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Chapter 1. Introduction

I.I. Preliminary remarks

Patterns of spatial variation are often so complex that only a statistical
description can be attempted. A few examples may suffice to support this
statement:

the spatial arrangement of microscopic particles suspended in a liquid or in
air, .
the distribution of galaxies in space,

the pattern of various rock formations on a geologic map,

the spatial distribution of plants or animals in the field, of trees in a forest,

the variation of the tensile strength of a piece of metal, :

the microscopic pattern of the surface of a manufactured product (photo-
graphic film, sheets of veneer, paper, metal, etc.).

In an earlier paper (1947), the author used the term topographic variation to
denote the local arrangement of such factors as fertility, vegetation, geologic
and climatic occurrences. This term has been adopted by some other writers
(B. Ghosh 1949, Whittle 1954). It will be used also in the present paper to
denote this somewhat loosely indicated subclass of the spatial variation. Some
of the other types of spatial variation referred to above, have been considered
e. g. by Neyman & Scott] (1958), Fox (1958), Zubrzycki (1957, 58), Savelli
(x957), and Husu (1957).

The development of concepts and terms for a description of the properties
of the spatial variation may be of value in several situations. In the first place
it may be helpful when investigating the underlying mechanism. It may
provide a means of specifying certain properties of a manufactured product
which are of technical or economic significance. Furthermore, from the stati-
stician’s point of view, it is important to have a good knowledge of the spatial
variation in a region where a sample survey, or a field experiment is to be
arranged.

In the author’s paper (1947), already mentioned, a model of the topographic
variation was used as the basis for a discussion of the problem of estimating
(from the data of the survey) the sampling error of a systematic sample. In
the following years the author has encountered various similar problems in
sampling, especially in forest surveys. Problems of spatial variation have
appeared also in connection with designs of field experiments.
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This paper reviews some basic theory of the spatial variation and describes
a number of applications to problems in sampling. Applications to questions
in field experimentation will be dealt with in a later paper.

The literature of mathematical statistics contains a large number of investi-
gations of phenomena varying in #me. The interest in time-series is the back-
ground of the development of the theory of stochastic processes which is at
present one of the major fields of probability.

The theory of stochastic processes can be extended to cover also models of
spatial variation. This has already been done in several contexts. In some
expositions the “index set” of the processes is defined in a general manner. It
can then be specialized e. g. as the three-dimensional space, also a time axis
may be included. Some authors designate this extension of the stochastic
processes as sfochastic (or random) fields (e. g. Yaglom 1957). In agreement
with Kendall & Buckland (1957) the term stochastic process will here be
applied also in the multi-dimensional case (cf. also Bartlett 1955, p. 13).

For the present purpose only a special class of stochastic processes will be
utilized. One restriction is that only static models will be considered. Of course
the dynamic aspect is of importance in describing many phenomena showing
spatial variation (cf. § 3.6 below). Cases where the development in time is
essential (e. g. turbulence, Brownian motion) are therefore beyond the scope
of this paper.

Another limitation is that only spatially homogeneous processes will be
considered. In analogy with the terminology used in the theory of time-series,
such processes will here be called stationary (not to be confused with the term
“static” in the preceding paragraph). To obtain reasonably realistic models of
actual phenomena it may often be necessary to superimpose some inhomogene-
ous (stochastic or deterministic) ‘long-distance’” component. In the appli-
cations the type of description used for this component is often immaterial,
see further § 4.1.

This paper should be regarded as an attempt to illustrate the usefulness of
the stochastic process approach to statistical questions associated with various
types of spatial variation. The field is very broad and interesting extensions
seem possible in many directions.

1.2. Survey of the contents

A brief exposition of the mathematics of stationary processes is presented in
Chapter 2. The exposition refers to processes in the #-dimensional Euclidean
space, R,. It is restricted to the variance-covariance properties of the processes.

Chapter 3 is devoted to some mechanisms producing sample functions
(realizations) of stationary processes in R,. The object of this study is to give
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some clues as to the assumptions that are appropriate in schematic models of
real phenomena.

Chapter 4 is concerned with the topographic variation. Some empiric data
are presented. A discussion of the influence of errors of observation is in-
cluded. Some particular questions, such as the influence of competition on the
. distribution of plants, are also touched upon.

Chapter 5 treats the problem of sampling a plane region by a finite number
of sample points. Various schemes of selecting the sample points are compared
as to their efficiency. The chapter is summarized in § 5.1.

Whereas Chapter 5 deals with one particular problem in some detail, the
concluding Chapter 6 is devoted to brief remarks on a number of different
questions, most of them associated with forest surveys. Section 6.1 gives a
summary of the topics treated in the chapter.

1.3. Notation

The chapters are divided into sections. The formulas are numbered e. g.
as (2.3.4) meaning formula 4 of Chapter 2, section 3. When referred to in
section 2.3 this formula is quoted as (4).

The following abbreviations are used:
ch.f. characteristic function
cor.f. correlation function
cov.f. covariance function
d.f. (cumulative) distribution function

Vectors and matrices are written in ordinary letters .(To avoid confusion,
some particular conventions are introduced for Chapters 2 and 3, see § 2.3.)
A transpose is denoted by the prime mark. A vector u = (uy, u,, . . . , #,) shall
always be understood as a column vector, hence the row vector is always
written with a prime, #’. In consequence, the snner product of the vectors u
and y is written #'y = y'u.

An asterisk is used for the complex conjugate.

As to general mathematical-statistical concepts, the terminology is chosen
in accordance with Cramér (1945).

It should be observed that no distinction is made in the notation between
a stochastic process and a realization of such a process.
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Chapter 2. Stationary stochastic processes in R,,

2.1I. General concepts

In this chapter certain concepts and theorems in the theory of stochastic
processes are reviewed, with emphasis on the variance-covariance properties of
stationary processes in the #-dimensional Euclidean space, R,. For details and -
proofs the reader is referred to one or the other of the following textbooks:
Bartlett (1955), Blanc-Lapierre & Fortet (1953), Doob (1953), Grenander &
Rosenblatt (1956), Yaglom (1959). Fundamental works such as Khintchine
(1934), Wold (1938), Cramér (1940), Karhunen (1g47), and Loéve (1948) mark
the development of the more specific “correlation theory” of stationary pro-
cesses.

Assume that to every point x of R, is attached a random variable

2(x) = u(x) + 1 v(v) (2.1.1)

where # and v are one-dimensional real random variables. Suppose further
that E[|z(x)[?] is finite for every ». The mean function of z is

m(x) =E[2(x)]
whereas the covariance function (cov.f.) is defined as

c(x, y) =E[a(x) 2%(y)] —m(x) m*(y) (2.1.2)

Although all applications will deal with real processes, the more general
complex form (1) is chosen since it offers notational advantages.

A function c(x, v) is admissible as cov.{. in R, if, and only if, it is nonnegative
definite.

The function

7(x, ) =c(x, ¥) - [e(x, %) c(y, y)I 7

is the correlation function (cor.f.) of z(x).

