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Evaluation of Osseointegration using Image Analysis and Visual-
ization of 2D and 3D Image Data

Abstract

Computerized image analysis, the discipline of using computers to automatically
extract information from digital images, is a powerful tool for automating time
consuming analysis tasks. In this thesis, image analysis and visualization methods
are developed to facilitate the evaluation of osseointegration, i.e., the biological
integration of a load-carrying implant in living bone.

Adequate osseointegration is essential in patients who are in need of implant
treatment. New implant types, with variations in bulk material and surface struc-
tural parameters, are continuously being developed. The main goal is to improve
and speed up the osseointegration and thereby enhance patient well-being. The
level of osseointegration can be evaluated by quantifying the bone tissue in proxim-
ity to the implant in e.g., light microscopy images of thin cross sections of bone im-
plant samples extracted from humans or animals. This operator dependent quan-
titative analysis is cumbersome, time consuming and subjective. Furthermore, the
thin sections represent only a small region of the whole sample.

In this thesis work, computerized image analysis methods are developed to au-
tomate the quantification step. An image segmentation method is proposed for
classifying the pixels of the images as bone tissue, non-bone tissue or implant. Sub-
sequently, bone area and bone implant contact length in regions of interest are
quantified. To achieve an accurate classification, the segmentation is based on both
intensity and spatial information of the pixels. The automated method speeds up
and facilitates the evaluation of osseointegration in the research laboratories.

Another aim of this thesis is extending the 2D analysis to 3D and presenting
methods for visualization of the 3D image volumes. To get a complete picture, in-
formation from the whole sample should be considered, rather than thin sections
only. As a first step, 3D imaging of the implant samples is evaluated. 3D analysis
methods, which follow the helix shaped implant thread and collects quantified fea-
tures along the path, are presented. Additionally, methods for finding the position
of the 2D section in the corresponding 3D image volume, i.e., image registration,
are presented, enabling a direct comparison of the data from the two modalities.
These novel and unique 3D quantification and visualization methods support the
biomaterial researchers with improved tools for gaining a wider insight into the
osseointegration process, with the ultimate goal of improved quality of life for the
patients.

Keywords: image analysis, bone-implant integration, osseointegration, SRµCT, im-
age registration, visualization
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Att tänka är att begrunda bilder

–Giordano Bruno (1548-1600), napolitansk astronom, präst, filosof och
kritiker av dogma och vidskepelse. Dömd för kätteri och bränd på bål.

Som en skicklig utövare av mnemonik, var Giordano Bruno förtjust i visualiseringar av
information. Kanske hade visualiseringarna i kapitel 3.4 (sid. 71) tilltalat honom om han
hade levt idag? Det bokstavliga utplånandet av honom slutade som en pyrrhusseger för den
dåtida världens mäktigaste institution: hans idéer om intellektuell frihet lyckades leva vidare
och inspirera många samtida intellektuella, i synnerhet Gallilei och Huygeens (White, 2002).
Dessa två genier vidareutvecklade den bildalstringsteknik som delar av den här avhandlingen
bygger på, mikroskopet.
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1 Introduction

The White Rabbit put on his spectacles.

‘Where shall I begin, please your Majesty?’ he asked.

‘Begin at the beginning,’ the King said gravely,

‘and go on till you come to the end: then stop.’

Alice’s Adventures in Wonderland, written by
Charles Dodgson (1832-1898), British mathematician

1.1 Motivation

Improvements in image acquisition technologies provide biomedical and
biomaterial researchers with more digital images than ever before. Man-
ual assessment of these images is a tedious, time consuming task and prone
to subjectivity. However, the discipline of computerized extraction of infor-
mation from digital images, i.e., computerized image analysis, has evolved
over the last decades, supported by progress in applied mathematics, com-
puter technology and hardware. Nowadays, many complex and computa-
tionally demanding analysis methods can be applied to high-resolution im-
ages with a time consumption that allows a rapid analysis flow. Biomedical
and biomaterial researchers have gained from this progress, as they can del-
egate a significant part of their analysis tasks to their computers, analyses
that otherwise had to be taken care of by expensive trained specialists.

Moreover, the recent developments in the imaging techniques have al-
lowed high resolution acquisition of 3D image volumes of biomedical and
biomaterial samples, offering the researchers a greater overview of the sam-
ples than the traditional 2D images. These imaging instruments are becom-
ing more and more common, 3D desktop scanners are now commercially
available, although not always affordable. However, these tools are in their
early stages, and the generated images may suffer from artifacts. New im-
age analysis methods, that handle these physical limitations and take full
advantage of the additional dimension, are desired.

One application, where studying acquired images is important, is devel-
opment of bone anchored implants. The need for these medical devices is
increasing as the world population grows older. Particularly, a greater un-
derstanding of osseointegration, i.e., the integration of a metal implant into
the living bone, is substantial for designing implants that anchor properly
in the bone. In the research laboratories, the evaluation of osseointegration
is often made by manual quantitative and qualitative analyses of 2D his-
tologically stained experimental and clinical samples. One feature of great
interest, when judging osseointegration, is the quantity of bone tissue in the
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interface region of implants, i.e., bone-implant contact. However, this type
of research based analysis, most often, involves manual interaction, making
it a time-consuming process that also depends on the operator. Here, com-
puterized image analysis may assist the researchers to a very high extent;
an automated process yields more consistent results at a higher speed and
lower cost, independent of the operator.

1.2 Aim and Outline

The general aims of this thesis are:

• Development of automated quantification methods for 2D mi-
croscopy images of bone implant samples. In order to facilitate
the quantitative analysis of osseointegration, the aim is to develop
methods for automated quantification of bone tissue in 2D light mi-
croscopy images of thin samples of bone implant. Such methods
speed up today’s quantification process and give a more objective mea-
sure of the features of interest.

• Exploration and evaluation of 3D imaging techniques for bone
implant samples. An evaluation based on 3D data will complement
the traditional 2D evaluation as information from the whole sample
is included in the analysis. As a first step to a 3D analysis, this thesis
aims to discuss 3D imaging of the bone implant samples.

• Development of automated quantification methods for 3D image
volumes of the bone implant samples. To enable a 3D analysis, this
thesis intends to propose new features for the 3D data and present
methods for extracting them.

• Development of methods for intermodal 2D–3D registration.
This thesis also aims to propose methods that link the 2D images
to the corresponding 3D image volumes, so called 2D-3D image reg-
istration, and thereby enable a direct comparison between the two
modalities.

• Development of novel visualization methods for 3D image vol-
umes of the bone implant samples. Another objective of this the-
sis is to develop tailored visualization methods that give information
about the whole sample in an understandable way, and highlight the
interesting parts of the large 3D data. Such methods provide the ob-
server with a better and wider overview of the osseointegration.
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• Demonstrating the developed methods on real clinical data. A
final objective of the thesis is to use the developed methods in at least
one case study involving retrieved human implants.

This thesis contains four chapters, including this introductory chapter.
The next chapter, Background, offers the reader a brief overview of the dif-
ferent fields related to this thesis, such as implantology, imaging, image anal-
ysis and visualization. The third chapter, Methods, discusses the main con-
tributions of this thesis and presents the developed methods. Finally, the
last chapter, Summary, Conclusions and Future work, summarizes the thesis
and presents possible extensions and improvements of this work. Lastly,
the thesis is also summarized in Swedish.
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2 Background

I’ve seen my death!

—Anna Röntgen (1872-1919),
subject of the first human X-ray imaging

2.1 Implantology

A brief description of implantology is given in the following subsections to
give the reader an insight into the field. However, the biomaterials research
field is wide and partially outside of the scope of this thesis. For the read-
ers interested in biomaterials and implantology, the book of Ratner et al.
(2004) is recommended.

2.1.1 History

Implants, for oral or orthopedic purposes, were already known to the an-
cient Egyptians and American civilizations (see Fig. 1a), who used materials
such as gold wires and shells. However, ancient surgeons had limited suc-
cess of integrating these materials into the human bone as these early im-
plants were often rejected by the immune system (Ratner et al., 2004). The
modern implantology started with the exploration of titanium for medi-
cal purposes (Bothe et al., 1940; Gottlieb and Leventhal, 1951; Clarke and
Hickman, 1953) as it showed to have good strength and resist corrosion.

The breakthrough of bone implants came in the 1950s, when profes-
sor Per-Ingvar Brånemark, at that time a researcher at Göteborg University,
Sweden, conducted an experiment on blood flow in which titanium cham-
bers had been inserted into rabbits. When he was about to remove the
chambers, he noticed that they could not be removed as they had integrated
into the bone. He then realized that titanium could be used for construct-
ing bone implants (Ratner et al., 2004). Years of experiments followed and
the first patient was given a Brånemark implant in 1965.

Initially, the clinical results were showing a low success rate (Al-
brektsson and Wennerberg, 2005) which validated the common belief at
the time that foreign objects would “never be properly anchored in the
bone” (Southam and Selwyn, 1970). However, a number of parameters
were changed that improved the clinical outcome: among others, the im-
plants were made wider and the healing time was made longer. Moreover,
surgical routines were changed as described in Albrektsson and Wennerberg
(2005). The Swedish results were presented for the international public in
1982 at a conference in Toronto, organized by George Zarb, a former guest
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researcher at Göteborg University who had been trained in the Brånemark
method of implant placement. This conference marks a breakthrough for
bone implants (Albrektsson and Wennerberg, 2005).

Three examples of modern screw shaped oral implants can be seen in
Fig. 1b.

(a) (b)

Figure 1: (a) Human jawbone, dating from about A.D. 600. The mandible,
discovered in Honduras, is to be found at Peabody Museum of Archeology
and Ethnology, Harvard University, Cambridge, Massachusetts. (b) Three
different modern oral implant designs (the mean diameter of the implants is
3.5 mm). The figure is from the publication by Sul et al. (2009). Copyright
permission obtained. For full description regarding the implants, see the
publication.

2.1.2 Osseointegration

The fusion of the artificial implant and the living bone is referred to as os-
seointegration, coined in the 1970s by Brånemark, originally defined as “a
direct, on the light microscopical level, contact between living bone and
implant” (Albrektsson et al., 1981). When inserting an implant into bone
tissue, it is crucial to achieve good osseointegration and thereby proper bone
anchorage, as the implant may otherwise loosen. However, the osseointe-
gration process, i.e., the bone remodeling, is constantly ongoing and there
is no status quo.

Six factors of importance for achieving a reliable osseointegration and
prevention of implant loosening, were presented in Albrektsson et al.
(1981): (i) the biomaterial used (the implant material), (ii) implant design,
(iii) implant surface, (iv) state of host tissue, (v) surgical technique and (vi)
load forces on implant. The three former are the so called “hard-ware fac-
tors” and believed to be controllable, whereas the three latter are the so
called “soft-ware” factors and less controllable.
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Biomaterials are referred to as being bio-compatible, i.e., according to
the original definition by Williams (1999): “the ability of a material to
perform with an appropriate host response in a specific application”. To
achieve adequate bio-compatibility, the implant should be made of a tissue-
tolerant material that is able to carry the load and is resistant to corrosion.
As mentioned in the previous section, commercially pure titanium (c.p. Ti)
has good bio-compatible properties. One disadvantage with c.p. Ti is its
relative softness. However, it can be alloyed with other elements in order
to improve its strength. A common titanium alloy, mostly used for or-
thopaedic implants, is titanium-6-aluminum-4-vanadium (Ti6Al4V). Some
animal experimental studies have shown that Ti6Al4V is less integrated in
bone tissue compared to c.p. Ti when evaluated with bio-mechanical and
histomorphometrical tests (Stenport and Johansson, 2008; Han et al., 1998).
A possible reason for these observations may be ionic leakage and release of
corrosion products, where the former is a first step of a chemical reaction
and the products may provoke an inflammatory response (Johansson et al.,
1992).

Implants designed with retention elements, such as threads, i.e., screws,
are preferably used clinically. Investigations by Bolind et al. (2005) and
Bolind et al. (2006) suggest that solid un-threaded cylinders do not osseoin-
tegrate as well as screw shaped implants. Furthermore, it has been shown
that an adequate roughness of the implant surface structure improves the
osseointegration.

The bone tissue quality is also an important factor for a proper osseoin-
tegration to be reached. In animal experiments it has been shown that im-
plants inserted in irradiated bone result is a poor osseointegration compared
to implants in non-radiated bone (Nyberg et al., 2010). Moreover, a gentle
surgical technique is of utmost importance and this include, e.g., the use of
sharp drills and ample cooling during drilling (Eriksson, 1984). The loading
of an implant is also a factor of importance. When Brånemark started, im-
plants should heal “unloaded” for three to six months before the prosthetic
restoration took place. However, it has been shown that immediate load-
ing is sometimes possible if the implant site has good bone quality Cochran
(2006).

2.2 Evaluation of Osseointegration

Nowadays, the biomaterial scientists exploit different implant substrate-
coatings and surface textures to improve and speed up the osseointegration.
In order to understand the mechanism behind osseointegration, various ex-
perimental studies are performed with implants inserted in animal models.
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FEMUR CONDYLE

TUBEROSITAS TIBIAE

IMPLANTS

Figure 2: Schematic drawing of the femur condyle (spongeous bone) and the
tuberositas tibiae (trabecular bone) region, used for insertion of implants in
experimental models.

