

This is an author produced version of a paper published in Journal of Cereal Science.

This paper has been peer-reviewed but may not include the final publisher proof-corrections or pagination.

Citation for the published paper:

J. Eckardt, C. Öhgren, A. Alp, S. Ekman, A. Åström, G. Chen, J. Swenson, D. Johansson, M. Langton. (2013) Long-term frozen storage of wheat bread and dough - Effect of time, temperature and fibre on sensory quality, microstructure and state of water. *Journal of Cereal Science*. Volume: 57, Number: 1, pp 125-133. http://dx.doi.org/10.1016/j.jcs.2012.10.007.

Access to the published version may require journal subscription. Published with permission from: Elsevier.

Standard set statement from the publisher:

"NOTICE: this is the author's version of a work that was accepted for publication in <Journal of Cereal Science>. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in JOURNAL OF CEREAL SCIENCE, [VOL#57, ISSUE#1, (2012-11-22)] DOI#10.1016/j.jcs.2012.10.007"

Epsilon Open Archive http://epsilon.slu.se

Long-term frozen storage of wheat bread and dough – Effect of time, temperature and fibre on sensory

- 2 Effect of time, temperature and fibre on sens
 3 quality, microstructure and state of water
- 4 J. Eckardt^{1,2}, C. Öhgren¹, A. Alp¹, S. Ekman¹, A. Åström¹, G. Chen³, J. Swenson³,
- 5 D. Johansson¹, M. Langton^{1,4}
- 6 ¹ SIK The Swedish Institute for Food and Biotechnology, Box 5401, 402 29 Göteborg, Sweden
- 7 ² Department of Applied Chemistry, Chalmers University of Technology, Göteborg, Sweden
- 8 ³ Department of Applied Physics, Chalmers University of Technology, Göteborg, Sweden
- 9 ⁴ Department of Food Science, SLU Swedish University of Agricultural Sciences, PO Box 7051, SE-
- 10 756 45 Uppsala, Sweden
- 11
- 12 *Corresponding author. Camilla Öhgren, Department of Structure and Material Design, SIK The
- 13 Swedish Institute for Food and Biotechnology, SE-40229 Göteborg, Sweden, Camilla.Ohgren@sik.se;

14 Tel.: +46 10 516 66 98, +46 70 420 56 30, Fax: 031-83 37 82

- 15
- 16 Keywords: Bread, Ice formation, Frozen storage, Temperature

17 Abstract

- 18 The objective of this study was to determine effect of storage time, storage temperature and addition of
- 19 fibre on sensory quality, state of water, microstructure and texture of bread and dough.
- Samples with and without fibre, were stored frozen for 2, 3.5 and 6 months at temperatures of -19, -19, -19, -19, -19, -19, -10
- 21 16 and -8 °C as dough and bread. Sensory quality was evaluated by a trained analytical panel.
- 22 Microstructure was analysed by light microscopy. Texture measurements were performed on bread,
- and the state of water was measured by differential scanning calorimetry.
- 24 Bread without fibre stored as dough at -19 °C was the sample most like freshly baked bread. Sensory
- 25 evaluation also confirmed that quality of the final bread was improved if samples were stored as dough
- 26 compared to stored as bread. The microstructure had larger gaps between the starch and gluten phases
- 27 when stored at warmer temperatures, due to retrogradation of starch, dehydration of gluten and water
- 28 migration. DSC measurements showed that bread stored at -19 °C gained extra amount of freezable
- 29 water, but lost ice after storage at -8 °C. Texture measurements showed that firmness increased with
- 30 extended storage time. Bread stored at -8 °C had lowest quality in all measurements.

31 **1** Introduction

32 The staling or deterioration of bread has been known since ancient times and has kept researchers busy 33 over several centuries. Still, parts of the mechanism remain unknown. Today the aging of bread 34 correlates with immense economic losses. It is not a deterioration caused by microorganisms but rather adverse changes in crumb and crust resulting in a poor taste, although the product might be only a few 35 36 days old. Freezing has become a popular method to retard the staling rate and to extend shelf life. It 37 allows suppliers to produce in larger amounts and with a greater variety. Often it is applied not only to 38 unproofed dough, which is delivered to retailers and there proofed and baked, but also to semi-baked 39 and fully baked bread, with the advantage that the retailer does not need special equipment for 40 proofing. At the same time freezing also causes losses in quality. Several ingredients and additives, 41 such as emulsifiers and enzymes, are commonly used to reduce these adverse effects. Although 42 prolonged storage times are commonly used by the industry, the effects of freezing itself or only short 43 frozen storage times have often been the primary focus of researchers (Baier-Schenk et al., 2005; 44 Bárcenas et al., 2003; Delpuech, 1993; Filipović et al., 2008; Hamdami et al., 2007; Lucas et al., 2005; 45 Mandala et al., 2009; (Neyreneuf and Delpuech, 1993; Zounis et al., 2002). Moreover, long storage 46 seems to have a more harmful effect compared to the freezing process itself. Consumer acceptance is 47 decreasing, in particular, when the crumb firmness rises, when the crust becomes softer and when the 48 bread has a dry mouth feel. Fresh-baked bread typically has an attractive golden brown crust, a 49 pleasant roasted aroma, good slicing characteristics, a soft and elastic crumb texture and a moist 50 mouth feel (Selomulyo and Zhou, 2007).

