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Phylogenetics of the Genus Sorghum, Genetic 
Diversity and Nutritional Value of its 
Cultivated Species.  

Abstract 
Sorghum (Sorghum bicolor (L.) Moench) ranks fifth among cereal crops and second 
highest in production after maize in Africa particularly in the semi arid regions 
where it is a food security crop. This study assessed phylogenetic relationships of the 
species within the genus Sorghum, genetic diversity and the nutritional value of 
cultivated sorghum for its use for breeding and conservation. 

The phylogenetic analyses based on sequence data from four chloroplast DNA 
(cpDNA) regions and the internal transcribed spacer (ITS) revealed that S. laxiflorum 
and S. macrospermum were more closely related to Eu-sorghum species than to any 
other section and that the former two species are best merged into one section. 
Assessment of 27 Zambian sorghum accessions and 14 accessions from Malawi, 
Tanzania and Zambia for genetic diversity based on microsatellite markers revealed 
a significant genetic variation within and largely among (>80%; p < 0.001) sorghum 
accessions. Bioassay for grain mineral contents of 27 farmer varieties of sorghum 
from southern Africa and 13 improved varieties showed that improved sorghum 
varieties were superior in macronutrients while farmer varieties showed superiority 
for grain Fe and Zn contents. Morphological characterization of 17 accessions from 
southern Africa revealed considerable variation among accessions and plant height, 
days to 50% flowering and inflorescence length were more important discriminating 
traits. The studies in this thesis provide insights into the extent and pattern of 
genetic relationships within the genus Sorghum and reveal significant genetic 
variation for nutritional value improvement. 
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1 Introduction 

 

1.1 Nomenclature and a historical perspective 
of the genus Sorghum 

Sorghum belongs to the family Poaceae, subfamily Panicoideae, the tribe 
Andropogoneae, subtribe Sorghinae and genus Sorghum (Clayton & 
Renvoize, 1986). Garber (1950) and Celarier (1959) further segmented the 
genus into five subgenera: Eu-sorghum Stapf emend. Snowden, 
Chaetosorghum, Heterosorghum, Parasorghum and Stiposorghum. Genus Sorghum 
Moench is highly heterogeneous and together with the genus Cleistachne 
Bentham they form Sorghastrae (Garber, 1950), one of the 16 sub-tribes in 
the tribe Andropogoneae. The seventeenth century saw an increase in the 
number of references to sorghum with several authors describing the genus 
(Smith & Frederiksen, 2000).  
 

Sorghum was first described by Linnaeus in 1753 and was referred to as 
Holcus. Later on in 1794, Moench distinguished the genus Sorghum from 
the genus Holcus (Clayton, 1961). Several other authors have discussed the 
systematics, origin and evolution of sorghum after Linnaeus (Snowden, 
1936; de Wet & Harlan, 1971; Doggett, 1988).  
 

The subgenus Sorghum (Eu-sorghum) includes annual cultivated sorghum 
from Africa and perennial taxa from S. Europe and Asia. Three species are 
recognized under the subgenus Eu-sorghum as S. halepense (L.) Pers. 
occurring in India, S. propinquum (Kunth) Hitchc found in Southeast Asia 
and S. bicolor (L.) Moench originated in Africa (de Wet, 1978).  
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1.2 Evolution and taxonomy of sorghum  
Sorghum, maize (Zea mays L.), sugarcane (Saccharum officinarum L.) and 
millet (Eleusine coracana L. Gaerth) are grass species that diverged from rice 
about 50 million years ago (Doebley et al., 1990).  Sorghum and maize  
shared a common ancestor as recently as 20–24 million years ago (Gaut & 
Doebley, 1997). Sorghum is the closest relative of sugarcane which diverged 
from the latter around 5 million years ago (Al-Janbi et al., 1997). 
Phylogenetic analysis of molecular data from nuclear rRNA sequences 
showed that S. bicolor and S. officinarum are very closely related and that these 
taxa recently shared a common ancestry (Hamby & Zimmer, 1988). 
Springer et al. (1989) reaffirmed the sequence similarity between the two 
through comparison of rDNA sequence which also revealed that they are 
closely related to Z. mays L. Recently, the chroloplast DNA of sorghum 
(cpDNA; Fig. 1) has been completely sequenced (Saski et al., 2007). The 
phylogenetic relationships inferred from five intergenic spacer regions of 
chroloplast genome confirm the closeness among Z. mays, S. officinarum and 
S. bicolor (Saski et al., 2007).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Gene map of Sorghum bicolor chloroplast genome. Modified from Saski et al. (2007). 

The genus Sorghum has been variously described by several taxonomists 
(Garber, 1950; Lazarides et al., 1991; Spangler, 2003). The genus Sorghum 
has 25 recognized species that have been classified into five subgenera or 
sections namely Eu-sorghum, Chaetosorghum, Heterosorghum, Parasorghum and 
Stiposorghum (Garber, 1950). Section Eu-sorghum includes cultivated 
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sorghum S. bicolor (2n = 20) and its subspecies drummondii and arundinaceum, 
and the wild species, S. propinquum (Kunth) Hitch, (2n = 20), S. halepense 
(L.) Pers. (2n = 40) and S. almum Parodi (de Wet, 1978). Species of section 
Eu-sorghum have a natural range through Africa and southern Asia (de Wet, 
1978; Duvall & Doebley, 1990). Eu-sorghum was earlier considered under 
two subsections, Arundinacea and Halepensia (Snowden, 1936). The 
subsection Arundinacea, commonly found in tropical Africa and India, 
consists of S. bicolor (L.) Moench, S. arundinaceum (Desv.) Stapf (2n = 20) 
and S. drummondii (Steud.) Millsp. S. propinquum (Kunth) Hitchcock, S. 
halepense (L.) Pers and S. almum Parodi form subsection Halepensia, and are 
found in the Mediterranean region and Southeast Asia. However, Eu-
sorghum was considered to include cultivated sorghums and their closest wild 
relatives (De Wet and Huckay, 1967).  
 

Based on the gene pool concept, the genus Sorghum has been classified 
into three gene pools. The primary gene pool includes S. bicolor subsp. bicolor 
cultivars and races, S. bicolor subsp. arundinaceum, S. bicolor subsp. drummondii 
and S. propinquum (Stenhouse et al., 1997). The secondary gene pool 
consists of S. halepense. The tertiary genepool of the genus Sorghum includes 
all wild sorghum belonging to subgenera Chaetosorghum, Heterosorghum, 
Parasorghum and Stiposorghum. 
 

1.3 Biogeography of the genus Sorghum and 
domestication of its cultivated species  

There are about 25 species in the genus Sorghum, two third of which are 
wild Sorghum species of sections Chaetosorghum, Heterosorghum, Parasorghum 
and Stiposorghum. Sections Chaetosorghum and Heterosorghum, each containing 
single species S. macrospermum E.D. Garber and S. laxiflorum F.M. Bailey, 
respectively occur in Australia and South Pacific. Section Para-sorghum 
consists of the five Australian species S. grande Lazarides, S. leiocladum 
(Hack.) C.E. Hubb., S. matarankense E.D. Garber & Snyder, S. nitidum 
(Vahl) Pers., S. timorense (Kunth) Buse, and the two southeastern African, 
India and Southeast Asian species S. purpureo-sericeum (Hochst. ex A. Rich.) 
Asch. & Schweinf. and S. versicolor Andersson. Section Stiposorghum has ten 
species that are endemic to Australia including S. amplum Lazarides, S. 
angustum S.T. Blake, S. brachypodum Lazarides, S. bulbosum Lazarides, S. 
ecarinatum Lazarides, S. exstans Lazarides, S. interjectum Lazarides, S. intrans F. 
Muell. ex Benth., S. plumosum (R. Br.) P. Beauv., and S. stipoideum (Ewart 
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& Jean White) C.A. Gardner & C.E. Hubb (Garber, 1950; Lazarides et al., 
1991).  
 

There are two schools of thought that relate to the domestication of 
Sorghum bicolor. One school of thought suggests that the Mande people 
around the headwaters of the Niger River may have domesticated sorghum 
(Murdock, 1959). The other with backing of some archeological evidence 
postulates that sorghum was domesticated in the northeast Africa about 3000 
BC (Doggett, 1965). There are also suggestions that cultivated sorghum was 
domesticated by selections from a wild progenitor, subspecies verticilliflorum, 
about 5000-7000 years ago (Purseglove, 1972). The northeastern quadrant 
of Africa seems to be strongly supported as the region where sorghum was 
domesticated given the existence of greatest variability of cultivated and wild 
sorghum in that region (de Wet & Harlan, 1971; Doggett, 1988) and the 
restriction of wild progenitors to the region (Zohary & Hopf, 2000). The 
diversity in sorghum was mainly created through the practice of disruptive 
selection and isolation, recombination in the extremely varied habitats and 
movement of people carrying one or more varieties of the species (Doggett, 
1970). A balance of farmer selection for cultivated traits and natural selection 
for wild characteristics has generated improved sorghum types, wild types 
and intermediate types (Doggett, 1970).  
 

Cultivated sorghum varieties were spread to other regions of Africa, 
India (approx. 1500–1000 BC), the Middle East (approx. 900–700 BC) 
through the movement of people along trade routes. It appears that 
sorghum moved into eastern Africa from Ethiopia around 200 AD or earlier. 
It was adopted and carried to the savannah countries of eastern and southern 
Africa by the Bantu people, who used the grain mainly to make beer. The 
Bantu people probably began their expansion from the region of southern 
Cameroon about the first century AD, moved along the southern border of 
the Congo forest belt and reached eastern Africa possibly before 500 AD. 
The present-day sorghums of central and southern Africa are closely related 
to those of the Tanzania and more distantly related to those of West Africa, 
as the equatorial forests were an effective barrier to this spread.  
 

