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Summary 

The advantage of using near infrared spectroscopy to increase sample point density in 
farm soil mapping relies on the number of conventional laboratory analyses for the 
calibrations being kept to a minimum. The objectives with the present study was to 
compare the performance of small farm scale calibrations (25 samples) to a larger 
national soil library (396 samples) and to test if a site specific sample set selected from 
the national library, consisting of the 50 samples spectrally most similar to those of the 
local sites could increase performance. In addition the national library and the selected 
subsets were augmented with up to the 25 local calibration samples to test whether that 
would have any additional effect on prediction errors and bias. Calibrations were made 
for predicting within-field variation in clay, silt, sand, soil organic carbon, pH and 
phosphorus. Selecting a subset of samples from the national library did not improve the 
results compared to using the entire national library. However, spiking both libraries with 
local samples reduced the RMSEP considerably, mainly due to a decrease in bias and 
often resulted in comparable results to the local calibrations. There was a tendency for 
better clay and SOC predictions when spiking a reduced national library compared to 
spiking the entire national library, sometimes even resulting in better predictions than 
using the local calibrations. However, using local calibrations seems to be the best 
alternative for predictions of soil parameters at the farm or filed scale, even with as few 
samples as 25. 

Introduction 

Use of diffuse near infrared (NIR) spectroscopy has attracted interest among soil 
scientists, and has been proposed as a possible method for soil characterisation at an 
increased spatial resolution compared with that possible with conventional laboratory 
analysis. Apart from taking conventional soil samples, the technique also allows for 
development of in-field measurements (Christy, 2008; Maleki et al., 2008). In precision 
agriculture, e.g. for variable rate fertiliser application or liming, cost-effective strategies 
for reliable soil information at a high spatial resolution are highly desirable. Several 
studies have shown the possibility to predict a number of soil properties important for 
decision support in crop production, e.g. soil texture, soil organic C (SOC), pH and 
phosphorus (e.g. Chang et al., 2001; McCarty & Reeves, 2006; Viscarra Rossel et al., 
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2006). To take full advantage of the technique, the number of calibrations or reference 
samples needs to be kept to a minimum. Large national, regional or global calibrations 
would be favourable in that respect, but the overall variation or the geographical scale for 
which calibrations are representative clearly influences their absolute precision (Sudduth 
& Hummel, 1996). This will be especially evident when predicting the variation at a 
smaller scale (Brown, 2007). For assessing within field variation, calibrations based on 
smaller or more similar areas have resulted in better predictions for a number of soil 
properties (Sankey et al., 2008). In particular, soil properties indirectly estimated due to 
correlations to other more spectrally active properties could be difficult to predict with 
large calibration models, because of the likely site-specific nature of those correlations 
(Reeves et al., 1999). Important soil properties for farmers such as plant-available 
nutrients and pH are some examples and published prediction results for these properties 
are typically very variable. In the visible region soil organic matter has broad absorption 
bands due to its darkness, resulting in a steeper slope in the transition over to the NIR 
region in highly organic soils (Baumgardner et al., 1985). However, mineralogy and 
texture may also have a similar influence on colour (Hummel et al,. 2001) while iron rich 
minerals show more specific features (Clark, 1999). In the NIR region several bands are 
assigned to organic matter absorption. Bands near 1730, 1760, 2050 and 2300-2350 nm 
are among the more prominent (Stenberg, 2010). The strongest features in the NIR region 
can be assigned to clay minerals mostly due to OH, metal-OH, H2O and CO3 overtones 
and combinations. For example kaolinite absorbs characteristically at doublets near 2200 
and 1400 nm. Illite and montmorillonite has single bands near 1400 and 2200 nm, and in 
addition near 1900 nm. Illite has weaker bands also near 2300 and 2400 nm (Clark, 
1999). Mineral salts and proton activity (pH) on the other hand are not expected to absorb 
in the visNIR. It must be assumed that these parameters are estimated through co-
variations of visNIR to organics and minerals, which is reasonable for example by 
regulating the pH buffer capacity or the fertility influencing the removal of nutrients with 
the harvest. It is obvious that co-variations like these are easily disturbed by farmers 
practice like liming and fertilization, but perhaps less so at the field scale with uniform 
management (Stenberg at al., 2010).  
 
In the majority of the field-scale NIR calibrations presented in earlier studies, substantial 
numbers of samples, often amounting to hundreds, were included in the calibrations and 
could correspond to more than five samples per ha (e.g. McCarty & Reeves, 2006; 
Viscarra Rossel et al., 2006; He et al., 2007). Compared with the conventional sample 
point density in farm soil mapping in Sweden of between 0.3 and 1 samples per ha, the 
advantage of using NIR spectroscopy is lost when that many reference samples are used. 
However, reducing the number of calibration samples could result in less reliable 
calibrations. Shepherd & Walsh (2002) found a rapid decrease in predictability with less 
than 100-200 calibration samples from a soil sample library containing soils from several 
countries in eastern and southern Africa. However, a farm-scale calibration in Sweden 
with as few as 25 calibration samples resulted in satisfactory predictions comparable to 
other studies for clay and soil organic matter content, to some extent for sand, but not so 
good for pH and available P (Wetterlind et al., 2008; Wetterlind et al., 2010). Especially 
pH and P gained from using 80-90 samples in the calibrations instead of only 25, which 
was explained by less robust calibrations due to their indirect nature.  
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Combining global and local samples by adding a few local ones to a more general soil 
library and recalibrating (here referred to as spiking) was proposed by Brown (2007) as 
another way to reduce the number of local samples while obtaining reliable predictions. 
In a study on a second-order Uganda watershed (~600 ha in size), he found that spiking a 
global library consisting of over 4000 soil samples from Africa, Asia, Europe, and 
America (with the vast majority from USA) by adding 10 to 206 or 418 local samples 
reduced prediction errors and often resulted in better predictions than using only local 
calibrations (about 206 or 418 samples). Sankey et al. (2008) also reported improved 
prediction results for clay content, organic and inorganic C using the same global 
calibration set spiked with local samples (52-234 samples) from three highly variable 
landscape study sites (~10-30 000 ha) in Montana, USA, compared with using the global 
or local calibrations alone.  
 
Larger bias often arises when applying calibrations to soils with a different soil type than 
those in the calibration (e.g. Reeves et al., 1999). One possible way of reducing this 
effect when using a large soil library could be to exclude soils with a different soil type 
from the soil of interest in the calibrations. For example, a so-called LOCAL algorithm 
first presented by Shenk et al. (1997) for predictions of haylage and maize grain selected 
the spectrally most similar samples for each unknown sample and computed sample-
specific calibrations. Chang et al. (2001) used a similar approach for predictions of 
several soil properties in over 700 USA soils. However, to our knowledge there are no 
previous studies combining samples of local calibration sets (“spiking”) with a selection 
of spectrally similar samples of a national calibration set, nor spiking wider spectral 
libraries with local samples at the farm scale. 
 