51

When bread or dough is frozen, the major changes occurring are freeze-concentration of the aqueous solution and a great increase in viscosity until a mixed glassy-crystalline state is reached. That means that mainly water crystallises first, increasing the concentration of the surrounding solution. A higher concentration of solutions creates conditions in which reactions can increase in rate, osmotic pressure rises, solutes can crystallise and freezing point decreases. Due to the low temperature, proteins can denaturate because of hydrophobic interactions (Walstra, 2003). The higher the freezing rate the smaller the ice crystals and the lower the mechanical damage of the structure. Faster freezing rates also

59 result in lower freeze-concentration effects, because less time is given to reach the equilibrium state. On the other hand, cooling rates that are too high can harm yeast cells in raw dough (Mazur, 1970). 60 61 For unfermented dough it is sufficient to keep yeast cells as viable as possible, but Hsu et al. (1979) 62 describe that, even when proofing frozen stored dough to the same volume, bread that was freezestored longer had less volume after baking. To explain this, the authors assume a relation to the release 63 of enzymes and reducing agents from the content of dead and disrupted yeast cells. Other authors 64 65 share this view (Inoue and Bushuk, 1992; Wolt and D'Appolonia, 1984). Therefore, an optimum freezing rate, depending on the ingredients, has to be found for the freezing of each type of raw dough. 66 67 The addition of fibre to dough is a subject of controversy in the literature. By adding different kinds of 68 fibres, Filipović et al. (2008) found partly positive effects on the yeast activity in frozen doughs, in 69 particular, for longer storage times. The authors also report a disruption in the gluten matrix and 70 therefore a decrease in quality of dough and bread. Also possible is a different effect of soluble and 71 insoluble fibres, but again in this area the literature is ambiguous. While Seetharaman et al. (1997) 72 found a poor gluten development and extensive starch gelatinisation during baking when adding 73 soluble fibres, Polaki et al. (2010) report that the gluten matrix was significantly developed and had a 74 mean pore size similar to fresh samples. Leray et al. (2010) even found that the addition of soluble 75 fibres to wheat dough prevents damage caused by freezing on dough rheology. For dough enriched 76 with insoluble fibres Seetharaman et al. (1997) detected a better gluten structure; however, they also 77 described a disrupted gluten network, caused by strands of insoluble fibres, leading to a collapse of air bubbles and a decreased shelf stability. Clearly, fibre in dough interacts with the gluten matrix. To 78 79 what extent, which types of fibre and chain lengths, and whether it has mainly positive or negative 80 effects on the quality needs to be further investigated.

The aim of this study was to determine the effect of storage time, storage temperature and addition of fibre on sensory quality, microstructure, texture and the state of water of bread and dough. The holistic analysis and the resulting conclusions on the changes during frozen storage make this study a unique work.

85 2 Material and Methods

86 2.1 Preparation of dough and frozen storage regimes

87 Raw frozen dough samples, one type without fibre (N) and the other type with fibre (Fi), both 88 commercial, were provided by Lantmännen Unibake (Denmark) in boxes of 130 and 150 pieces per 89 box, wrapped in plastic bags. A number of 10 boxes of each sample were provided. The pieces of raw 90 dough weighed ca. 51 g (N) resp. 68 g (Fi). Dough without fibre contained wheat flour, water, yeast, 91 vegetable oil, sugar, skimmed milk powder, wheat gluten, iodised salt, stabilisers (E412, E466), 92 dextrose, emulsifier (vegetable E472e), flour treatment agent (E300) and enzymes, while the dough 93 with fibre consisted of wheat flour, water, wheat kernels, yeast, sugar, vegetable oil, skimmed milk 94 powder, wheat gluten, iodised salt, stabilisers (E412, E466), dextrose, emulsifier (vegetable E472e), flour treatment agent (E300) and enzymes. All samples were frozen in the same way and transported 95 96 to SIK Gothenburg at a temperature of -20 °C. One part of the samples was subsequently baked, put 97 into plastic bags of 9 to 12 pieces and closed with a staple. Those samples (Be) were frozen at -19 °C 98 in a walk-in freezer, which was located in a refrigerated room. Afterwards, the samples were divided into different freezers at temperatures of -8 °C (mean: -8.2 °C ± 0.7 °C; 69.5% RH ± 5.5 %), -16 °C 99 (mean: $-16.1 \degree C \pm 1.4 \degree C$; 67.4% RH \pm 7.5%) and $-19 \degree C$ (mean: $-19.0 \degree C \pm 0.6$; 80.5% RH \pm 6.5%). 100 101 The other part was kept as frozen dough, wrapped in plastic bags in cartons and divided into the 102 different freezers with the stated temperatures. These dough samples were baked after each storage 103 time before the analysis (Af). References (N and Fi reference) were analysed at the initial point when 104 they arrived at SIK Gothenburg and after 2, 3.5 and 6 months of frozen storage.

105 2.2 Thawing, proofing and baking

For baking the dough, samples were withdrawn from the freezer; 12 samples were put on one tray with
baking paper and covered with plastic. They were thawed 75 minutes at ambient temperature (21 –
23 °C). Thereafter, they were put into a proofing chamber and proofed for 50 minutes at 35 °C and

- 109 75% RH. Afterwards, the samples were baked for 10 minutes at 190 °C in an air oven. The trays were
- 110 automatically rotated horizontally during the baking time. When only a few samples were baked, the

111 oven was filled with additional dough pieces to simulate a full oven with equal baking conditions.

112 After baking, all samples were taken off the tray, put on a wooden table and cooled for one hour at

113 room temperature and for another hour at a controlled temperature of 23 °C and 50% RH. For N and

114 Fi the same procedure was used.

115 Frozen stored bread was thawed as follows: after each storage time, frozen stored bread was

116 withdrawn from the freezer, taken out of the bag and thawed for 130 minutes at a controlled

117 temperature of 24 °C and 50% RH. During thawing, the samples were lying on a tray and covered with

118 plastic. Tests showed that the core temperature reached the ambient temperature after that time.

119 2.3 Mass, volume and macroscopic investigation

120 Two hours after baking, one vertical slice of approx. 2 cm thickness was cut out of the middle of each 121 sample. The slices were scanned with an ordinary PC scanner. Frozen stored bread was thawed as 122 stated above and scanned in the same way as fresh baked bread.