Presently, Sorghum bicolor (L.) Moench is identified with several given 
names in many parts of the world such as great millet and guinea corn in 
West Africa, kafir corn in South Africa, durra in Sudan, mtama in eastern 
Africa, jowar in India and kaoliang in China (Purseglove, 1972). Based on 
the morphological features of the inflorescence, grain and glumes, S. bicolor 
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subsp. bicolor  as classified today include five basic races (Fig. 2): bicolor, 
guinea, caudatum, durra and kafir as well as ten intermediate races (Harlan & 
de Wet, 1972). According to Harlan and de Wet (1972), race caudatum is 
dominant on the north-eastern African savanna, in Sudan and Chad, parts of 
Nigeria, Cameroun, Uganda and Kenya. Race guinea is mostly grown in 
high rainfall regions of West Africa and also Mozambique, Malawi and 
Swaziland as well as in the southwest of Ethiopia. Race kafir is grown south 
of the equator covering parts of southern Africa. Race durra spans 
northeastern Africa, Arabia and parts of Asia and race bicolor is mainly grown 
in the west of the Rift Valley (Harlan & de Wet, 1972).  

 

 
Figure 2. Sorghum races; A = bicolor, B = caudatum, C = durra, D = guinea and E = kafir (Harlan 
and de Wet, 1972). 

1.4 Sorghum characteristics and adaptation 
Sorghum is an annual grass species up to 5 m tall (Fig. 3), with one to 
several tillers that originate from the basal stem nodes supported by an 
extensive and deep root system. The plant has wide adaptation and can be 
grown between 40°N and 40°S across the equator at altitude of up to 2300 
m (Doggett, 1988) and tolerates a wide range of soil conditions. Sorghum 
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performs better at temperature of 25 - 31°C but is susceptible to frost. It is 
mainly a rainfed crop of lowland, semi-arid areas of the tropics and sub-
tropics (Craufurd et al., 1999). Sorghum is adapted to drought conditions 
due to a number of morphological and physiological characteristics, 
including an extensive root system, waxy bloom on leaves that reduces 
water loss, and the ability to stop growth in periods of drought and resume 
it when the stress is relieved (Stenhouse et al., 1997). An annual total of 
400-800 mm of well distributed rainfall over the cropping season is adequate 
for the crop to reach maturity. The crop tolerates water logging and can also 
be grown in high rainfall areas. Naturally, sorghum is a short-day plant (SDP) 
but a wide genetic variation exists for its adaptation to the wide range of 
photoperiod and temperature of different environments(Craufurd et al., 
1999).  
 

 
Figure 3. Sorghum plants at grain filling stage (A) lax inflorescence (B) Semi-compact to 
compact upright inflorescence and (C) semi-compact inflorescence with curved peduncle. 

1.5 World sorghum production 

Sorghum ranks fifth in the world after wheat, rice, maize and barley in 
terms of production, but in Africa the crop is the second highly produced 
cereal crop after maize (FAO, 2011). The crop plays a significant role in the 
provision of food security in Africa and Asia particularly in the semi arid 
tropics of the two continents. According to FAO 2008 ranking of countries 
by commodities, USA, Nigeria, India, Sudan and Argentina accounted for 
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the largest portion of world sorghum production (Fig. 4). Africa accounted 
for 42% of the world sorghum production (FAO, 2011), which is mainly 
grown for food at the small scale farmer level. In industrialized countries, 
sorghum is grown at commercial scale and largely for use as feed and fodder 
for livestock (Doggett, 1988) and sweet sorghum is used for ethanol 
production. 
 

 
Figure 4. World leading sorghum producing countries, source: FAO (2011). 

1.6 Uses and nutritive value of sorghum  
The sorghum grain varies in colour from white, red and brown to pale 
yellow and deep purple-brown. The most common grain colours are white, 
bronze and brown. Grains are mainly spherical but vary in size and shape. 
The grains can be rounded and bluntly pointed, 4-8 mm in diameter 
(Purseglove, 1972). Grain size varies with variety and large grains with 
corneous endosperm are usually preferred for human consumption. Yellow 
endosperm with carotene and xanthophyll increases the nutritive value. 
Sorghum grain has a seed coat that may contain tannin in varying 
proportions depending on the variety (Dykes & Rooney, 2006). 
 

Sorghum has a wide range of uses, such as food, beer brewing and 
livestock feed and fodder (Chakauya et al., 2006). In addition, the crop is 
also used in the production of commercial alcohol, adhesives, waxes, 
construction materials and bio-ethanol from sweet sorghum varieties 
(Antonopoulou et al., 2008). In the confectionary industry, the sorghum 
grain is used for baking of unleavened bread, biscuits and tortilla. 
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Starch is the main component of the sorghum grain and is the major 

form of carbohydrate in sorghum comprising amylopectin and amylase. 
Starch content of sorghum grain ranges from 56 to 73 g/100g with an 
average of 69.5 g/100g (Jambunathan & Subramanian, 1988). The sorghum 
grain protein content is within the range of 7 to 15% (Beta et al., 1995; 
Nkongolo et al., 2008; Wong et al., 2010). Using the solubility-based 
classification (Jambunathan et al., 1975), sorghum proteins have been 
divided into albumins, globulins, kafirins, cross-linked kafirins and glutelins. 
The kafirins, which are aqueous alcohol-soluble prolins account for about 
50-70% of the proteins (Oria et al., 1995; Duodu et al., 2003; Vendemiatti et 
al., 2008). Sorghum is also a good source of vitamin B complex and more 
than 20 mineral elements (BSTID-NRC, 1996) and is specifically rich in 
phosphorus, potassium, iron and zinc (Glew et al., 1997; Anglani, 1998). For 
example, sorghum is a better source of zinc, an important micronutrient for 
pregnant women than corn and wheat (Hopkins et al., 1998).  

1.7 Pest and diseases of sorghum 

A range of insect pests and diseases have been reported to cause economic 
loss in sorghum (House, 1985). Notable among the insect pests are sorghum 
aphids (Melanaphis sacchari), sorghum shoot fly (Atherigona soccata Rondani) 
and stalk borers [Busseola fusca; Chilo partellus (Swinhoe)]. Sorghum midge, 
Contarinia sorghicola Coquillett, has been reported to occasionally cause 
serious crop damage to developing grain (House, 1985; Reddy et al., 2006). 
Sorghum diseases of economic importance include grain moulds, downy 
mildew (Peronosclerospora sorghi), charcoal rot (Macrophomina phaseoline) and 
Anthracnose (Colletotrichum graminicola) (Reddy et al., 2006). The parasitic 
plant, striga (Striga spp), is one of the major problems in affecting sorghum 
production in Africa and Asia. Birds, especially Quelea quelea, can be a 
problem in sorghum and can cause serious economic losses. There are also 
post harvest grain losses in sorghum due to damage caused by storage pests, 
of which the principal ones are rice weevil (Sitophilus oryzae), flour beetle 
(Tribolium castaneum) and the grain moth (Sitotroga cerealella). 
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1.8 Genetic diversity, conservation and 
utilization of crops and their wild 
relatives 

Globally, a total of 167, 890 sorghum accessions are reported held in 
different germplasm collection centres representing about 86% of the total 
194,250 that has been documented in the Bioversity Germplasm Database 
(January 2006). Of the 167 890 accessions, 43, 104 sorghum accessions 
(25.7% of the documented) are held by the USDA-ARS-PGRCU of the USA.  
 

ICRISAT, for which sorghum is one of its mandate crops, is one of the 
major repositories holding a total of 36,774 accessions (21.9%) from 91 
countries (Reddy et al., 2006). A preliminary survey indicated that the 
largest number of accessions (47, 963; 28.6%) was held by gene banks in 
Asia including China and India. An approximate total of 31, 200 sorghum 
accessions (16.1%) were held in Africa, and collectively gene banks in East 
Africa are holding larger collections of sorghum landraces than Southern and 
West Africa.  Globally, a total of 1, 240 accessions of wild relatives of 
cultivated sorghum are maintained ex-situ in 19 centres. Of these accessions, 
the large proportion (37%) was being conserved at ICRISAT. This was 
followed by Australia – DPI and India-NBPGR that were maintaining 344 
(28%) and 237 (19%) accessions respectively.   
 

1.9 Traits of economic importance and sorghum 
breeding 

Like in other domesticated crops, sorghum domestication involved artificial 
selection. The process resulted in gradual changes from the small-seeded, 
shattering open panicles to larger, non-shattering seeds and more compact 
panicles. Several characteristics of the sorghum plant were changed. These 
included the increase in the number of branches within the inflorescence; 
decreasing the internode length of the rachis; and an increase in seed size 
that significantly protruded from the glumes (House, 1985).  
 

Sorghum is mainly grown for human consumption in Asia and Africa, 
but used for livestock feed in China, Australia and the Americas. In Africa 
and Asia, sorghum is mostly grown at subsistence scale. The crop’s grain 
yield and quality are challenged by a broad spectrum of biotic and abiotic 
factors (Reddy Belem et al., 2004). There has been a shift in the breeding 
goals for sorghum from wide adaptability to specific regional adaptation 
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(Reddy Belem et al., 2004). Most of the agricultural research efforts were 
focused on the development of high yielding, resistant varieties, and 
adaptability to drought-prone environment in order to enhance both crop 
productivity and yield stability. Achievements in sorghum breeding in Africa 
have mainly been in the development and release of improved varieties 
based on high grain yield and resistance to diseases, insect pests and striga 
(Obilana, 2004).  
 

ICRISAT working in collaboration with various national agricultural 
research institutes has adopted five different phases in its global sorghum 
breeding program (Reddy et al., 2004). The goals are phased as follows: (1) 
wide adaptability and high grain yield (1972–75); (2) wide adaptability and 
breeding for biotic and abiotic constraints (1976–79); (3) regional 
adaptations and resistance breeding (1980–84); (4) specific adaptations and 
resistance breeding (1985–89); and (5) trait-based breeding, sustainable 
productivity and upstream research (1990–2004). 