Various examples of covariance functions are found in the following sec-
tions. On the basis of such functions others can be constructed by applying
the following theorems (cf. Loéve 1948, pp. 304 —5). The class of covariance
functions of processes in R, is here denoted by C.

If ¢, cae C, then cicy € C.

Let p(u) be a measure in U, and suppose that c(x, y; u) is integrable over the
subset V of U for every pair (x,y), and write

e (5 9) = [ (e, 9: ) s (1) (2.1.3)

Ifc(x,y;u) e C forallueV, then c(x,y) e C.
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If cp(x,9) e C for k=1, 2, . . ., and if

¢ (% y) = m e (%, )

exists for all pairs (x,vy), then c(x,v) € C. ,
Occasionally, we shall consider two or more processes simultaneously. Let
2 and 2z, be two different processes. A cross covariance function is defined as

Cia(%, y) =E[21(x) 2% ()] —my(x) my*(y)

where m, and m, are the respective mean functions. Clearly c¢;,(x, y) =c*y(y, x).
In this context the function (2) is more fully designated as an awutocovariance
function. The corresponding nomenclature is used for correlation functions.

A family of processes z(x) with ¢ belonging to some index set 7', can be
considered as a process in the product space (R,, T). From this representation
consistency conditions for cross covariance functions can be deduced, see
Cramér (1940).

It may be added that the definitions and theorems presented in this section
are valid for processes in a general space.

2.2. Stationary processes

Stationarity is here conceived in the wide sense: A stochastic process is
stationary if the mean function is constant and the cov.f. ¢(x, y) depends on
the difference x —y only. We then simply write ¢(x —v) instead of c(x, ).
Similarly the cor.f. is written »(x —y).

In this case the correspondence

o(x —y) =c(o) 7(x -y)

exists between the two classes of functions. For this reason the attention is
confined to one of them. Choosing to deal with the correlation function we
introduce the following symbols: C, for the class of all functions which can be
correlation functions in R,; C,’ for the subclass of functions which are continuous
everywhere except possibly at the origin; C,” for the subclass of everywhere
continuous functions. In the applications (Ch. 5 —6) it will be assumed that a
cor.f. always belongs to C,".

Two stationary processes are stationarily correlated if their cross covariance
function ¢;, (v, y) depends on the difference x —y only. The two processes are
uncorrelated if ¢, vanishes identically.

We shall briefly comment on the two classes C," and C,". Consider first the
following cor.f. belonging to C,":

1if u=o0

7o (u)~—-{ (2. 2. 1)

o otherwise
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If r(u) € C,', 1t can be written

r(u) =a ro(u) +b 7,(u) . (2.2.2)

where vy is given by (1), v, & C,”, and a, b > o. Proof. Consider a process z(x)
with cor.f. 7(u) ¢ C,'. Write 7(o +) for the limiting value of #(») when # —0,and
assume 7(0 +) <#(0) =1. To simplify the notation suppose further that the
variance, ¢(0), is 1. Form a sequence {zx(x)} of stochastic processes with

2y (%) == 2(x+djn) (2. 2. 3)

Assume that for fixed N all d;,x are different and that
Max |‘df- N | -0 when N -
i

It follows that the corresponding sequence of cov.f.’s converges towards the
everywhere continuous function

_ r(o+) w=o
cl(t)_{f'(u) w0

It is then seen from the closeness properties (cf. 2.1) that ¢, is a cov.f. Thus
7(0+) = | #(u) |>o0 for all ». In the case 7(o+) =0, (2) takes the form 7(u)=
=79(u). If 7(0 +)>o0, we get the identity (2) by choosing

71(u) =cy(u)[r(0+) b=r(o+)=1-a
The above proof also indicates that we can decompose z(x) into two components
2(x) =29(x) +2,(%) (2.2.4)

where z, and z, are uncorrelated. The “chaotic component”’ z, has the cor.f.
(1); the “continmous component” z; has a cor.f. belonging to C,". Evidently 2,
is the limit in the mean of the sequence (3).

The following theorems are fundamental in the theory of stationary pro-
cesses.

If v e C, and is continuous at the ovigin, then v € C,".

Ifre C,", there exists an n-dimensional random variable which has v as chavac-
tevistic function (ch. f.). The d. f. of this variable is called the spectral distribution
function of the process. The spectral d. f. of a process thus is a function F(x)
where x is a point in R,. If the corresponding frequency function (probability
density) f(x) exists, it will be called the spectral density of the process. Con-
versely, the ch.f. of any n-dimensional random variable belongs to D;,.

The operation of obtaining a cor.f. from the corresponding spectral d. f.
(or vice versa) is linear. This property can be utilized to give whole classes of
cor.f’s when some particular cases are known.
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2.3. Isotropic processes

In the sequel isotropic processes will often be used as models of the spatial
variation. We shall therefore treat such processes in some detail. Further
information about these processes and the mathematics involved can be ob-
tained from Bochner (1932, esp. Ch. g), Schoenberg (1938), Hartman & Wintner
(x940), Lord (1954), and Yaglom (1957).

As in the case of stationarity, isotropy is also conceived in the wide sense.
Hence, the isotropic process is characterized by the property that the cor.f. is
independent of direction. It will be understood that the isotropic process also
is stationary.

The notation is simplified by making the following agreements for the rest
of this chapter and the following chapter. If a function H(x) with x ¢ R, depends
only on the real number v=|x|, i. e. the distance of x from the origin, it is
simply written as H(|x|) or H(v). Unless explicitly stated otherwise, the letters
x, v, and » will be used to denote points in R,, whereas v, w, and ¢ will denote
scalars.

Next, consider an isotropic cor. f. #(v) where v means distance in R,. The
class of such functions will be denoted by D,. It is a subclass of the class C,,
which was introduced in the preceding section. The corresponding subclasses
of C,” and C," are denoted by D,,” and D,", respectively.

Since a cor.f. is Hermitian, all members of D, are real functions. Since
R, C R,,, it is further seen that

D, DDy, DD;>D... (2.3.1)

The classes D, D; and D;” contain allrealmembers of the respective C-classes.
D," can also be described as the class containing all real parts of ch.f.’s of one-
dimensional random variables. However, for » > 1 far more restricted parts
of C, are obtained, as seen from the following theorems.

If ¥(v) € Dy, then #(v) > —1/n. Proof: InR, we can select # +I points so that
all mutual distances are equal to a prescribed number v. Let %, %;, . . ., %a
have this property. Then if the mean function of z(x) is put equal to zero,

E[|22(%) "] = (n +1) ¢(0) [1+7 7#(v)]

This must be non-negative, hence the proposition. If » ¢ D,’, the theorem can
be sharpened, vide infra.

If 7(v) € D, with n>1, and 7(vy) =I for some vy>o0, then v(v) is identically
equal to 1. Proof: Suppose |x —y| =v,. To every v in the interval (0,27,) a point
u can be found such that |# — x| =v, and |# — ] =v. Since both z(y) and z(#) have
correlation I with z(x) a perfect correlation must also exist between z(y) and
z(un). Hence #(v) =1, and the theorem follows by induction.