In the present study we focus on the farm scale, which is small (~100 ha) compared to 
those mentioned above and presumably much more homogenous. At least they are 
limited to agricultural soils. The objectives was to test i) if as few as 25 calibration 
samples at the farm scale (Wetterlind et al., 2010) perform better than calibrations based 
on a larger national calibration set that we know produce stable calibrations for Clay and 
SOC (Stenberg, 2010), ii) if a site specific set selected from the national library, 
consisting of the 50 samples spectrally most similar to those of the local sites increase 
performance or reduce bias, and iii) if spiking the national library and the reduced 
national sets with up to the 25 local calibration samples would have any additional effect 
on prediction errors and bias. The calibrations were made for predicting within-field 
variation in clay, silt, sand, SOC, pH and ammonium acetate lactate-extractable 
phosphorus (P-AL). 

Materials and methods 

National library 
The national soil library consisted of 396 samples representative of Swedish agricultural 
land collected between 1988 and 1995 (Fig. 1). Six to 20 subsamples from the topsoil (0-
20 cm) representing an area of 10-20 m2 were bulked to form a composite sample. Before 
further analyses, all samples were dried at 25-30 °C, crushed and passed through a 2 mm 
sieve (Eriksson et al., 1997). Soil organic carbon (SOC) was analysed on finely ground  
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Fig. 1. The location of the local and national sample 
sets. 

soil using a LECO CNS 700 elemental 
analyser. Soil texture was analysed by the 
sedimentation/pipette method according to 
Gee & Bauder (1986) and divided into clay 
< 0.002 mm, silt 0.002-0.06 mm and sand 
0.06-2 mm. The pH was measured in 
deionised water at a soil:water volume ratio 
of 1:5 (SS-ISO 10 390) and ammonium 
acetate lactate-extractable phosphorus (P-
AL) was analysed according to Egnér et al. 
(1960) (SS-02 83 10).  

Local library 
Four farms in the south of Sweden, 
representing three of the main agricultural 
areas, were used to create local farm-scale 
soil libraries (Fig. 1). The studied areas 
were on adjacent fields with a total area of 
97 hectares at the farm Hacksta (59°33´N, 
17°02´E), 78 hectares at the farm Sjöstorp 
(55°41´N, 13°19´E), 69 hectares at the 
farm Bränneberg (58°20´N, 13°4´E) and 62 
hectares at the farm Kärrtorp (58°21´N, 
13°36´E).  
 

The soil sampling took place in autumn between the years 2005 and 2007. To guide 
sampling to cover as much of the general soil variation as possible soil electrical 
conductivity (ECa) was recorded prior to sampling (Wetterlin et al., 2010) with an EM38 
(Geonics Ltd., Mississauga, Ontario, Canada). The conductivity measurements were 
carried out along transects parallel to the tramlines 10 m apart at Hacksta and Kärrtorp 
and 24 m apart at Bränneberg and Sjöstorp at a speed of about 15 km/h. Twenty-five soil 
samples at each farm were targeted according to the ECa results. The targeting strategy 
involved selecting sampling sites based on the degree of variation in interpolated ECa 
maps and is described in more detail in Wetterlind et al. (2010). Ten or 20 subsamples 
from the 0-20 cm soil layer within a radius of about 6 m were bulked to form a composite 
sample. Before all analyses the soil was air-dried and crushed to pass a 2 mm sieve. The 
chemical analyses for pH and P-AL were the same as for the national soil samples. The 
same particle size classes as for the national samples were used for defining the clay, silt 
and sand fractions, but the analytical methods differed to some extent. The clay content 
was analysed using a sedimentation method modified from Gee & Bauder (1986), the 
sand fraction was determined by sieving and the silt fraction was determined by 
difference. Soil organic carbon content was analysed through dry combustion at 900 °C 
with a Vario MAX analyzer (Elementar, Analysensysteme GmbH, Hanau, Germany). 
 
Besides the 25 calibration samples, between 81 and 112 additional soil samples per farm, 
analysed as described above, were used as validation samples. 
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VisNIR measurements 
Spectra were determined using a FieldSpec Pro FR scanning instrument (Analytical 
Spectral Devices Inc., Boulder, CO, USA, www.asdi.com). The instrument was equipped 
with a bare optic fibre connected to a probe with a 20W Al-coated halogen tungsten light 
source placed 7 cm over the sample, resulting in a field of view of ~7.5 cm2. Reflectance 
spectra were recorded in relation to an external white reference (Spectralon) and each soil 
sample spectrum comprised 100 averaged spectra collected from a rotating sample. The 
resulting total area analysed was about 50 cm2. The spectral range covered both the 
visible and the near infrared regions (VisNIR), 350-2500 nm, sampled at 1.4-2 nm 
intervals with a spectral resolution of 3-10 nm. A wavelength interval of 1 nm was 
interpolated to the instrument output file, resulting in spectra consisting of 1 data point 
every nm. 

Reduced national library 
In order to take advantage of the large national library but at the same time use the 
samples that resembled the different farms most closely, one subset consisting of the 50 
samples spectrally most similar to each farm was selected from the national library. The 
assumption was that similar VisNIR spectra indicate similar soil properties. In practice 
the similarity was estimated from PCA scores. The selection was initialised by a principal 
component analysis (PCA) on the national library with Unscrambler 9.7 (CAMO 
PROCESS AS, Oslo, Norway). Using this PCA model, scores for the four farms (both 
calibration and validation samples) were calculated with the passive projection function 
in Unscrambler 9.8. That is, the local samples did not influence the national library PCA, 
but their scores were predicted by the national PCA model from the local samples visNIR 
spectra. The similarity between scores from the first six principal components (PCs) for 
all samples in the national library and the predicted scores for each of the four farms were 
estimated in Scilab 5.0.3 (www.scilab.org). The algorithm calculated the mean and 
standard deviation in multivariate space for each farm and the 50 national samples closest 
to the means were selected. This was done for the highest number of PCs where at least 
30 of the 50 samples were within a distance of two standard deviations from the mean, 
never using less than two PCs. 

Calibrations 
All VisNIR data and statistics analyses were carried out using the Unscrambler 9.7. The 
recorded VisNIR spectra were transformed to apparent absorbance by log(1/reflectance) 
and each spectrum was transformed by first-order derivative and smoothed by a second 
order polynomial in segments of 21-points (Savitzky & Golay, 1964). The shortest 
wavelengths were excluded due to excessive noise and the calibrations were made on the 
460-2490 nm wavelengths. Removing the 1900 nm water peak (1840-1941 nm) improved 
the calibration results and was therefore applied for all calibrations. 
 
Calibration models were established for clay, silt, sand and SOC content, pH and P-AL 
using partial least squares (PLS) regression (Martens & Naes, 1989). Calibrations were 
made for the four local libraries, the national library and the four reduced national 
libraries. In addition, the national and the reduced national libraries were spiked by 
augmenting 5, 10, 15, 20 and all 25 samples from the local library and recalibrated. The 
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samples were included in the same order as they were selected according to their ECa 
value (se Local library), which, because of the selection method used, meant that most of 
the range in ECa values was already included in the first samples. Cross-validation with 
25 randomly selected segments was used to determine the optimum number of PLS 
factors included in the calibrations by minimization of the RMSECV.  
 