1.10 CpDNA and ITS of nrDNA for phylogenetic 
inference  

Chloroplast DNA (cpDNA), is the DNA located in the chloroplast organelles 
and is maternally-inherited in most angiosperms. The complete chloroplast 
genome sequence of sorghum has been published (Saski et al., 2007), which 
facilitates the use of different regions for phylogenetic analyses of species in 
the genus Sorghum, as cpDNA is useful in providing information for 
inference of the evolutionary patterns and processes in plants (Raubeson & 
Jansen, 2005). The non-coding chloroplast regions are phylogenetically 
more informative than the coding regions at lower taxonomic levels because 
they are under less functional constraints and evolve more rapidly (Gielly & 
Taberlet, 1994). 
 

The internal transcribed spacer (ITS) region of the 18S–5.8S–26S nuclear 
ribosomal DNA (nrDNA) has been commonly used for phylogenetic 
inference at the generic and infrageneric level in plants. Biparental 
inheritance, universality of primers, intragenomic uniformity and 
intergenomic variability merit the utility of ITS for phylogenetic 
reconstruction (Baldwin et al., 1995). The two intergenic spacers, ITS1 and 
ITS2, evolve more rapidly than coding regions of nrDNA and have shown to 
be equally informative, being able to differentiate between closely related 
species (Baldwin, 1992) as exemplified in the genus Sorghum (Dillon et al., 
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2001). The ITS has been used either solely (Sun et al., 1994; Dillon et al., 
2001; Guo et al., 2006) or in combination with regions of the cpDNA 
(Dillon et al., 2004; Dillon et al., 2007) for inferring phylogenetic 
relationships in the genus Sorghum.  

1.11 Microsatellite and morphological markers 
for assessment of genetic diversity 

Microsatellites, which are also called Simple Sequence Repeats (SSRs), 
which are mainly caused by polymerase slippage during DNA replication or 
slipped strand mispairing, represent tandem repeats with repeat motifs of 1-6 
base pairs. The strengths of the markers include their high genomic 
abundance in eukaryotes, codominance inheritance, locus specificity, and 
multi-allelic character.  SSRs are highly polymorphic in cultivated sorghum 
(Sorghum bicolor (L.) Moench) (Taramino et al., 1997; Bhattramakki et al., 
2000; Kong et al., 2000) except those located in relatively conserved coding 
regions (Schloss et al., 2002). These markers have been widely used in the 
assessment of genetic diversity (Menz et al., 2004; Manzelli et al., 2007; Li et 
al., 2010), population genetic structure and relatedness within or among 
sorghum landraces (Uptmoor et al., 2003; Folkertsma et al., 2005; Mutegi et 
al., 2011) as well as in the construction of the framework architecture of a 
highly dense genetic map (Wu & Huang, 2006). 

In most crops, analyses of morphological traits that inherit according to 
Mendelian genetic principles were the earliest methods for estimating 
genetic diversity (Doggett, 1988). The synthesis and categorization of 
morphological data into morphological and presumably genetic similarity 
groups is most useful when none is known about the population structure in 
a collection (Marshall & Brown, 1975). Phenotypic diversity index of 
morphological traits and/or multivariate analysis of qualitative and/or 
quantitative characters have been used to measure genetic relationships 
within sorghum e.g. (Ayana & Bekele, 1999; Abdi et al., 2002; Geleta & 
Labuschagne, 2005). 
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2 Objectives 

The purpose of this doctoral thesis was to study the phylogenetic 
relationships between the Sorghum species, the assessment of genetic 
diversity and nutritional value for its cultivated species for its conservation 
and sustainable utilization in breeding programmes. Specifically, the study 
sought to achieve the following objectives: 
 
1. to resolve the phylogenetic relationships between species of the genus 

Sorghum based on cpDNA and ITS of nrDNA, 
2. to estimate the genetic diversity and relationships among sorghum 

accessions from southern Africa,  
3. to analyze the grain mineral contents of sorghum farmer and improved 

varieties from southern Africa and evaluate their potential for 
biofortification, 

4. to assess the patterns of agromorphological variation among sorghum 
accessions from Malawi, Mozambique, Tanzania and Zambia. 
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3 Material and methods 

3.1 Plant material  
The germplasm used included wild Sorghum species and farmer and 
improved varieties of cultivated sorghum.  
 

Forty eight accessions from 21 Sorghum species were used for the 
phylogenetic study (Paper I). These accessions included wild species 
belonging to sections Stiposorghum (20 accessions), Heterosorghum (2 
accessions), Para-sorghum (8 accessions) and Chaetosorghum (1 accession). The 
rest of the materials used in this study were 17 accessions of S. bicolor (L.) 
subsp. bicolor and their close wild relatives of the section Eu-sorghum. Wild 
sorghum accessions were obtained from the Australian Tropical Crops & 
Forage Genetic Resource Centre (ATCFC), Biloela, Queensland, Australia 
while most of S. bicolor (L.) subsp. bicolor accessions were obtained from the 
Zambian National Plant Genetic Resources Centre. 

 
Forty sorghum accessions including 27 accessions of farmer varieties and 

13 accessions of improved varieties were used for macro and micronutrient 
analysis (Paper III). Farmer varieties were obtained from national gene banks 
of Malawi (7 accessions), Tanzania (5 accessions) and Zambia (15 
accessions). Thirteen accessions of improved varieties were obtained from 
the sorghum and millet improvement program of Zambia.  

 
Twenty seven accessions of S. bicolor (L.) subsp. bicolor obtained from the 

national gene bank of Zambia were used in the SSR based genetic diversity 
analyses of Zambian sorghum (paper II). These accessions were collected 
across regions inhabited by four ethnic groups of Zambia namely Chikunda, 
Soli, Tonga and Lozi. The other genetic diversity study using SSR markers 
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(Paper IV) involved fourteen sorghum accessions originally collected from 
Malawi (6 accessions), Tanzania (4 accessions) and Zambia (4 accessions) and 
obtained from the national gene banks of the respective countries.  
 

In the assessment of agromorphological variation in S. bicolor (L.) subsp. 
bicolor from southern Africa, data was collected on 17 accessions (Paper V). 
The national gene banks of Malawi, Mozambique, Tanzania and Zambia 
provided five accessions each, of which one Mozambican and two Zambian 
failed to emerge in the field. 
 

3.2 Methods 

3.2.1 DNA extraction 

Sorghum seedlings were raised in a greenhouse and fresh leaf tissues were 
sampled for DNA extraction at two weeks of age. Twelve plants per 
accession were used for DNA extraction. Individually sampled fresh leaf 
tissue was placed in eppendorf tubes, frozen in liquid nitrogen, freeze dried 
and ground into powder. DNA was extracted using a modified CTAB method 
(Bekele et al., 2007). 

3.2.2 Sequencing 

Primers for amplification and sequencing of the trnS-trnfM, trnY-psbM and 
trnT-trnD intergenic spacers of cpDNA were designed during this study while 
the cpDNA trnT-trnL intergenic spacer was amplified and sequenced using 
the universal primers designed by Taberlet et al. (1991). Universal primers 
ITS4 and ITS5 (White et al., 1990) were used for amplification and 
sequencing of the ITS-1, 5S and ITS-2 of nrDNA. All the necessary steps from 
amplification and cleaning of the amplified products to sequencing and 
subsequent processing of the sequences were described in detail in paper I. 

3.2.3 SSR-PCR 

The SSR primer screening for amplification, optimization of PCR conditions 
and detection of polymorphism lead to the selection of ten SSR primer pairs 
for genetic diversity analyses of both Zambian and SADC sorghum 
germplasm. The selected primers, their linkage groups and the amplification 
conditions were provided in Papers II and IV. Confirmed amplified PCR 
products were separated on readymade high resolution polyacrylamide gels. 
Allelic data for each locus was recorded as fragment size in comparison with 
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a standard 50 bp DNA ladder and also as binary data coded as 1 or 0 for the 
presence or absence for each allele.  

3.2.4 Determination of macro- and micronutrients 

About 50 g of grains of each accession was milled to flour using a laboratory 
mill (Yellow line, A10, IKA-Werke, Staufen, Germany). Following milling, 
samples were freeze dried to constant dry weight over a period of four days. 
About 0.5 g of each flour sample was digested as described in Hussain et al. 
(2010). The digested samples were analyzed for mineral contents at the ICP 
laboratory, Department of Ecology, Lund University, Sweden using 
Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES; 
Perkin-Elmer, OPTIMA 3000 DV). The atomic spectrometry standards from 
Perkin-Elmer, SPEX, AccuStandard and Merck were used during the 
analysis. The ICP-AES instrument was calibrated using a mixed multi-
component standard at three contents within the factor of 50. 

3.2.5 Protein determination 

Sorghum grain samples were milled and freeze dried to constant weight 
prior to total nitrogen analysis. The samples were weighed (2-5 grams) using 
5 x 9 mm tin capsules. Capsules containing samples were rolled into pellets. 
An aliquot was burned in an elemental analyzer (Nitrogen analyzer, NA 
1500 series 2; Micromass, Carlo Erba Instruments, Rodano (Milan), Italy) at 
1020°C and interfaced with an isotope ratio mass spectrometer (Optima; 
Micromass) leading to the release of CO2, H2O and N2. CO2 and H2O are 
removed by passing the gasses over special absorbent columns. The nitrogen 
content was estimated in a column containing a thermal conductivity 
detector. Acetanilide (C8H9NO; C = 71.09%, H = 6.71%, N = 10.36%, O = 
11.84%) was used as the standard reference material in this assay. A protein 
factor of 6.25, equivalent to 0.16 g nitrogen per gram of protein, was used 
to estimate protein content in sorghum as recommended by Merrill and 
Watt (1973). 