123 For mass investigations single samples were taken out of the plastic bag and weighed using a scale

124 with ± 0.01 g precision. The samples were returned into the plastic bag and the box, and were

125 thereafter put back into the freezer. The whole process took no longer than 3 minutes. Baked samples

126 were weighed approximately one hour after baking, using the same scale as for the frozen samples.

127 Bread baked before freezing was weighed by taking single samples out of the plastic bag.

128 The loaf volume was measured at ambient temperature approximately one hour after baking, with at

129 least four samples per recipe and temperature, by rapeseed displacement according to the AACC

130 method 10-05 (AACC, 2001). Bread baked before storage was not measured again after thawing.

131 2.4 Sensory evaluation

132 After 2, 3.5 and 6 months of frozen storage the quality of bread was evaluated by an analytical sensory

133 panel consisting of seven assessors, using quantitative descriptive analysis (QDA). Four training

134 sessions were carried out in which the panel came to an agreement of 16 attributes characterising

appearance, flavour, aroma and texture, see table 1. The evaluation was done in normal light

136 conditions at room temperature. Samples were coded randomly with 3-digit numbers and served in

two replicates. The attributes were appraised on a 100 mm continuous line scale, anchored 10 mm
from each end with the terms slight and much. The data were collected with a computerised system
(FIZZ 2.46 B) and statistically analysed.

140 2.5 Texture analysis

Texture analysis was performed according to a modified version of the AACC method 74-09 (AACC, 2001) using an Instron Universal Testing Machine 5542 (Instron, Norwood, MA, USA). For each sample three breads were used for texture measurements. Two vertical slices of 2 cm thickness were cut from each bread. A cylindrical metal probe of 20 mm diameter was pushed into the crumb in the middle of the slices with a constant speed of 1.7 mm/s. The compressive stress at 40% compression was used as a measure of the bread firmness. The measurements were performed either two hours after baking or after thawing as described above.

148 2.6 Light microscopy

149 The light microscope Nikon Microphot-FXA (Japan) was used, to which an Altra 20 camera and a 150 computer were connected. The samples were analysed using $4\times$, $10\times$, $20\times$, $40\times$ and $100\times$ objectives. 151 The sample was prepared as follows: baked bread in cubes of approximately 2 mm³ was cut from the 152 centre of the sample. The cubes were airfixed by lying on a grid above formalin and glutaraldehyde in 153 CaO₃ overnight. The next day they were placed above 2% OsO₄ for 2.5 hours. In the case of raw 154 dough samples in cubes of similar size were cut from the centre of the sample at -8 °C. They were 155 airfixed at -8 °C by lying on a grid above formalin and glutaraldehyde in CaO₃ for 42 hours. 156 Afterwards samples were placed above 2% OsO₄ in 20% NaCl for 6 hours. In a graded series of 157 ethanol solutions (50, 70, 90 and 99.5% by volume) both types of samples were dehydrated at room 158 temperature and subsequently embedded in Technovit 7100. Sections of 1.0 µm were cut with an 159 RMC Power Tome XL using glass knives; the samples were subsequently placed on glass slides. The 160 sections were stained with Lugol's iodine solution to visualise the starch phase and light green in 161 acetic acid was used to visualise the protein phase as well as the yeast cells.

162 2.7 State of water

The state of crumb water was investigated with differential scanning calorimetry on DSC Q1000 (TA 163 164 Instruments, DE, USA). For each type of dough and bread the samples were cut out of the central 165 crumb and hermetically sealed in aluminium pans. An empty pan was used as reference and dry helium (25 mL/min) was used as the purge gas. The cell constants and temperature calibration were 166 carried out with indium, mercury and Millipore water. All crumb samples were measured by cooling 167 168 at 10 °C/min from 20 to -50 °C, holding at -50 °C for 10 minutes and then heating at 10 °C/min back 169 to 20 °C. The amount of freezable water was calculated from the total endothermic enthalpy deduced 170 by integrating the ice-melting peak.

171 2.8 Statistical analysis

Principal component analysis (PCA) and partial least squared regression were performed using the
statistical programme SIMCA-P+ from Umetrics AB (Sweden) to evaluate the influence of the
different effects on the characteristics. All values were normalised to allow the comparison between
the different measuring techniques. Results that did not show a harmonic distribution were
transformed to log scale.

177 **3 Results**

178 3.1 Macroscopic investigation

179 Fig. 1 shows N reference (Fig. 1a) compared to bread without fibre baked from frozen dough (NAf)

180 stored for 6 months at -19 °C (Fig. 1b) and -8 °C (Fig. 1c), and bread without fibre baked before

181 storage (NBe) stored at -19 °C (Fig. 1d) and -8 °C (Fig. 1e). Bread with fibre baked from frozen

182 dough is named FiAf, and bread with fibre baked before storage is named FiBe. NAf shows a decrease

183 in volume, in particular the storage at -8 °C. The volume of bread baked from frozen dough decreased

- 184 significantly after 6 months compared to the references, with the exception of NAf stored at -19 °C.
- 185 In the reference the gas cells were very even distributed throughout the entire loaf. They had a similar
- size and a round shape, and not many big gas cells could be observed. Close to the crust gas cells

tended to be smaller, and a more compact structure could be recognised. FiAf had more big gas cells than bread without fibre. After frozen storage as dough and subsequent baking, gas cells tended to fuse into bigger bubbles, as shown in Fig. 1b and Fig. 1c. The gas cells of NAf appeared to be more oval and ruptured in shape after frozen storage compared to FiAf, particularly for -16 and -8 °C. In FiAf, gas cells were more round than in bread without fibre. In NBe (Fig. 1d, 1e) the gas cell distribution is the same as the reference, since the bread was baked before storage, but a slight deformation on the bottom (Fig. 1e) and a crumpled crust, particularly at a storage at -8 °C, characterised those samples.