The calibration models were validated at each farm using 81 (Sjöstorp), 94 (Bränneberg), 
103 (Kärrtorp) and 112 (Hacksta) independent validation samples. The validations were 
evaluated by the R2 value of the relationship between the VisNIR estimate of the soil 
property and the reference measurement, the root mean squared error of prediction 
(RMSEP) and bias-corrected SEP. The relationships between RMSEP, SEP and bias are 
presented in equations 1-3: 
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where ŷ is the predicted value and y is the measured value for sample i, with n number of 
samples. 
 
The ratio of performance to deviation (RPD) was calculated mainly for comparison of 
calibration performance between parameters. It was calculated as the standard deviation 
(s.d.) of the validation set divided by the RMSEP (Williams, 1987). The RPD is 
commonly used for relating the prediction error to the variation in the data and a handful 
of attempts have been made to define a good prediction of soil parameters. For example 
Chang et al. (2001) divides prediction results into three classes with i) good predictions 
as RPD>2.0 and R2>0.8; ii) predictions with potential as RPD ~1.4-2.0 and R2 of 0.50-
0.80; and iii) unreliable predictions as RPD<1.4 and R2<0.5. This may serve as a 
guideline, but it is always important not to look too exclusively at a single measurement. 
Whether the prediction errors are sufficiently low for practical use has to be determined 
in each situation. 

Results 

Descriptive statistics on the soil properties for the different calibration and validation sets 
of the samples conventionally analysed in the laboratory are shown in Table 1. 
Bränneberg and Hacksta have soils that are rather typical for the agricultural plains of 
Sweden, with higher clay content than the sandy soils of Kärrtorp and Sjöstorp. A 
boundary between two different types of glacial till soil divided Sjöstorp into one 60 ha 
part with clay till and one 18 ha part with sandy till. The lowest variation in soil texture 
and SOC were found at Bränneberg, whereas Kärrtorp for example varied greatly in 
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Table 1. Results from conventional laboratory analysis of soil properties for the different 
calibration and validation sets 
 
    Bränneberg  Hacksta  Kärrtorp  Sjöstorp 
  National  Local RNa Valb  Local RN Val  Local RN Val  Local RN Val 
Clay/% 
 nc 396  25 50 61  25 50 112  24 50 65  25 50 81 
 min. 0  41 4 37  22 16 25  20 0 11  12 4 12 
 max. 75  59 71 58  62 71 66  34 24 34  48 64 52 
 mean 26  46 32 45  49 44 46  28 7 28  27 27 24 
 s.d.d 20  4 17 5  8 13 8  4 5 5  11 13 9 
Silt/% 
 n 396  25 50 61  25 50 112  24 50 65  25 50 81 
 min. 2  36 19 36  28 17 25  26 8 17  19 14 13 
 max. 79  51 72 56  49 58 58  48 68 43  38 65 38 
 mean 36  46 42 48  38 39 39  35 29 33  27 35 29 
 s.d. 16  5 13 5  6 9 6  6 14 4  4 10 4 
Sand/% 
 n 396  25 50 61  25 50 112  24 50 65  25 50 81 
 min. 1  4 3 4  2 1 2  22 24 27  14 3 12 
 max. 98  17 70 16  47 54 43  54 91 72  65 82 73 
 mean 38  7 26 7  13 17 15  37 65 40  46 38 47 
 s.d. 26  3 17 2  10 12 9  8 16 7  14 18 12 
SOC/% 
 n 396  25 50 58  25 50 112  24 50 65  25 50 81 
 min. 0.4  1.7 0.8 1.8  1.4 0.9 1.3  3.4 0.7 3.1  1.3 0.9 1.2 
 max. 6.9  2.8 6.2 2.8  4.1 5.5 4.5  9.3 6.9 8.2  3.3 6.2 3.4 
 mean 3.0  2.4 2.9 2.3  2.4 2.3 2.3  4.9 3.7 4.2  1.9 2.2 1.8 
 s.d. 1.6  0.3 1.3 0.2  0.6 1.1 0.6  1.7 1.6 0.8  0.5 1.1 0.4 
pH 
 n 396  25 50 94  25 50 112  24 50 103  25 50 81 
 min. 4.7  6.5 5.3 6.4  6.4 5.5 5.9  5.6 4.9 5.5  6.3 5.4 6.1 
 max. 8.7  7.0 8.1 7.1  6.8 7.9 7.6  6.8 7.7 7.1  7.8 8.1 7.8 
 mean 6.4  6.8 6.3 6.9  6.6 6.5 6.6  6.2 6.2 6.5  6.9 6.6 6.9 
 s.d. 0.7  0.1 0.6 0.1  0.1 0.6 0.2  0.3 0.7 0.3  0.4 0.6 0.4 
P-AL/mg 100g-1 
 n 389  25 50 94  25 49 112  24 50 103  25 50 81 
 min. 1.8  1.1 1.8 1.3  2.3 2.2 2.1  1.8 2.4 1.2  5.3 1.9 3.5 
 max. 29  19 25 6.8  21 29 43  10 26 26  24 25 30 
 mean 9.8  3.8 8.0 3.3  7.5 9.5 8.8  4.0 11 4.4  12 9.5 10 
 s.d. 6.0   3.3 5.2 1.1   4.5 6.7 6.6   1.9 5.6 3.6   5.3 6.3 5.6 

a Reduced national calibration set 
b Validation set 
c Number of samples 
d Standard deviation 

 
SOC. The highest SOC content was found at Kärrtorp, with higher SOC content in some 
of the validation samples than could be found in the national library. One of the 25 local 
calibration samples at Kärrtorp was identified as an outlier and excluded from further  
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Fig. 2. Score plots for the two first principal components in a principal component analysis (PCA) for the 
national data set, reduced national data set and 25 projected local samples at a) Bränneberg, b) Hacksta, c) 
Kärrtorp and d) Sjöstorp. 
 
analyses due to its very high SOC content. For phosphorus, only seven of the 396 
national samples had P-AL content over 30 mg 100g-1 and these were not included in the 
P-AL calibrations. At Hacksta, the 50 reduced national calibration samples included one 
sample with a P-AL content over 30 mg 100g-1 which was excluded from the P-AL 
calibrations. Notably, some of the validation samples at Hacksta hade P-AL of over 30 
mg 100 g-1 but were kept in the validation. The local libraries covered the range of the 
validation samples for most of the soil properties at the four farms. Exceptions were pH, 
the highest P-AL values at Hacksta and the lowest clay and silt and highest sand and P-
AL values at Kärrtorp. 
 