3.2.6 Total starch determination 

Approximately 50 mg of dry flour sample was weighed in duplicates and 
placed in a glass centrifuge tube (16 x 120 mm; 17 ml capacity). Starch 
content was determined using the total starch analysis protocol developed by 
AA/AMG; Megazyme International, Wicklow, Ireland. The enzymatic (α-
amylase/amyloglucosidase) digestion (hydrolysis) of starch produces glucose 
which was spectrophotometrically quantified at 510 nm. 
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3.2.7 Agromorphological characterization  

Sorghum accessions were sown in 2 row plots of 3 m long and 0.75 m wide 
and intra row spacing of 0.2 m, with two replications in a randomized 
complete block design at Mount Makulu Central Research Station in 
Zambia. Both qualitative (10) and quantitative (5) traits (Table 1) were 
recorded to estimate the levels of variation among the sorghum accessions. 
Measurements and observations were taken based on 10 randomly selected 
and tagged plants from each accession. The tagged plants were used for 
collection of all the data. The character states associated with the vegetative 
growth stage, panicle and grain were measured, observed and recorded 
based on sorghum descriptor of the International Board for Plant Genetic 
Resources (IBPGR & ICRISAT, 1993).  

3.3 Data analysis 

3.3.1 Phylogenetic analysis 

The DNA sequence data was obtained from the University of Oslo, Norway 
(http://www.bio.uio.no/ABI-lab/). The quality of the sequences was 
visually inspected using Sequence Scanner version 1.0 (Applied Biosystems). 
Multiple sequence alignment was performed using ClustalX version 2.1.10 
(Larkin et al., 2007). The sequences were edited using BioEdit version 7.0.9 
(Hall, 1999) and PAUP* 4.0 Beta 10 was used for phylogenetic analyses. The 
phylogenetic analyses of sequence data from the ITS and intergenic spacers of 
cpDNA were carried out both separately and combined.  In both cases, indel 
positions were treated as missing data. Zea mays L. (GenBank accession 
number U04796) was used as an out-group species. 

3.3.2 Genetic diversity analysis  

Allelic size data for each SSR locus was used to estimate percentage of 
polymorphic loci, Shannon’s information index (I), Nei’s gene diversity (h), 
observed and expected heterozygosities using POPGENE version 1.31 (Yeh & 
Boyle, 1997). Genetic variation within and among accessions as well as 
among different groups of sorghum accessions was estimated through 
analysis of molecular variance (AMOVA) using the Arlequin 3.0 (Excoffier et 
al., 2005). Cluster analysis based on Unweighted Pair Group Method with 
Arithmetic Average (UPGMA) method within sequential agglomerative 
hierarchical nested (SAHN) and principal co-ordinate analysis were 
performed based on Nei’s distance matrix using NTSYSpc (Rohlf 1998). To 
estimate of robustness of obtained trees, bootstrap values were obtained 
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through 1000 bootstrap resampling procedure using FreeTree – Freeware 
program (Pavlicek et al., 1999). 

3.3.3 Micronutrient, macronutrients, protein and 
total starch analysis 

Data for macronutrients, micronutrients, starch and protein contents were 
subjected to analysis of variance (ANOVA). Tukey’s test was carried out for 
pairwise comparisons of means nutrient values of accessions using Minitab 
version 16. 

3.3.4 Analysis of agromorphological data 

Range, mean, standard error of mean and coefficient of variation were 
computed for five quantitative characters plant height, days to flowering, 
thousand seed weight, inflorescence length and width. Subsequently, these 
data were subjected to analysis of variance and Tukey’s test. The qualitative 
data was analyzed for the frequency of a particular character state using 
InfoStat (Di Rienzo et al., InfoStat version 2010). A combined dataset of 
qualitative and quantitative characters was standardized and subjected to 
cluster analysis whereas the standardized quantitative dataset was subjected to 
principal component analysis. Minitab version 16 was used for ANOVA and 
multivariate analyses.  
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4 Summary of results and 
discussion 

4.1 Phylogenetic relationships between Sorghum 
species (Paper I) 

Sorghum species exhibited sequence length differences for the sequenced 
regions of the cpDNA and the ITS of nrDNA (Table 1). For example, the 
length of trnY-psbM intergenic spacer ranged from 1028 bp (S. drummondii) 
to 1053 bp (S. exstans). The sequences from this spacer of eight accessions of 
S. bicolor revealed 2–3 bp differences between them. The size of the psbZ-
trnG spacer ranged between 286 bp (section Eu-sorghum) and 291 bp (S. 
intrans). The size difference between the two sections is attributed to the 5-
bp indels within the spacer. Interestingly, this indels also exist in S. laxiflorum 
and S. macrospermum. Sequence length differences were also revealed in the 
trnT-trnL spacer, ranging from 684 bp (S. arundinaceum) to 693 bp (S. 
leiocladum and S. laxiflorum). Low sequence length differences of 2 bp in the 
trnT-trnL spacer were observed among the S. bicolor accessions. The trnT-
trnL spacer from S. bicolor-12, -13 and -14 showed differences from the rest 
of the S. bicolor accessions arising from transitions and transversions at eight 
positions. The sequences obtained from the trnY-trnD spacer were between 
318 bp (S. amplum, S. angustum) and 329 bp (S. exstans). ITS sequences had 
small length differences of 528-534 bp across the Sorghum species.  
 

Of the cpDNA regions used in this study, the highest number of 
parsimony informative characters was obtained from trnY-psbM which was 
closely followed by trnT-trnL and trnY-trnD (Table 1). The trnY-psbM, trnT-
trnL and trnY-trnD intergenic spacers were useful in the inference of 
phylogenetics at low taxonomic level. Similarly, trnT-trnL and psbM-trnD 

were identified as suitable for low taxonomic level phylogenetic studies 
(Shaw et al., 2005). 
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Table 1. Sequence characteristics and tree statistics of the cpDNA and ITS regions from maximum 
parsimony (MP) analysis.  
    cpDNA 

regions 
          

  psbZ-
trnG 

trnY-
trnD 

trnY-psbM trnT-trnL ITS Combined 
cpDNA 
regions  

Combined 
cpDNA 
and ITS  

LAS 286-291 318-329 1028-1053 684-693 528-534 2316-2366 2844-3111 

PICsa 8(3%) 12(4%) 32(4%) 19(3%) 69(13%) 71(3%) 140(4%) 

TL 16 48 101 57 190 536 743 

CI 0.9375 0.8958 0.6931 0.8947 0.8737 0.6250 0.6743 

HI 0.0625 0.1048 0.31 0.1053 0.1263 0.3750 0.3257 

RI 0.9846 0.9734 0.93 0.9757 0.9764 0.8463 0.8938 

RC 0.9231 0.8720 0.6489 0.8730 0.8531 0.5252 0.6027 
a Inclusive of the outgroup; LAS=Length of aligned sequences: PICs=Parsimony informative characters (number & 

percent); TL=Tree length; CI=Consistency index; HI=Homoplasy index; RI=Retention index; RC=Rescaling 

consistency index 
 

Two lineages, A and J, are resolved by separate parsimony analysis of 
sequence data of four regions of cpDNA (Fig. 5a) and the combined 
sequence data from the cpDNA regions and the ITS (Fig. 5b). Lineage A 
contains all the Eu-sorghum species in clade B which include S. bicolor and 
their immediate wild relatives, S. almum,  S. halepense, S. drummondii and S. 
arundinaceum with 100% bootstrap support. These results are consistent with 
earlier findings based on combined cpDNA and ITS sequences (Dillon et al., 
2004; Price et al., 2005; Dillon et al., 2007). Lineage J consists of all 
Australian wild Sorghum species except S. laxiflorum and S. macrospermum 
with equally high bootstrap support (Fig. 5). S. laxiflorum and S. 
macrospermum show closer relationship with the Eu-sorghum species with 
100% bootstrap support than with other Australian wild Sorghum species. 
Earlier studies based on DNA sequence data also reported similar results (Sun 
et al., 1994; Dillon et al., 2007) which has led to the argument against 
placement of S. laxiflorum and S. macrospermum in separate taxonomical 
sections.  In fact earlier taxonomic studies have also shown that S. 
macrospermum was more closely related to Eu-sorghum species than to any 
other Sorghum species (Garber, 1950; Celarier, 1958). 
 

Within the Eu-sorghum section, clade D excludes S. arundinaceum from 
the rest of the species, but a subgroup comprising S. halepense-1, S. 
drummondii, S. almum, and S. bicolor-1, -2, -5 and -13 is formed as clade F 
with 99% bootstrap support (Fig. 5). The strongly supported (94 %) clade E 
consists of three accessions of S. bicolor (-3, -11 and -14). The S. bicolor 
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accessions in this clade originated from southern Africa, one from 
Zimbabwe (S. bicolor-3) and the other two from Zambia. S. bicolor-2, an 
accession from Yemen, seems to be distantly related to S. bicolor accessions 
from southern Africa but has a stronger association (clade H) with S. almum 
with strong bootstrap support. Earlier on, an allozyme variation study also 
revealed that S. halepense grouped closely with S. bicolor (Morden et al., 
1990), suggesting that the latter was most likely one of the parental species 
of S. halepense. 
 

Stiposorghum and Para-sorghum form clade J with 100% bootstrap support. 
The internal nodes of this particular clade, however, in most cases had 
moderate level of bootstrap support. Most of the Para-sorghum and all of the 
Stiposorghum species form clade K with moderate bootstrap support. Clade M 
consists of S. brachypodum and S. exstans with 95% bootstrap support. S. 
intrans and S. stipoideum-1 form clade N, and S. amplum and S. ecarinatum 
form clade O but with only moderate bootstrap support (78 %). 