The implants are later retrieved and analysed with several different meth-
ods. A commonly usedexperimental in vivo animal model design is to have
one implant inserted in each femur condyle (spongeous bone) region and
two to three implants placed in the tuberositas tibiae (trabecular bone) re-
gion, see Fig. 2.

The studies involving laboratory animals, discussed in this thesis, have
been approved by the local animal ethical committee at Göteborg Univer-
sity, Sweden. For studies involving clinical samples, ethical approval exists.

2.2.1 Preparation of the Histological Sections

After some time, depending on the aim of the study, the implants are re-
trieved with the surrounding bone and further processed to cut and ground
histological sections with the implant in situ. The sections are non decal-
cified, i.e., the calcium in the bone tissue is preserved and the tissue can be
stained with various histological staining methods.

Routinely one central section is prepared from each implant, in a stan-
dardized manner, i.e., the cutting direction and the section thickness must
be controlled (Johansson and Morberg, 1995a,b). The histologically stained
section is analyzed qualitatively as well as quantitatively in a light micro-
scope by a trained technician or researcher. The amount of bone tissue in
proximity to the implant, especially at the immediate bone implant inter-
face, is an important indicator of the degree of osseointegration.

The extracted implant samples are embedded in resin and processed by
the so called Exakt technique (Donath, 1988). The Exakt system includes
diamond- or boron nitride coated band-saw with a cooling and flushing sys-
tem (Donath, 1995). The sawing and grinding result initially in a thick
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(a) (b) (c)

Figure 3: A light microscopy image of a screw-shaped implant sample. The
images are captured using (a) an objective of 4× and (b) an objective of 10×.
The magnification of the region marked in (a) is shown in (b). The images
show the implant (black) with surrounding bone tissue (purple with a num-
ber of hollow spaces, i.e., mostly bone remodeling cavities) and non-bone
tissue (light gray). The regions of interest with their quantification results
are shown in (c), see text.

section of about 150 µm thick, and is further ground to a thickness of 10-15
µm. In order to enhance the contrast between bone and non-bone tissue,
the sections are histologically stained with, e.g., Toluidine blue mixed with
pyronin G, which results in various shades of purple stained bone tissue:
old bone becomes light purple and young bone dark purple. The non-bone
tissue is stained light gray and cell nuclei are stained blue (see Fig. 3 and
Fig. 4).

The staining presents a number of complications for automated analy-
sis. The resulting color may differ slightly (lighter or darker) for different
samples. Furthermore, at some interfacial parts of the sections, the tissue
may be very darkly stained when there is a tendency of implant loosening.
Another complication is the presence of cutting artifacts, which are visible
as stripes. All of these artifacts complicate automated image analysis, and
have to be taken into account.

2.2.2 Features used in the Evaluation

The following features, presented in the thesis by Johansson (1991), are rou-
tinely measured for each inner thread region (that spans from one thread
peak to another) and used for quantitative analysis of 2D histological sec-
tions:
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• BI C , bone implant contact length in the interface, expressed as per-
centages, measured from one thread peak to another.

• R, bone area percentages in the inner thread

• M , bone area percentages in the mirrored/out-folded inner thread

Fig. 3c shows the regions of interest (ROIs) in a histological section. These
features provide information about osseointegration at the immediate bone
implant interface as well as in the proximity of the implant. The compari-
son of R and M features reveals e.g., the time remodeling effects of the bone
tissue, i.e., how the amount of bone tissue varies over time. These features
are compared for different implant samples by averaging the features over
the whole sample or the three best consecutive threads. Often, the implants
are inserted in both legs of the laboratory animal; a test implant in one and
a control implant in the other.

2.2.3 Motivation for Use of Image Analysis and 3D

The qualitative and quantitative analysis of the sections in the light micro-
scope is a time consuming and subjective step. This makes the analysis step
costly and dependent on the operator. Hence it is of great interest to re-
place the manual quantification by an objective automated method, which
will shorten the analysis time and allow the researchers to focus on other
biological issues.

Preferably, several 2D sections should be prepared from each sample.
However, a limitation of the cutting and grinding techniques used is that the
saw destroys parts of the sample which makes it impossible to obtain serial
sections, as compared to, e.g., routine paraffin sectioning. By introducing
new 3D techniques and new features, more information can be extracted
from each sample.

2.3 Imaging

The used imaging techniques are described in this section. The implant
samples are imaged in both 2D and 3D in this thesis, using different imag-
ing techniques. The different modalities complement each other: the 2D
light microscopy provides high resolution and color information, but these
2D images represent only a small part of the whole sample and have a high
degree of variability depending on where the 2D slice is taken. The 3D
imaging, on the other hand, provides gray-scale images at lower resolution,
but includes information from the whole sample. The 3D imaging is non-
destructive, whereas for the 2D imaging, the implant sample has to be sec-
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tioned. Therefore, the samples are imaged in 3D prior to the 2D imaging,
although they are described in reverse order here.

Imaging device: 

Implant O: 

Type:

Pixel size:

Nikon Eclipse 80i

3.75 mm

Light microscope

0.9  m (right image)

Figure 4: One commercially pure titanium implant imaged using light mi-
croscopy. The right image shows an enlargement of the interface region. ø
denotes the outer diameter of the implant.

2.3.1 2D imaging

A common 2D-imaging technique is light microscopy. A conventional light
microscope collects the light that is either transmitted through the specimen
or reflected by it. Several objective lenses in the path of the light, magnify
the specimen. An eye-piece or a camera is used to collect the light. The
resolving power of the light microscope, i.e., the ability to resolve two ad-
jacent points, is defined by the Rayleigh criterion, limiting it to about 0.2
µm (Slayter and Slayter, 1992).

The 2D images in this thesis are acquired by a camera connected to a
Nikon Eclipse 80i light microscope, generating uncompressed RGB images
(8 bits per channel), see Fig. 4. To image the stained implant samples, the
light is transmitted through the samples. The used setting with two ob-
jective types, 4× and 10×, yields a pixel size of 2.2µm and 0.9µm, respec-
tively. The acquired images show four thread-valleys, imaged with the 4×-
objective, and one single thread-valley, imaged with the 10×-objective, see
Fig. 3.
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In many light microscopy settings, a number of complications arise
from the shape of the lens, such as chromatic and spherical aberration.
These result in color distortion and loss of resolution in some points of the
acquired image. The imaging system used in this thesis uses optics that, to
a large extent, correct for these aberrations. Therefore, these complications
are not believed to affect the analysis. Another complication can be low
contrast. Common techniques to introduce or increase contrast are, among
others, fluorescence, phase contrast and differential interference contrast.
As mentioned in Sect. 2.2.1, the bone implant samples are histologically
stained and the staining generates adequate contrast, hence no further con-
trasting technique is needed. For further explanation of the contrasting
techniques, the aberrations and correction methods as well as other compli-
cations associated with microscopy, see Murphy (2001), Slayter and Slayter
(1992) and Bradbury and Evenett (2000).

Figure 5: The Xradia MicroXCT device at Innventia AB, Stockholm, Swe-
den. In the right image, the turntable and the detector inside the device, are
shown. Courtesy of Innventia AB.

2.3.2 3D imaging

The advancement of 3D imaging techniques during the recent decades
(Robb, 2006) has enabled acquisition of 3D image volumes of the samples.
There are two main techniques for high resolution imaging in 3D, suitable
for the purpose of this thesis: µCT (micro-Computed tomography) and
Synchrotron Radiation-based µCT (SRµCT).

µCT

A cost effective tool for non-destructive 3D imaging of bone is µCT
(Ruegsegger et al., 1996; Hildebrand and Ruegsegger, 1997; van Lenthe and
Müller, 2008; Balto et al., 2000; Bernhardt et al., 2004; Numata et al., 2007).
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Imaging device: 
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Angular step: 

Type:

Pixel size:
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SkyScan 1172,  

Antwerp, Belgium 

3.75 mm

0.15
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Imaging device: 
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Pixel size:

Duration:

Xradia MicroXCT, Innventia AB,

Stockholm, Sweden

2.2 mm

0.10

  CT 

9.64  m

~21 h

Figure 6: Two commercially pure titanium implants imaged using the µCT
technology. The images to the right show enlargements of the interface
region. ø denotes the outer diameter of the implant. Edge gradients, sur-
rounding the implant, are visible in the magnifications, especially in the
image volumes acquired by the SkyScan device.
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Figure 7: Two commercially pure titanium implants imaged using the Syn-
chrotron Radiation-based µCT (SRµCT) technology. The images to the
right show enlargements of the interface region. ø denotes the outer diam-
eter of the implant. The edge gradients artifact still surround the implants,
although the magnitude is less than the artifacts in the image volumes shown
in Fig. 6.
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The sample is placed on a turntable between an X-ray source and a de-
tector. The X-ray source usually generates conical beams with a white en-
ergy spectrum. The turntable makes a full rotation (alternatively, the X-ray
source and detector are rotated) and for each rotation-step the detector reg-
isters the attenuation and a projection image is generated. After a full ro-
tation, a 3D image volume is reconstructed from the projection images us-
ing, e.g., a cone-beam filtered back-projection reconstruction (see Kak and
Slaney (2001) for a introduction to reconstruction algorithms). The typical
spatial resolution of the µCT devices, used for imaging biological samples,
are in the level of 5-15 µm. Lately, so called nanoCT systems, providing sub
100 nm resolution, have been made available (Wang et al., 2008).

An example of a µCT device is shown in Fig. 5. In this thesis, the
implant samples have been imaged using two desktop µCT scanners: Xradia
MicroXCT1 and SkyScan 11722. Fig. 6 shows slices obtained by the two
devices as well as data about the imaging.

A number of limitations are associated with the µCT technique. The
acquired grayscale 3D image volume depicts the measured density of the
sample and contains no color information. Relative to a conventional light
microscope, the device itself is expensive and the image acquisition is time
consuming. Moreover, a number of artifacts are associated with µCT (Bar-
rett and Keat, 2004). Artifacts occur particularly when the samples include
metal objects, such as titanium implants. Dense objects absorb a consider-
ably higher amount of X-rays than less dense objects (Liu, 2009; Sarve et al.,
2009; Numata et al., 2007; Bernhardt et al., 2004). This leads to artifacts
such as edge gradients, or halo effects, that surround the implant and hide a
substantial amount of information close to the implant interface (see Fig. 6
and Fig. 7). Such artifacts prevent reliable discrimination between the bone
and non-bone tissue close to the implant, which is actually the most impor-
tant region to analyze for determining osseointegration. Another artifact
that is amplified, but not necessarily solely generated, by metallic objects
is beam-hardening (shown in Fig. 8). It occurs as a streak or dark bands in
homogeneous regions due to low energy photons being absorbed in the sur-
face of the implant sample. Metal artifact reduction (MAR) methods have
been suggested to address these problems, but they were shown to intro-
duce new artifacts in the case of small metal implants, such as screws, and
actually reduce the image quality according to Liu (2009).

As Fig. 6 shows, the volumes acquired by the Xradia device contain
less metal-related artifacts than the volumes acquired by the SkyScan de-

1http://www.xradia.com
2http://www.skyscan.be
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Figure 8: Illustration of the beam-hardening effect. (a) An implant thread
imaged with a SkyScan1172 device and (b) the measured density profile of
the marked region. The measured density dips about x = 15 although the
implant is a homogeneous region. (c) An implant thread imaged with a
SRµCT and (d) the measured density profile of the marked region.

vice. Therefore, this thesis only analyses Xradia image volumes. However,
notably, the imaging time is significantly higher for the Xradia than the
SkyScan device.

SRµCT

The artifacts can be reduced by using SRµCT. Its use for microtomography
of samples was suggested by Grodzins (1983) in the 1980s and has since
evolved as a powerful imaging technique for biomedical and biomaterial
studies. A number of studies use SRµCT for 3D bone quantification and
visualization (Weiss et al., 2003; Peyrin and Cloetens, 2002; Bernhardt et al.,
2006). This technique can offer a spatial resolution down to about 1 µm
(Martin and Koch, 2006).

SRµCT-imaging requires large-scale facilities. A synchrotron accelerates
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high-energy particles at these facilities and injects them into a ring. The size
of the ring varies and its circumference typically ranges from hundred me-
ters to several kilometers. The generated radiation is derived at tangents of
the ring, in so called beam-lines. At these beam-lines the samples are placed
on a turntable in the radiation path and imaged by a detector. There are
about 50 such facilities in the world, limiting the beam-time the researchers
can use to image their samples. This technique yields more accurate tomo-
graphic reconstructions, has a higher signal-to-noise ratio and avoids the
beam-hardening artifacts (Cancedda et al., 2007; Ito et al., 2003) due to the
parallel beam acquisition and monochromatic beams. The edge gradient
effect, described above, is smaller in SRµCT-acquired image volumes, even
though the artifact is not entirely removed (see Fig. 7). Additional process-
ing is required to suppress this artifact further, which is described in Sect.
3.2.1 (p. 45).