The differences in overall soil variation at the four farms according to their VisNIR 
spectra can be seen in Fig. 2, which shows the score plots for the first two principal 
components (PC) for the 25 local samples together with the national library and the 
reduced national data set for the different farms. While three of the farms were projected 
well within the sample space of the national samples, only a few samples from Kärrtorp 
overlapped the national samples in the first two PCs. It is also noticeable that the 
relatively small farm sites are distributed over a large proportion of the scores of the 
national library, especially for the diverse Sjöstorp site, but also for the homogenous 
Bränneberg site. Due to the relatively small number of national samples, only two or 
three PCs were used in the selection of the four reduced national libraries (two at 
Kärrtorp and Bränneberg and three at Hacksta and Sjöstorp). The variation in the national  
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Fig. 3. Bränneberg: Prediction results for the local, national, spiked national, reduced national and spiked 
reduced national calibrations. 
 
library was explained to 77% by two PCs and to 87% by three. Two PCs explained 80% 
of the variation at Kärrtorp, but only 52% of the variation at Bränneberg. At Hacksta and 
Sjöstorp, three PCs explained 85% and 90% of the variation, respectively. The 
distribution in the different soil parameters in the reduced national libraries resembled 
best to the corresponding local sample set at Hacksta and second best at Sjöstorp (Table 
1).  

Local calibrations  
Prediction results for all four farms are shown in Figs. 3-10 and Tables 2-5. As could be 
expected, clay and SOC content were generally best predicted. At Hacksta and Sjöstorp, 
sand was also predicted with high R2 values and low RMSEP values (Figs. 4 and 6). P-
AL was best predicted at Sjöstorp, with R2 values of about 0.6. However, RMSEP values 
were high compared with the standard deviation (RPD = 1.2). The best predictions of pH 
were also found for Sjöstorp, with R2 values of 0.7 and RPD values of 1.6 at best.  
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Fig. 4. Hacksta: Prediction results for the local, national, spiked national, reduced national and spiked 
reduced national calibrations 
 
The predictions for silt at Bränneberg were almost as good as for clay, at least for the 
local calibration and for the spiked reduced national calibrations. The VisNIR 
calibrations failed to predict silt at the other farms. 

Local versus national calibrations 
In general, the lowest RMSEP values were obtained using the local calibrations. The 
national or reduced national calibrations without local samples did not manage to predict 
the within-field variation with lower RMSEP values than the local calibrations at any 
farm. However, calibrations on national or reduced national libraries spiked with local 
samples often reduced the RMSEP values to the same level as the local calibrations or, 
mainly in the case of clay and SOC, to an even lower level. The lower RMSEP values 
obtained when local samples were included in the national and reduced national 
calibrations were mainly due to a reduction in bias, as can be seen in Figs. 3-6 and 7-10 
respectively. 
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Fig. 5. Kärrtorp: Prediction results for the local, national, spiked national, reduced national and spiked 
reduced national calibrations 

National versus reduced national calibrations 
At Hacksta, using the spiked reduced national library resulted in better predictions than 
the spiked national library for clay, silt, sand and SOC content (Fig. 4), with  higher R2 
values and lower RMSEP values. The predictions for clay content were also improved at 
Kärrtorp and to some extent at Sjöstorp when using the spiked reduced national 
calibrations (Figs. 5 and 6, Tables 4 and 5). At Sjöstorp there was also some 
improvement in prediction results for SOC content. At Kärrtorp, the corresponding 
predictions for pH resulted in lower RMSEP values compared with using the entire 
spiked national library. However, in this case the R2 values were not improved. At 
Bränneberg the predictions for silt were the only values that improved when the spiked 
national library was used (Fig. 3). 

Discussion 
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Fig. 6. Sjöstorp: Prediction results for the local, national, spiked national, reduced national and spiked 
reduced national calibrations. 

 
The best predictions were generally achieved for clay and SOC, which are also soil 
properties that are commonly well predicted with NIR spectroscopy (Chang et al., 2001; 
Shepherd & Walsh, 2002; Sørensen & Dalsgaard, 2005; Viscarra Rossel et al., 2006). Of 
the three textural classes, clay was best predicted, followed by varying results for sand 
and no good predictions for silt. This order of accuracy of prediction is common in 
studies including all three textural classes, although better predictions are sometimes 
obtained for sand and silt than those presented in this study (Malley et al., 2000; Islam et 
al., 2003; Moron & Cozzolino, 2003; McCarty & Reeves, 2006). As expected clay is 
better predicted due to the spectral signatures of the clay minerals typically dominating 
the NIR-spectra (Stenberg et al., 2010). The sand fractions mainly consist of quartz and 
feldspars which are relatively featureless and have a high reflectance in the visNIR (Hunt 
& Salisbury, 1970). Sand can therefore be assumed to be predicted mainly as a mirror 
image of clay. The silt fraction can be assumed to be a mixture of sand and clay minerals 
and is therefore difficult to distinguish in the visNIR.  
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Table 2. Bränneberg: Prediction results for the independent validation samples using local, national, spiked 
national, reduced national and spiked reduced national calibrations 
 