 

 
Figure 5. Maximum-parsimony 50% majority rule consensus trees generated using PAUP (1000 
bootstrap replicates with 100 random  additions; MaxTrees 100) (a) Sequence data from the 
four regions of cpDNA (b) Combined sequence data from four regions of cpDNA and ITS of 
the nrDNA of 21 Sorghum species. Zea mays was used as an out-group species.  Indels are 
treated as missing data. Clades are indicated by letters below the branch. Bootstrap values of 
50% and higher are indicated above the branches. 
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4.2 Genetic diversity in Sorghum bicolor (L.) 
Moench accessions (Papers II & IV) 

The amplification of ten microsatellite loci in 324 individuals from 27 
sorghum accessions from Zambia revealed that all loci were polymorphic 
with a total of 44 alleles. The number of alleles per locus ranged from 2 
(sb6-36) to 9 (sb5-236) and averaged 4.4 alleles. Similar analysis of sorghum 
accessions from three SADC countries (Malawi, Tanzania and Zambia) 
revealed that all the ten SSR loci used were polymorphic generating 47 
alleles in  14 accessions and the number of alleles per locus ranged from 3 
(sbAGB03, Xcup05 and Xcup50) to 8 (Xcup02).  One of the reasons for 
variation in number of alleles obtained per locus could be due to differences 
in number of mutations per locus and that mutation rates tend to be locus 
specific (Estoup et al., 2002). Similar SSR polymorphic levels and ranges of 
fragment size of alleles were reported from earlier studies (Brown et al., 
1996; Ghebru et al., 2002; Uptmoor et al., 2003; Shehzad et al., 2009). The 
observed heterozygosity (HoL) at each locus over 27 Zambian accessions 
ranged from 0.01 (sb1-10) to 0.09 (Xtxp285) with an average of 0.04 per 
locus. Three loci (sb5-236, sb6-36 and Xtxp285) had HoL that was higher 
than the average. 

 
The average number of alleles per locus, percent polymorphic loci, 

observed and expected heterozygosity and genetic variation measures 
estimated by Shannon’s diversity index (I) and Nei’s gene diversity (h) for 
the sorghum accessions in Zambia and at regional level are given in Table 2. 
Analysis of Zambian sorghum accessions revealed that accessions from 
agroecological region I exhibited moderately higher genetic variation (I = 
1.30 and h = 0.64) than accessions from agroecological region II. Nei’s gene 
diversity measure on these accessions showed clear differences between 
ethnic groups (Table 2). The highest Nei’s gene diversity (h = 0.60) was 
found in the sorghum accessions collected from the area mainly inhabited by 
Lozi tribe. Sorghum accessions from the Tonga tribe dominated areas 
followed closely with Nei’s gene diversity of 0.58. In this group, sorghum 
accessions from Sinazongwe exhibited higher Nei’s gene diversity (h = 0.49) 
and Shannon diversity index (I = 0.89) than accessions from Kazungula (h = 
0.34; I = 0.51) and Gwembe (h = 0.10; I = 0.14).    
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Table 2. Number of alleles, mean percent polymorphic loci (%PL), mean observed heterozygosity (Ho) 
and gene diversity (He), mean Shannon diversity index (I) and Nei’s gene diversity (h) for sorghum 
accessions (n) from Zambia and southern Africa partitioned as Malawi, Tanzania and Zambian. 

Origin Group Category n na %PL Ho He I h 

Zambia Region Region I 16 6.4 100 0.04 0.64 1.30 0.64 

   Region II 11 5.3 100 0.03 0.63 1.26 0.63 

  Ethnic group Soli 7 3.4 90 0.03 0.49 0.89 0.49 

   Chikunda 3 2.1 70 0.06 0.33 0.50 0.32 

   Lozi 6 4.2 100 0.03 0.61 1.11 0.60 

   Tonga 11 4.8 100 0.03 0.58 1.12 0.58 

  District Chongwe 7 3.4 90 0.03 0.49 0.89 0.49 

   Luangwa 3 2.1 70 0.06 0.33 0.50 0.32 

   Sesheke 4 2.8 90 0.02 0.45 0.74 0.44 

   Kazungula 3 1.9 70 0.00 0.35 0.51 0.34 

   Sinazongwe 6 3.7 100 0.06 0.49 0.89 0.49 

   Shang’ombo 2 2.3 80 0.04 0.35 0.56 0.34 

   Gwembe 2 1.2 20 0.00 0.10 0.14 0.10 

Southern 
Africa 

Country Malawi 6 2.7 80 0.01 0.41 0.71 0.41 

   Tanzania 4 2.2 70 0.00 0.25 0.42 0.25 

   Zambia 4 2.3 90 0.00 0.42 0.64 0.42 

4.2.1 Genetic variation within accessions 

Analysis of data generated from sorghum accessions from three SADC 
countries revealed the highest Shannon diversity index (I = 0.71) in the 
Malawian accessions (Table 2). Zambian sorghum accessions closely 
followed with I = 0.64 and h = 0.42. Tanzanian sorghum exhibited the 
lowest Shannon diversity index and Nei’s gene diversity (I = 0.42; h = 
0.25). The amount of heterozygosity across loci, which is synonymous with 
allelic variation, indicates the amount of genetic variability which has a 
bearing on the survival of a species and allows organisms to adapt to 
changing environments provided that some loci have adaptive values. 
 

Observed heterozygosity ranged from 0 to 0.06 with an average of 0.01 
for the sorghum accessions from SADC countries, which was lower than the 
average observed heterozygosity (Ho = 0.04) obtained in the study 
involving 27 Zambian sorghum accessions and 10 SSR loci. The low level of 
observed heterozygosity is more attributable to the predominantly 
inbreeding nature of sorghum than samples sizes used. In fact, when a 
bottleneck occurs in a population, allelic diversity is reduced faster than is 
heterozygosity (Nei et al., 1975), which is a result of loss of rare alleles from 
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the population contributing little to the overall heterozygosity (Muraya et 
al., 2010).  Sorghum is a self pollinating crop, although a wide range of 
outcrossing rates of 7–30% or higher have been reported (Dje et al., 2004; 
Barnaud et al., 2008). Outcrossing rates in sorghum are influenced by factors 
such as morphology of the inflorescence (Dje et al., 2004), floral traits 
(Barnaud et al., 2008) and environment (Abdel-Ghani et al., 2004). Loose 
panicles such as of race guinea favour outcrossing, whereas the architecture 
of compact panicles e.g. of durra race impedes outcrossing (Dje et al., 2004). 
Cleistogamy (flowers remain enclosed) in sorghum due to very long glumes 
prevent pollen movement and thus strongly promoting selfing (Barnaud et 
al., 2008). 
 

The predominantly selfing nature of the species explains the observed 
lower genetic variation within than among accessions in this study as 
revealed by AMOVA (Table 3). Similar results were reported from a study 
involving sorghum accession originated from Somalia (Manzelli et al., 
2007). Breeding systems of plant species are reported to have a significant 
impact on population variability with self pollinating species being the least 
diverse and exhibiting higher between population than within population 
variation (Nybom & Bartish, 2000). In fact, according to Hamrick and Godt 
(1996), the breeding system is one of the strongest predictors of within 
population genetic diversity. Low levels of genetic variation among self 
pollinated plants is attributed to limited movement of genes via pollen, 
which also results in greater differentiation among populations (Hamrick, 
1983). 

4.2.2 Genetic variation among accessions 

Analysis of molecular variance (AMOVA) of SSR data revealed a significant 
genetic variation both among and within accessions studied both for 
Zambian (82% and 18%, respectively) and SADC accessions (83% and 15%, 
respectively; P < 0.001; Table 3). Observed genetic variation in the 
sorghum accessions both at national (Zambia) and regional (SADC) levels was 
higher among the accessions than within accessions. When the 27 Zambian 
accessions were grouped based on agroecological regions, AMOVA revealed a 
significant genetic variation between the groups (12%; P < 0.001; Table 3). 
Furthermore, AMOVA on sorghum accessions grouped based on the four 
ethnic groups (Soli, Chikunda, Lozi and Tonga) associated with the 
collection sites revealed a significant genetic variation among groups (23%; P 
< 0.001). AMOVA of SSR data from the regional sorghum accessions 
grouped based on country of origin revealed a highly significant genetic 
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variation among countries (42%; P < 0.001). Similarly, AMOVA on regional 
sorghum accessions grouped based on altitude of collection sites revealed a 
significant genetic variation among groups (12%; P < 0.05). Earlier genetic 
diversity studies involving microsatellites on cultivated sorghum also 
revealed a higher genetic diversity among than within accessions. For 
instance, Ghebru et al. (2002) observed significant genetic variation among 
28 Eritrean accessions for all measured variance components in which 
differences among accessions accounted for 50.4% of the variation while 
within accession diversity accounted for 49.6%. Similarly, Dje et al. (2000) 
reported overall gene diversity ( HT ) of 0.9 in 25 accessions from the world 
germplasm collection, with differentiation among accessions ( GST = 67%) 
accounting for two thirds of the diversity. On the contrary, the study 
involving nine Somali sorghum accessions using five SSR loci, Manzelli et al. 
(2007) observed that most of the genetic diversity (Hs ) resided within 
accessions relative to the genetic differentiation between accessions ( GST ), 
demonstrating that the accessions are not under artificial selection processes 
and/or there is a continuous gene flow in form of seeds among accessions. A 
number of factors such as agronomic, economic and cultural in the 
traditional farming systems have been reported to impact on levels of genetic 
diversity in sorghum (Chakauya et al., 2006; Mutegi et al., 2011). Following 
the plant domestication stage, artificial selection has been identified as one of 
the factors contributing to the reduced genetic diversity of crops (Gepts, 
2004). In most cases, traditional farmers maintain more than one distinct 
local variety selected for particular characteristics of interest to them and 
specific use. These landraces are perpetuated as farmer varieties from 
generation to generation. The driving forces behind the practice of 
maintenance of two or more sorghum landraces per household are twofold. 
Local farmers select landraces that could cope with local environmental 
factors such as duration of rainy season. Therefore, early maturing local 
varieties are usually planted by most households to provide food early in the 
season and thus ensuring attainment of household food security.  
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Table 3. AMOVA based on SSR data for sorghum accessions from Zambia, Malawi and Tanzania: (A) 
without grouping the accessions, (B) grouping by geographical location, (C) grouping the accessions 
according to two altitude levels and (D) grouping the accessions based on the ethnic group of collection 
sites. 