Figure 9: The SRµCT device of HZG (Helmholtz-Zentrum Geesthacht) at
HASYLAB (Hamburger Synchrotronstrahlungslabor), DESY (Deutsches
Elektronen-Synchrotron), in Hamburg, Germany. The right image shows
the sample holder and the detector. Courtesy of HZG.

The 3D image volumes used in this thesis are obtained using the SRµCT
device of HZG1 at HASYLAB2, DESY3, in Hamburg, Germany, at beam-
line W2/DORIS III. Fig. 9 shows the mentioned device. A number of sam-
ples have also been imaged by a SRµCT device at BESSY4, Berlin, Ger-
many. However, these samples had to be sliced up and imaged separately
due to limitations of the device and the generated sub-volumes were man-
ually stitched together. Therefore, these image volumes are not used for

1Helmholtz-Zentrum Geesthacht, previously GKSS
2Hamburger Synchrotronstrahlungslabor
3Deutsches Elektronen-Synchrotron
4Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung m. b. H.
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analysis. Fig. 7 shows slices obtained by these devices as well as data about
the imaging.

2.4 Image Processing

Computerized image analysis means automated extraction of information
from digital images. Common tasks are measuring a feature in an image
or characterizing and interpreting the image. In some cases, these tasks are
performed in a semi-automated fashion, when the computer algorithms do
not manage alone and human interaction is needed to some degree.

Common steps in image analysis are shown in Fig. 10. The very first
step is acquiring a digital image by sampling the object of interest in an imag-
ing device. Once the image is available digitally in the computer, an initial
step is pre-processing (also the imaging device itself may perform some sort
of processing after the image acquisition). The aim is to suppress noise and
possible artifacts, and in some cases (e.g., in commercial digital cameras) to
visually enhance the image.

2.4.1 Image Segmentation

In most cases, the greatest challenge in image analysis, is segmentation, i.e.,
the task of delineating the set of spatial elements, spels, (pixels in 2D and
voxels in 3D) depicting one or more real world objects in the image. This
step is very important, as a reliable subsequent analysis highly depends on
a proper and accurate segmentation. The complexity and difficulty of the
segmentation comes from the fact that computers are not as good as the
human brain at high-level recognition (Udupa et al., 2006). To help the
computers, many segmentation algorithms rely on human interaction, such
as an initial manual segmentation of a subset of the image. An example of a
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Segmentation Quantification
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acquisition

Visualization

Computer

Human-

readable

Information
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display 

Figure 10: Common image analysis and visualization steps.

29



segmented image is shown in Fig. 11.
Image segmentation is an essential part of the image analysis and devel-

opment of a general segmentation method has attracted much focus, but is
still an unsolved problem. Instead, a great number of segmentation meth-
ods, each with their pros and cons, have been developed. Since the seg-
mentation task is a principal step in image analysis, the literature cover-
ing different approaches is extensive. The following references can be used
to introduce the reader to several segmentation paradigms and taxonomy:
Gonzalez and Woods (2006), Sonka et al. (2007) and Sonka and Fitzpatrick
(2000).

One common segmentation approach is intensity-based segmentation,
i.e., the spels of the image are classified based on their intensity values. The
simplest example is thresholding. An intensity value is chosen, either man-
ually or automatically, and the spels having a lower intensity value than the
chosen threshold value are classified as one class and the spels with a higher
intensity value are classified as another class. A frequently used thresholding
method is Otsu’s method (Otsu, 1979), that finds the best threshold value
if the image intensities are a mix drawn from two Gaussian distributions of
equal covariance. Thresholding, with its intuitive properties and often easy
implementation, a convenient segmentation option for images that contains
objects that have spels with different intensities. In this thesis, thresholding
can be and is used to segment the implant in 3D image volumes, as the metal
is always much darker than the surrounding tissue.

Another intensity based segmentation method, is discriminant analy-
sis (DA) (Fisher, 1936). This method originates in analysis of variance; it
sets a boundary between the classes so that maximal separation between
classes is achieved by maximizing the ratio of between-class variance to the
within-class variance (Johnson and Wichern, 1998). DA requires an initial
segmentation as training data. This is done by an expert who manually
marks regions belonging to the different objects. Linear discriminant anal-
ysis (LDA) assumes equal covariance matrices of the observed classes. This
assumption is not made by quadratic discriminant analysis (QDA).

Intensity based segmentation has the following drawback: if two spels
belonging to two different objects have intensity values close to each other,
it is probable that they are classified as the same class (analogously, two spels
belonging to the same object may have a difference in intensity levels that
is big enough for them to be classified as different classes). In this thesis,
DA is used for classification of bone and non-bone tissue in the 3D image
volumes, as well as an initial segmentation of the 2D images. However,
the latter segmentation leads to misclassifications, due to intensity overlap
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(a) (b)

Figure 11: A segmentation example: original image (a) and the segmented
image (b). The implant is marked with a chessboard pattern (blue-white),
bone-tissue marked with diagonal lines (white lines on red background) and
non-bone tissue is marked with a solid pattern (yellow).

between different classes. The misclassifications can be suppressed by in-
cluding additional information in the segmentation.

One important property that can be included in the segmentation is the
spatial context of the spels. The class “belongingness” of a spel is, in general,
highly correlated with the class of its neighbors. An approach that includes
the spatial information is fuzzy connectedness, FC (Udupa and Samarasek-
era, 1996). The connectedness of every pair of spels is assigned a real number
based on fuzzy adjacency (spatial proximity) and fuzzy affinity (proximity
in intensity). The connectedness between two spels belonging to an image
is computed as the strength of a strongest path between them, where the
strength of a path is the strength of its weakest link. The strength of a link
is given by its fuzzy affinity. Classification methods based on FC include
iterative relative fuzzy connectedness, IRFC, (Ciesielski et al., 2007). The
latter method is used in this thesis to segment 2D histological images (with
an initial segmentation by DA), where intensity-based segmentation meth-
ods alone are inadequate.
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2.4.2 Quantification

Given a segmented image, the information of interest can be extracted from
the image. This is where computers are particularly useful; while they are
not well-fitted for high-level recognition, they perform strongly on the low-
level process of calculation and measurement on images (Udupa et al., 2006).
In this thesis, the quantification involves volume, area and length measure-
ments.

The volume (in 3D) and area (in 2D) of an object are measured by count-
ing the spels that are, by the segmentation method, defined to belong to that
object. The impact of present point-noise is low for these measurements as
the number of spels affected by noise (and thereby increased probability of
misclassification) is usually low compared to the number of spels of the ob-
ject. Furthermore, the data loss introduced by the digitization has a low
impact on these measurements as long as the resolution is high enough so
that the number of inner spels of the object are much larger than the bound-
ary spels, which is often the case.

The perimeter or length in 2D (surface area and length in 3D), on the
other hand, is somewhat more difficult to obtain from a digital image. The
digitization of non-straight (in the coordinate system) line segments to a
square grid (in 2D, and cubic grid in 3D) introduces error. For example,
a diagonal line in a square grid, is represented by a set of straight line seg-
ments, forming the shape a staircase. To minimize the estimation error,
methods can be used that take a sequence of boundary pixels into account,
see e.g., Koplowitz and Bruckstein (1989) (further described in Sect. 3.1.2
on p. 3.1.2), or utilize information from partial membership of pixels, see
e.g., Sladoje et al. (2003) or Sladoje and Lindblad (2009).

2.4.3 Image Registration

When imaging an object, it can be helpful to use different imaging tech-
niques as they may have different advantages, e.g., in this thesis, 3D SRµCT
image volumes and 2D histological images of the same sample have been
studied (see Sect. 2.3). The object will be moved between the imaging oc-
casions, leading to different coordinate systems for the different images. It
is of great interest for the following analysis to find a geometrical trans-
formation that aligns the different images of the same object. This task is
called image registration. In the rigid body case, i.e., when the object is
not deformed between the different imaging occasions or deformations of
the body can be ignored, the transformation includes rotation, translation
and scaling. Since the samples studied in this thesis are embedded in resin,
they are rigid, and deformations are negligible. Non-rigid body registration
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methods are considered to be outside the scope of this thesis and are left for
the interested reader, see e.g., (Hajnal et al., 2000).

The registration seeks a transformation, which maximizes a similarity
measure (Sonka and Fitzpatrick, 2000). A number of studies use Normal-
ized Mutual Information (NMI) (Studholme et al., 1999) as similarity mea-
sure. An overview of studies on NMI-based registration is found in (Pluim
et al., 2003). A reason for NMI’s popularity is its ability to measure the
amount of information that the two images have in common, indepen-
dently of their modality. Commonly used optimization algorithms for
finding the sought-after transformation involves Simulated Annealing (SA)
(Kirkpatrick et al., 1983), Genetic Algorithms (Goldberg, 1989) and Pow-
ell’s Method (PM) (Powell, 1977). In (Lundqvist, 2001), PM and SA are
evaluated for registration tasks and it is shown that SA performs better
than PM. Another registration method is Chamfer Matching (CM) intro-
duced by Barrow et al. (1977) and further developed by Borgefors (1988).
As this method requires pre-segmentation, it is suitable for tasks where a
reasonably good segmentation of the objects of interest can be performed.
Cai et al. (1999) shows that CM is feasible and efficient for 3D lung image
registration. Fig. 12 shows an example of image registration.

2.4.4 Visualization

Visualization, in this context, involves rendering an image on an arbitrary
screen. Visualization of 2D images is a straight-forward task, whereas visu-
alization of 3D image volumes involves a projection to a 2D plane to enable
a rendering on the flat computer screens. A simple solution is to show
cross-sections of the 3D image volumes. However, the associated browsing
of the volume is an unintuitive way of visualizing the data and does not
show an overview of the whole data. A commonly used projection tech-
nique is Average Intensity Projection (see Fig. 13b). Isosurface renderings,
i.e., rendering of the surface of a segmented object, is another approach (see
Fig. 13d). The visualization methods shown in Fig. 13 all have their pros
and cons. The appropriate visualization method is chosen depending on
the content of the data and on whether the user desires to highlight details
or to observe an overview of the 3D image volume.

There exist software libraries for visualization of 3D image volumes.
However, they are generally designed for rendering solid objects and per-
form poorly on the highly porous bone tissue. Moreover, 3D image vol-
umes contain huge amounts of data and to give the user a chance to perceive
and register the relevant information, it is often necessary to select a part
of the volume for visualization. In this thesis, techniques tailored for visu-
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(a) (b) (c)

Figure 12: (a) 2D histological section from a bone implant sample and (b)
the registered slice from the 3D image volume of the same sample. (c) To
illustrate the variation in different slices, a random slice from the 3D image
volume of the same sample is shown.

(a) Stack of 2D slices (b) Average Intensity Projection

(c) Orthogonal 2D slices from the 3D im-
age volume

(d) Surface-rendering

Figure 13: Different methods for visualizing a 3D SRµCT image volume
with varying complexity. The surface-rendering (d) shows the implant in
gray and the bone tissue in blue.
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alization of the 3D image volumes of the bone samples are introduced in
Sect. 3.4, p.65. These techniques incorporate relevant information and give
the viewer a simple overview of the osseointegration.

2.4.5 Hardware

The rapidly growing texture memory on graphics cards over the past decade
has enabled operations on large 3D images on programmable Graphics Pro-
cessing Units (GPUs). These processors, having a parallel and pipelined ar-
chitecture, provide computational advantages over traditional Central Pro-
cessing Units (CPUs) (Lejdfors, 2008). The use of GPU-programming has
become more and more common among the image analysis researchers,
especially for image registration. A survey of GPU and other high-
performance architectures can be found in Shams et al. (2010), in which
the authors point out the shift to GPUs for the registration task.

In this thesis, the GPU has been utilized to extract 2D slices with ar-
bitrary angle and translation from a 3D image, which is an operation fre-
quently used for registration as well as visualization. For this operation,
the GPU outperforms the CPU implementation by more than one order
of magnitude.

2.5 Previous Work

Segmentation of histological bone-implant samples is a rather specific task
and few papers present methods for this task particularly. A pilot study was
conducted by Ballerini et al. (2007), where a combination of a fuzzy c-Means
clustering algorithm and a genetic algorithm (Ballerini et al., 2004) was used
to automatically segment histological images of bone implant samples. The
authors conclude that an image analysis tool could speed up the analysis
and achieve comparable results to the manual quantification method. The
authors point out that the area quantifications made by the proposed and
manual method correspond, whereas the BI C feature is overestimated by
the proposed method. Furthermore, they state that the significant differ-
ences in the BI C feature are probably due to low resolution, artifacts in the
interfacial region and possibly a too simple segmentation algorithm.

In Schouten et al. (2009), a traditional µCT technique is used to quantify
bone implant samples. The results are compared to measurements on histo-
logical sections and the authors note that the outcomes of these techniques
do not correspond: µCT percentages are 5–30% higher than histomorpho-
metrical results. Furthermore, they also point out that the bone-implant
interface could not be classified accurately, possibly due to X-ray scatter-
ing. In Bernhardt et al. (2005), a SRµCT technique is used for 3D imaging
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of bone samples and in Bernhardt et al. (2006) such samples are quantified.
The authors note that the results from SRµCT are comparable to the re-
sults from histology. Furthermore, they stress the reduction of noise and
artifacts achieved by using SRµCT compared to traditional µCT.