  Local  National  Reduced national 
    +0 +5 +10 +15 +20 +25  +0 +5 +10 +15 +20 +25 
Clay/% 
 PCa 3  7 7 7 7 7 7  6 6 6 6 6 6 
 R2 0.61  0.74 0.74 0.74 0.74 0.74 0.74  0.63 0.65 0.67 0.67 0.67 0.68 
 RMSEPb 3.5  10.1 7.9 5.2 4.1 3.1 3.5  5.9 5.5 4.1 3.9 3.9 3.9 
 SEPc 3.2  3.5 3.6 3.5 3.5 3.5 3.5  4.5 4.4 4.0 3.9 3.8 3.7 
 Bias 1.5  -9.4 -7.1 -3.9 -2.1 -0.6 0.1  -3.8 -3.4 -0.9 0.0 0.7 1.2 
 RPDd 1.3  0.5 0.6 0.9 1.2 1.5 1.4  1.0 1.1 1.5 1.5 1.6 1.5 
Silt/% 
 PC 3  10 10 10 10 10 10  2 2 9 7 9 9 
 R2 0.62  0.38 0.35 0.37 0.00 0.39 0.40  0.44 0.45 0.61 0.49 0.54 0.63 
 RMSEP 3.2  17 6.1 5.1 5.2 5.3 4.7  11 9.1 2.9 3.3 3.1 2.8 
 SEP 3.0  3.6 3.7 3.6 3.6 3.6 3.6  3.5 3.5 2.9 3.3 3.1 2.8 
 Bias -1.1  -17 -4.9 -3.6 -3.8 -3.9 -3.1  -10 -8.4 -0.2 0.1 -0.5 -0.3 
 RPD 1.4  0.3 0.7 0.9 0.9 0.9 1.0  0.4 0.5 1.6 1.4 1.5 1.6 
Sand/% 
 PC 10  8 8 10 9 9 9  10 9 11 9 9 9 
 R2 0.30  0.07 0.08 0.10 0.06 0.06 0.07  0.11 0.09 0.15 0.10 0.10 0.11 
 RMSEP 2.6  22.5 13.1 4.9 5.1 5.1 5.2  17.0 6.0 4.5 4.9 5.0 4.9 
 SEP 1.9  4.8 4.7 4.7 5.0 5.1 5.0  5.9 6.0 4.5 4.7 4.6 4.2 
 Bias -1.8  22.0 12.2 1.6 1.0 0.8 1.3  15.9 1.2 -0.4 -1.4 -2.0 -2.6 
 RPD 0.8  0.1 0.2 0.4 0.4 0.4 0.4  0.1 0.4 0.5 0.5 0.4 0.4 
SOC/% 
 PC 3  8 8 8 8 8 8  10 10 11 11 11 11 
 R2 0.70  0.70 0.70 0.71 0.71 0.72 0.72  0.37 0.44 0.50 0.53 0.54 0.58 
 RMSEP 0.12  0.72 0.59 0.46 0.35 0.25 0.19  0.48 0.25 0.23 0.22 0.22 0.22 
 SEP 0.11  0.12 0.12 0.12 0.12 0.11 0.11  0.27 0.24 0.21 0.20 0.20 0.18 
 Bias 0.03  -0.71 -0.58 0.12 -0.33 -0.22 -0.15  -0.39 0.07 0.11 0.10 0.10 0.12 
 RPD 1.9  0.3 0.4 0.5 0.6 0.9 1.1  0.5 0.9 0.9 1.0 1.0 1.0 
pH 
 PC 3  15 15 16 14 15 15  1 1 2 16 2 18 
 R2 0.49  0.45 0.45 0.37 0.52 0.47 0.47  0.05 0.20 0.40 0.23 0.30 0.27 
 RMSEP 0.10  0.25 0.14 0.16 0.11 0.15 0.12  0.46 0.37 0.15 0.20 0.12 0.22 
 SEP 0.10  0.11 0.11 0.12 0.10 0.11 0.11  0.13 0.12 0.10 0.20 0.11 0.18 
 Bias -0.03  0.23 0.09 0.10 0.04 0.11 0.06  -0.44 -0.35 -0.11 0.04 -0.04 0.12 
 RPD 1.33  0.53 0.97 0.86 1.28 0.90 1.13  0.29 0.36 0.89 0.68 1.12 0.62 
P-AL/mg 100g-1 
 PC 8  10 8 7 7 7 8  1 1 1 1 1 1 
 R2 0.05  0.02 0.05 0.08 0.09 0.10 0.06  0.02 0.02 0.02 0.04 0.03 0.04 
 RMSEP 1.8  11 2.5 1.8 1.2 1.4 1.1  4.6 3.7 3.2 2.7 2.7 2.4 
 SEP 1.7  1.2 1.1 1.1 1.1 1.1 1.1  1.2 1.2 1.2 1.2 1.2 1.2 
 Bias 0.4  11 2.2 1.5 0.6 0.9 0.2  4.4 3.5 3.0 2.4 2.4 2.0 
 RPD 1.0  0.2 0.7 1.0 1.4 1.3 1.6  0.4 0.5 0.6 0.7 0.7 0.8 

a Number of PLS components used. 
b Root-mean-squared error of prediction. 
c Bias-corrected squared error of prediction. 
d Ratio of performance to deviation (standard deviation divided by RMSEP). 
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Table 3. Hacksta: Prediction results for the independent validation samples using local, national, spiked 
national, reduced national and spiked reduced national calibrations 
 
  Local  National  Reduced national 
    +0 +5 +10 +15 +20 +25  +0 +5 +10 +15 +20 +25 
Clay/% 
 PCa 8  7 7 6 7 6 7  10 10 10 10 10 10 
 R2 0.82  0.67 0.68 0.69 0.68 0.70 0.69  0.83 0.87 0.87 0.87 0.86 0.86 
 RMSEPb 3.7  7.7 7.3 7.7 6.3 6.9 5.4  9.8 4.8 3.3 3.3 3.3 3.3 
 SEPc 3.7  5.1 5.0 5.0 5.0 4.9 4.9  5.3 4.2 3.3 3.2 3.3 3.3 
 Bias 0.7  -5.9 -5.3 -5.9 -3.9 -4.9 -2.4  -8.3 -2.3 0.5 0.6 0.0 -0.1 
 RPDd 2.3  1.1 1.2 1.1 1.3 1.2 1.6  0.9 1.8 2.6 2.6 2.6 2.5 
Silt/% 
 PC 3  10 10 10 10 10 10  2 2 2 2 4 4 
 R2 0.43  0.23 0.22 0.21 0.22 0.23 0.23  0.08 0.23 0.29 0.41 0.42 0.44 
 RMSEP 5.0  6.2 6.5 6.6 6.5 6.6 6.6  6.9 6.2 5.5 5.0 4.7 4.6 
 SEP 4.7  5.7 5.8 5.9 5.8 5.8 5.8  6.6 5.5 5.2 4.7 4.7 4.6 
 Bias -1.9  -2.4 -3.0 -3.2 -3.1 -3.2 -3.2  2.1 2.9 1.9 1.8 -0.4 -0.4 
 RPD 1.2  1.0 0.9 0.9 0.9 0.9 0.9  0.9 1.0 1.1 1.2 1.3 1.3 
Sand/% 
 PC 9  11 11 11 11 11 11  7 3 3 9 3 10 
 R2 0.89  0.68 0.69 0.70 0.70 0.70 0.70  0.84 0.75 0.76 0.86 0.78 0.87 
 RMSEP 3.0  10.3 9.5 8.8 7.8 7.3 6.9  4.9 5.1 5.5 4.4 4.8 3.5 
 SEP 3.0  5.6 5.5 5.6 5.5 5.5 5.4  4.4 4.8 5.0 4.1 4.5 3.4 
 Bias 0.6  8.7 7.8 5.6 5.6 4.9 4.3  2.2 1.6 2.5 1.6 1.8 0.5 
 RPD 3.0  0.9 0.9 1.0 1.2 1.2 1.3  1.9 1.8 1.6 2.1 1.9 2.6 
SOC/% 
 PC 6  8 8 8 8 8 8  9 10 10 10 10 10 
 R2 0.85  0.71 0.71 0.71 0.71 0.71 0.71  0.81 0.82 0.85 0.86 0.87 0.87 
 RMSEP 0.22  0.49 0.48 0.47 0.46 0.44 0.44  0.46 0.26 0.23 0.22 0.21 0.21 
 SEP 0.22  0.40 0.40 0.39 0.39 0.38 0.38  0.25 0.25 0.23 0.22 0.21 0.21 
 Bias 0.03  -0.28 -0.27 -0.26 -0.25 -0.23 -0.21  -0.39 -0.06 0.01 0.01 0.02 0.02 
 RPD 2.6  1.2 1.2 1.2 1.3 1.3 1.3  1.2 2.3 2.5 2.7 2.7 2.7 
pH 
 PC 8  14 14 15 14 14 14  8 8 8 8 8 8 
 R2 0.33  0.36 0.36 0.36 0.37 0.37 0.38  0.42 0.41 0.45 0.46 0.47 0.47 
 RMSEP 0.19  0.20 0.20 0.21 0.20 0.20 0.20  0.32 0.29 0.26 0.22 0.19 0.19 
 SEP 0.19  0.20 0.20 0.21 0.20 0.20 0.19  0.26 0.23 0.22 0.21 0.19 0.19 
 Bias -0.01  0.04 -0.01 0.03 -0.04 -0.03 -0.03  0.18 0.17 0.13 0.07 0.04 0.03 
 RPD 1.1  1.1 1.1 1.0 1.1 1.1 1.1  0.7 0.7 0.8 1.0 1.1 1.1 
P-AL/mg 100g-1 
 PC 2  13 13 13 13 13 13  2 6 3 3 2 5 
 R2 0.36  0.42 0.46 0.44 0.44 0.48 0.49  0.33 0.50 0.47 0.48 0.41 0.44 
 RMSEP 5.4  6.8 5.7 5.4 5.3 5.2 5.1  6.8 5.0 5.0 4.8 5.1 4.9 
 SEP 5.3  5.4 5.2 5.3 5.3 5.2 5.1  5.7 5.0 4.8 4.7 5.0 4.9 
 Bias -0.8  4.1 2.4 1.5 0.5 0.5 0.4  3.8 0.5 1.5 0.9 1.1 0.2 
 RPD 1.2  0.9 1.1 1.1 1.2 1.2 1.2  0.9 1.2 1.2 1.3 1.2 1.3 