In this context it is of interest to note a conjecture of Schoenberg (1938,
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pp- 822 —3), which in the terminology used here would mean that the class
D, -D’, is empty for all n>1.
Now let #(v) belong to D,” with n>1. We write

r(v) =E[exp(i’X)] (2.3.2)

where v =|u|, and
X=X, ..., X

is an #-dimensional random variable. From (2) is seen that also the distribution
of X is isotropic, i. e. unchanged by rotation. It is therefore determined by the
d. f. of |X|. This d. . will be denoted G(w) and be called the radial d. f. of the
process. If the derivative G'(w) exists it will be called the radial density. The
corresponding ch. f. will be written g(v).

If the first component of # in (2) is v, then

7(v) =E[exp(wX;)] = E[exp(iv|X|Y)] (2.3.3)

where Y is one particular coordinate of a point chosen at random (equidistri-
bution) on the surface of the unit sphere is R,. Y is independent of |X|. If the
probability density of Y is denoted 4,, it can be shown (see e. g. Wintner 1940)
that :

(1 —w?) (-3

(D)
2 "2

with —1<w<1. This is a special case of the Beta-distribution, and it has

appeared in similar contexts in several papers, e. g. Lhoste (1925), Thompson
(1935). The corresponding ch. f. is

A () =k! (2[v)* J1 (0) (2.3.5)

where J; is the Bessel function of the first kind, and % =(n —2)/2. (The
notation A, for the above function is found e. g. in ]ahnke & Emde 1945, p.
128.) '

On the basis of (3) two representations of #(v) are obtained. First (3) can be
written in the form

T (w) = (2.3. 4)

7(v) =E[g(vY)]
which gives

v

7 (v) =f~"(;éjwﬂg(w) dw (2. 3. 6)
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Next, writing
7(v) =E[4dx(v| X |)]

we find
7 () =G (0) + foo Ay, (vw) dG (w) (2.3.7)

If the radial density G’ exists, the following inversion of (7) is obtained

oo
2

G’ (w) =f(7¢727\[’ (v) (vw[2)"? [ (vw) dv (2. 3.8)

o

In this case the spectral density, i. e. the frequency function f(w) of X, may be
inserted in (7) and (8) by means of the equation

T(n]2) G’ (1) = 20"~ * "/ (1) (2.3.9)

For the inversion of (6) we first note that #(v) depends only on the real part
@(w), say, of the ch. f. g(w). To every p(w) there correspond cor. f.’s 7,(v),
73(v), ..., in D", Dy", ..., respectively. For # =2 and # =3 the following rela-
tions are obtained

ple)=(afo) [ s dlona ) (2.3.10
¢ (@) == [wr; (w)] (2. 3. 11)

To express @(w) as a functional of a given 7,(v) with #>3, the recurrence
relation

' v 4 : ’

Vn-2 (V) =7, (v) to— o s (v) ' (2. 3. 12)
can be used, followed by an application of (10) or (11). For proofs of the above
formulas, see Hammersley & Nelder (1955), see also Faure (1957).

Assuming that the derivative #'(v) exists — which is always true for n>2
(Schoenberg 1938, pp. 822 —3) —we find from (7)

—nr’ (v) = foj)ze;z/l,;/z (vw) dG (w) - | (2. 3. 13)

From the above formulas several properties of isotropic cor. f.’s can be found.
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First, by means of the asymptotic development of Bessel functions (Watson
1944, Ch. %) formula (7) gives for n>1
lim 7 (v) =G (o) (2. 3. 14)

v —>00

If the degenerate case G(0) =1 is neglected, it is seen that
[7(v) -G(0)]/[x - G(0)]

constitutes a cor. f. belonging to D,". Hence, any 7(v)eD,,” can be written in the
form
7(v) =b + (X —b) 7,(v) (2.3.15)

with 0 <b<1 and 7, a continuous cor. f. with the property

lim 7, (v) =0

v1—>0
From (15) and (2.2.2) it is seen that a cor. {. belonging to D, can be decomposed
into three parts; a component of the form (2.2.1) is added to those appearing
in (15).

If 7(v) e D,/ with > 1, it is further inferred from (6) and (15) that v 7(v) is

not only absolutely continuous, but has a continuity modulus, which is in-
dependent of v for #>2. When #>2, and ¢>o0 (6) gives

v+E v
w w w
[(v+e) 7(v+e) —v r(v)] sz/h,, (v+s) dw+2f N (v+s> —ha (;) dw
The right hand member equals ¢ for #> 2. Thus in this case
[w+e)rv+e)—vr() <& (2. 3. 16)
Next, if 7(v) € D/, it is found from (7) and (2.2.2) that
7(v)> Inf A;(v) (2.3.17)
v

with & = (n —2)/2. Tables of Bessel functions give
n=2  7(v)> —0.403
n=3 7(v)>—0.218
n=4 7(v)>-0.133

It should finally be remarked that (6) still gives a cor. f. such that v 7(v) is
continuous when # >2, if g(w) is an integrable but otherwise arbitrary cor. f.
This gives further support to the above-mentioned conjecture of Schoenberg.
If z(¢) is a stationary process in R, with cor. f. g(t), 2(x) =2 (x'Y) with ¥
chosen independently of z; on the surface of the unit #-sphere, is then an
example of a process with cor. {. (6).
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2.4. Examples of correlation functions

Examples of continuous correlation functions can be obtained from distri-
butions appearing in statistical theory. We then utilize the identity between
the class C,” of cor. f.’s and the class of characteristic functions of #-dimensional
random variables.

When a normal (gaussian) spectral distribution is chosen, it follows

exp(—u'Au) e C," (2.4.1)

if w'Au is a non-negative quadratic form, see Cramér (1943, p. 310). A special
case is the isotropic cor. {.

exp( — a®v?) (2.4.2)
which belongs to D," for every »n. The corresponding radial density is seen to be
G'(w) =const. w"? exp(—w?/4a?) (2.4.3)
By (2.1.3)
o]
J exp (—a*? dH (a) c D} (2. 4. 4)

for all #. Here H(a) is an arbitrary one-dimensional d.f. Formula (4) is #ke
gemeral expression for a cor. f. belonging to every D,", see Schoenberg (1938,
pp. 817 ff.) and Hartman & Wintner (1940, p. 763).
Select then for a? a “type III distribution” (see Cramér 1945, pp. 126, 249).