Origin of 
germplasm 

Groups Source of 
variation 

df Variance  %variation 

Zambia  (A) ungrouped AA 26 Va = 2.26 82.44*** 

    WA 621 Vb = 0.48 17.56*** 

  (B) regions AG 1 Va = 0.36 12.45*** 

    AAWG 25 Vb = 2.07 71.08*** 

    WA 621 Vc = 0.48 16.47*** 

  (C) altitudes AG 1 Va = -0.04 -1.39ns 

    AAWG 25 Vb = 2.28 83.71*** 

    WA 621 Vc = 0.48 17.68*** 

  (D) ethnicity AG 3 Va = 0.67 22.91*** 

    AAWG 23 Vb = 1.75 60.60*** 

    WA 621 Vc = 0.48 16.49*** 

Malawi, Tanzania, 
Zambia 

(A) ungrouped AA 13 Va = 2.75 83.36*** 

    WA 126 Vb = 0.50 15.13*** 

  (B) countries AG 2 Va = 1.58 41.90*** 

    AAWG 11 Vb = 1.64 43.52*** 

    WA 126 Vc = 0.50 13.25*** 

  (C) altitudes AG 1 Va = 0.41 11.77* 

    AAWG 12 Vb = 2.53 72.49*** 

    WA 126 Vc = 0.50 14.30*** 
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Figure 6. UPGMA cluster analysis based dendrograms generated based on SSR data (A) for 
Zambian sorghum accessions and (B) for sorghum accessions from Malawi, Tanzania and 
Zambia. Bootstrap values from 1000 resamplings are in between two branches.  

Cluster analysis of 27 accessions from Zambia based on the Jaccard 
similarity coefficient (Fig. 6A) revealed two major clusters of sorghum 
accessions, I and II, with substantial bootstrap support. Internal grouping of 
accessions mainly put sorghum accessions in similarity clusters according to 
location of collection sites. Cluster I consists of 12 accessions from 
Sinazongwe, Gwembe, Shangombo and Sesheke. Cluster II was composed 
of 15 sorghum accessions mainly from Chongwe and Luangwa. Other 
accessions in the same cluster were from Sesheke, Kazungula and 
Sinazongwe (Fig. 6A). In most cases, sorghum accessions collected from the 
same location showed higher genetic similarity than accessions collected 
from different sites. ZMB7099 and ZMB7108 collected from Chongwe were 
revealed to be the most similar pair of accessions. Similarly, ZMB7197 and 
ZMB7198 from Sesheke, ZMB7202 and ZMB7204 from Kazungula, ZMB7208 
and ZMB7210 from Sinazongwe and ZMB6848 and ZMB6853 from Gwembe 
are highly similar (Fig. 6A). However, there seem to be less similarity 
between ZMB7196 from Sesheke and the three other accessions, ZMB7197, 
ZMB7198 and ZMB7199, collected from the same location. Similarly, ZMB7201 
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from Kazungula showed clustering pattern that indicated that it is genetically 
distant from ZMB7202 and ZMB7204, also of the same site.  
 

Cluster analysis of microsatellite data from sorghum accessions from 
SADC region involving Malawi, Tanzania and Zambia also revealed a 
dendrogram with two major clusters (clusters I and II) that were strongly 
bootstrap supported (Figure 6B). Cluster I consisted of only accessions from 
Zambia. The Zambian accessions were genetically less similar to the 
accessions in cluster II from Tanzania (sub cluster IIa) and Malawi accessions 
(sub cluster IIb). Ghebru et al. (2002) also reported both distinct and mixed 
clusters among 60 sorghum accessions according to geographic origin. 
However, Dje et al. (2000) reported that accessions belonging to the same 
race or geographic origin were widely scattered when a matrix plot of 
individual sorghum accessions based on RST distance matrix was used. A 
recent study based on SSR data reported a clustering pattern of sorghum 
germplasm that was according to geographic origin (Geleta et al., 2006). 
Similarly, genetic distance data from polymorphic loci in the present study 
clustered SADC accessions according to country of origin (Figure 6B). It is 
also evident that sorghum accessions from Zambia were genetically distant 
from accessions obtained from Malawi and Tanzania. The close grouping of 
accessions from Malawi and Tanzania may suggest the presence of higher 
levels of gene flow between sorghum populations of the two countries than 
between these countries and Zambia. Gene flow encompasses several 
mechanisms of gene exchange among populations, including movement of 
gametes, seed, individuals or groups of individuals from one place to another 
(Slatkin, 1987). Seed exchange practices between communities could be the 
main factor for the observed similarities among sorghum accessions 
originating from different geographical regions.   

4.3 Characterization of the SADC sorghum 
varieties for micronutrients, (Papers III 
& IV) 

Highly significant differences (p < 0.0001) were revealed among the 
sorghum accessions in terms of their grain mineral, protein and starch 
contents (Table 4). Improved sorghum varieties exhibited higher profiles for 
grain macronutrient contents than farmer varieties. Among the improved 
varieties, ELT-1-17, Macia, MMSH-1040, MMSH-1257, MMSH-1324, MMSH-
1365 and MMSH-740 ranked high in grain K, Mg and P contents whereas 
Kuyuma and Sima, which are widely grown improved sorghum varieties in 
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Zambia, had the lowest grain K, Mg and P contents. Farmer varieties were 
superior to improved sorghum varieties in grain Zn, Cu and Mn contents. 
The highest grain Fe content was obtained from ZMB5788 (8.03 mg/100 g) 
followed by MW734 (6.33 mg/100 g). The highest grain Zn content (5.51 
mg/100 g) was obtained from TZ4031 which was followed by TZ3966, 
MW734 and ZMB7111 with 4.51 mg/100 g, 3.89 mg/100 g and 3.89 mg/100 
g, respectively. Grain-Fe and Zn contents of 4.6 mg/100 g and 3.7 mg/100 
g, respectively, were reported in an earlier study involving 29 sorghum 
accessions from the ICRISAT core collection (Ashok Kumar et al., 2009). 
Grain Fe and Zn contents obtained in the present study were comparable 
with those reported in 76 Benin sorghum accessions (Kayode et al., 2006b; 
Kayode et al., 2006a). This study revealed that accessions MW734, TZ3966 
and TZ4031 have potential for use in a micronutrient enrichment programme 
as they exhibited higher grain Fe and Zn contents than the suggested 
minimum of 5 mg/100 g and 3.7 mg/100 g respectively (Ashok Kumar et 
al., 2009).   
 

A significant correlation was found between grain colour and mineral 
contents for Ca, K, and S (Table 4). Sorghum varieties with brown grain 
exhibited significantly higher grain content for Ca (17.9 mg/100 g) and K 
(446.7 mg/100 g) content than varieties with white grains (Table 4). 
However, white sorghum varieties exhibited significantly higher grain S 
content (159.2 mg/100 g) than varieties with brown grains. No significant 
differences were observed between sorghum accessions with brown and 
white grains for grain Fe and Zn supporting the report of Kayode et al. 
(2006b). The results imply that whereas high grain macronutrients of Ca and 
K showed close association with brown grained varieties, selection for high 
Fe or Zn grain content may not automatically translate into selection for a 
desired grain colour. However, further studies involving increased number 
of accessions of different seed colour should be conducted to establish the 
suggested association. 
 

Analysis of variance for grain mineral contents of sorghum farmer 
varieties grouped according to country of origin, demonstrated that farmer 
varieties showed significant differences in grain mineral content for Ca, K, P, 
S, Zn and Fe (Table 4). Tanzanian sorghum accessions showed significantly 
higher Ca, K, P, Zn and Fe grain contents than Malawian and Zambian 
accessions. The study demonstrated a significant variation in grain mineral 
content among the sorghum farmer varieties.  However, grain mineral 
contents are influenced by genotype, environment and probably by 
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genotype x environment interactions (House, 1999; Zhang et al., 2010). For 
example, genetic as well as environmental factors have been shown to 
significantly affect Fe and Zn levels in  maize and wheat (Graham et al., 1999; 
Bänzinger & Long, 2000). Therefore, part of the significant variation among 
farmer varieties in relation to grain mineral contents obtained in this study is 
due to genotypic variation and suggests an existing genetic potential in the 
studied genetic material for the improvement of sorghum varieties in macro 
and micronutrients.   

Table 4. Mean comparison of grain mineral content (mg/100 g) in sorghum accessions based on variety 
type, grain colour (brown and white) and country of origin. Only farmer varieties were used for mean 
mineral content comparisons based on country of origin. 

Group Ca Mg K P S Zn Cu Fe Mn 

All 40 
accessions      

(P < 0.0001) 

15.4 163.9 436.9 343.8 149.4 2.97 0.5 4.1 2.1 

Level of genetic 
improvement  

                  

Improved variety 
(n=13) 

15.0a 179b 525b 387b 164b 2.7a 0.4a 3.9a 1.5a 

Farmer variety 
(n=27) 

15.6a 157a 395a 323a 142a 3.1b 0.5b 4.2a 2.3b 

Grain colour                   
Brown (n= 19) 17.9b 161.7a 446.7b 343.2a 138.5a 3.1a 0.5a 4.2a 2.2a 

White   (n=21) 13.1a 165.9a 428.1a 344.3a 159.2b 2.8a 0.5a 4.1a 2.0a 

Origin of 
farmer varieties 

                  

Malawi (n=7)  11a 153.9a 350.9a 294.8a 158.0b 2.8a 0.4a 3.9a 2.1a 

Tanzania (n=5) 20c 163.1a 453.2c 360.1b 134.8a 3.8b 0.5a 5,0b 2.1a 

Zambia(n=15)     16b 155.6a 395.6b 323.5a 137.3a 2.9a 0.5a 4.0a 2.5a 

Means with the same letters within a column and in each category do not differ significantly 
(Tukey Test at p ≤ 0.05). 
 