a Number of PLS components used 
b Root-mean-squared error of prediction. 
c Bias-corrected squared error of prediction. 
d Ratio of performance to deviation (standard deviation divided by RMSEP). 
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Table 4. Kärrtorp: Prediction results for the independent validation samples using local, national, spiked 
national, reduced national and spiked reduced national calibrations 
 
  Local  National  Reduced national 
    +0 +5 +10 +15 +20 +25  +0 +5 +10 +15 +20 +25 
Clay/% 
 PCa 2  6 8 7 7 7 7  5 4 4 5 4 4 
 R2 0.5  0.5 0.1 0.4 0.4 0.4 0.4  0.7 0.8 0.8 0.8 0.8 0.8 
 RMSEP 3.6  6.2 8.2 4.0 3.9 3.9 3.9  8.2 2.5 4.0 3.3 3.0 3.0 
 SEP 3.3  3.3 5.2 3.8 3.9 3.9 3.9  2.6 2.5 3.0 2.6 2.6 2.5 
 Bias 1.6  -5.2 -6.4 -1.1 0.3 0.5 0.4  -7.8 -0.2 2.7 2.1 1.6 1.6 
 RPD 1.2  0.7 0.5 1.1 1.2 1.2 1.2  0.5 1.8 1.1 1.4 1.5 1.5 
Silt/% 
 PC 9  14 14 14 14 14 14  10 9 6 9 9 9 
 R2 0.3  0.01 0.01 0.01 0.01 0.01 0.01  0.00 0.02 0.00 0.00 0.00 0.00 
 RMSEP 4.2  20 8.7 8.7 8.7 8.5 8.7  12 12 8.5 8.7 8.0 8.4 
 SEP 3.8  8.2 8.4 8.5 8.7 8.5 8.3  11.1 10.7 7.4 8.4 7.9 8.0 
 Bias -1.9  -18.4 -2.6 2.1 1.3 0.7 2.8  -5.7 6.3 5.3 2.6 1.9 2.7 
 RPD 0.9  0.2 0.4 0.4 0.4 0.4 0.4  0.3 0.3 0.4 0.4 0.5 0.4 
Sand/% 
 PC 9  11 11 11 10 10 10  8 8 9 8 7 9 
 R2 0.53  0.30 0.31 0.32 0.31 0.31 0.32  0.15 0.27 0.25 0.28 0.32 0.25 
 RMSEP 5.0  16.4 6.7 9.9 9.7 9.1 9.4  16.0 10.3 13.1 9.3 8.2 10.1 
 SEP 5.1  6.8 6.7 6.5 6.9 6.8 6.8  10.3 9.1 10.5 8.7 7.6 9.0 
 Bias 0.1  15.0 0.8 -7.5 -6.9 -6.0 -6.6  12.4 -5.0 -7.9 -3.6 -3.2 -4.8 
 RPD 1.5  0.4 1.1 0.7 0.8 0.8 0.8  0.5 0.7 0.6 0.8 0.9 0.7 
SOC/% 
 PC 9  8 8 8 8 8 8  8 8 8 7 8 9 
 R2 0.71  0.65 0.67 0.70 0.72 0.72 0.72  0.29 0.30 0.29 0.40 0.42 0.51 
 RMSEP 0.53  1.43 0.95 0.48 0.44 0.43 0.44  1.17 0.77 1.03 0.79 0.76 0.75 
 SEP 0.53  0.48 0.47 0.45 0.44 0.43 0.43  0.75 0.78 0.87 0.75 0.72 0.68 
 Bias 0.07  -1.35 -0.83 -0.18 -0.06 -0.04 0.11  -0.90 0.05 0.57 0.27 0.26 0.33 
 RPD 1.5  0.6 0.9 1.7 1.9 1.9 1.9  0.7 1.1 0.8 1.0 1.1 1.1 
pH 
 PC 7  16 14 16 16 16 16  17 13 18 12 14 14 
 r2 0.50  0.50 0.49 0.50 0.52 0.52 0.52  0.35 0.34 0.39 0.47 0.54 0.51 
 RMSEP 0.22  0.64 0.44 0.34 0.35 0.33 0.31  1.14 0.47 0.32 0.26 0.24 0.23 
 SEP 0.21  0.35 0.34 0.34 0.33 0.32 0.31  0.45 0.45 0.32 0.26 0.24 0.23 
 Bias -0.06  0.54 0.27 0.06 0.12 0.09 0.03  1.05 0.14 0.02 -0.03 0.01 -0.03 
 RPD 1.4  0.5 0.7 0.9 0.9 0.9 1.0  0.3 0.6 0.9 1.1 1.3 1.3 
P-AL/mg 100g-1 
 PC 7  13 14 13 14 15 8  1 2 1 1 1 1 
 R2 0.31  0.21 0.24 0.23 0.24 0.26 0.40  0.01 0.03 0.06 0.07 0.08 0.09 
 RMSEP 3.0  13.2 5.6 4.2 4.4 4.1 2.9  5.6 3.6 3.5 3.5 3.5 3.4 
 SEP 3.0  3.6 3.6 3.6 3.6 3.6 2.9  3.7 3.6 3.6 3.5 3.5 3.5 
 Bias 0.3  12.7 4.3 2.2 2.5 1.9 0.3  4.3 -0.6 0.2 0.5 0.3 0.1 
 RPD 1.2  0.3 0.6 0.9 0.8 0.9 1.3  0.6 1.0 1.0 1.0 1.0 1.1 

a Number of PLS components used 
b Root-mean-squared error of prediction. 
c Bias-corrected squared error of prediction. 
d Ratio of performance to deviation (standard deviation divided by RMSEP). 
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Table 5. Sjöstorp: Prediction results for the independent validation samples using local, national, spiked 
national, reduced national and spiked reduced national calibrations 
 
