placed Nicator with Pycnonot-
idae. However, based on sequence data, Beresford et al. 
(2005), Johansson et al. (2008a) and Fregin et al. (2012) 
found Nicator chloris and the Alaudidae + Panuridae 
clade in unresolved sister positions to the rest of the 
Sylvioidea (cf. Fig. 1). Gill and Donsker (2013), based 
on the above-mentioned recent studies, placed Nicator 
in a monotypic family.

Conclusions

The relationships within the superfamily Sylvioidea 
have been enormously clarified in recent years thanks 
to a large number of molecular studies. These analyses 
have confirmed numerous conclusions drawn from ear-
lier morphological studies, but they have also suggested 
multiple cases of previously unexpected relationships. 
Some of the surprising findings revealed by molecu-
lar methods have been supported by more careful re-
evaluation of morphological data (earlier morphology-

based classifications have generally been based on su-
perficial morphological similarity rather than thorough 
analyses). However, many of the results from molecular 
studies need to be corroborated by independent data. 
Most molecular phylogenies are based on a small num-
ber of loci (sometimes only mitochondrial), and even 
in multilocus analyses, strongly supported relationships 
frequently receive their support from a small fraction of 
the analyzed loci, with the majority of the loci neither 
supporting nor contradicting these relationships. As 
genomic data are becoming cheaper and more easily 
obtainable, many of the recent discoveries will be re-
evaluated by considerably larger datasets in the not too 
distant future. One of the challenges will be to resolve 
the relationships among the different families within 
Sylvioidea, which are still largely unresolved. However, 
if, as seems likely to be the case based on the presently 
available data, the lack of resolution results mainly from 
rapid divergence of the primary lineages (families), 
these relationships might remain obscure.

The total number of species within Sylvioidea has 
increased much in recent years, mainly due to studies 
applying molecular markers and/or vocalizations and 
other life-history data, and in many groups multiple 
cryptic species have been detected. It seems likely that 
the number of species is going to continue to increase, 
as new groups are being studied with modern integra-
tive methods (using a combination of morphological, 
vocal, genetic, behavioural and other data). In particu-
lar, some polytypic species of larks, “warblers”, bulbuls, 
and “babblers” are likely to comprise considerably more 
species than presently recognized. As good taxonomic 
assessments are a fundamental basis for many evolu-
tionary studies, as well as for conservation purposes, 
continued efforts to revise the species-level taxonomy 
within Sylvioidea are much needed.
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莺总科鸟类的系统分类进展评述

Per Alström1,2，Urban Olsson3，雷富民1

（1 中国科学院动物研究所动物进化与系统学重点实验室，北京，100101；2 瑞典农业大学瑞典物种信息中心；

3 瑞典歌德堡大学生物与环境科学系）

摘要：本文评述了莺总科鸟类的系统分类，并重点探讨科间、属内系统发育关系以及种级分类地位。基于已发

表的 DNA 序列数据，对马岛莺科（Bernieridae）和柳莺科（Phylloscopidae）重新进行了分析。大量的分子水平

的研究让我们对鸟类系统发育的认识有了很大提高。但是，由于一些主要进化分支（科）的快速分化，使得这

些科之间的相互关系依然不明确。同样，分子标记和（或）鸣声及其他生活史资料在大量研究中的应用，大大

提高了种级水平的分类可靠性。我们推测，随着人们运用现代的整合方法对新类群的不断研究，物种数量会不

断增加。

关键词：系统发育关系 ,莺总科 ,系统分类