194 3.2 Sensory investigation

195 In Fig. 2 the sensory evaluation of NAf and NBe for freshly baked odour (Fig. 2a), springiness (Fig. 196 2b), as well as off-odour (Fig. 2c) is shown for the storage times 2, 3.5 and 6 months, see also table 1 197 for the min and max values. The scores or points refer to high or low appearance of the tested attribute. 198 It was apparent that samples stored at -8 °C had an immense difference in most of the tested attributes 199 compared to those stored at -16 and -19 °C. In chart a can be seen that particularly NBe at -8 °C had 200 very low freshly baked odour with values ranging from 7.4 to 11.0. The highest values were obtained 201 for NAf at -19 °C with 81.9 after 2 months. The results for springiness (Fig. 2b) showed that all 202 samples of NAf and NBe had similar values, ranging from 65.9 to 82.6; the only sample standing out 203 was NBe stored at -8 °C. From 54.6 after 2 months, the springiness decreased to 16.6 after 6 months 204 of storage. NBe stored at -8 °C had, during all storage times, a strong off-odour, while NAf developed 205 an off-odour particularly between 2 and 3.5 months of storage. Samples stored at -16 and -19 °C had 206 almost no off-odour. NAf stored at -19 °C at all storage times had the lowest off-odour with scores 207 down to 8.5, compared to the highest value of NBe at -8 °C of 83.4. The other evaluated attributes, 208 which are not shown in the graphs, also differed strongly regarding a storage of -8 °C compared to the 209 colder storage temperatures in NBe and FiBe, for example in off-flavour, moisture, compactness, 210 cracking and elasticity, whereby the samples stored at -8 °C that were baked before generally had the 211 most unfavourable quality. Another phenomenon observed was that dough stored at -8 °C became 212 darker in colour on the surface, an effect that was still visible after baking. Increased storage time caused bread baked from frozen dough to be less airy, for example, less evenly shaped, less moist and 213

214 less elastic and to have more off-odour and off-flavour; moreover, the compactness increased and the 215 freshly baked odour decreased.

216 *3.3 Texture and state of water*

217 Similar to the finding of the compactness in sensory matters, the texture measurements showed similar 218 results; see Fig. 3. Bread without fibre is shown in Fig. 3a and Fig. 3b shows bread with fibre. While 219 the compressive stress of NBe stored at -16 °C and -19 °C stayed at a similar level throughout the 220 entire storage time with values ranging from 0.00245 to 0.00363 MPa. A strong increase of stiffness 221 was detected for NBe at a storage of -8 °C, particularly after 6 months with 0.11269 MPa (mind the log scale in the charts). For NAf the stiffness increased continuously with storage time, and with a 222 223 greater increase at warmer storage temperatures, for example at -8 °C from 0.00174 MPa after 2 224 months to 0.01157 MPa after 6 months. That refers also to the volume, seen in chart d in Fig. 3, which 225 was smaller for Af compared to Be, and therefore the crumb was stiffer. The volume of Be, the bread 226 baked before storage was not measured again after storage since it was considered to be the same 227 approximately. In general, bread with fibre had a slightly stiffer crumb than bread without fibre, but 228 NBe stored at -8 °C showed the highest increase in compressive stress. 229 Fig. 3c shows the results of freezable water c_{FW} from the DSC measurements of NBe for different storage times at -8 and -19 °C compared to N reference. In the case of NBe c_{FW} decreased during 230 231 storage, particularly at -8 °C from initially 16.15 to 12.76 %, whereas storage at -19 °C caused an 232 additional amount of freezable water of 17.28 % after 2 and 16.5 % after 3.5 months. Mass 233 measurements sustain a finding that NAf stored at -19 °C lost more mass during the baking process 234 compared to the baking of the reference. NAf and FiAf, independent of the temperature, had for all 235 times more freezable water than the reference, with the exception FiAf at -8 °C and 6 months, which 236 had an amount of 14.17 % freezable water similar to that of the Fi reference with 14.49 %. Analogous to NAf, FiAf stored at -19 °C gained an extra amount of freezable water, whilst c_{FW} of FiBe stored at 237 238 -8 °C decreased noticeably after all storage times compared to the reference. Fig. 3c shows also the 239 heat flow, i.e. the melting of ice after the cooling to -50 °C and heating up to 20 °C in a characteristic thermogram. It compares NBe stored at -19 and -8 °C for 6 months to N reference. The endothermic 240

241 peak indicates the melting of ice with its maximum at around -4 °C. Similar to the block chart,

242 marginal increase of the amount of ice can be seen at -19 °C, while at -8 °C the amount decreased 243 slightly.

244 3.4 Microstructural investigation

245 Some examples of the light micrographs are shown in Fig. 4. The first two images show dough 246 without fibre, the reference (Fig. 4a) and after 6 months storage at -8 °C (Fig. 4b). The other 3 images show baked bread, N reference (Fig. 4c), NAf after 6 months storage at -8 °C (Fig. 4d) and NBe after 247 6 months storage at -8 °C (Fig. 4e), each at the same magnification (scale bar = 20 µm). The starch 248 249 granules were stained with iodine and appear bluish, while the gluten phase was stained with light 250 green and appears green, as do the yeast cells. Parts that are black/brown show the fat phase, stained 251 during the fixation of the sample by osmium (OsO_4). In all images some yeast cells can be seen, which 252 are slightly darker green in colour compared to the gluten phase. When comparing the dough with 253 bread, Fig. 4a and Fig. 4c, it is apparent that the starch granules take up water during baking, which 254 the gluten provides, leading to an increased part of starch and a decreased part of gluten in the final 255 bread, and in total a more compact structure. Moreover, the fat phase undergoes changes. 256 When the dough reference (Fig. 4a) and the dough after 6 months storage at -8 °C (Fig. 4b) are 257 compared, the gluten phase has visibly decreased in volume, as if it has lost part of the water. The gaps 258 between starch and gluten have expanded. For dough that was stored at -19 °C, the shrinking of the 259 gluten occurred to a much smaller extent, and smaller gaps are visible. No change in shape could be 260 detected for the yeast cells. Optically, they still looked intact.