Pearson correlation of grain protein, starch, macro and micro nutrients 
and one thousand seed weight revealed a significant positive correlation 
between grain Fe and Zn, Zn and P, K and Mg, K and P, K and S, Mg and P, 
Mg and S, S and P (Table 5). Grain Ca, K, Mg, P, S and Zn showed negative 
correlations with thousand seed weight, r = -0.44, -0.56, -0.58, -0.52, -0.29 
and -0.32, respectively. The significant positive correlations between grain-
Fe and Zn also have been previously reported (Reddy Belum et al., 2005; 
Kayode et al., 2006b). The observed positive correlation between grain Fe 
and Zn content implies that there are possibilities of combining the selection 
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for both minerals in a single agronomic background. Protein exhibited a 
positive correlation with Fe, Zn, K, Mg, P and S. Total starch showed 
negative correlation with all the minerals studied except grain Na and 
thousand seed weight. The negative correlation between thousand seed 
weight and grain micronutrients such as Fe and Zn could be attributed to the 
dilution effect caused by enhanced grain starch content on mineral contents 
in larger seeds (Bänzinger & Long, 2000). In order to realize the desired 
impact of micronutrient-dense improved cultivars in human nutrition, the 
micronutrients must be delivered in sorghum varieties that also meet the 
farmer-preferred traits such as early maturity, grain size and colour.  

Table 5. Estimates of correlation coefficients between mineral elements and thousand seed weight. 

  TSW Protein Starch Fe Zn Ca K Mg Na P 

Protein -0.34**                   

Starch 0.52*** -0.41***                 

Fe -0.20ns 0.23* -0.28*               

Zn -0.32** 0.44*** -0.18 ns 0.46***             

Ca -0.44*** -0.13ns -0.19ns 0.12 ns 0.11 ns           

K -0.56*** 0.23* -0.39*** 0.12 ns 0.10 ns 0.39***         

Mg -0.58*** 0.51*** -0.45*** 0.11 ns 0.17 ns 0.14 ns 0.67***       

Na 0.34** -0.10 ns 0.39*** -0.10 ns -0.18 ns -0.06 ns -0.06 ns 0.03 ns     

P -0.52*** 0.38*** -0.40*** 0.13 ns 0.26* 0.15 ns 0.77*** 0.88*** -0.02 ns   

S -0.29** 0.49*** -0.38*** 0.01 ns 0.10 ns -0.15 ns 0.42*** 0.66*** 0.12 ns 0.53*** 

*, **, *** = Significant correlation at P < 0.05, 0.01, 0.001 (2 tailed); ns = non-significant 
 

4.4 Agromorphological trait variation in SADC 
sorghum accessions 

4.4.1 Qualitative characters 

A total of 17 sorghum accessions were used in the analyses. Of these 
accessions, 88% had non-juicy stalks and had white leaf midrib colour. Only 
two accessions, ZMB6731 and ZMB7016, exhibited juicy stalks and dull green 
leaf midrib colour. Wide variation among accessions was observed for shape 
and compactness of the inflorescence (Fig. 7). Twelve percent of the 
accessions (MW1798, ZMB7198), exhibited compact inflorescence. On the 
other extreme of the character states, two Mozambique accessions (MZ1537, 
MZ1553) had lax inflorescence, which was typical of wild sorghum. In 
between was TZ4148 with semi compact elliptic inflorescence. Other 
accessions exhibited inflorescence with semi loose drooping primary 
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branches (TZ3616, TZ3943, ZMB6731), half bloom corn (MZ1542, TZ3835, 
TZ3864), very loose erect primary branches (ZMB7016), very loose drooping 
primary branches (MW409, MZ1574), loose erect primary branches (MW1819) 
and loose drooping primary branches (MW1788, MW619). A wide distribution 
of character classes for inflorescence compactness and shape indicates the 
existence of different races and/or intermediate races. The domination of 
compact elliptic inflorescence types was reported among 45 sorghum 
accessions from the eastern highlands of Ethiopia (Geleta & Labuschagne, 
2005).  This perhaps explains the dominance of certain sorghum races in 
particular sub-regions of Africa. Kafir is the dominant race in southern 
Africa and occurs as a pure race and as intermediate hybrids mainly from 
crosses with race guinea (de Alencar Figueiredo et al., 2008). The race durra, 
characterized by a compact oval inflorescence, is a dominant race in the 
northeast Africa (Stemler et al., 1977; Doggett, 1988; Ayana & Bekele, 
1999). 
 

In the case of grain covering, 58% of the accessions had panicles with 
fully covered grains. TZ3943, MW1798, TZ4148 and ZMB7016 had 50% or 
more exposed grains. The rest of the accessions, representing 18%, exhibited 
three quarters of the grains covered. Sorghum accessions that exhibited full 
grain covering also showed little or no grain shattering, a trait associated 
with grain loss in the field following physiological maturity. This group 
includes all Mozambican accessions, three Malawian accessions, MW1788, 
MM409 and MW619 and three Tanzanian accessions, TZ3616, TZ3835, TZ3864. 
The dominant character states for grain covering were either full grain 
coverage or that the glumes protruded over the length of the grain. On the 
contrary, Geleta & Labuschagne (2005) reported that the distribution of 25% 
grain covering character was dominant in Ethiopian sorghum accessions. 
The pattern of the shattering character followed a similar pattern as that of 
grain covering.  
 

The distribution of grain colour among sorghum accessions was skewed 
with accessions with white grain (47%) dominating. Other accessions were 
yellow (12%), red (12%) brown (18%) and buff or yellow-brown (12%). All 
Mozambican accessions in the study had white grains. Two of the Malawian 
accessions had white grains and the other three showed yellow, brown and 
buff coloured grains. Ayana & Bekele (1998) reported dominance of both 
white and brown grained sorghum but that landraces with other grain 
colours were possible depending on the region within the country. Grain 
colour in sorghum is an important character as it relates to end use of a 
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particular variety. Human selection was reported as another important factor 
influencing the domination of certain landraces with particular grain colour 
(Ayana & Bekele, 1998). 

 
Figure 7. Genetic diversity in sorghum accessions based on inflorescence shape and  
exsertion. 1: bloom type; 2: semi compact with recurved pudencle; 3: upright semi  
compact; 4: upright narrow; 5: semi compact; 6: upright compact. 

4.4.2 Quantitative characters 

ANOVA of the quantitative characters revealed significant variation among 
sorghum accessions for all the traits analyzed (p ≤ 0.001; Table 6). Plant 
height ranged from 172.5 to 407 cm with an average of 307.4 cm. Sorghum 
accessions that exhibited dwarf characteristic included MW1798, MW409, 
ZMB7016 and ZMB7198 and accessions with tall plants were MW1819, MW619, 
MZ1537, MZ1553 and TZ3835.  Sorghum accessions exhibited a moderate 
range of 88-125 days to flowering. Tukey comparison of means of days to 
flowering, grouped sorghum accessions into three flowering groups namely 
early, medium and late flowering. Early flowering plants within accessions 
were observed in MW409, ZMB7198, TZ3943, ZMB7016 and MW619. 
Mozambican accessions, MZ1542, MZ1574, MZ1537 and Tanzanian accessions 
TZ3864, TZ3616, TZ3875 comparatively exhibited the longest vegetative 
growth stage. One Mozambican sorghum accession, MZ1574, exhibited the 
longest inflorescence (49 cm) and a Zambian accession, ZMB7198 had the 
shortest inflorescence (14.6 cm). Thousand seed weight, which is indicative 
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of seed size, ranged from 3 - 29 g with a mean of 18 g. MW619 had the 
highest thousand seed weight of all the accessions used.   

Table 6. Sorghum accessions used in the study, location of collection sites and average plant height, days 
to flower (DTF), thousand seed weight (TSW), inflorescence length (Infl. length), inflorescence width 
(Infl. width) data and analyzed ranges, means, standard errors of mean and coefficients of variation. 

Accession Country Nearest town Plant  

height  

DTF TSW Infl. 

 Length 

Infl.  

Width 

       (cm) (days) (g) (cm) (cm) 

MW1788 Malawi Msangu  332.3cd 109.2b 28b 44.3b 14.1a 

MW1798 Malawi Chitala 172.5h 91.2d 22d 21.1g 13.5ab 

MW1819 Malawi Mwalawanjuchi  405.0a 105.0bc 26c 36.0d 9.7f 

MW409 Malawi Therere 184.5gh 88.6d 27b 26.3f 13.0b 

MW619 Malawi Thyolo 357.5abcd 102.7c 29a 36.4d 11.0cd 

MZ1537 Mozambique Mogovolas 402.3a 119.4a 10i 41.5c 10.9cd 

MZ1542 Mozambique Murrupula 310.5de 124.6a 7k 35.6d 11.3cd 

MZ1553 Mozambique Malema 389.8ab 106.6bc 21e 36.7d 13.6ab 

MZ1574 Mozambique Alua 371.8abc 121.1a 11h 48.6a 9.8ef 

TZ3616 Tanzania Mtwara 323.0cd 122.1a 9j 37.6d 11.9c 

TZ3835 Tanzania Newala 396.3a 121.3a 3l 37.4d 10.4def 

TZ3864 Tanzania Nachingea 339.0bcd 124.9a 9ij 37.5d 11.2cd 

TZ3943 Tanzania Mugumu 255.8ef 89.1d 26c 17.1h 10.7de 

TZ4148 Tanzania Biharamulo 303.8de 106.7bc 16g 20.1g 8.2g 

ZMB6731 Zambia Lufwanyama 235.3fg 107.1bc 18f 19.9g 10.9cd 

ZMB7016 Zambia Chama 224.8fgh 89.4d 20e 30.4e 7.3g 

ZMB7198 Zambia Sesheke 216.3fgh 89.0d 21e 14.7h 7.3g 

Range     172-405 88-125 3-29 14.6-49 7.2-14.1 

Mean     307.4*** 106.9*** 18*** 31.8*** 10.9*** 

SE Mean     13.2 2.32 1.4 1.71 0.35 

CV     25.1 12.6 45.8 31.4 18.6 

Means with the same letters within a column (trait) do not differ significantly (Tukey Test at 
p ≤ 0.05; ***Significant at p ≤ 0.001 
 