With s, b> o, it is found that ‘

®© bzs .

f exp [ —a® (v? + b?)] O] a**-2da? = (1 + v?[b%) - (2. 4. 5)
belongs to every D,”. To obtain the corresponding spectral density the same
transformation can be applied to the spectral density of the cor. {. (2), which is

const. =" exp( —w?/4a3)

Thus the spectral density of (5) is
oo
f (@) = const. / exp ( —w?/44® —b%2) a** ="~ da® =
o

= const. %~ "2 K _ 4, (0) (2. 4. 6)

cf. Ryshik & Gradstein (1957, formula 3.282). Here K is the modified Bessel
function of the second kind, see Watson (1944, p. 78). Lord (1954, p. 55) calls
this the “right” generalization to # dimensions of the type III distribution.
- (Lord considers only cases with s>n/2:)"

2—Medd. fran Statens skogsforskningsinstitut, Band 49:5.
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For s>nfz (5) is a frequency function in R,, if multiplied by a suitable
constant. Thus its Fourier transform gives a cor. {. in R,. Hence

2 (bvf2)’K, (bv) [['(v) e Dy~ (2. 4. %)

if b and y are '>o. For the constant in (7), see Watson (1944, p. 80).
Two special cases of (7) deserve mention. For v =1/,

exp(—bv) e D,” (2.4.8)

for all #n. The corresponding spectral distribution is (5) with s=(n +1)/2. It is
the generalization to # dimensions of the Cauchy distribution (Quenouille
1949, Lord 1954, cf. Bochner 1932, p. 189). For n=1 (8) is the cor.{. of a
Markoff process. If » =1 is inserted in (7)

vb K (vb) (2.4.9)

is obtained. It has been called the corresponding elementary correlation in R,
(Whittle 1954).
Applying (2.1.3) to (8) we find that

fwexp (=|bv|)aH({) e Dy, (2. 4. 10)

for every n. Here H is an arbitrary d. f. According to Bernstein’s theorem (see
Widder 1941, p. 160) this is the general form of a function completely monotonic
in 0 <w <oo and attaining the value 1 at the origin.

If the total mass in the radial distribution is concentrated in the point a,
we find from (2.3.7)

Ay (av) e Dy, (2. 4. 11)

where k=(n—2)/2 and A is the function (2.3.5). The corresponding spectral
distribution is the equidistribution on the surface of the sphere |¥| =a in R,.

It can now be shown that all functions of the type (1) of higher order than
k also belong to D,”. Transforming Sonine’s first finite integral (Watson 1944,
p. 373) we have with 4, &, s>o0

Ag 45 (av) = B k+I) f/lk(vw (w/a)?*+* (1 — w?[a?)*~dw (2. 4. 12)

Hence
As(av) e Dy if s=n-2)[2 a>o

as is plausible from (11) and (2.3.1).
A special case of (12) is the cor. {.

An[z (v) (2. 4. I3)
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which has the equidistribution in the interior of the unit #-sphere as spectra
distribution. For other connections with #-dimensional geometry see Wintner
(1940) and Hartman & Wintner (1940).

With the exception of the first example, only isotropic cor. f.’s have been
-dealt with. Now the isotropic cor. f. (2) is a special case of the more general
function (1). Likewise, every isotropic #(v) can be regarded as a particular case
of a cor. f.

7 (Vu'Au) (2.4.14)

Thus a class of correlation functions is obtained where the “iso-correlation
surfaces” are ellipsoidal and not necessarily spherical as in the case of an.iso-
tropic cor. f.

The following is a more general way of obtaining a family of cor. f.’s from a
given function. Let z,(y) be a stationary process in R,, with cor. f. 7,. Further,
let B be a real matrix of order m -#. Define with x ¢ R,

#(x) =2(Bx) (2.4.15)
Then z(x) is stationary with cor. f.
7(u) =7,(Bu) (2.4.16)

If z has the isotropic cor. {. #,(v)

7 () =7, (Vu'B’Bu)

i. e. the “elliptic”’ case (14).

Of course, various other operations carried out on a stationary process z ()
with cor. f. 7; can give new stationary processes with cor. f.’s that have more
or less complicated relations to 7;. Examples:

%(y) =12 )]
)=/ m( —x)g @) dx
where f and g are non-stochastic complex-valued functions. See further Ch. 3.

Still other types of cor. f.’s in R, are obtained by forming the product of
cor. f.’s in R,, and R; with m +k=n.

2.5. Integration of stationary processes

Integrals of the type
sf«p (%) z (x) dx (2. 5. 1)
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where ¢{») is continuous over the finite set S; in R,, and z(x) is a stationary
process with cor. f. € C,,”, can be defined as limits in the mean of finite linear
forms in stochastic variables {z(%,)} in analogy with the Riemann definition
of an integral, see Cramér (1940). Cramér deals with processes in R;. The
extension to R, is straightforward. The integration can be carried out under
somewhat milder restrictions on ¢ and z, e. g. for processes with a cor. f.
belonging to C,".

A more general concept of integration is outlined in Karhunen (1947).
Since we shall mainly be concerned with the first two moments of the integrals,
there is no need to enter into further discussions of the concept of integration.
The integration of a stationary process can be regarded as a special case of a
general linear operation (or “‘filtering”’) carried out on the process; for arigorous
treatment along these lines, see Doob (1953).

Let 2(x) have the constant mean » and the covariance function ¢% () with
re C,. Then z is integrable in Cramér’s sense. Denote the integral (1) by I;.
The first two moments of the integrals are given by

=msf<p (%) dx (2.5.2)
Cov. (I;, I*) o2f f 7 (x —9) @ (%) @* (y) dx dy (2.5.3)

From the discussion leading to (2.2.4) it is clear that # can be replaced in (3)
by its continuous component, b7, of (2.2.2). We thus have

~{ Bl @] + Bl (0]} S () v
Cov. (I, Ij) = 01 J [ i =5) 9 () ¢* () dedy

where o,%, is the cov. f. of the continuous component, z,. Thus the presence
of the chaotic component, z,, introduces no serious complications in the for-
mulas. When finite sums are considered instead of integrals (vide infra), the
variance of z, enters into the formulas in a trivial way. Although such a chaotic
component is needed in some applications, it can be disregarded for the mo-
ment. Consequently, it is assumed for the rest of this section that z has a cor. {.
e C,".

The applications in the following chapters mostly refer to the case ¢ =1.
It is then convenient to deal with average values, which will be denoted in the
following way

= J2()dx|u(S) (2.5 4)
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where u(S;) is the volume of S;. Averages over sets of infinite measure might
also be defined by a passage to the limit, but such averages are uninteresting
from the point of view of the following applications. Their statistical properties
are related to the ergodic theorems, cf. Grenander & Rosenblatt (1956, pp.
42 ff.).

The main advantage of using averages instead of integrals is that several
averages {2(S;)} can easily be handled simultaneously, even if the setshave
varying dimensions from o to #.

If S; belongs to a linear subset of R,, the integral over S; and the measure
4(S;) in (4) should be understood to refer to this space of lower dimension.
Proceeding to a set S consisting of a finite number of points (¥;, %,, . . , xy) We
define

2(8) = Z(x)

Formulas for mean values, variances and covariances of averages can be
expressed in a more compact form than the corresponding formulas for inte-
grals. For the mean value we have

E[z(S)]=m
whereas the covariance can be written as follows

Cov. [+(S), #*(S))] = 0* f Wdd; ) =2E[r (U-V)] (2.5.5.)

Here A4;; is the d. f. of the difference U —V between two points chosen inde-
pendently and at random (equidistribution) in S; and S; respectively. If j =7,
(5) gives an expression for the variance of z(S;).