When looking at NAf with 6 months of storage at -8 °C in Fig. 4d compared to N reference in Fig. 4c, gaps are visible, mainly between starch granules without an interface to the gluten. In NAf stored at – 19 °C the majority of gaps were smaller, and some areas did not show many gaps at all. Bread that was baked before frozen storage had an even more ruptured structure (Fig. 4e). More and bigger gaps appeared compared with NAf. When comparing different temperatures, -8 °C storage caused larger and more numerous gaps than storage at -16 and -19 °C. According to the other measurements, the number and size of gaps seemed to be strongly influenced by the storage temperature and less by the storage time. The images of NBe and FiBe were very similar and no big difference could be observed.
When images of lower magnifications were examined, in NAf and FiAf ruptured connections between
gas cells became apparent.

271 3.5 Statistical results

272 In Fig. 5 the bi-plots of a PCA of bread made from frozen dough (Fig. 5a) and bread baked before 273 frozen storage (Fig. 5b) are shown. Samples stored at -8 °C are coloured green, -16 °C blue and 274 -19 °C red, and the references are grey. The physical measurements and the attributes of the sensory 275 analysis are written in black. It can be seen that the samples are grouping according to their temperature, rather than the storage time or the fibre content. Samples stored at -16 and -19 °C show 276 277 similar attributes and are overlying in both plots. Close to the sample names, the sensory attributes as 278 well as the results of the physical investigations that characterise those samples are grouping. NAf and 279 FiAf stored for 6 months at -8 °C were, for example, very compact, had high off-odour, off-flavour, 280 and total odour, and had many air bubbles on the surface. Above all, the air bubbles on the surface 281 appeared almost exclusively in NAf and FiAf stored at -8 °C. Those samples, in addition, showed a 282 discolouration in the form of a darker colour. Samples stored at colder temperatures were more moist 283 and cracking. For NBe and FiBe a crumpled crust was characteristic, in particular for a storage of -8 $^{\circ}$ C. The storage of -8 $^{\circ}$ C resulted in similar sensory attributes, independent of whether they were 284 285 baked before or after storage. When comparing NAf and FiAf (Fig. 5a), it can be seen that NAf is 286 grouping more on the top part, while FiAf tends to be more at the bottom. The samples NBe and FiBe 287 (Fig. 5b) are also grouping according to their fibre content, but they are overlying each other a little 288 more.

289 **4 Discussion**

290 4.1 Impact of temperature

As described in the results, most differences were examined depended on the storage temperature.That was already apparent when only the volume of bread baked from frozen dough was compared.

293 One reason is that yeast is less viable after frozen storage, particularly at warmer temperatures like 294 -8 °C (Mazur 1970). At these temperatures recrystallisation of ice crystals occurs in which ice crystals 295 change in number, size and shape (Petzold and Aguilera, 2009). This results in bigger ice crystals, 296 which leads to destruction of the structure and possibly also of the yeast cells. At constant 297 temperatures small crystals, which have higher vapour pressure compared to large crystals, tend to 298 grow and fuse into bigger crystals, a phenomenon known as Ostwald ripening. This phenomenon is 299 rather small; the main damage is caused as a result of temperature fluctuations (Petzold and Aguilera, 300 2009). As the temperature increases, some ice crystals, particularly smaller ones, melt, thus increasing 301 the total amount of unfrozen water. When the temperature decreases again, no further nucleation will 302 take place, and the free water will refreeze on the surface of already existing ice crystals (Petzold and 303 Aguilera, 2009). Recrystallisation of ice crystals is very temperature dependent; colder temperatures 304 slow down the process, while warmer temperatures facilitate it (Roos, 1995). Temperatures can also 305 show great differences, depending on where the product is placed in the freezer. If samples lie closer 306 to the fan, they are likely to loose more moisture, since they are exposed to higher temperature 307 changes. The results of the samples stored at -16 and -19 °C did not differ a lot. The reason may be 308 that the mean temperature in the freezer of -19 °C had in average only 3 °C difference to the mean 309 temperature of -16 °C. As the colour change of dough stored at -8 °C indicates, enzymes can even be 310 active at temperatures of -8 °C (Timm and Herrmann, 1996). A possible cause of the off-odour (Fig. 311 2c) and off-flavour could therefore also have been the activity of enzymes, for example, lipases 312 making fat rancid. However, further studies are necessary to investigate the phenomenon. Fig. 2c shows that even NAf stored at -19 °C was evaluated with less off-odour over time, but that effect 313 314 might be due to the fact that the difference from the other samples became higher, and the assessors 315 sensed this sample as very good in relation to the others. 316 Several authors (Havet et al., 2000; Inoue and Bushuk, 1992; Kenny et al., 1999; Leray et al., 2010)

report that the rheological properties of dough undergo great changes caused by the initial freezing.

318 Some authors (Kenny et al., 1999; Leray et al., 2010) also report that the dough rheology does not

319 change during frozen storage, independent of the storage temperature. But mainly colder temperatures