  Local  National  Reduced national 
    +0 +5 +10 +15 +20 +25  +0 +5 +10 +15 +20 +25 
Clay/% 
 PCa 3  7 7 7 7 7 7  12 11 11 11 11 11 
 R2 0.81  0.86 0.87 0.86 0.87 0.87 0.87  0.79 0.88 0.89 0.89 0.91 0.91 
 RMSEPb 4.3  5.0 3.8 3.7 3.5 3.5 3.4  6.4 4.4 3.9 3.6 3.0 2.8 
 SEPc 4.2  3.8 3.6 3.6 3.5 3.5 3.5  4.6 3.5 3.3 3.1 2.9 2.8 
 Bias 0.8  3.3 1.2 1.1 0.4 0.3 0.1  -4.6 -2.6 -2.1 -1.9 -0.4 -0.5 
 RPDd 2.4  2.0 2.7 2.7 2.9 2.9 2.9  1.6 2.3 2.6 2.8 3.4 3.6 
Silt/% 
 PC 1  10 10 12 12 10 12  10 12 9 11 13 13 
 R2 0.12  0.00 0.00 0.00 0.00 0.00 0.00  0.02 0.00 0.02 0.02 0.00 0.01 
 RMSEP 4.3  5.9 5.8 5.8 5.8 5.6 5.7  7.9 7.8 6.4 6.3 6.5 6.2 
 SEP 4.0  5.6 5.7 5.8 5.8 5.6 5.7  7.8 7.8 6.3 6.2 6.5 6.2 
 Bias -1.7  2.2 1.0 0.6 -0.2 0.9 -0.5  1.5 1.2 1.6 1.2 0.4 -0.2 
 RPD 1.0  0.7 0.7 0.7 0.7 0.7 0.7  0.5 0.5 0.7 0.7 0.6 0.7 
Sand/% 
 PC 4  11 11 11 11 10 10  10 13 13 12 12 13 
 R2 0.73  0.70 0.69 0.69 0.71 0.73 0.73  0.22 0.63 0.43 0.64 0.45 0.69 
 RMSEP 6.2  7.2 7.5 7.5 7.7 6.8 6.8  11.5 7.4 9.2 7.1 8.7 6.6 
 SEP 6.2  7.0 7.1 7.1 7.0 6.7 6.7  10.7 7.4 9.0 7.1 8.8 6.7 
 Bias 0.0  1.7 2.6 2.5 3.2 1.4 1.7  4.4 -0.2 2.3 0.2 0.7 0.4 
 RPD 2.0  1.7 1.7 1.7 1.6 1.8 1.8  1.1 1.7 1.3 1.8 1.4 1.9 
SOC/% 
 PC 4  8 8 8 8 8 8  12 12 10 12 13 12 
 R2 0.57  0.40 0.40 0.40 0.18 0.42 0.44  0.47 0.49 0.68 0.71 0.63 0.72 
 RMSEP 0.27  0.42 0.42 0.41 0.40 0.38 0.37  0.36 0.38 0.27 0.27 0.28 0.26 
 SEP 0.27  0.40 0.41 0.40 0.40 0.38 0.37  0.36 0.36 0.27 0.24 0.28 0.24 
 Bias 0.01  0.12 0.11 0.09 0.03 0.01 0.01  0.01 -0.12 -0.04 -0.13 -0.13 -0.10 
 RPD 1.9  1.2 1.2 1.2 1.3 1.3 1.4  1.4 1.3 1.8 1.8 1.8 1.9 
pH 
 PC 2  14 13 13 13 13 13  6 3 7 7 7 7 
 R2 0.48  0.67 0.67 0.67 0.70 0.68 0.68  0.48 0.52 0.59 0.61 0.63 0.64 
 RMSEP 0.31  0.32 0.30 0.28 0.28 0.28 0.27  0.36 0.36 0.29 0.27 0.27 0.26 
 SEP 0.31  0.27 0.27 0.27 0.26 0.25 0.26  0.36 0.35 0.29 0.27 0.26 0.26 
 Bias 0.04  0.18 0.13 0.09 0.10 0.11 0.10  0.08 -0.05 0.02 0.04 0.05 0.05 
 RPD 1.4  1.3 1.4 1.5 1.5 1.5 1.6  1.2 1.2 1.5 1.6 1.6 1.6 
P-AL/mg 100g-1 
 PC 2  9 9 9 9 9 9  2 4 6 6 6 6 
 R2 0.32  0.54 0.58 0.59 0.59 0.59 0.59  0.11 0.24 0.22 0.25 0.18 0.20 
 RMSEP 4.9  5.8 5.1 5.1 5.1 5.2 5.1  5.3 5.0 5.0 4.9 5.2 5.2 
 SEP 4.6  4.5 4.4 4.3 4.3 4.3 4.3  5.3 4.9 5.0 4.9 5.1 5.0 
 Bias 1.7  3.8 2.6 2.8 2.8 2.9 2.8  0.3 -1.2 0.7 0.6 1.3 1.3 
 RPD 1.2  1.0 1.2 1.1 1.1 1.1 1.2  1.1 1.2 1.2 1.2 1.1 1.1 

a Number of PLS components used 
b Root-mean-squared error of prediction. 
c Bias-corrected squared error of prediction. 
d Ratio of performance to deviation (standard deviation divided by RMSEP). 
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The predictions for pH presented here are about what could be expected according to the 
literature, with RMSEP values well in line with earlier findings but with R2 values  
amongst the lowest presented (Reeves et al., 1999; He et al., 2005; McCarty & Reeves, 
2006; Viscarra Rossel et al., 2006). This somewhat contradictory relationship is due to 
the very narrow distribution of pH at the four sites (Table 1) resulting in very low RPD-
values. This is especially the case at Bränneberg and Hacksta. At Kärrtorp and Sjöstorp 
the variation is slightly higher, while the RPD-values and R2’s are also slightly higher 
despite RMSEP-values being higher. The difficulties in predicting pH is in line with pH 
being predicted through secondary relationships to the visNIR (Stenberg et al., 2010). 
 
Predictions for P-AL suffer from the same problem as pH, not having direct features in 
the visNIR and having a modest variation in the present sites apart from a few very high 
values, and were not satisfactory in this study. Good prediction results have been 
presented in earlier reports though (Malley et al., 1999; Daniel et al., 2003; Maleki et al., 
2006). Unfortunately, a large variety of laboratory reference methods are used, making 
comparisons difficult. 

Local versus national calibrations 
The main difference between using the local calibrations and the unspiked larger national 
library for calibrations was a larger bias in the latter case, but for many soil properties R2 
values were also reduced (Figs. 3-6). However, these reductions in R2 values were not 
consistent and in some cases, e.g. clay content at Bränneberg and Sjöstorp, using the 
national calibration models led to increased R2 values. At Sjöstorp, one explanation for 
this could be that the two differing parts of the farm may have led to unreliable 
interpolations with as few as 25 samples, so a calibration including more samples could 
improve calibration results by better filling gaps. 
 