If the cor. f. is isotropic, (5) can be replaced by

Cov. [2(S), 2* (S))] = 0* [Bi; ( o)+f1' (®)dBi; ()] =*E[r(|U -V |)] (2.5.6)

where B;; is the d. . of the distance |U - V.

The equivalence of (5) and (6) with the expression obtained more directly
from (3) follows from theorems on transformations of integrals, see Saks
(1937, p. 37) and Simonsen (1947).

Next, we consider formulas expressing the covariances in the spectral and
radial distributions. Let F(#) be the spectral d. f. of the process (see § 2.2).
By applying Fubini’s theorem (Saks 1937, p. 77) on (5) we find

Cov. [2(S), 2* (S)) = 0* / o () AF () (2.5.7)
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where o; is the ch. f. of the difference U — V. Since U and V are independent
o () = ot (u) o™ () (2.5.8)

where o;(#) is the ch. f. of the rectangular coordinates of a point chosen at
random in S;.

We shall give two examples of ch. f.’s of this type.

If S is the n-dimensional interval ‘

| ¢j—d;i <% <cj+dj (f=1,2,..,7)
the ch. f. is

exp (iw'0) I"I sin (u;d;)

xp j= %ﬂi

I j &g

(2.5.9)

Here ;, ¢;, d;, and u; denote the j:th components of the vectors «, ¢, 4, and u,
respectively.
If S is the ellipsoid

(5" =c") A (x —c) <a?
the ch. f. is
exp (i'c) Apjz (VWA= u) (2. 5. 10)
If » ¢ D,”" has the radial d. f. G(w) (see 2.3.7),

Cov. [2(Si), 2% (S))] = 62 [G (0) +6/ wi; (©) dG (w)] (2. 5. 11)

Here y;; is the ch. f. of the product of the two independent variables |U - V|
and Y, where Y is one particular coordinate of a point chosen at random on
the surface of the unit #-sphere, cf. (2.3.4) and (2.3.5). Hence in analogy with

(2.3.7)
¥ij (w) = Bi; (0) + of Ay, (vw) dBij; (v) (2. 5. 12)

with k= (n -2)/2.
An alternative to (11) is

Cov. [2(Sy), #*(S))] = E[B(XIY)] (2.5.13)

where f is the ch. f. of the distance |[U - V|, and |X| is a random variable with
d. f. G(w), whereas Y is one rectangular coordinate of a point chosen at random
on the boundary of the unit #-sphere.

In practical computations, one or the other of the above formulas can be
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found to be convenient. In some cases, when the sets {S;} are irregular in
shape, or the integration presents difficulties for other reasons, a formula of
the type (6) indicates a way of applying the Monte Carlo method. If {U;, V;}
are N pairs of sample points chosen at random in S;, and S;, respectively,
the expression

02 . .
ﬁéh‘jf’(th -Vil)
is an unbiased estimate of the covariance between z(S;) and z*(S;).

In the following chapters we shall have to deal with expectations of qua-
dratic forms of the type

Mz

T=‘

1

.
jicﬁ [2(Si) —m] [2* (S;) —m*]

I

From the different covariance-formulas of this section various expressions for
E(T) are obtained. E. g. from (7)

E(T)=0* [ oy (u) dF (u) (2. 5. 14)

n

where '
Op= Z'é,— 243 Oq* (2. 5- IS)

may be called the characteristic function of the quadratic form T.
In the isotropic case we may apply (6), e. g. Then

E(T) =02[A7(0) + fooy (v) dA7 (v)] (2. 5. 16)
with
‘ AT =20¢,’Bi7' (2- 5. 17)

Formulas of the type (14) — (16) were used in the author’s earlier investigation
(Matérn 1947, pp. 32,55). An expression such as (17) was called a distance-
integral. The derivative of (17), if existing, was called the distance function of T.

When the sets {S;} are composed of elements such as rectangles and spheres,
it is usually easy to find an explicit expression for the characteristic function
(15), see (9) and (x0). A deduction of the corresponding distribution functions
and frequency functions seems to be more difficult, and the expressions tend
to become somewhat unwieldy. However, some special cases will be reviewed
for later reference.

These cases all refer to the distribution of the distance between two points
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chosen at random and independently in a plane convex region. The region is
denoted by S, and its area and perimeter by 4 and P, respectively.

First, let S be a rectangle with the sides 4, and A4,. The fr. {f. was derived
by Ghosh (1943), see also Ghosh (1951). It can be written as follows (see Matérn

1947, p. 35):

vizf (o/ VA, VA/A,) (2. 5. 18)

where
f(w, a) =2w [f,(w, a) +fy(wa, a) +fy(w/a, 1/a)]
with
w+w?-2w(@+1/a) o<w<\a®+a?
fl (w’ a) = { .
o otherw:se

2 \w? —1 ~2 arccos (1/w) —a~2(w -1)2 I<w<\I+at

fz(w: a)={0

otherwise

For small v, the frequency function of the distance between two points in S
can be written ‘

2wy 2v%P .
T—T'I'O(‘U) (2.5. Ig)

This formula is valid for any convex region, cf. Borel & Lagrange (1925, p.
87). The corresponding expression for the d. f. is

w2 218P

T o)

For a circle with radius R the frequency function is

% fe (z arcsin 5—%) (2. 5. 20)
with
4 sin (w/2) [I—w] o<w<m
fo(w) =
¢ 0 otherwise

cf. Deltheil (1926, p. 39). The corresponding d. f. for a sphere in R, is also
found in Deltheil (1926, pp. 114 ff.), see also Hammersley (1950) and Lord

(1954 a).
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The following formula connects the frequency function f(v) of the distance
between two random points in a plane convex region and the d. f. C(v) of the
length of random chords in the region

f(v)=6v /°° [1 - C (w)]dw/ fm % C (w) (2. 5. 21)

The formula is a consequence of the relation existing between the density of
pairs of points and the density of straight lines (Santalé 1953, pp. 16 —19).
The expressions (22) and (23) below have been derived by aid of (21).
The fr.f. of the distance between two random points in an equilateral
triangle with side s is
78”—_ [ty (v]s) + £ (0]5)] (2. 5. 22)
s2V3

{n—4w\/§+w2(\/§+zn/3) o<w<TI
t (@) =

where

0 otherwise

b () 3V12 w2 —g — (42 +6) arccos(\/g/zw) V3[z<w<1
w) =
z 0 otherwise

The corresponding frequency function for a regular hexagon with side s is

0 _hwls) (2. 5. 23)
9sV3
with
0 w<0, w>2
3w —4wy3+w? (V3 -7/3) o<w<I
h(w) =7 (5 +w?) -3 Vizw? — g — (42 + 6) arcsin;/—g I<w<\3 /2
(202 + 24) <arcsin—w\§—§> —V3(@?+6) +10\3wP—g V3[2<w<2

Some distributions connected with points chosen along plane curves are
listed in § 6.8.