320 like –19 °C and storage times shorter than 3 months were tested. However, Inoue and Bushuk stored

dough up to 10 weeks at -19 °C and found a decrease in maximum extensigraph resistance and an 321 322 increase in extensibility (consistent with dough weakening). For temperatures at -8 °C the changes 323 might even be higher. In our tests, for NAf stored at -8 °C (Fig. 1c), the gas cells were bigger and fewer in number compared with the cooler storage temperatures. A possible change in rheological 324 properties causing different expansion behaviour of gas cells during proofing could be the reason. 325 In NBe and FiBe the different storage temperatures might have caused different rates of retrogradation 326 327 or the crystallisation of the starch during frozen storage. It is known (Cauvain, 1998; Klingler, 1995; 328 Walstra, 2003) that retrogradation is fastest around 4 °C in baked bread. Out of the tested temperatures 329 -8 °C was closest and therefore also had the highest rate of retrogradation. The texture measurements also showed that bread stored at -8 °C was harder at all times than bread stored at colder temperatures. 330 331 Although there might not be a direct "cause-and-effect relationship" (Gray and Bemiller, 2003) 332 between retrogradation/crystallisation and the crumb firmness, it usually occurs simultaneously and 333 indicates the staling of bread. 334 In microscopic scale the gaps next to the starch granules (Fig. 4e) indicate a recrystallisation, whereby

water has leached from the granules. DSC measurements show that bread stored at -19 °C gained an extra amount of freezable water, while it had less freezable water at -8 °C. That could indicate that gelatinised starch in bread at -19 °C retrogradates, resulting in higher amounts of freezable water. This assumption is supported by the micrographs that showed gaps in all frozen stored bread samples. At warmer temperatures retrogradation takes place to an even higher extent (Klingler 1995); a possible explanation for the decreased amount of freezable water is a drying of the bread, which is faster at those temperatures, leading to lower water content in total.

342 4.2 Impact of storage time

The PCA plots in Fig. 5 show that main impact was caused by the storage temperature. That is also due to the outstanding temperature –8 °C; when excluding this temperature, the highest influence is caused by the storage time. As described in the results, the volume of NAf and FiAf changed significantly compared with the reference, depending on the storage time. Accordingly, the stiffness, expressed as compressive stress (Fig. 3a, b) also increased. Recrystallisation of ice, as it is described in

348 section 4.1, is very much time dependent, and accelerates when temperature fluctuations occur. Over 349 time, water from the gluten matrix separates, resulting in free water that subsequently crystallises. 350 When more and more water separates from the gluten and crystallises on the already existing ice 351 crystals, it causes even further structural damage. Free water or ice is more likely to move around in 352 the sample. This assumption conforms with the findings of Esselink and others (2003), who mapped 353 the water density of dough slices with magnetic resonance imaging, with the result that the density of 354 water increases at the periphery of the sample during storage time and, contrary to the assumptions of 355 other authors, this water does not return to its original state after thawing. Gas cells in dough, 356 independent of whether they originated before or after proofing, seem to have a special effect. Baier-357 Schenk et al. (2005), for example, found with in situ observations with confocal laser scanning 358 microscopy (CLSM), that ice formation preferentially occurs at the gas pore interface, there leading to 359 larger ice crystals. That might be due to irregularities or the presence of nucleation sites that promote 360 heterogeneous nucleation. Chen et al. (2012) made DSC measurements and found a major and a minor 361 endothermic peak, whereby they attributed the major one to the ice in bigger pores (gas cells) and the 362 minor one to the ice in smaller pores within the gluten starch matrix. Esselink et al. (2003) concluded that during storage time the void fraction is filled with ice crystals, leading to local high water 363 364 densities after thawing. Taking the assumption that the gluten dehydrates during frozen storage, that 365 causes the gluten phase to have a higher concentration, leading to higher osmotic pressure for the yeast 366 cells, which therefore equilibrate by losing water. Thus the yeast cells' solutes concentrate, causing 367 injuries to the cells, which results in lower loaf volume. Also possible is the theory that yeast cell 368 leachates contain glutathione (Wolt and D'Appolonia, 1984), leading to different characteristics of the 369 dough rheology.

In frozen bread the effects are expected to be similar. However, the amount of freezable water can change due to freezing damage, such as starch retrogradation and gluten disruption. As well, a part of the freezable water migrates outward and forms ice crystals below the crust and on the outer bread surface. This loss of freezable water causes drying of the frozen crumb, which becomes more significant upon longer frozen storage (Fig. 3c).

375 4.3 Effect of additional fibre

376 In the PCA bi-plots in Fig. 5 bread with and without fibre is grouping slightly, as described in section 377 3. That is partly a result of different initial mass, since bread without fibre was lighter than bread with 378 fibre. Bread with fibre a more compact crumb structure than bread without fibre had in general. The results of the texture measurements correspond to the sensory measurements. In the attributes airiness 379 380 and compactness the same tendency was observed as the measurements with the texture analyser. 381 Another aspect that needs to be taken into account is that fibre has been added to the dough in the form 382 of whole wheat kernels, rather than as a fine distribution. The latter would have caused a stronger 383 effect.

384 4.4 Freezing raw dough vs. baked bread

When looking at the temperatures -16 and -19 °C, the physical results were rather similar between 385 386 bread baked from frozen dough and bread baked before storage. However, big differences were 387 detected in the sensory evaluation, for example, that bread baked from frozen dough was moister, 388 airier and springier, and had a stronger freshly baked odour than bread baked before storage. 389 Bread baked before storage, on the other hand, always had a crumpled crust and off-odour and off-390 flavour. For bread baked from frozen dough, the volume decreased the longer the storage and the 391 warmer the temperature, and therefore the stiffness of the crumb continuously increased, but in total 392 the sensory attributes gave preferable results in contrast to bread baked before storage. Similar 393 conclusions were stated by Fik and Surówka (2002) who found that part-baked bread had much better 394 sensory quality compared to frozen stored fully-baked breads. More emphasis should be put on the 395 sensory results, since they are the determining factor for the consumer, which means that bread baked 396 from frozen dough should be preferred.