Including local samples in the national libraries almost always improved the prediction 
results compared with using the unspiked libraries, confirming results presented by 
Brown (2007) and Sankey et al. (2008), also at the smaller more homogenous scale in the 
present study. The improvement was mainly expressed as a reduction in RMSEP values  
and only moderately in terms of enhanced R2 values, which can mainly be attributed to 
the reduction in bias (Tables 2-5) as indicated by the difference between RMSEP and 
SEP in Figs. 3-6. The simple shift in intercept as a result of spiking samples to the larger 
national models is very clear in Figs. 7-10. The great reduction in root mean squared 
deviation (RMSD) for predictions of SOC in upland soil samples from a catchment in 
Uganda observed by Brown (2007) on adding local samples to a global library was also 
mainly attributed to a decrease in bias. A suggested explanation for this large 
improvement was a relative lack of highly weathered soils in the global library. However, 
there were only moderate reductions in RMSD for predictions of shallow wetland, 
“dambo”, soils from the same area.  
 
In the present study, spiked and recalibrated national models never resulted in 
substantially lower RMSEP values than using local calibrations alone. With a few 
examples of slight improvements and a few more with more or less equal results this  
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Fig. 7. Bränneberg: NIR-predicted versus laboratory-analysed clay, silt, sand and SOC content, pH and P-
AL content using the local calibration, national calibration, national calibration spiked with 25 local 
samples or spiked reduced national calibration. 
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Fig. 8. Hacksta: NIR-predicted versus laboratory-analysed clay, silt, sand and SOC content, pH and P-AL 
content using the local calibration, national calibration, national calibration spiked with 25 local samples or 
spiked reduced national calibration. 
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Fig. 9. Kärrtorp: NIR-predicted versus laboratory-analysed clay, silt, sand and SOC content, pH and P-AL 
content using the local calibration, national calibration, national calibration spiked with 25 local samples or 
spiked reduced national calibration. 
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Fig. 10. Sjöstorp: NIR-predicted versus laboratory-analysed clay, silt, sand and SOC content, pH and P-AL 
content using the local calibration, national calibration, national calibration spiked with 25 local samples or 
spiked reduced national calibration. 
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corresponds to the small and variable differences for clay and SOC between the 
calibrations with the spiked global library and the local only samples found by Brown 
(2007). However, it partly contradicts with the observations for clay and SOC by  Sankey 
et al. (2008), who obtained substantially better predictions for some sites using the global 
library spiked with local samples compared with using only local samples. Regarding the 
variability in results between sites the present study agrees with both these studies. The 
studied sites in Sankey et al. (2008) were many times larger and more variable compared 
to the farms in the present study and to some extant also to the sites in Brown (2007). 
This may be one explanation to the substantial improvements fond in their study. In 
addition, the number of local calibration samples in Sankey et al. (2008) was 
considerable more sparsely distributed with only 1 sample per several hundreds ha. 
Despite the larger number of samples compared to our study their local samples may 
have covered the soil variation of their sites to a lesser extent.  

National versus reduced national calibrations 
There was a tendency for better predictions using the reduced national libraries compared 
with the national libraries, but only when spiked with local samples and not as a general 
rule. The calibrations using spiked national libraries did not result in better predictions 
than calibrations using spiked reduced national libraries in more than a few cases, and 
this was generally for soil properties that were very poorly predicted in any case. 
However, there were three clear exceptions where the national calibrations resulted in 
better predictions than the reduced national calibrations, namely SOC at Kärrtorp and 
clay and SOC at Bränneberg (Figs. 3 and 5).  
 
The clear benefit of using the reduced national calibrations compared with the entire 
national calibrations at Hacksta could probably be related to the fact that Hacksta has a 
soil that is very typical of the agricultural region north of Stockholm (Fig. 1), from where 
a number of the national samples originate. In fact, scrutiny of the geographical origin of 
the reduced national library at Hacksta revealed that almost all 50 samples came from 
that region (Fig. 11). The other three sites have been represented by 50 samples 
distributed over the larger part of agricultural land in Sweden. Apparently the clay 
content and SOC has had a large influence as the reduced national library for the clayey 
Bränneberg site is represented predominantly in the agricultural planes dominated by 
clayey soils relatively low in SOC (Eriksson et al., 1997; Eriksson et al., 1999) while the 
reduced library for the low clay and high SOC Kärrtorp site is hardly represented at all in 
these areas. This is in accordance with the fact that spectral features of clay minerals and 
SOC dominate the appearance of the visNIR spectra of dry soil. This means that despite 
that, at least for Hacksta and Sjöstorp, the parameter distributions of the reduced national 
library and the local sample sets resemble each other fairly well (Table 1). It is only for 
Hacksta, with its highly congregated geographical distribution of the reduced national 
samples (Fig 11) that similarities can be assumed to have been utilised in the selection at 
a higher level of detail, like mineralogical composition. Why this has not been possible 
for the other sites is most probably because there have not been enough samples within 
the same clay and SOC range. For example the range in clay content are very narrow at 
Bränneberg and Kärrtorp (Table 1). At Kärrtorp it can also be assumed that the high SOC 
has had a large influence on the visNIR spectra and subsequently on the selection of the  
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Fig. 11. Geographical distribution of the reduced national sample sets for the four farms. 
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reduced library. That it is not enough with similarities in the predicted parameter only, 
but that the soil composition at a higher level of detail may also be influential is 
supported by the improvements Sankey et al. (2008) presented when predicting clay and 
SOC at one site using a subset of calcareous soil samples compared with using the whole 
library. 
 
This said, it might be expected that at least at Hacksta the unspiked reduced national 
calibrations should result in better predictions in terms of RMSEP compared with the 
national calibrations. This was however not the case (Table 3; Fig 4) as bias was still 
high, especially for clay and silt where the best effects were expected, but already when 
spiked with 5 local samples the reduced library performed better than the national library 
(Fig 4).   

Conclusions 

At present, using local calibrations seems to be the best alternative for predictions of soil 
parameters at the farm or field scale, even with as few samples as 25. The local 
calibrations outperformed both the national library (396 samples) and the reduced nation 
libraries (50 samples) for all soil parameters at all farms.  
 
The potential for good calibration was highest for clay and SOC. For silt, pH and P 
reliable calibrations can not be expected with 25 calibration samples. The potential for 
sand was found to be intermediate. 
 
Whereas the selection of a subset of samples from the national library that were spectrally 
similar to the local samples (reduced national library) did not improve the results 
compared to using the entire national library, spiking both libraries with local samples 
reduced the RMSEP considerably, mainly due to a decrease in bias, resulting in RMSEP 
values comparable to those for the local calibrations. 
 
There was a tendency for better predictions when spiking a reduced national library 
compared to spiking the entire national library, particularly for clay and SOC, sometimes 
even resulting in better predictions than using the local calibrations.  
 
An interesting aspect of an increased and continuous use of local calibrations is the new 
type of national soil library that would arise as a consequence: a library including both 
the national and the local scales. How that would affect the necessity of new local 
calibrations is interesting, however difficult to investigate before it becomes a reality. 
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