2.6. Stationary stochastic set functions

A wide sense stationary stochastic set function can be defined in the following
way. Random variables {Z(S)} are given for all finite Borel sets in R,. The
following properties are assumed

Z(S:iUS)=Z(S)+Z(Sj) -Z(S:NS))
E[Z(S)]=mu(S;)
Cov. [Z(T4S:), Z* (T Sj)] = Cov. [Z(Si), Z* S;)]
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Here u is the Lebesgue measure and T is the translation operator, i. e. T,,S
is the set of points x+#% with x e S. The covariance function shall be non-
negative definite. If furthermore the covariance is unchanged by rotation,
the stochastic set function Z(S) is said to be (wide sense) isotropic.

The integrals considered in 2.5 furnish a first example of stationary set
functions. However, there are important classes of stationary set functions
which are not integrals of this type, e. g. the point processes. -

For the general theory of stationary point processes in R,, the reader is
referred to fundamental papers by Wold (1949) and Bartlett (1954).

The simplest point process in R,, the n-dimensional Poisson process, is
constructed as follows. A random variable Z(S), the number of “‘events”
occurring in S, is attached to every set S. Z(S) is assumed to have a Poisson
distribution with mean A u(S), where the dnfensity A is a positive number.
Further, Z(S;) and Z(S;) shall be independent if S; and S; are disjunct. For
arbitrary S; and S; it follows

Cov. [Z(S), Z(S}))1=2 u(S:N S;) (2.6.1)

Since the process is real the asterisk denoting the complex conjugate has been
dropped here.

The Poisson process is an example of a stationary set function which is
orthogonal. Processes of this kind are characterized by the property that Z(S;)
and Z(S,) are uncorrelated if S; (1S;=o0. The Poisson process is also isotropic.

An example of a more general kind is obtained by substituting an integrable
stationary and positive stochastic process A(x) for the intensity. The ensuing
set function Z(S) will in the sequel be called a stationary compound Poisson
process. The integral of A over S is denoted A(S). If a realization of A(x) is given,
the conditional distribution of Z(S;) is a multidimensional Poisson distribution
with

E[Z(S)]=A(S)
Cov. [Z(S)), Z(S;)] =/1(5¢: ns;

This way of constructing point processes is mentioned in Quenouille (1949),
see also Bartlett (1954), and Thompson (1955).
Let the intensity function A have mean # and cov. f. 6%(«). Then

E [Z(S)]=m u(S)
Cov. [Z(S), Z(S)1=m u(SiNS) +0* [ [r(s~y)dzdy  (262)
i f

The covariance thus is a sum of two terms, one of the type (1), and the other
of the type belonging to integrals of stationary processes.
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A further discussion of point processes is found in § 3.6 where some special
cases are treated..

A generalization of the above set function is obtained by attaching to an
“‘event” occurring in the point x a real quantity z(x) and defining Z(S) as

2z (x3) (2.6.3)

with summation over all events x; in S.
Denote the mean value of

l2(%) |2 A(x)

by m, and let 0%(u) be the covariance function of the product A(x)z(x). It is
then seen that the moment formula (2) is valid also for the stochastic set
function (3). If A(x) is constant, (3) may be called a generalized Poisson process,
cf. Feller (1943). :
Still other types of stationary set functions may be of interest in the applied
field. We may want to study e. g. a random variable Z(S) defined as the total
length of the intersection between S and a network of curves, generated by
some random procedure. More generally Z(S) may be the (# —$)-dimensional
measure of the intersection between S and some enumerable set of (n—p)-
dimensional subsets of R,. Models of this type can be useful when treating
estimation problems concerning lengths of random curves in R, or R, or areas
of random surfaces in R,. (For problems of estimating the length of networks
in R,, see Steinhaus 1954 and Matérn 1959.) However, we shall not discuss
such stochastic set functions here. Yet, it may be remarked that the concept
of stochastic process can be generalized so that a unified treatment including
various types of random functions is possible; see papers by Ito (1954) and
Yaglom (1957), in which the Schwartz theory of distributions is applied.

Chapter 3. Some particular models

3.I. Preliminaries

To amplify the purely formal treatment in Ch. 2 we shall now deal with
some mechanisms that furnish sample functions of stationary processes. We
shall not be concerned with general representations of the kind valid for all
processes with a given cor. f. For such representations the reader is referred
to Karhunen (1947). Instead some rather specific models will be investigated
here.

Now a model must be of a simple and tangible type if it is meant to convey
a clear idea of what a realization looks like and also to give possibilities of
computing a sample function with sufficient accuracy.
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Besides illustrating the theoretical concepts models of this kind can also
give indications on the appropriate assumptions on correlation functions etc.
in applications. Needless to say, a model must often be almost grotesquely
oversimplified in comparison with the actual phenomenon studied.

Disregarding for the moment any connection with real phenomena, we can
obtain sample functions corresponding to a given cor. f. in the following way
(cf. Bartlett 1955, p. 163). Let 7 be a continuous cor. . in R, and denote the
corresponding spectral d. f. by F(x). Let further X be an #-dimensional random
variable with d. f. F(x), and let the one-dimensional random variable X, be
independent of X and uniformly distributed over an interval of the length
27c. Then

2(x) =exp(ix'X +1X;) (3.1.1)

has 7 as cor. f.

The model (1) is suggested by the general spectral representation of a cor. f.
in C,". Turning to the isotropic case, the representation (2.3.3) suggests the
model

2(x) =exp(ix' XY +1X,) (3.1.2)

where X, has the same meaning as in (1), X is equidistributed on the surface
of the unit n-sphere, and Y is an one-dimensional random variable with the
ch. f. g(v) of formula (2.3.6). X, Y, and X, are independent.

From the application point of view the above models must be classified as
patologic. They may be useful e. g. if we want to compute complicated varian-
ces and covariances (cf. § 2.5) by experimental sampling (“Monte Carlo
methods”).

Mechanisms which are computationally simple and also bear some resem-
blance to reality may be obtained by aid of the n-dimensional Poisson process
(see 2.6). '

The Poisson process shall then furnish randomly located “‘centers’ spreading
their influence over a more or less restricted neighbourhood. Different types
of mechanisms produce a large variety of stochastic processes. Many authors
have used this approach; a short systematic account of such models in R, is
found in Blanc-Lapierre & Fortet (1953, pp. 143 ff.). As remarked by these
authors the dispersal from the center may be a disturbing effect produced by
the mechanism used in observing the process.

3.2. Moving average model with constant weight function

Consider a Poisson process in R, (cf. § 2.6) with intensity A. The process
produces randomly located centers. Denote by dN(x) the number of centers
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in the volume element dx of R,. Let further ¢(x) be a quadratically integrable
fix function. A stationary process z(x) is then defined as

z (%) =Rf g(x -y)dN (y) (3-2.71)

We shall call g the weight function (cf. Zubrzycki 1957, p. 113) of the moving
average model (1). The cov. f. of (1) is Ac(u), where

c(u) =Rf q(u+y)q* (y)dy (3. 2. 2)

The corresponding spectral d. f. is absolutely continuous with density

const. |p(u)[? (32.3)

where @(u) is the Fourier transform of ¢. Formula (3) is a consequence of
Parseval’s theorem. ‘

It may be added that the quadratic integrability of ¢ is not strictly sufficient
for (1) to be meaningful. The mean value of z(x) is formally deduced to be

ASq(x)dx
Rn

This integral may be divergent. However ¢ may still be used as weight function
if (1) is replaced by

azfq(x—y) [@N(y) - Ady]

As a first example, consider

q(x)={B if x| <4 } (3. 2. 4)

o) otherwise

Thus 2(x)/B is the number of centers within distance 4 from x. From (2) we
obtain the isotropic cov. f.