397 4.5 The impact of water

Water plays a complex role in the freezing of dough and bread. Frozen goods are not in a state of
equilibrium. There is a continuous movement of water and changes in the shapes and sizes of ice
crystals. Mainly due to temperature fluctuation, water originating from the gluten, the starch phase or

401 free water crystallises at the already existing ice crystals, leading to a continuously increasing size of 402 ice crystals. The DSC measurements also showed that the amount of freezable water partly increases 403 (Fig. 3c), which means that parts of the water that were bound to the gluten or the starch became free to move within the sample. When the free water crystallises, the surrounding solution concentrates and 404 405 the yeast cells react by losing water due to the osmotic pressure, with adverse effects for the cells. In 406 baked bread the gelatinised starch partly retrogradates, thereby also losing water and supporting the 407 growth of ice crystals. Those crystals physically damage the structure of the dough. The resulting gaps 408 that were created during frozen storage were seen in the micrographs (Fig. 4d). Bread stored at warmer 409 temperatures, primarily FiBe at -8 °C, had less freezable water after storage compared with the 410 respective reference. A drying of the sample may be the explanation for this phenomenon. Also 411 Bárcenas and others (2006) found that the moisture content of baked bread decreased with time of 412 frozen storage. In general the concentration effects due to recrystallisation of ice induce accelerated 413 chemical reactions, making dough and bread age faster.

414 **5** Conclusions

This study shows that bread has favourable sensorial characteristics when it is stored as dough with 415 416 subsequent baking after frozen storage. Although volume decreases and therefore the compactness of 417 the crumb increases after frozen storage, more attention should be paid to the sensory characteristics, 418 such as freshly baked odour, since this is the way the consumer judges the product. Out of the tested 419 storage temperatures -19 °C gave the best results, whereby -16 °C gave comparable results and -8 °C 420 differed strongly in all measurements from the other two colder temperatures. It was hypothesised that the water movement was a lot higher at -8 °C compared with -16 and -19 °C and that enzymes were 421 422 still active at this temperature, causing adverse effects resulting in abnormal colouring and off-odour. 423 Extended storage time did have a strong, unfavourable impact, particularly at warmer temperatures, 424 like -8 °C. For -16 and -19 °C the effects were less pronounced, but still perceptible. Despite some 425 parts of the mechanisms occurring in frozen dough and bread remaining unknown, it has been shown 426 that the large number of different kinds of analysis and the interdisciplinary work has led to a holistic 427 view and a better understanding of the freezing of dough and bread.

428 Acknowledgements

- 429 This study has been carried out with the financial support of the Swedish Board of Agriculture and the
- 430 companies Lantmännen, Sveba Dahlen, Fazer, Jästbolaget, Ewalco, JBT FoodTech, Norlander
- 431 Zeelandia and Dafgård.

432 References

- American Association of Cereal Chemists, 2001. *Approved Methods of the AACC*. Method 10-05,
 Guidelines for Measurement of Volume by Rapeseed Displacement; Method 74-09,
 Measurement of Bread Firmness by Universal Testing Machine. AACC: St. Paul, MN.
- Baier-Schenk, A., Handschin, S., von Schönau, M., Bittermann, A.G., Bächi, T., Conde-Petit, B.,
 2005. In situ observation of the freezing process in wheat dough by confocal laser scanning
 microscopy (CLSM): formation of ice and changes in the gluten network. *Journal of Cereal Science*, 42(2), 255–260.
- Bárcenas, M.E., Haros, M., Rosell, C.M., 2003. An approach to studying the effect of different bread
 improvers on the staling of pre-baked frozen bread. *European Food Research and Technology*, 218(1), 56–61.
- Bárcenas, M. E., & Resell, C. M., 2006. Effect of frozen storage time on the bread crumb and aging of
 par-baked bread. Food Chemistry, 95(3), 438–445.
- Cauvain, S.P., 1998. Improving the control of staling in frozen bakery products. *Trends in Food Science and Technology*, 9(2), 56–61.
- Chen, G., Jansson, H., Lustrup, K.F., Swenson, J., 2012. Formation and distribution of ice upon
 freezing of different formulations of wheat bread. *Journal of Cereal Science*, 55(3), 279–284.
- Esselink, E.F.J., van Aalst, H., Maliepaard, M., van Duynhoven, J.P.M., 2003. Long-term storage
 effect in frozen dough by spectroscopy and microscopy. *Cereal Chemistry*, 80(4), 396–403.
- Fik, M., & Surówka, K., 2002. Effect of prebaking and frozen storage on the sensory quality and
 instrumental texture of bread. *Journal of the Science of Food and Agriculture*, 82(11), 1268–
 1275.
- Filipović, J., Popov, S., Filipović, N., 2008. The behavior of different fibers at bread dough freezing.
 Chemical Industry and Chemical Engineering Quarterly, 14(4), 257–259.
- Gray, J.A., Bemiller, J.N., 2003. Bread staling: molecular basis and control. *Comprehensive Reviews in Food Science and Food Safety*, 2(1), 1–21.
- Hamdami, N., Pham, Q.T., Le-Bail, A., Monteau, J.-Y., 2007. Two-stage freezing of part baked
 breads: application and optimization. *Journal of Food Engineering*, 82(4), 418–426.
- Havet, M., Mankai, M., Le Bail, A., 2000. Influence of the freezing condition on the baking
 performances of French frozen dough. *Journal of Food Engineering*, 45(3), 139–145.
- Hsu, K., Hoseney, R.C., Seib, P.A., 1979. Frozen dough II. Effects of freezing and storing conditions
 on the stability of frozen doughs. *Cereal Chemistry*, 68(4), 423–8.