A number of recent studies have used 2D–3D registration and a com-
mon task in the medical field is registration of µCT 3D images with 2D
X-ray fluoroscopy. This task has been, among other studies, elaborated in
Zöllei et al. (2001), Russakoff et al. (2003), Knaan and Joskowicz (2003),
Kubias et al. (2007) and Ino et al. (2006).
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3 Methods

For ‘Is’ and ‘Is-not’ though with Rule and Line

And ‘Up’ and ‘Down’ by Logic I define,

Of all that one should care to fathom,

Was never deep in anything but–Wine.

—Omar Khayyam (1048-1131),
Persian mathematician and epicure

This chapter describes the contributions made by the author and summa-
rizes the methods presented in the enclosed publications.

3.1 Quantification of Bone in 2D Images

In this section, an automated (following an initial training step) quantifi-
cation method for 2D histological images is presented. As mentioned in
Sect. 2.1.2 (p. 17), the sections extracted from the bone implant samples
are traditionally quantified manually (with no or limited computer aid ) in
a light microscope. This step is on one hand time consuming and on the
other subjective, i.e., the outcome depends on the operator. The objective
of the automated method is to overcome these issues, without sacrificing
accuracy.

The automated quantification proceeds from a segmented image (see
Sect. 2.4.1, p. 29). The segmentation procedure is explained below. Re-
gions of interest (ROIs) are defined, and subsequently the information of
interest, i.e., the features, are extracted. The features in this study involve
bone tissue in different regions in the proximity of the implant. They are
described in Sect. 2.2.2 and the extraction of them is explained in 3.1.2. The
quantification is followed by a comparison of the automated quantification
with the manual one, presented in Sect. 3.1.4.

3.1.1 2D Image Segmentation

In this thesis, the images are segmented into three classes of interest; im-
plant, bone tissue and non-bone tissue. The segmentation of the 2D histo-
logical images is divided into two parts. An initial segmentation using DA
generates seed regions for the subsequent segmentation using IRFC. These
segmentation methods are described in Sect. 2.4.1 (p. 29).

The initial segmentation (described in Paper I) uses DA to classify a data
set constituting the intensity values in each color channel (R, G and B) of
the color image. In order to improve the segmentation, the intensity values
of another color space, HSV (hue, saturation and value), are also included
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Figure 14: The distribution of the pixels in the V -channel for a sample im-
age.

in the data set. HSV is a color space in which the intensity is decoupled
(the V-channel) from the color information. However, the values of the
hue-channel, H , are ignored since it is observed that (i) the classes are not
normally distributed in the H-channel, (ii) the distributions of the classes
are overlapping to a large extent and (iii) the H-channel is noisier than the
other channels.

In order to enhance the segmentation, some post-processing is per-
formed: the implant is assumed to consist of one single piece, i.e., only
the largest 8-connected implant region is kept. Moreover, it is assumed that
the bone tissue does not consist of small isolated pieces; separated bone tis-
sue regions with a minimum size of np pixels were removed. Additionally,
a 3x3 majority filter is applied to suppress the impact of noise on the seg-
mentation.

However, it is observed that this pixel-wise segmentation only manages
to classify part of the pixels correctly. The reason is that the intensity val-
ues for different classes (for all channels) overlap each other (see Fig. 14),
especially at the implant-interface where the implant transcends to bone or
non-bone tissue, which is, as mentioned, an important region to analyze.
Therefore, the DA method is modified (see Paper III) so that the output is a
fuzzy segmented image, with a pixel x holding probability values, fk(x), to
each of the classes, k.

For a multivariate normal distribution, the class-conditional density of
an element x and class Ck is:

fk(x) =
1

(2π)d/2|
∑

k |
1/2

e−
1
2 (x−µk )

T ∑−1
k
(x−µk ), (1)

38



where µk is the mean value of class Ck , Σk is its covariance matrix, and d
is the dimension of the space. The pixels with low ratio between the class
having the highest probability and the second highest are considered to be
non-classified and are assigned to a fourth, uncertain class. What ratio is
considered as low enough is determined by a threshold value TF . In addition
to these, pixels close to the borders of the regions are also determined as
belonging to the uncertain class (see Fig. 15, p. 41).

The pixels segmented by DA, except the uncertain pixels, are put into
a set S , and used as seed-points for IRFC. In this way, automatic seeding is
provided. The fuzzy affinity µx for a link between two pixels of an image,
p and q is computed as:

µκ(p , q) =µα(p , q) ·
1

1+ kx‖I (p)− I (q)‖2
, (2)

where I (p) and I (q) are intensity values of the two pixels, kx is a nonnega-
tive constant, and µα is the fuzzy adjacency, calculated as

µα(p , q) =
1

1+ kα‖p − q‖2
for ‖p − q‖1 ≤ n, (3)

where kα is a nonnegative constant. The value of n used in the definition
of fuzzy adjacency determines the size of a neighborhood where pixels are
considered to be (to some extent) adjacent. It is shown that n = 2 performs
slightly better in a test that included n ∈ {1,2,3}. By setting kα = 0 (as done
in Udupa and Samarasekera (1996)), the following definition of µα, which
gives a crisp adjacency relation, is used:

µα =
�

1, if ‖p − q‖1 ≤ 2
0, otherwise

. (4)

The presented fuzzy connectivity relation puts emphasis on the inten-
sity values of the pixels rather than the spatial position. Therefore, the crisp
adjacency, providing the same local neighborhood for all pixels, is chosen
rather than fuzzy adjacency.

3.1.2 Features, Design and Estimation

Features of interest in the automated analysis are the ones used in the man-
ual analysis, namely R, M and BI C as discussed in Sect. 2.2.2. The first step
in recognizing the regions of interest is to locate the thread peaks: the im-
plant interface’s deviation from the implant center is considered a function
(the implant is positioned either vertically or horizontally in the images).
Initially, a rough position of the thread peak is located as a local maximum
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of this function. The local maximum may, due to noise, be located some
pixels away from the actual peak. The position is then refined by finding
the center between a point in the valley on one side of the local maximum
and the corresponding point other on the other side. The center points are
extracted from the lowest point in the thread gulf and up to 20 pixels below
the local maximum (corresponding to 18 µm and 44 µm for the images ob-
tained with the 4×- and 10×-objective, respectively). The final thread peak
position is located as the average of the these center points. Fig. 16 (p. 41)
illustrates this approach.

Once the thread peaks have been located, the R-regions are defined as
the region from the implant interface to the the line between two adjacent
thread peaks. By mirroring the R-region about this line, the M -region is
obtained. The quantification of the R and M feature is done by summing
up the pixels classified as bone in the R- and M -regions and dividing with
the total number of pixels in the corresponding region.

The implant interface is extracted by a dilation with a 3× 3 ’+’-shaped
structuring element on the segmented implant region. The bone and the
implant are in contact where the dilated implant overlaps bone-tissue. As
discussed in Sect. 2.4.2 (p. 32), the length of a digital path can be some-
what tricky to estimate, and a naïve approach (such as summing up all
contour pixels) results in estimation errors. The BI C is quantified using a
method for perimeter estimation of digitized planar shapes with low estima-
tion error introduced by Koplowitz and Bruckstein (1989). Two methods
are presented in the mentioned publication, and the first method (called
the four-class method) of the two presented is used in this work. The ap-
proach assigns optimal weights to the contour points, depending on their
local properties, and estimates the length by a linear combination of the
contour points. The optimization is based on minimizing the maximum es-
timation error for digitized straight edges over all orientations. The imple-
mentation of this estimator is simple and the authors’ experimental results
show good perimeter estimation of digitized disks. They also show that the
estimation bias is insensitive to moderate curvature.

3.1.3 Implementation

To enable biomaterial researchers to actually make use of an automated
quantification tool in their everyday routine, a Microsoft Windows-
application, Cuanto, has been developed. It implements the automatized
method described in Paper I. A graphical user interface (GUI) has been de-
signed using the guidelines presented in Adamek (2010). The GUI is devel-
oped with respect to usability principles and theories within human com-
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(a) (b) (c)

Figure 15: (a) 2D histological image. (b) Uncertain regions marked as white.
(c) Final segmentation result where bone tissue is marked red, non-bone
tissue yellow and implant purple.

puter interaction. A snapshot of the application is shown in Fig. 17.

Additional functionalities have been added to the software, an impor-
tant one being manual correction of errors in the result. Incorrectly clas-
sified regions can be marked in the segmented image, with the segmented
regions shown superimposed on the original image. The opacity of the su-
perimposed segmented image is changeable, which facilitates the identifica-
tion of misclassified regions. Another functionality that has been included
allows the user to expand the implant and create an virtual implant inter-
face. This can be used to compensate for, e.g., when the metal part is loose
and staining artifacts occur.

thread peakthread peak

center point

local maximum

R-region

Figure 16: Locating the thread peaks. The local maxima of the thread are
found and the center point of the thread profiles in the adjacency of these
maxima are determined as the thread peaks.
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Figure 17: Snapshot of Cuanto after the quantification and the manual cor-
rection step. The segmentation result is superimposed on the original image
with an opacity of 50%. The user has chosen to mark the implant as blue,
the non-bone tissue as green and bone tissue as red. The implant is ex-
panded with two pixels. The quantification result is presented in the table
in the right frame.

3.1.4 Results of the 2D Quantification

The automated and the semi-automated (using Cuanto) methods are applied
on three sets of images (eight implant threads per image). The implant sam-
ples are retrieved from rabbit bone after six weeks of integration.

Manually segmented images of one thread from each of the two other
sections are chosen as training for each section. The parameter TF is set to
4, which assures that the overall uncertainty (the percentage of uncertain
pixels in the image) is at a desired level. It is concluded in Paper III that
uncertainty levels between 25% and 50% provide good results and the cur-
rent configuration provides a uncertainty level of about 35%. kα is to 0 to
obtain crisp adjacency and parameter kx , which scales the image intensities
and has a very small impact on the performance of fuzzy connectedness,
is set to 2. Furthermore, np is set to 7, as regions smaller than this size is
assumed to be noise. The manual correction of the segmentation result in
Cuanto is performed by a non-expert and takes about 2 minutes per sections
for BI C -correction and about 30 seconds per section for area correction.

The comparison of the automated and manual methods are summarized
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in Fig. 18 (p. 44), illustrated by scatter plots and the correlation coeffi-
cients, ρ, between the respective method and the manual classification, as
well as the coefficient of determination, R2. The comparison of the semi-
automated and fully automated methods are summarized in Fig. 19.

3.1.5 Discussion of the Results

From Fig. 18, it appears that the automated area measurement corresponds
very well to the manual one. The BI C length estimation on the other
hand, is more difficult; the automated and manual measurements differ sig-
nificantly for the BI C length estimation. This feature is consistently overes-
timated by the automated method compared to the manual method, similar
to the result shown in a pilot study by Ballerini et al. (2007), see Sect. 2.5,
p. 35.

A reason for the overestimation is believed to be some interfacial parts
of the sections, where there is a tendency of implant loosening (rather often
occurring as an artifact) resulting in regions where the tissue is very darkly
stained. Such regions may manually be judged as non-contact rather than
contact; with the aid of the naked-eye-interpretations in the microscope, in
combination with the option of zooming in closer, it is possible to deter-
mine whether there is contact or not.

However, the use of IRFC does improve the accuracy of the measure-
ments, suggesting that a segmentation based on intensity only, such as DA
or the genetic algorithm proposed by Ballerini et al. (2007), is not enough.
Furthermore, two major drawbacks with the segmentation algorithm pro-
posed by Ballerini et al. (2007) are its long execution time and the non-
deterministic output of the genetic algorithm.

The results stress the difficulty that this, and many other image anal-
ysis automatization efforts, suffer from. Image artifacts, such as noise or
the staining artifacts described earlier, obstruct an accurate automatization.
However, the image segmentation is the bottle-neck and accuracy of the
method is often highly dependent on the segmentation step. Effort has to
be put on the segmentation task in order to achieve a reasonable autom-
atization. A way of overcoming misclassifications is to allow the user to
modify the segmentation results. These interactions increase the accuracy
of the quantification on one hand, but increase the time consumption and
yield less objective results on the other. It is concluded that, with the diffi-
culties associated with the segmentation task, semi-automation is an option
with a good trade-off between accuracy and time consumption.
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Figure 18: Comparison of measurements from images segmented using dis-
criminant analysis (DA) only and DA in combination with Iterative Rela-
tive Fuzzy Connectedness (IRFC). The results for the M -feature is similar
to R and are shown in Paper III.
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Figure 19: Comparison of measurements from images segmented using Iter-
ative Relative Fuzzy Connectedness, IRFC, (automatized method) as well
as Cuanto (where the segmentation result is modified by a user). The re-
sults for the M -feature is similar to R and are shown in Paper VIII. The
manual result modification increases the accuracy of the quantification on
one hand, but increase the time consumption and yield less objective results
on the other.
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3.2 Quantification of Bone in 3D Image Volumes

In this section, methods for quantification of 3D SRµCT image volumes
are presented. Initially, the volumes are pre-processed to enhance the classi-
fication at the implant-interface. Subsequently, the image volumes are seg-
mented and features that describe the 3D data are extracted.