AB B* V,(4, A;v) (3.2.5)

‘We have here used the notation V,(a, b; ¢) for the volume of the intersection
of the two spheres

% — %] <a % — x5 <b

where the distance |v, —x,| between the centers of the spheres equals ¢. V is
the sum of two spherical segments. Thus

I : I
V(@ b ¢) = Cpt®f Iysz (@) dw + Cub® [ B (10) de0 3. 2. 6)
« B
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C, denotes the volume of the unit #-sphere:

Con=nm"?|I'(1 +n/2)
Furthermore, 4 is the function (2.3.4), and

a%4c% -b? b2 +c? —a?

2ac 2bc

o=

It must be remembered that %(w) =o0 if |w|>1. For some low values of # we
find the following cor. £.’s corresponding to (4)

n=1 7(24v)=1-v

n=2 7(24v) =1 —(2/7) [v \/1 —v? +arcsin v]

n=3 7(24Av)=1-30[2+1%[2

n=5 r(24v) =1 —159/8 + 5034 — 3058

These expressions are valid for |v| <I, otherwise #(24v) =0. The case n=2 is
found in Zubrzycki (1957, p. 115).
It is seen from (2.4.13) that the corresponding spectral density is (cf. 2.3.5)

(A2 (40)]2 (3-2.7)

Four additional weight functions and the corresponding correlation functions
are listed in table 1, where also references are given to relevant formulae in
Ch. 2. Since the functions are all isotropic, the distance v is used as argument,
as in Ch. 2.

Weight functions corresponding to a given cor. f. can be found by aid of the
Fourier transforms and (3).

Table 1. Weight functions and corresponding correlation functions.

[k=(n-2)]2 s>o0 "a>o0]

Weight function Correlation function Formulae in § 2.4

exp ( —za%? exp ( — a%?) 2
_nEI _nir
(1 +40%a?) (x+0%a?) 5
Ak+s_+_, (av) Ap s (av) 12
rl
v'K; (av) const. v* K (av) 7
with s =2¢+n/2
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We note some special cases of the last example of table 1. If s =1/,, it is seen
that 7(v) =exp(—av) corresponds to the weight function

n-I

v * Ky_x(av) (3. 2.8)

For #n =1 and n =2 the weight functions are
Ky(av) ond v-**Ky,(av)

respectively, i. e. weight functions that are infinite at the origin. (A table of
Ky, is found in Carsten & McKerrow 1944). If the weight function Kg(av)
is chosen for all #, we find the cor. f.’s

2 (av[2)"!* Kypo (av) | I (n]2) (3-2.9)

This is of some interest in conjunction with Whittle’s discussion of the two-
dimensional analogue of a Markoff process, see the remark attached to (2.4.9).
If the weight function is exp(—av) for all #, the corresponding cor. f.’s are
given by (9) with » replaced by # +2.

From the isotropic models we can derive models with “elliptic” cor. {.’s by
replacing the isotropic weight function ¢(v) by g(Vx’Ax) where 4 is a positive
definite matrix. The cor. f. #(v) corresponding to ¢(v) is then changed into
7(Vx'Ax), cf. (2.4.16). In this context we note the following generalization of
the scheme (4):

) B xeS | I
x) = . 2.
1 0 otherwise (3-2.70)

Here S is a set of finite measure in R,. The spectral intensity of the correspon-
ding process is proportional to the ch. f. of X — Y, where X and Y are inde-
pendently chosen with uniform distribution over S.

It may be remarked that (1) can be described as a linear filter with ¢ as a
“transient response function”, see Grenander & Rosenblatt (1956, p. 49).
We note also that a model of this type can be constructed to every cor. f.
that has an absolutely continuous spectrum, see Karhunen (1947).

We finally note that in the case of stochastic processes in the proper sense
(n=1), the weight function should usually not be chosen as isotropic; it
would mostly be realistic to have ¢(x) =0 for x> o0, i. e. a one-sided filter.

3.3. Moving average model with stochastic weight function

The model considered in the previous section can be written

z(x) =2'q(x —v;) ‘ (3.3-1)
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where ¥y, ¥,, . . . , are the centers produced by the Poisson process, arranged
e. g. in ascending order of distance from the origin of R,. Suppose now that
to each center is selected at random a weight function out of a certain family
of functions {¢(x,7)}, where each function is quadratically integrable over R,
Let the random variable ¢ vary in the space T according to the probability
function P(¢). Thus, to each center y; a sample value # of this random variable
is chosen. The #-values attached to the different centers are assumed to be
independent.

For fixed %, ¢(x,) is a random variable. We suppose that itsfirst two moments
are finite. The following notation is used

qo(¥) =E[q(.7)]
p(ux) =E[q(x +u,t) g*(x;1)]
It is assumed that g,(x) and $(0,%) are integrable over R,.

The process with stochastic weight function can now be written in a form
analogous to (1)

Z(x)=i2'q(x—yf;t;) (3.3.2)

We can also interpret z(x) as the convolution of processes with fixed weight
functions; the process with weight function ¢(x,#) having the intensity AdP(f).
Thus the following alternative to (2) is obtained

(x) = {ﬂ (x —v;£)dN(y, 1) (3-3.3)

where dN(y, #) is the number of centers produced in the interval dy df. The
expected number is given by

E[dN(y, {)]1=A dy dP(t)

Clearly N(y, t) forms ‘“‘a process with independent increments”. We now in-
troduce

M(t) =AP(t) (3-3-4)

and call M (¢) the mixing function.

The approach (2) may be generalized. We may admit unbounded mixing
functions. In this case some further restrictions must be placed on the family
of weight functions so that g4(x) and $(0,x) become integrable over R,. Ex-
tending the notation of (3.2.2) we now introduce

c(u;t) =qu(u-y;t)q*(y, t)dy (3-3.5)

The cor. {. of z(x) is

7 (#) = const. Tf c(u;t)dM (¢) (3.3.6)
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The corresponding spectral density is (cf. 3.2.3)
f (u) = const. Tf | @ (u;8)|2aM (2) (3-3-7)

where @(u,%) is the Fourier transform of c¢(u,%).
As first example we consider the family

q(v; ) =2"exp (- v?[21?) (3-3-8)

where ¢ is restricted to real numbers. As mixing function we choose M (),
defined by

aM (t) [¢****-Texp (-1%% ft>o0
7={0 t<o} (3-3-9)
Here v must be> o0 to make $(%,0) intégrable. With |#]|=w
@(u,f) =const. exp( —?w?|2)
Applying (7) we obtain
f(u) = const. (1 + w?[b%)?+"/
Thus (cf. 2.4.5 —2.4.7)
7 (v) =2 (bv[2)? K, (bv) /1" (v) (3. 3. 10)
Let us still retain the weight functions (8) but replace (9) by
aM (t) |[t*-*"-Texp(-a?/41?) t>o0
_d[—={o t<o} (-3 17)

with »> 0. For » <#/2 the mixing function is unbounded. We now apply (6) to
the functions (11) and

c(u;f)=t""exp (—v%/41?)
Then
7 (v) = (1 +v?%/a?)-* (3.3-12)