Cluster and principal component analyses generated a dendrogram and a 
matrix plot, respectively, that separated Zambian sorghum accessions from 
other accessions used in the study (Fig. 8 & 9). The dendrogram had two 
main clusters, I and II (Fig. 8). Cluster I consisted of sorghum accessions 
from Malawi (MW1798), Tanzania (TZ4148, TZ3943) and all Zambian 
accessions (ZMB7198, ZM7016, ZMB6731; Fig.8).  Cluster II consisted of a 
larger group which included Tanzanian accessions (TZ3616, TZ3864, TZ3835), 
Malawi (MW409, MW619, MW1819, MW1788) and all Mozambican (MZ1542, 
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MZ1574, MZ1537, MZ1553) accessions. It is interesting to note that all the 
Zambian and Mozambican accessions were completely placed under 
different clusters. Dissimilarity exhibited between Mozambican and 
Zambian accessions were mainly attributed to differences in plant height, 
days to flowering and inflorescence length.  

 
The two clusters further generated four sub clusters A, B, C and D (Fig. 

8). Two Zambian accessions (ZMB7016, ZMB6731) formed a similarity sub-
cluster A. In sub-cluster B, two Tanzanian accessions (TZ3943, TZ4148) 
grouped with ZMB7198 and MW1798. In cluster II, MW409 was less similar to 
the rest of the accessions (Fig. 8). Seed exchange among farming 
communities especially along the common borders of the three countries 
may be one of the major factors contributing to the observed clustering 
pattern. Seed exchange among the local farmers was also reported as an 
important source of sorghum seeds for planting as the case for cucurbits in 
Zambia (Gwanama & Nichterlein, 1995). The possible reason for the 
dissimilarity between Mozambican and Zambian accessions could be that 
since Mozambican accessions were collected from the Nampula region, 
Malawi seems to provide a physical barrier to direct gene flow through seed 
exchange between farming communities of Mozambique in that region and 
Zambia. If there is traditional seed exchange between communities of the 
two countries, most probably the sorghum varieties from either Zambia or 
Mozambique are grown and subjected to farmer variety selection in Malawi 
before farming communities in either countries gain access to them. 

 
Principal component analysis of the quantitative data revealed that the 

first two principal components with eigenvalues > 1.0 and cumulatively 
accounted for 81.4% of the total variation (Table 7). The cumulative 
proportion of the variation reached 94.9% in the first three PC axes. The 
first PC axes has variance of 2.9 and accounted for 57.5% of the total 
variation while the second and third principal components account for 24% 
and 13.5% of the total variance, respectively. The variation in PC1 was 
positively associated with plant height, days to flowering, inflorescence 
length and width (Table 7). The second axis was positively and moderately 
associated days to flowering. A third principal component was moderately 
associated with 100 seed weight and inflorescence length.  Taking 
eigenvalues > 1 as significant and component loading greater than ± 0.30 as 
meaningful (Hair et al., 1998) and that a high coefficient for a trait indicates 
the relatedness of that trait to the respective PC (Sneath & Sokal, 1973), only 
the first two components were significant in this study. The high degree of 
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variation in the first two PC axes indicated a high degree of variation for 
these characters. 

Table 7. Proportion and cumulative variances and Eigen-vectors on five principal components (PC) based 
on quantitative traits. 

  PC1 PC2 PC3 PC4 PC5 

Eigenvalue 2.873 1.198 0.674 0.180 0.074 

Proportion 0.575 0.240 0.135 0.036 0.015 

Cumulative 0.575 0.814 0.949 0.985 1 

PH 0.502 -0.060 0.540 -0.617 0.268 

DTF 0.559 0.094 -0.262 -0.119 -0.772 

100SW -0.413 -0.487 0.548 -0.043 -0.538 

Infl. length 0.506 -0.296 0.292 0.747 0.116 

Infl. width 0.092 -0.814 -0.504 -0.214 0.170 

 
Figure 8. Manhattan distance and average linkage clustering of sorghum accessions          from 
four countries in southern Africa. 

 



 44 

 
Figure 9. A two-dimension plot of sorghum traits and accessions from Malawi (green), 

Mozambique (purple), Tanzania (red) and Zambia (blue). The traits used are days to flower 

(DTF), plant height (PH), inflorescence length (Infl. length), grain covering (Gr. Cov), 

inflorescence width (Infl. width), wax bloom (WB), inflorescence compactness and shape 

(ICS), grain plumpness (Gr. Plu), hundred seed weight (100SW), shattering (Shatter), glume 

colour (Gl. Col), grain colour (Gr. Col), leaf midrib colour (LMC), stalk juiciness (SJ) and 

inflorescence exsertion (Infl. exs). 

The plot pattern of ZMB6731, ZMB7016 and ZMB7198 in the two-
dimension plot (Fig. 9), is explained by similarity of these accessions for 
grain shattering, inflorescence exsertion, glume colour, grain colour and 
stalk juiciness. Typically, the observed variation among sorghum accessions 
was mainly as a result of the high loading for plant height, days to flower 
and inflorescence length. In addition to the three characters identified in this 
study, Bucheyeki et al. (2009) also reported high loading of grain number 
per panicle, weight of five panicles and inflorescence width. The differences 
in number of characters with high loading could be attributed to differences 
in sample size used in the studies.   
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5 Conclusions 

1. The close phylogenetic relationship between S. macrospermum and S. 
laxiflorum suggest their merger into one taxonomic section. 
 

2. The S. macrospermum and S. laxiflorum showed more close relationship 
with Eu-sorghum species than to any other Australian wild Sorghum 
species and hence provide opportunities of their utilization for 
improvement of cultivated sorghum varieties. 
 

3. S. almum is more closely related to S. bicolor than to S. halepense, one of 
its known parents. As the chloroplast DNA is maternally inherited, S. 
bicolor is the most probable maternal parent of S. almum. 
 

4. The S. bicolor accessions from southern Africa form a distinct, well-
supported clade separated from the accession originally from Yemen, 
indicating the geographical divergence of cultivated sorghum due to 
separation of the two sorghum gene pools probably in the early stage of 
the domestication of the crop. 
 

5. A significant genetic diversity exists in the sorghum accessions from 
Malawi, Mozambique, Tanzania and Zambia. Sorghum accessions that 
exhibited high gene diversity and those that represent different 
clusters/sub-clusters should be prioritized for core collection irrespective 
of their geographic origin and would be useful for breeding and 
conservation. 
 

6. A significant variation among the sorghum varieties from southern Africa 
was evident for total protein, starch, macro- and micronutrients. 
Superior sorghum accessions have a potential of contributing the best 
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starting genetic material for breeding improved varieties for desirable 
levels of micronutrient. 
 

7. The significant positive correlation between protein and micronutrients 
exhibited by sorghum accessions suggest that the possibility of 
simultaneous increased content of two or more nutrients delivered in a 
single popular cultivar.  
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6 Recommendations and future 
prospects 

1. Success in breeding is dependent on the availability of sufficient genetic 
variation in the original genetic material. The phylogenetic study has 
revealed that S. laxiflorum and S. macrospermum, wild Sorghum species 
from the tertiary genepool, are closely related with S. bicolor.  The close 
relationships exhibited by cultivated sorghum with S. macrospermum and 
S. laxiflorum provide useful information for possible exploitation of these 
wild genetic resources for useful traits such as pest and disease resistance 
that affect production of cultivated sorghum. In order to tap into this 
potential genetic resource, it is recommended that further studies on 
crossability and hybridization of these species with S. bicolor are 
undertaken. 
 

2. This study assessed the level and pattern of genetic diversity in cultivated 
sorghum from four countries in southern Africa, generating information 
of importance for conservation and breeding. A significant variation 
between sorghum accessions and their genetic differentiation based on 
agroecological regions and ethnicity has implication for its conservation 
and sustainable utilization. Given that financial resources for plant genetic 
resources are limited at both national and regional levels, when 
prioritizing accessions for conservation, there is need to conserve as 
broad the diversity as possible from all agroecological regions taking into 
account unique genetic variants. Consideration should be given to 
representative sorghum accessions of different clusters and sub-clusters, 
agroecological regions and ethnic background of the genetic resources. 
 

3. A significant variation among the sorghum varieties was evident for both 
macro- and micronutrients. Identification of sorghum accessions that 
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have a potential of attaining desirable levels of macro and micronutrients 
from southern African countries is promising. Improved sorghum 
varieties ELT-1-17, MMSH-1040, MMSH-1257 and MMSH-1324 were 
more superior for grain macronutrient contents than farmer varieties and 
ranked highly for grain K, Mg, S and P contents. Farmer varieties, 
ZMB5788, MW734 and TZ4255 showed superiority for grain Fe content 
while TZ4031, TZ3966 and ZMB7111 were high in grain Zn content. 
Superior sorghum accessions identified in this study should further be 
studied both under the same and different environmental conditions in 
multiple locations. This is necessary not only for the evaluation of the 
heritability of the traits and the maximum potential of the accessions but 
also to determine suitable environmental conditions under which these 
desirable levels can be attained taking into account farmers’ preferred 
varieties for delivery of, for example, high grain-Fe, Zn and protein 
contents.  
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