3.2.1 Pre-processing

As mentioned in Sect. 2.3.2 (p. 23), µCT image volumes often suffer from
various physics-based artifacts (Barrett and Keat, 2004). Although the 3D
imaging technique used in this thesis, SRµCT, generates image volumes
with less artifacts than traditional µCT-techniques, an artifact at the implant
interface is anyhow notable (see Sect. 2.3.2, p. 23). The transition from im-
plant to tissue is characterized by a low gradient from high intensity to low
and this artifact makes the classification difficult at the interface.

A 〈3-4-5〉 weighted distance transform (Borgefors, 1996) is computed
from the segmented implant region. The weights, proposed in (Borgefors,
1996), imply that the distance between area-sharing neighbors is 3, 4 be-
tween edge-sharing neighbors and 5 between point-sharing neighbors. The
weights are derived by integer approximations of local distances that min-
imize the maximum difference from the Euclidean distance in a 3× 3× 3
neighborhood. The integer approximation is sufficient and simplifies the
subsequent calculations. Image intensity values are averaged for each integer
distance d from the implant for I B and I S , respectively. This gives func-
tions b (d ) and s (d ) which model the image intensity as a function of the
distance d for the two contact types, I B and I S , respectively (see Fig. 20).
The corrected image, Ic , is calculated as:

Ic =
I − s (d )

b (d )− s (d )
for d > 1. (5)

Fig. 21 shows a slice of the image before and after the pre-processing
step.

3.2.2 3D Image Volume Segmentation

Discriminant analysis is used for segmenting the bone and non-bone tis-
sue, as described in Sect. 3.1.1 (p. 37). The SRµCT image volumes lack
color-information, hence only the grayscale intensity values are used in the
analysis. The implant is segmented by thresholding as this region is a low-
noise high-intensity region in the image. Otsu’s method (Otsu, 1979) is
used, assuming two classes with normal distribution: a tissue class (bone
and none-bone tissue) and an implant class.
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Figure 20: Plot of intensity as a function of distance from the implant for
bone, b (d ) (dashed line) and non-bone tissue, s (d ) (solid line) for (a) SRµCT
image volumes (with a pixel size of 11.0 µm) and for (b) µCT image volumes
(with a pixel size of 20 µm) generated by an Xradia MicroXCT device.

As Fig. 20 shows, b (d ) and s (d ) values do not differ for the voxels with
an implant face neighbor, i.e., 0≤ d ≤ 1, they cannot be correctly classified
by the discriminant analysis. The classification of the voxels in this region
(to either bone or non-bone tissue) is instead determined by a 3× 3× 3-
neighborhood majority filter, following the segmentation step. The major-
ity filter also reduces the number of misclassified voxels due to noise. An
example of the edge-gradient artifact correction, with the implant face vox-
els, marked is shown in Fig. 21. Another segmentation example is shown in
Fig. 22.

3.2.3 Features, Design and Estimation

As mentioned earlier, the 2D sections only represent a small portion of the
sample. With the 3D information available, complementary information
about the whole sample can be extracted.

Consider an implant having a thread helix with t thread turns. The 3D
image volume enables a virtual sectioning, i.e., measurements of a given fea-
ture, f ∈ {R, M ,BI C }, at an arbitrary cut angle φ, where φ ∈ [0,2πt] de-
notes the rotation about the implant symmetry axis, I SA, of the segmented
implant, VI , see Fig. 23 (the calculation of I SA is described below). With
the scalar 2D features described above in mind, novel 1D features describing
the 3D data at all angles φ are presented as:

R(φ), M (φ),BI C (φ). (6)

The researchers in the field can easily relate these features to the tra-
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(a) (b)

(c) (d)

(e) (f)

Figure 21: The implant interface region of (a) an SRµCT image volume
slice and (b) a µCT image volume slice generated by an Xradia MicroXCT
device with implant at the bottom. (c) and (d) Corresponding edge-gradient
artifact corrected regions. The marked interface region cannot be corrected
based on intensity values. (e) and (f) The slices after the segmentation, show-
ing three classes: bone (red), non-bone tissue (yellow) and implant (blue).
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ditional 2D features in an intuitive way. At the same time, these features
present the variability of the bone ratio along the entire implant, some-
thing that has, to the best of the author’s knowledge, never been measured
before.

The implant symmetry axis (I SA) is calculated by Principal Compo-
nent Analysis. The I SA is computed as the normalized eigenvector with the
highest corresponding eigenvalue of the 3× 3 covariance matrix computed
for the set of (x , y, z) coordinates of the voxels in VI . For convenience, the
image volume is subsequently rotated and translated so that I SA is along
one of the coordinate axes.

The region in the image volume that corresponds to the R-region in
2D, VR (see Fig. 23b), is calculated as the convex deficiency of VI , i.e.,
VR =C H (VI ) \VI , where C H (VI ) is the convex hull of VI , computed us-
ing the Quickhull algorithm (Barber et al., 1996).

The region in the image volume, VM , that corresponds to the M -region
in 2D is calculated as the VR-region mirrored in the surface of the convex
hull (see Fig. 23b). The features extracted from the 3D data are expressed,
similar to the ones extracted from the 2D data, as the percentage of voxels
belonging to the bone class in the respective regions.

The BI C measure, a surface area when extracted from the 3D data, is
estimated using the method described in Lindblad (2003). The method es-
timates the total surface area by a summing the local area contributions,
where each voxel has been assigned a surface area weight, based on its
2× 2× 2 neighborhood. The volume images in this work contain three
classes, hence the method, originally intended for binary image volumes,
has been modified slightly to take care of configurations with adjacent vox-
els from several classes.

The angular sampling of VR, VM , and the BI C -surface is performed by
creating an angle histogram, as described in Gavrilovic and Wählby (2009),
where each bin represents a given angle interval, see Fig. 24. The contribu-
tion from each voxel is calculated as the coverage of the sampling interval.

From the function valued features, f (φ), f ∈ {R, M ,BI C }, a number
of secondary features are computed, providing simpler interpretation and
relation to the scalar 2D features:

The thread feature:

fi (θ) = f (θ+ iπ),θ ∈ [0,π], i ∈ {0,1, ..., 2t − 1}. (7)

Average for half a turn:

f̄i =
1

π

∫ π

0
fi (θ)dθ. (8)

48



(a) (b) (c)

Figure 22: (a) Part of a slice from the SRµCT image volume. (b) The slice
after edge-gradient artifact correction with the interface region marked. (c)
The slice after the segmentation, showing three classes: bone (red), non-
bone tissue (yellow) and implant (blue).

(a) (b)

Figure 23: (a) The segmented implant, VI , and different positions along the
helix of the implant thread and corresponding φ values for an implant with
five threads and (b) the volumes of interest, VR (light gray) and VM (dark
gray). This implant has five thread turns (t = 5).
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Bone tissue voxels

Figure 24: Computing the angle histogram. Each bin represents a given
angle interval.

Average for all thread turns at angle θ:

f ∗(θ) =
1

2t

2t−1
∑

i=0

fi (θ). (9)

Grand average:

f̄ =
1

2πt

∫ 2πt

0
f (φ)dφ. (10)

The secondary features fi and f̄i relate to the corresponding features mea-
sured on individual threads in 2D data and f̄ provides a stable and rotation
independent measure. f ∗(θ) relates to one complete cut at angle θ, anal-
ogous to the physical sections extracted from the samples as described in
Sec. 2.3.1 (p. 22).

In addition to features presented above, indicators of how much the
bone concentration around a single implant can differ depending on the lo-
cation of the cut, are observed: the maximal and minimal values that are
observed for θ ∈ [0,π), denoted f ∗min and f ∗max, occurring at θ f ∗

min
and θ f ∗

max.
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Furthermore, the average absolute deviation of a feature, AAD f ∗ , and aver-
age standard deviation, ASD∗

f
, is defined as

AAD∗
f
=

1

n

n
∑

j=1

∆ f ∗
j

, ASD∗
f
=

1

n

n
∑

i=1

std( f ∗
i
), (11)

where ∆ f ∗
j
= | f ∗max j

− f ∗min j
|, n is the number of samples and std( f ∗

i
) is the

standard deviation of f ∗
i

.

3.2.4 Results of the 3D Quantification

The 3D quantitative method presented is applied on a set of five SRµCT
imaged implant samples. The samples are retrieved from femur condyle
region of rats after four weeks of integration.

Fig. 25 shows R(φ), M (φ) and BI C (φ) for one of the samples (two
other graphs are found in Paper VI). The graphs show the respective feature
for each angle when traveling along the helix which starts from the top of
the implant and follows the thread. The graphs have been smoothed by a
Gaussian low-pass filter with a standard deviation of 0.2 radians to improve
visualization of the plots. Moreover, the averages for half a turn, Ri , M i and
BI C i , are also shown.

Fig. 25 also shows R∗(θ), M ∗(θ) and BI C ∗(θ), i.e., the averages for all
thread turns depending on the cut angles θ for all features. Additionally,
the grand average, minimum and maximum of each feature for each sample
are shown.

The calculated average absolute deviation, AAD∗
f
, for the three features

with corresponding average standard deviation ASD , are shown in Fig. 26.
Additionally, |R∗ −M ∗|, the absolute difference between R∗ and M ∗, is in-
cluded to illustrate the deviation when the two features are compared. The
results show that AAD f ∗ of all the features are approximately 30 percent.

Fig. 27 shows some of the 3D quantification results for a sample imaged
using the µCT device of Xradia (see 2.3.2, p. 23). Furthermore, the 3D
quantification method is applied to two implant samples retrieved from a
patient after 29 years in vivo. The study is presented in Paper VII.

Fig. 28 shows slices extracted from another implant sample (sample E),
at θR∗

min and θR∗

max, respectively. As can be seen, there is significantly more
bone in the threads in Fig. 28a than in Fig. 28b, despite that they are slices
from the same sample. The places where the extreme cuts are, i.e., at θR∗

min
and θR∗

max are indicated with vertical lines in Fig. 29. In Fig. 30 the actual 2D
slice that was taken from this sample is shown. This illustrates the unrelia-
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Figure 25: Quantification results for an implant sample with five thread
turns.
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Figure 26: Dark bars: The average absolute deviation, AAD f ∗ , for the fea-
tures estimated from only one angle (similar to a 2D section), showing the
variation due to cut-angle. (Eq. 11). Bright bars: The average standard de-
viation, ASD f ∗ for the features. |R∗ −M ∗| denotes the absolute difference
between R∗ and M ∗.

bility of measurements on single 2D slices, even if the measurement itself is
perfect.

Furthermore, the 3D analysis is also applied on two implant samples
retrieved from a patient after 29 years in vivo, presented in Paper VII.

3.2.5 Discussion of the Results

The results, as presented in Fig. 25, show high variation of the 2D feature
values depending on the angle of rotation about the implant symmetry axis,
I SA. Sometimes a periodicity can be noticed, suggesting that the osseoin-
tegration for that sample differs depending on the angle, but most of the
time the pattern is not predictable. The selection of a standardized cut di-
rection is therefore not enough for a reliable estimate of the overall bone
ratio and the same variability in histological studies is expected. As Fig. 26
shows, even when averaging over all implant threads, the 2D features vary
about 30% depending on the angle of the cut. The extraction of the features
has been restricted to rotation about the I SA for simplicity, but there are
more transformations to be considered. A physical 2D cut does not neces-
sarily need to go through the I SA so the position of the sample slice has
two additional degrees of freedom. Furthermore, Fig. 26 also shows that
comparing R and M does not reduce the deviation. The dependency of the
quantitative result on the cutting angle and position illustrates the problem
of finding a representative 2D cut in a 3D volume. This resembles the prob-
lem of stereology of trabecular bone as shown in Hopper (2005), where the
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Figure 27: R(φ)(filled) and M (φ)(dashed) features along the implant threads
(left) and BI C (φ) (right). Each marked region (with altering background
color) indicates one thread. This implant was imaged using the µCT device
of Xradia (see 2.3.2, p. 23)

highly anisotropic structure of the bone yields quantitative errors. These
observations stresses the significance of a 3D analysis and its importance for
getting a better and more complete understanding of the bone remodeling
architecture. The state of art technique employed today for preparing cut
and ground sections, with implants in situ, reveals information about only
a small portion of the whole sample. Even if a cut and ground technique
that would allow serial sectioning is used, the angle dependency of the data
is difficult to observe.