- Inoue, Y., Bushuk, W., 1992. Studies on frozen doughs. II. Flour quality requirements for bread
 production from frozen dough. *Cereal Chemistry*, 69(4), 423–428.
- Kenny, S., Wehrle, K., Dennehy, T., Arendt, E.K., 1999. Correlations between empirical and
 fundamental rheology measurements and baking performance of frozen bread dough. *Cereal Chemistry*, 76(3), 421–425.
- 469 Klingler, R.W., 1995. Grundlagen der Getreidetechnologie, first ed. Behr's Verlag, Hamburg.
- 470 Leray, G., Oliete, B., Mezaize, S., Chevallier, S., de Lamballerie, M., 2010. Effects of freezing and
 471 frozen storage conditions on the rheological properties of different formulations of non472 yeasted wheat and gluten-free bread dough. *Journal of Food Engineering*, 100(1), 70–76.
- 473 Lucas, T., Le Ray, D., Davenel, A., 2005. Chilling and freezing of part-baked bread. Part I: An MRI
 474 signal analysis. *Journal of Food Engineering*, 70(2), 139–149.
- 475 Mandala, I., Polaki, A., Yanniotis, S., 2009. Influence of frozen storage on bread enriched with
 476 different ingredients. *Journal of Food Engineering*, 92(2), 137–145.
- 477 Martin, M.L., Zeleznak, K.J., Hoseney, R.C., 1991. A mechanism of bread firming. I. Role of starch
 478 swelling. *Cereal Chemistry*, 68(5), 498–503.
- 479 Mazur, P., 1970. Cryobiology: the freezing of biological systems. *Science*, 168(3934), 939–949.
- 480 Neyreneuf, O., Delpuech, D., 1993. Freezing experiments on yeasted dough slabs. Effects of
 481 cryogenic temperatures on the baking performance. *Cereal Chemistry*, 70(1), 109–111.
- 482 Petzold, G., Aguilera, J.M., 2009. Ice morphology: fundamentals and technological applications in
 483 foods. *Food Biophysics*, 4(4), 378–396.
- Polaki, A., Xasapis, P., Fasseas, C., Yanniotis, S., Mandala, I., 2010. Fiber and hydrocolloid content
 affect the microstructural and sensory characteristics of fresh and frozen stored bread. *Journal of Food Engineering*, 97(1), 1–7.
- 487 Roos, Y.H., 1995. *Phase Transitions in Foods*, Academic Press, London.
- 488 Seetharaman, K., McDonough, C.M., Waniska, R.D., Rooney, L.W., 1997. Microstructure of wheat
 489 flour tortillas: effects of soluble and insoluble fibres. *Food Science and Technology* 490 *International*, 3(3), 181–188.
- 491 Selomulyo, V.O., Zhou, W., 2007. Frozen bread dough: effects of freezing storage and dough
 492 improvers. *Journal of Cereal Science*, 45(1), 1–17.
- 493 Timm, F., Herrmann, K., 1996. *Tiefgefrorene Lebensmittel*, second ed. Behr's Verlag, Hamburg.
- 494 Walstra, P., 2003. *Physical Chemistry of Foods*, Marcel Dekker, New York.
- Wolt, M., D'Appolonia, B., 1984. Factors involved in the stability of frozen dough. I. The influence of
 yeast reducing compounds on frozen-dough stability. *Cereal Chemistry*, 61(3), 213–221.
- Zounis, S., Quail, K.J., Wootton, M., Dickson, M.R., 2002. Effect of final dough temperature on the
 microstructure of frozen bread dough. *Journal of Cereal Science*, 36(2), 135–146.

Sensory attribute	Description	Min and max score
Appearance		
Even shape	degree of even shape (round /uneven)	48.1 / 88.6
Air bubbles	degree of spotted/speckled surface due to air bubbles	13.9 / 89.5
Crumpled crust	degree of crumpled/wrinkled surface	2.5 / 58.4
Odor		
Total odor	odor intensity, irrespective to the type	54.2 / 87.3
Freshly baked odor	smell of fresh bread	6.8 / 81.9
Yeasty odor	smell of yeast	10.9 / 32.9
Off-odor	smell of something other than characteristic smell of bread	5.8 / 83.4
Flavor		
Total flavor	flavor intensity, irrespective to the type	40.6 / 86.6
Yeast flavor	flavor of yeast	7.1 / 38.0
Off-flavor	taste of something other than characteristic flavor of bread	3.2 / 76.3
Texture by finger		
Cracking	amount of crust cracks when pressure is applied	11.3 / 58.6
Springiness	Degree of how fast the bun returns to its shape after pressure	16.6 / 82.6
Compactness	degree of how airy or dense the bun is when pressure is applied	10.7 / 84.2
Elasticity	degree of how elastic is the bun when it is broken	6.1 / 80.1
Texture by mouth feel		
Airy	degree of air in the bun, assessed after first or second chew	24.8 / 80.2
Moist	degree of moisture in the bun, assessed after chewing for 5-10 seconds	13.3 / 83.6

Supplementary Material

Fig. 1 Effect of storage time, storage temperature and the way of processing on the macroscopic structure. (a) N reference; (b) NAf with 6 months storage at -19 °C; (c) NAf with 6 months storage at -8 °C; (d) NBe with 6 months storage at -19 °C and (e) NBe with 6 months storage at -8 °C.

Fig. 2 Effect of storage time and storage temperature on (a) the freshly baked odour, (b) the springiness and (c) the off-odour for NBe and NAf.

Fig. 3 Effect of storage time and storage temperature on the Log compressive stress for (a) NBe and NAf and (b) for FiBe and FiAf. C shows the amount of freezable water for NBe, including the heat flow of NBe stored for 6 months at -19 and -8 °C compared to N reference. In chart d the bread volume of NAf and FiAf over time is plotted.

Fig. 4 Light Micrographs of (a) N reference as dough and (b) after 6 months storage at -8 °C; (c) shows bread N reference and (d) NAf after 6 months storage at -8 °C and (e) NBe after 6 months storage at -8 °C. Samples are stained with iodine and Light Green. The starch granules appear bluish and the gluten and yeast cells green (scale bar = 20 µm in all images).

Fig. 5 Principal component analysis (PCA) bi-plot of bread baked after storage NAf/FiAf (a) and bread baked before storage NBe/FiBe (b). The storage temperatures are indicated with -10, -15 and -20 and the storage times with 2, 3.5 and 6. Comp1 = 55 %, comp2 = 18 % (a) and comp1 = 56 %, comp2 = 14 % (b).

Table 1 Sensory attributes and explanation including min and maxscores reached in the sessions.