Appropriate 3D imaging devices, e.g., SRµCT, require large-scale facil-
ities and cannot be used routinely. The information is limited compared
to histological sections, due to lower resolution and grayscale output only.
However, the generated 3D image volumes give a much broader overview,
and in addition, various staining and other technical artifacts are avoided.
As shown in Sect. 3.2.1, the existing artifacts can be removed with satisfac-
tory results and the acquired volumes are similarly independent of the tissue
type, allowing an absolute quantification. Even though the possibility to
routinely use imaging techniques that yield satisfactory 3D image volumes
of bone implant samples is limited today, it is expected that, with emerg-
ing µCT techniques, the 3D imaging and subsequent 3D analysis may soon
become routine and emphasize the need for 3D features similar to the ones
described here. An example of the new µCT technique is the MicroXCT
desktop scanner provided by Xradia (see 2.3.2, p. 23). As Fig. 21b,d,f shows,
the pre-processing step manages to correct the edge-gradient effect for these
types of image volumes, even though it is larger than for the SRµCT im-
age volumes. Hence, the 3D quantification method can be applied to these
image volumes (see Fig. 27).
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(a) Right and left side of the slice extracted at angle θR∗

min

(b) Right and left side of the slice extracted at angle θR∗

max

Figure 28: Right and left side of the slice extracted at angle θR∗

min and θR∗

max for an
implant sample (not the same sample as in Fig. 25). The white line marks the limit
of the R-region.
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Figure 29: R with respect to rotation for an implant sample (sample E).
Dotted vertical lines indicates θmin+πk and dashed lines indicates θmax+
πk for the selected sample, respectively, where k = {0,1, ..., 9}.

Figure 30: Right and left side of the histological section of an implant sam-
ple (sample E) with manual 2D analysis results.
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3.3 Registration of 2D Histological Images with 3D SRµCT Im-

age Volumes

As discussed in Sect. 2.4.3, the different 2D and 3D imaging techniques,
generating images with different modalities, complement each other to
some extent; the 2D histological slices provide high resolution color infor-
mation, whereas the volume gives a complete overview of the whole sam-
ple. In this section, a 2D-3D intermodal registration method that enables a
direct comparison between the two modalities is presented.

Consider a 2D histological image, IH , is sectioned from a sample with
the corresponding 3D image volume V . The transformation T is sought
so that an intersection, a 2D slice, IV , at origin of T (V )matches IH . In to-
tal, the parameter space of T , p = (p1, p2, p3, p4, p5, p6), has six degrees of
freedom (three former being translations and three latter rotations). As the
search space is too large for finding a globally optimal solution, a good so-
lution, i.e., an IV highly similar to IH , is sought. The search is complicated
by the different modalities of IV and IH . Two approaches are evaluated for
this purpose; Chamfer Matching (CM), introduced by Barrow et al. (1977)
and further developed by Borgefors (1988), and Simulated Annealing (SA),
(Kirkpatrick et al., 1983), described below.

CM is shown to be suitable for registration tasks where a reasonably
good segmentation of the objects of interest can be performed (Cai et al.,
1999). As the implant is a heterogeneous region and easily segmented, both
in the 3D image volumes and histological images, CM is used for registra-
tion of the implant regions. However, a registration based on the implant
regions is not enough (explained in Sec. 3.3.2). Proceeding from the initial
registration, an additional step, that includes a rotation about the implant
axis, is required to register the whole sample. SA is a stochastic method
used to solve a wide range of optimization problems in different areas, in-
cluding image registration (Lundqvist (2001), p. 22). SA has some abilities
to avoid local minima and is therefore suitable for registration tasks with a
large solution space with local minima.

As discussed in Sec. 2.4.5, GPU is used to extract 2D slices with arbi-
trary angle and translation from a 3D image volume.

3.3.1 Similarity Measures, Normalized Mutual Information and Edge Distance

The registration methods described below search for a transformation
that maximizes a similarity measure. A common similarity measure that
compares the amount of information the images have in common, inde-
pendently of their modality, is Normalized Mutual Information (NMI),
Studholme et al. (1999). It is calculated as:
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N M I (IV , IH ) =

∑g

i=1 HH (i ) log HH (i )+
∑g

j=1 HV ( j ) log HV ( j )
∑g

i=1

∑g

j=1 HV H (i , j ) log HV H (i , j ),
, (12)

where HV H is the joint histogram of IV and IH , HV and HH their marginal
histograms respectively, and g the number of grayscale levels. A perfect
registrations implies NMI= 2.

In order to apply the NMI similarity measure, the histological color im-
ages are transformed to grayscale equivalents. The commonly used color to
grayscale transformations for natural images are based on human percep-
tion, where the green channel has high influence, and are not suitable for
this application. A transformation that is adjusted to this purpose is derived
as IH = I RGB

H
M ′, where M = [rR, rG , rB] and rR, rG and rB are the weights

for the different color channels. An appropriate M is chosen by empiri-
cally finding the weights that provide a large difference in NMI between
two slices extracted from the 3D image volume, one which is aligned to the
2D histological image and one misaligned. The high information content
in the blue channel of the histological images hints that rB should be higher
than the other weights.

NMI is used in both the CM and SA approach, however, CM also uses
edge distance, (ED), given in Borgefors (1988), for measuring the dissimi-
larity of the implant edges of IV and IH . It is calculated as:

E D(Id , Ie ) =

√

√

√

√

1

ne

ne
∑

i=1

Id (i )
2Ie (i ), (13)

where Id is the distance transform of the edge image of the segmented im-
plant in IH , Ie the binary edge image of the segmented implant in IV , and
ne is the number of edge pixels. A perfect match implies ED = 0.

3.3.2 Chamfer Matching

The CM-approach is divided into two steps; a chamfer matching based on
the hierarchical CM-method proposed by Borgefors (1988) and a rotation
about the implant axis. The algorithm minimizes the ED in a gradient de-
scent and hierarchical manner.

In this approach, Id is the Euclidean distance transform of the implant
contour in IH , and Ie (the binary edge image of the segmented implant in
IV ). The implant is well distinguishable in both IV and IH and segmented
by thresholding with a manually chosen threshold value.
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The IV with lowest ED is sought. The search is initialized with a set
of parameter vectors (as it is shown in Borgefors (1988) to improve the
result). Rather than having a resolution hierarchy, as suggested in Borge-
fors (1988) to reduce the computational load and refine the matched result,
the resolution is kept constant but at each hierarchy-level l , the step sizes
∆l

i
= (∆l

1,∆l
2,∆l

3,∆l
4,∆l

5,∆l
6) of transformation parameter (the three for-

mer being translation and three latter rotation) are decreased to facilitate
successive refinement of the matching. The neighborhood for each level l ,
is defined as:

Nl (p) = {q | qi − pi ∈ {−∆
l
i
, 0,∆l

i
}} (14)

The slice with lowest ED at the final level is chosen as the matched slice,
IM . After each level, the k-best results are chosen to be the initial slices for
the next level.

In the mid-implant region, the distance between two thread peaks is
approximately 0.4 mm, which corresponds to about 35 voxels in the full
scale SRµCT volume (with a pixel size of 11.0 µm). As it takes 360 degrees
of rotation about I SA to move from one thread peak to another, the implant
can rotate up to 10 degrees about I SA before the implant-edge is shifted one
pixel. This means that a registration based on implant-matching only may
match the implant to one of several slices with minimum ED. Hence, the
matched slice must be somewhat rotated about I SA in both directions in
order to find the most similar slice. As the edge distance will be roughly
the same for small rotations, the bone region information needs to be taken
into account to determine the rotation and therefore NMI is used for this
matching. The NMI is measured for a rotation of ±20◦ with a step-size of
∆r about I SA. The IM with the rotation about I SA that yields the highest
NMI is selected as IV .

The CM approach is described in Alg. 1.

3.3.3 Simulated Annealing

SA is a heuristic optimization algorithm, which mimics the physical act of
annealing. The implementation of SA, as used for this registration task (see
Alg. 2), starts with initial “temperature,” T0. As the annealing proceeds,
the temperature is reduced at each iteration step and a candidate slice with
transformation parameters p is extracted randomly from a neighborhood,
defined by

Nl ,T (p) = {q | −
Æ

T /T0 ·∆
l
i
≤ qi − pi ≤
Æ

T /T0 ·∆
l
i
}, (15)

where T is the current temperature. The similarity between the candidate
slice and IH is measured using NMI. The candidate slice is accepted depend-
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Algorithm 1 Chamfer matching of implant boundaries of V and IH

Input: Id : Euclidean distance transformation of implant contour in IH

V C : segmented implant boundary in the 3D SRµCT volume
Output: IM : Matched 2D slice, extracted from V

Parameters: nl : number of levels, n0
i

number of iterations in level 0
∆0: initial step sizes for the transformation parameters
fC M : step size decline factor ∈ [0,1]
~P0: vector of k0 initial parameters for level 0

1. for all l = 1,2, . . . , nl do

keep the kl -best results in ~Pl

for all p ∈ ~Pl do
for all i = 1,2, . . . , ni do

p ′ = arg min
p ′∈Nl (p)

E D(T (V C , p ′), Id )

if p ′ = p then ni = i , break
else p = p ′

insert p in ~Pl+1
∆l+1 =∆l · fC M , n l+1

i
= n l

i
· 1

fC M

if kl ≥ 2 then kl+1 = kl /2
2. IM = T (V

C , p)

ing on the Boltzmann probability function. The higher the temperature,
the higher the probability that a less similar state (with lower NMI) is ac-
cepted. After each step, the temperature is decreased by temperature decline
factor fT . When the final temperature Te is reached, the annealing stops and
the candidate slice with the highest NMI is selected as the registered slice.
Analogously to the CM-approach, a pseudo hierarchical structure is imple-
mented; nl re-annealings are performed and at each level, l , the resolution
is kept constant but the ∆l

ν is decreased with a factor fSA. The SA approach
is described in Alg. 2.

3.3.4 Evaluation

As no ground truth exists for the studied data set, the evaluation and veri-
fication of the methods are problematic. Therefore, the methods are eval-
uated on V only, where a ground truth can be created; a slice with known
transformation parameters, I ⋆

V
, is extracted from V and registered with V

using the presented methods. The distance between the retrieved slice, I ′
V

,
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Algorithm 2 Registration using Simulated Annealing

Input: IH : 2D histological image
V : 3D SRµCT volume

Output: IV : registered 2D SRµCT slice
Parameters: p0: initial parameters, ∆0: initial step range, fSA: step decline factor

T0: initial temperature, Te : final temperature, fT : temp decline factor
nl : number of levels

1. ~P = ;, p = p0
2. for all l = 1,2, . . . , nl

T = T0/l
repeat until T ≤ Te/l

random p ′ ∈Nl ,T (p)
∆N M I =NMI(T (V , p ′), IH )−NMI(T (V , p), IH )

if e∆N M I /T > random q ∈U (0,1)
then p = p ′, add p to ~P
T = T · fT

∆l+1 = fSA ·∆
l

3. IV =T (V , p∗), where p∗ = arg min
p∗∈~P

N M I (T (V , p∗), IH )

and I ⋆
V

, denoted D , is considered the registration error, which gives an indi-
cation of how well the registration performs. D is calculated as
D = 1

4

∑4
j=1 |(x

⋆
j

y⋆
j

z⋆
j
)T − (x ′

j
y ′

j
z ′

j
)T |, where x⋆

j
, y⋆

j
, z⋆

j
denote the coor-

dinates of the corner j of the extracted slice and correspondingly x ′
j
, y ′

j
, z ′

j

are the corner coordinates of I ′
V

. The distance is calculated on a cube with
normalized dimensions 1×1×1. The cube is extracted by cropping V with
the implant in the center. To stress the registration, Gaussian noise is added
prior to the segmentation step.

3.3.5 Registration Results

The chosen parameters for the CM-approach are stated in Paper II. The
settings are adjusted to achieve a good trade-off between speed and per-
formance, as well as somewhat similar time consumption for the two ap-
proaches.

Table 1 shows a test of a number of chosen weights for M . For the color
to grayscale conversion, M is set to [0.01,0.3,0.69] as these weights give
high difference in NMI between an aligned and a misaligned slice.
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Table 1: The difference between N M I (IA, IH ) and N M I (IM A, IH ) for a num-
ber of different M . IA and IM A are 2D slices, extracted from the 3D image
volume. The former is aligned, and the latter misaligned, to a 2D histologi-
cal image (IH ).

M N M I (IA, IH )−N M I (IM A, IH )

[0.2,0.7,0.1] 0.065219
[ 1

3 , 1
3 , 1

3] 0.067901
[0.25,0.25,0.5] 0.069294
[0.5,0.25,0.25] 0.066844
[0.25,0.5,0.25] 0.066596
[0.01,0.4,0.59] 0.069748
[0.01,0.3,0.69] 0.070903

Table 2: Averages for successful registrations over 24 slices and percent failed
registrations. Zero-mean Gaussian noise with variance σ is added. Average
time consumption is t̄ = 4.3 min per registration (except for SA† ) for a
256×256×256 volume on a 3.6GHz Intel Xeon CPU (6 GB RAM) and an
nVidia Quadro FX 570 graphics card

σ = 0 σ = 0.05
Ap D NMI ED Fail D NMI ED Fail
CM 0.60% 1.332 0.74 4.2% 1.64% 1.088 1.05 16.7%
SA 0.27% 1.421 0.94 33.3% 0.58% 1.090 1.09 79.2%
SA† 0.18% 1.480 0.91 25.0% 0.49% 1.089 1.12 83.3%
†: Slower cooling scheme is applied ( t̄ = 30.3 min).

The resulting images of registration of two 3D image volumes with cor-
responding 2D histological images are shown in Fig. 31. The image vol-
umes are selected from the set of imaged samples retrieved from rats, used
in Sect. 3.2. The result of the evaluation is summarized in Table 2. Both the
presented methods may get stuck in a local optimum, which can be far away
from a correct match. If D > 0.05, the registration is classified as failed and
excluded from the listed averages.

3.3.6 Discussion of the Results

As Fig. 31 and tests on monomodal data show, the CM-approach is more
robust and has higher success rate than the SA-approach. Furthermore, it
is also deterministic (in contrast to SA which includes a stochastic compo-
nent); for a given input it always yields the same output, which is of great
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(a) (b) N M I= 1.079 ED=1.693 (c) N M I= 1.078 ED=1.157

(d) (e) N M I= 1.103 ED=1.628 (f) N M I= 1.087 ED=1.263

Figure 31: Histological sections (left). Registered slices using the SA-
approach (middle) and the CM-approach (right), given similar time con-
straints ( fT = 0.997).
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value in that it provides reproducibility of results. On the other hand, CM
requires a segmentation of the images and is hence recommended for regis-
tration tasks where segmentation is easily carried out.

A visual examination of the results confirms the robustness of the CM-
approach. The registered images by the CM-approach correspond well to
the respective histological section. The SA-approach is shown to be less
reliable. A comparison of Fig. 31e and 31f questions the actual similarity
and the NMI-measure. Although the NMI of Fig. 31e is higher than Fig. 31f,
the visual impression suggests otherwise. This raises the question of the
appropriateness of using NMI as similarity measure.
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3.4 Visualization of 3D Bone Implant Sample Image Volumes

Let no one untrained in geometry enter

Supposedly engraved at the door of Plato’s
Academy

In Sect. 2.4.4 (p. 33), the need for visualization of 3D image data was dis-
cussed. The 3D imaging of bone samples generates a number of grayscale
2D slices. It is important to provide a common visual platform for the peo-
ple involved: biomaterial researchers, medical doctors and computer scien-
tists - each with their own special knowledge. The relevant information
in these slices is rather difficult to distinguish and recognize; visualization
techniques that highlight the relevant information in these slices, facilitate
good communication between the researchers and provide a better mutual
understanding of the problems of osseointegration, are of great interest.

General software for 3D visualization do not provide satisfactory vi-
sualization for the porous bone, hence two novel visualization methods,
tailored for this task, are presented in this thesis. The first visualization
method, thread fly-through (Sect. 3.4.2), follows the helix-shaped implant
thread from the top of the implant to the bottom and extracts slices from
the image volume, which are assembled into an animation. Along with the
slices, traditional features, revealing information about the bone-implant
integration, are computed and presented. The second method, 2D unfold-
ing (Sect. 3.4.3), makes an area preserving mapping of the implant surface,
with projected feature information, to a 2D image. These methods provide
a simple overview of the osseointegration for the whole sample, and in an
appealing and easily understandable way display the most relevant informa-
tion.

3.4.1 Features, Design and Estimation

Two features are extracted and highlighted in the visualizations:

• BR, the bone ratio, measured as the percentage of area of bone tissue
surrounding a thread from its root to a distance d away from the
convex hull of the implant C H (see Fig.32 and 33)

• BC , the estimated length of the bone to implant contact at the inter-
face, for each thread hill, i.e., from one thread root to another (rather
than from a thread peak to another, as in the BI C feature), expressed
in percentage of the total length of the hill.

The features are designed after consultation with biomaterial researchers
and are somewhat similar to the ones previously defined in Sect. 2.2.2 (p.
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20). They are calculated and measured in a similar manner to that described
in Sect. 3.2.3 (p. 46).

CHR

bone tissue

d
BR

BC BIC

Figure 32: Illustration showing different region of interests.
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Figure 33: (a) Illustration of a vertical and (b) a horizontal cross-section.
The latter illustrates the radial sampling performed in the 2D unfolding.

3.4.2 Fly-through

The thread fly-through is visualized as an animation compiled from a vol-
ume, VF T (x , y, t ). Each frame, t , includes one 2D slice extracted vertically
through the helix H at an angleφ(t ), whereφ ∈ [0,10π]. For each slice, the
features described above are calculated and presented together with the ani-
mation. The implant thread is modeled as a helix, H , following the thread
root:

H (φ) = (Rcos(φ), R sin(φ),Z
φ

φmax
), (16)

where φ ∈ [0,φmax] and Z is the height of the implant.
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The extraction of the slices utilizes the GPU (see Sect. 2.4.5, p. 35). The
sample volume is copied to the 3D texture memory of the GPU and for each
t , a 2D quadrilateral is extracted. The vertices are calculated as one point at
H (φ), one at H (φ+ 2π), and two other points at a distance of td + d away
from H (φ) and H (φ+ 2π) respectively, where d is a distance away from
C H and td is the thread depth, i.e., the distance between the thread root
and C H (see Fig. 33a). For every turn, we extract nt slices, i.e., φ(t ) = 2π

nt
t .

The computation of C H is described in Sect. 3.2.3.

3.4.3 2D Unfolding

Consider an implant volume surface, VS , with feature information pro-
jected onto it. A rendering of VS visualizes the feature information but
requires a 360◦-rotation to display the whole surface. To facilitate an im-
mediate overview,VS is cylindrically unfolded onto a 2D image, I , using a
mapping u :Z3→Z2, u(x , y, z) = (atan( y

x
), z). The function u unfolds each

horizontal slice of VS to a row in I .
The 2D unfolding is performed by a radial projection of the relevant

feature information onto the implant surface, followed by an angular sam-
pling (see Fig. 33b). The sampling is made from the I SA as origin for angles
[0,2π] by creating an angle histogram with nb number of bins (as described
in Sec. 3.2.3, p. 46). The pixel in row z of I is set to the corresponding bin’s
value in the angle histogram of slice z . The contribution of each voxel in
the sampling is weighted by its coverage of the specific angle.

The features described in Sect. 3.4.1 are visualized as follows. BC is
visualized by generating a volume, VBC = (VI ⊕ SE )∩VB , where SE is a
small structuring element, ⊕ denotes dilation, VB is the segmented bone
tissue and VI the segmented implant. The mapping u unfolds the VBC to
IBC . If a bin of the angle histogram is non–zero, the corresponding pixel
in IBC is considered to be bone tissue in contact with the implant. BR is
visualized by generating a volume, VB R, where each surface voxel contains
the sum of the voxels of VB within td + d . Analogous to the unfolding
above, u unfolds the volume to IB R by radial sampling. To normalize the
measure, the value of each bin is divided by td + d . An unfolded surface is
shown in Fig. 34.

3.4.4 Stretching

For the BR measure, the cylindrical mapping to the 2D image is intuitive.
However, for the BC feature, which is strongly connected to the implant
surface, it is desirable to have an area preserving mapping. The area vari-
ations arise, on one hand, from the difference in surface area depending
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Figure 34: The unfolded surface, IBC , prior to stretching, with bone-
implant contact regions shown as purple (darker) regions. The stretched
unfolded surface is shown in Fig. 37

Figure 35: The compensation map, C . Bright values indicate large stretch-
ing.

on the distance between the surface and the I SA (the thread peak has a
larger circumference than the thread root) and, on the other, the slope
of the thread surface. To correctly handle these variations, pixels in IBC
are stretched according to a compensation map, C . The pixels of IBC are
stretched vertically by the factors in C , using a nearest neighbor interpola-
tion. The stretching causes a discrepancy among the height of the columns
of IBC . Hence, to decrease this discrepancy and distribute it in both direc-
tions, the stretching is done starting from the middle line of IBC and in two
opposite directions.

The compensation map is calculated as C =CT ·CA, where CT is the
distance–to–I SA compensation and CA the gradient compensation com-
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puted as follows: let s be a voxel at the implant surface, then,

CT =
|~rs |

R+
td

2

, CA=
1

~̂ns ·
~̂rs

=
1

cos(α)
,

where~rs is a vector orthogonal to I SA from I SA to s , ~̂rs =
~rs

|~rs |
, ~̂ns is the unit

normal vector to the surface of s and α is the angle between ~rs and ~̂ns , see
Fig. 33a. CT compensates for radius deviations from R+

td

2 , i.e., radii less
than R+

td

2 implies stretching and similarly, compression for radii larger
than R +

td

2 . The normal vector is calculated using a method presented
in Luo et al. (1993). This method uses spatial moments of a ball–shaped
window with the diameter w to calculate the normal to the surface at s . A
compensation map is shown in Fig. 35.

3.4.5 Results of the Visualization

The following settings are used: d = 2td , SE is set to a voxel and its face
neighbors (a 3D ’+’-shape), nb = 1/(R+ td ), giving on average one bin for
each surface voxel. Analogously, nt = 2πR in order to allow all voxels to be
included in VF T . Furthermore, w is set to 7 to avoid having noise affecting
the compensation map.

The implant sample set (five samples retrieved from rats) used in
Sect. 3.2 and 3.3 is visualized. For each sample, two 2D unfoldings (one
for each feature) and one thread fly-through animation are computed. The
animations are available online at:

http://urn.kb.se/resolv?urn=urn:nbn:se:slu:epsilon-m-1

A screen shot of one animation is shown in Fig. 36. The animations show
the extracted quadrilateral from the SRµCT volume and its corresponding
segmentation. Furthermore, graphs of BR and BC and an indicator show-
ing the current position of the extracted quadrilateral are shown. Note that
the fly-through is focused on the thread peak in the current setting. It is
very easy to shift the focus to the thread valley or multiple threads instead,
if desired.

The result of the 2D unfoldings for one of the implants is shown in
Fig. 37 and Fig. 38. Another unfolded implant sample is shown in Paper V.

Furthermore, the visualizations methods are applied on two implant
samples retrieved from a patient after 29 years in vivo. The study is pre-
sented in Paper VII.
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3.4.6 Discussion of the Results

These visualization methods provide an improved insight in bone-implant
integration. The animations provide information about the bone-implant
integration over the whole sample in an understandable way. The 2D un-
foldings give a direct overview of the bone-implant contact of the surface of
the implant and the bone concentration in the proximity of the implant.

Figure 36: Six selected frames of the animation. The frames show an ex-
tracted quadrilateral from the SRµCT volume and its corresponding seg-
mentation within the ROI. Graphs of BR and BC are shown in the top
right. An indicator showing the current position of the extracted quadrilat-
eral is shown in the bottom right.
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Figure 37: (Left) Rendered surface of the implant (VI ) with bone-implant
contact regions (VBC ) superimposed. (Right) The unfolded surface IBC .
Black dashed lines show the approximate location of the peaks of the
threads. The vertical line indicates the corresponding angles in the two
images.
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Figure 38: (Left) Rendered surface of the implant (VI ) with bone tissue vol-
ume (VB R) in the region of interest superimposed. (Right) The unfolded
surface IB R. White dashed lines show the peaks of the threads. The vertical
line indicates the corresponding angles in the two images.
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4 Summary, Conclusions and Future Work

Nothing exists except atoms and empty space;

everything else is opinion

—Democritus (460-370) B.C.,
Greek philosopher

4.1 Summary

In order to investigate the biological integration of a load-carrying implant
in living bone, also known as osseointegration, bone implant samples are
evaluated by a quantitative and qualitative analysis of the bone tissue in
proximity to the implant. This evaluation is traditionally performed on
2D microscopy images of the thin histologically stained sections that repre-
sent one slice of the whole sample. Furthermore, the operator dependent
quantitative analysis is cumbersome, time consuming and subjective.

This thesis has contributed tools for an improved and wider evaluation,
enabling a deeper insight into the osseointegration process. The main con-
tributions of this thesis are:

• Development of automated quantification methods for 2D mi-
croscopy images of bone implant samples, involving development
of a segmentation method divided into two parts; an initial segmenta-
tion using discriminant analysis, which generated seed-points for the
second segmentation step that uses iterative relative fuzzy connected-
ness. After the segmentation, features, involving bone area and bone
implant contact length, were extracted. An implementation with a
graphical user interface was developed in order to provide the experts
in the field with an easy-to-use tool. (Paper I, Paper III and Paper VIII)

• Exploration and evaluation of 3D imaging techniques for bone
implant samples. Conventional µCT imaging of bone implant sam-
ples invariably yields image volumes that contain significant degrad-
ing imaging artifacts, and in particular, metal related artifacts. A
more recent technology, known as Synchrotron Radiation micro-
Computed Tomography (SRµCT) was investigated for the purpose
of evaluating these implant samples and found to yield image vol-
umes that are much less degraded than traditional µCT-devices. Fur-
thermore, the possibility of imaging the samples with novel desktop
µCT-devices was also investigated and the generated image volumes
from these devices showed to suffer from less artifacts than traditional
µCT image volumes. (Paper IV)
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• Development of automated quantification methods for 3D image
volumes of the bone implant samples. A pre-processing method
that attenuates imaging artifacts at the implant-interface was devel-
oped. Features, similar to the ones traditionally used in the 2D anal-
ysis, were introduced for 3D. These features were extracted along the
helix shaped path of the screw thread. (Paper IV, Paper VI)

• Development of intermodal 2D–3D registration, that linked the
images and the results from the 2D analysis to the corresponding
3D analysis. Methods based on chamfer matching and simulated
annealing were presented. The former approach was shown to be
more reliable; it had higher success rate than the latter approach on
monomodal data, given similar time constraints. (Paper II)

• Development of novel visualization methods for 3D image vol-
umes of bone implant samples. These techniques allowed the visu-
alization of the 3D image volumes of the bone implant samples in a
useful way, rather than only “showing” the data. These novel visu-
alization techniques highlight the relevant information and enabled
a direct overview of the osseointegration process in the imaged sam-
ples. (Paper V)

• Demonstrating the developed methods on real clinical data. The
novel 3D techniques were applied in a case study involving retrieved
human oral implants. As the case study showed, the use of 3D tech-
niques highlighted the complexity of osseointegration and provided
information other than the 2D analysis on histological images. The
latter must of course still be performed, since tissue reactions to im-
plants must also be observed at the cellular level. (Paper VII)

4.2 Concluding Remarks

The development of automated quantification showed that the use of im-
age analysis is helpful in tasks involving quantification. The low level tasks,
such as locating different regions of interest or counting pixels and voxels
are easily automated using image analysis methods. The high level task of
segmentation, however, is a central and cumbersome problem in the autom-
atization process. Although some human intervention is needed to achieve
the most accurate quantification result, the time gain and the objectivity
offered by image analysis are of great benefit for the researchers.

The extension of the analysis to 3D showed the necessity of assessing
the whole sample. However, the 3D image volumes have, compared to 2D
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histological sections, some limitations, such as lower resolution and lack of
color information. Hence, the 2D analysis should not be discarded, even
if 3D data of the samples exists. The case study shows that a combination
of 2D and 3D analysis can give a good overview of the osseointegration
process. Furthermore, the developed image registration methods showed
that a direct comparison between the two modalities is possible.

The advancements made in this thesis, provide tools for significant im-
proved quantitative and qualitative evaluation of osseointegration and give
the biomaterial researchers the possibility to utilize the advancements in 3D
imaging techniques. However, the novel 3D methods presented in this the-
sis cannot be applied routinely as adequate 3D imaging of implants requires
large-scale imaging facilities. Nevertheless, desktop 3D imaging techniques
are evolving and the methods developed in this thesis will be available for
the future researchers.

The contributions made by this thesis help the researchers to gain an im-
proved understanding of the osseointegration process, which will result in
enhanced anchored implants and increased quality of life for the patients.
Furthermore, the contributed methods should be helpful when solving
other image analysis problems.

4.3 Future Work

Future work involves further development of the 2D histological segmen-
tation method with the aim of distinguishing different types of bone tissue,
such as old and newly generated bone. Newly generated bone tends to stain
somewhat darker than older bone (when the routine staining method with
Toluidine blue mixed with pyronin G is used) and have a more “dotted pat-
tern” (less organized bone, i.e., woven bone with large osteocytes). How-
ever, since the intensity difference is small, texture measures are useful for
this task. Such distinctions could better reveal time remodeling effects and
provide information about the bone regeneration activities.

Likewise, it is also of interest to extract information from the image
intensities in the 3D image volume since density variations may indicate
differences in the bone quality surrounding the implant.
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Summary in Swedish

Digital bildanalys är matematiska metoder som används för att på ett da-
toriserat, och därmed automatiskt, sätt utvinna information ur digitala
bilder. Under de senaste decennierna har datatekniken haft en snabb utveck-
ling och bidragit till billiga datorer som kan exekvera beräkningstunga
bildanalysalgoritmer inom en rimlig tid. Utöver detta, har bildalstring-
steknikerna förbättras, vilket har lett till en större mängd och nya typer
av digitala bilder. Dessa faktorer har bidragit till att vikten av datoriserad
bildanalys har ökat och att den används allt mer för att bl.a. automatisera
tidskrävande analyser, bland annat inte minst inom biomedicin och bioma-
terialvetenskap, där ett stort antal bilder behöver analyseras.

Syftet med den här avhandlingen är att, med hjälp av bildanalys- och vi-
sualiseringsmetoder, skapa verktyg för att öka förståelsen vad gäller osseoin-
tegration, d.v.s. integration mellan benvävnad och implantat. En utvärder-
ing av implantatets inläkningsförmåga och graden av osseointegration är
viktig för utvecklingen av nya implantat. Idag utförs denna utvärdering
oftast genom att manuellt kvantifiera benvävnad i närheten av implantat.
Dessa implantat, tillsammans med omkringliggande benvävnad, revideras
och processas till tunna snitt. Detta snitt färgas histologiskt och studeras
sedan, både kvalitativt och kvantitativt, i ett ljusmikroskop. Förutom att
resultatet av en sådan kvantifiering kan vara subjektivt och skilja sig oper-
atörer emellan (och samma operatörer vid olika tillfällen), är detta steg även
tidskrävande och därmed kostsamt. Dessutom representerar dessa snitt en-
dast en liten del av hela preparatet.

För att automatisera utvärderingen av 2D-snitt, har bildanalysmetoder
för att kvantifiera benvävndad i prover av benimplantat utvecklats. En så-
dan kvantifiering förutsätter att bilden kan delas upp i olika klasser, s.k.
bildsegmentering. Kvantifieringen omfattar estimering av kontaktlängd
mellan ben och implant samt benvävnadens area i utvalda regioner. Bild-
segmenteringen är uppdelad i två steg: initialt segmenteras bilden m.h.a.
diskriminantanalys som klassifierar bildelementen beroende på deras inten-
sitetsvärde. För att förfina resultatet utnyttjas ett andra segmenteringssteg
som använder iterativt rekursivt oskarpt sammanhägnande (iterative re-
cursive fuzzy connectedness). Denna method bestämmer den oskarpa till-
hörigheten till varje klass (vävnadstyp eller implantat) för varje pixel genom
att även inkludera rumslig information om bildelementen. Denna seg-
mentering utgår från några s.k. fröregioner, som i det här fallet skapas av
den initiala segmenteringen. Resultaten visar att, medan den automatiska
benareakvantifieringen motsvarar den manuella mätningen, så överskattar
den automatiska metoden kontaktlängden jämfört med den manuella. An-
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ledningen tros vara att i fallet med manuella mätningar, har observatören
möjlighet att zooma in och se gränsnittet mellan benvävnad och implantat
på cellnivå och därmed göra en bättre bedömning. För att göra de utveck-
lade bildanalysmetoderna tillgängliga, har ett kvantifieringsprogram som är
tänkt att användas av biomaterialforskare, implementerats.

Ett annat viktigt bidrag i den här avhandlingen, är de metoder som
har introducerats för att utvidga den traditionella 2D-analysen till 3D. För
att utveckla en 3D-studie, har olika tomografiska avbildningstekniker för
preparaten i 3D utvärderats. Avbildningen försvåras av att metallen i im-
plantet har mycket högre densitet än omkringliggande vävnad vilket skapar
artefakter.

I den här avhandlingen, har en bildalstringsteknik som generar högup-
plösta 3D-bildvolymer, nämligen SRµCT (Synchrotron Radiation micro-
Computed Tomography), använts för att avbilda implantaten med omkring-
liggande ben i 3D. Denna teknik kräver större synkrotronanläggningar som
endast finns på ett fåtal ställen (ca 50 anläggningar) i världen, vilket gör
dem svårtillgängliga. Denna teknik möjliggörs av en synkrotron som accel-
ererar partiklar med hög energi i en lagringsring som kan ha en omkrets
på flera hundra meter till ett par kilometer. Tangentiella tunnlar leder
ut synkrotronstrålningen från de laddade partiklarna till målområdet, där
bildalstringen sker. Bildvolymer alstrade med hjälp av denna teknik har
mindre mängd brus och artefakter jämfört med traditionell µCT-teknik.
Metoder för att kompensera för artefakter har utvecklats, då även denna
teknik generar en viss mängd artefakter.

De bildvolymer som har skapats med SRµCT-tekniken har möjliggjort
kvantifiering i 3D. En sådan kvantifiering ger övergripande information om
benväxten runt hela implantatet och inte bara om ett enda snitt. Metoder
för att följa implantatskruvens gänga och kvantifiera benvävnaden längs gän-
gan har utvecklats. Nya särdrag för 3D-kvantifiering har introducerats. En
kombination av dagens traditionella analys tillsammans med de nu intro-
ducerade 3D-metoderna ger en mer heltäckande bild av integrationen. Den
nyutvecklade 3D-kvantifieringen sker längs gängan över hela implantatet
och resultatet visas som ett diagram med rotationsvinkeln kring implan-
tatets axel.

Genom att kombinera avbildningarna från både mikroskopi (2D) och
mikrotomografi (3D) ökar möjligheten till förbättrad insikt om osseoin-
tegration. För att relatera de två nämnda modaliteterna, har två metoder
för att hitta det 2D histologiska snittet i 3D-bildvolymen (s.k. bildreg-
istrering) utvecklats. Den ena är baserad på chamfermatchning och den an-
dra på simulerad stelning (simulated annealing). Den förstnämnda metoden
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matchar ett binärt mönster eller form i en annan avståndstransformerad
bild. I den här tillämpningen hittas ett snitt där summan av det segmenter-
ade implantatets kontur och avståndstransformen av det segmenterade im-
plantatet på den histologiska bilden är låg. Det innebär att skruvarna i de
två bilderna stämmer överens med varandra. För att även passa ihop ben-
vävnaden, roteras skruven några grader kring sin axel, så att ett snitt som
maximerar likheten mellan det histologiska snittet och det extraherade 2D-
snittet ur bildvolymen hittas med ömsesidig information (mutual informa-
tion) som likhetsmått. Simulerad stelning är en optimeringsmetod som (så-
som namnet antyder) har inspirerats av nedkylningsprocessen av kristaller.
I den här tillämpningen, används simulerad stelning för att hitta ett snitt
i 3D bildvolymen som har hög likhet med den histologiska bilden. Även
här används ömsesidig information som likhetsmått. Resultatet visade att
metoden baserad på chamfermatchning är att föredra då den är mer pålitlig
samt att det från 3D bildvolymen extraherade 2D snittet har hög likhet med
det histologiska snittet.

Vidare har metoder, skräddarsydda för att visualisera 3D-bildvolymer av
implantat, tagits fram. En metod följer gängan i form av en animation som
innehåller information om de intressanta egenskaperna. En annan viker
ut implantatytan på vilken information om de utvalda parametrarna pro-
jiceras. Dessa visualiseringsmetoder ger en översiktsbild över osseointegra-
tion för hela preparatet och skapar en gemensam visuell plattform för alla
inblandade forskare.

De nya 3D-metoderna har också använts för två orala implantat som
tagits ut ur en patients käke efter 29 år in situ. Denna studie visar att
dessa metoder är ett ändamålsenligt verktyg för att lyfta fram osseointe-
grationsprocessens komplexitet. Dock kan de traditionella metoderna inte
ersättas helt av 3D metoder, eftersom benvävnadens reaktion på implantatet
ändå måste studeras på cellnivå.

Den här avhandlingen visar på att bildanalys är ett kraftfullt verktyg
för att automatisera kvantifieringen. En stor utmaning är att utveckla ro-
busta segmenteringsmetoder för att minska risken för felklassificieringar.
De utvecklade 3D-metoderna i avhandligen ger biomaterialforskarna med
flera möjlighet att använda de nyutvecklade 3D avbildningstekniker. Dessa
metoder bidrar till en förbättrad kvantitativ och kvalitativ utvädering av
osseointegration och i slutändan ökad livskvalitet för de patienter som är
i behov av benimplantat. Dock kan ett rutinmässigt användande av dessa
metoder försvåras av att 3D-bildalstringen kräver stora faciliteter, men i takt
med att dessa tekniker utvecklas kan morgondagens forskare, inom kort,
dra stor nytta av de utvecklade metoderna.
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Allt gick som en dans

–Roald Amundsen (1872-1928), norsk polarforskare,
om sin expedition till Sydpolen.

Han fick avbryta expeditionen en gång, två av hans åtta expeditionsmedlemar fick återvända
till baslägret p.g.a. frostskador (en begick senare självmord efter återkomsten till Norge), 24
av hans 52 slädhundar fick skjutas p.g.a. utmattning (och bli mat åt de resterande 28) och
försommartemperaturen sjönk till -51◦C, långt lägre än förväntat.





Errata

A Persian rug is not perfect unless it has flaws

—Anonymous. A flawless production implies hubris.

Listed below are known errors appearing in the enclosed papers. Please
note these errors are typographical errors that do not affect the results in
the thesis. The reader is kindly asked to contact the author if other errors
are found in the papers.

Paper II

P. 1075: Algorithm 1, 3. IM =T (V
C , p) should be 2. IM =T (V

C , p).

Paper IV

P. 773: “A 3-4 weighted distance transform” should be "A 〈3-4-5〉 weighted
distance transform".
P. 773: “For 0< d ≤ 1 however” shoud be “For 0≤ d ≤ 1 however”.

Paper V

P. 247: u(x , y, z) = (atan( y
x
, z)) should be u(x , y, z) = (atan( y

x
), z).

P. 247: VBC = (VB ⊕ SE )∩VI should be VBC = (VI ⊕ SE )∩VB .

Paper VI

P. 32: Equation (6), f̄ = 1
2πt

∫ 2πt
0 i f (φ)dφ should be f̄ = 1

2πt

∫ 2πt
0 f (φ)dφ.
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