" The two forms (10) and (12) can be comprised into one expression if we
choose (for positive )

aM (¢
M( ) =tn+2v—1 exp ( —t2b2 - a2/4t2)
dat . :

Then (cf. the derivation of 2.4.6)

7 (v) =2 (1 +0/a®) =2 (6]2)° K(6) | I (s) (3-3-13)

3—Medd. frin Stat skogsforskningsinstitut. Band 49:5.
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with 0 =b\/a2 +v?, s=[»|. The case (10) corresponds to the choice a =0, > o.
To get (12) we must take » <o and make b »o.
A different type of models is obtained by choosing (cf. 3.2.11)

Bt szt }

.3. I
o) otherwise (3-3-14)

q(x;7) ={
where the complex number B; and the set S; in R, are attached to the random
variable . The corresponding cor. f. has the spectral density

f(n) =const.Tf 1 Be |2 1 (Se) | e () |2 aM (2) (3- 3- 15)

In (x5) u(S:) denotes the volume of S;, ¢:(#) is the ch. f. of the rectangular
coordinates of a point chosen at random in S;. The formula can be condensed
into

7 () =const.Tf | @: (w) |2dL (2) (3. 3. 16)

where L(f) is non-decreasing. If a tractable model corresponding to a parti-
cular cor. {. is wanted, 4L(f) may be partitioned into factors A, |B;|2, and 4P()
in any manner that gives computational ease.

A paper by Hammersley and Nelder (1955) is devoted to the special case
where the sets S; of (14) are spheres. If ¢ is the diameter of the sphere S; in
R, it can be seen from (16) and (3.2.7) that the spectral density is

const; 0fc>c> [Au. (w]2)]2 4L (2) (3.3-17)

The cor. f. is (cf. 3.2.6)
7 (v) = const. vfoot” aL (t)v I{I P sz (W) dww (3.3.18)

Differentiating, we get
—-7'(v) = const.[?”' * Jura(v/t) AL(2) (3-3-19)

To obtain an example we start from the following integral in Bessel functions
(a transformation of formula 6, p. 417 in Watson 1944)
- A

S 7=l (v]t) =K (af) dt = const. v? K} (av)

where
p=(m+1-25)[2
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From this formula one cor.f. of the type (2.4.7) can be obtained, viz. by
putting s=#/2. It can be seen that the cor.f. exp(—av) corresponds to the
choice

dL (t)
= I-nl2
7 nfz (@2) ¢

Hammersley & Nelder have treated the special cases # =1, 2, and 3.

It follows from (18) that 7(v) is a linear functional of L. We therefore
conclude that any completely monotonic cor. f.. (2.4.10) can be obtained by
the Hammersley-Nelder procedure.

As a consequence of (19)

7'(0) <0 (3-3:20)

It is seen that most of the cor.f.’s given as examples in 2.4 do not have the
property (20). We note for example that exp( —av) is the only cor.f. of the type
(2.4.7) with a finite negative #(0). [If the index » in (2.4.7) is >1/,, #'(0) is o;
for v <[y, #’(0) attains the negative infinity.]

Expressed in the present notation, the chief problem solved by Hammersley
& Nelder is to find the function L corresponding to a given cor.f. in R,. Now
the relation between 7’ and L is of the same nature as the connection between
a cor.f. and the ch.f. of the corresponding radial distribution, cf. § 2.3, esp.
(2.3.6) and (2.3.10 —12). Disregarding for the moment the statistic properties
of L and 7, we write down the formal solution of the integral equation (18).
Denoting more fully the right hand side of (18) as 7,(v), we get by differentiat-
ing (19) : ]
—7y(v) =const. vry,_,(v) (3-3.21)

If 7,(v) is given, the corresponding 7, or 7, can be found by means of (21). The
function L is then obtained by one or the other of the formulas

aL (z) _ const. oov d [vrs (v)] 3 3 22)

at ¢ ; V v§ 2
ae _ const. 7," (£) ' . (3.3.23)
at
Using (21) and (22) we obtain for example
dL(f) const. oc;) drs(v
U 2(v) (3-3-24)

dat 17 \/.02 —2
¢
It should be added that Hammersley & Nelder use a special device to assure
that an exact realization of a process over a bounded region can be obtained
in a finite number of steps.
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One way to obtain models in R, with stochastic weight functions is to form
“subprocesses’’ of processes in R, ., with fixed weight function. Let x = (x;, x,)
be a point in Ry, %; signifying the » first coordinates, and x, the remaining
m coordinates. Assume that z(x) is a moving average process in R, ., with the
fixed weight function ¢(x). A subprocess in R, can then be defined as

(%) =2(x1, 0) = / g (% ~ 15 —y) AN (y1, 73) (3- 3. 25)
n+m

The process is here written in the form (3). An example of the Hammersley-
Nelder type is obtained if

I |x| <42
0 otherwise

q(x)= {
We can then express 2, in the form (2)
2y(%) = Zq (%1 =55 %)
7
with

| %, | <t[2
otherwise

I
9(x1§t)={o

where ¢ is a real variable ranging from o to 4. The mixing function is
M (f) = const. [1 — (1 — #?/4?) m/ﬁ

The derivative of the cor. {. is found by means of (19)
#'(v) = const. (1 — v2/A2)(n+n-7)/2

Hence the cor.f. is of the type (3.2.7) which also is evident from the way the
process was constructed.

Some short indications about possible applications of the models considered
will now be given. .

It will first be noted that many observations in practice are restricted to
subspaces. E.g. a three-dimensional manifold is observed by means of two-
dimensional sections, see the treatment of the “corpuscle problem” in Wicksell
(1925, 26) and Thompson et al. (1932). Further, two-dimensional regions are
often observed by means of one-dimensional line transects.

A special interpretation of the model (14) should also be mentioned. The
set S; attached to a center can be thought of as the visibility region of the
center. If further B; =1, 2(x) is the number of centers visible from x. We may
in this connection think of the Bitterlich ‘“Winkelzahl” method of estimating
the basal area of a forest stand, for references see Bitterlich (1956).

If m=1 and ¢=o for positive values of y, in (25), we may think of y, as
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signifying #ime. Centers appear in R, with constant intensity in every time-
interval. At the time of “birth” the influence is spreading according to the
function”

(%, —yy; 0)

After an elapse of y, time units the pattern is changed to

g2y = y1; = ¥a)’

If a real explanation of any phenomenon showing spatial varation is intended,
time must be introduced in the model, as mentioned e.g. by Whittle (1956).

Finally, we note that if #» =1 and the influence from the centers is spreading
out in one direction only, we get a number of well-known stochastic processes
in the proper sense. If )

(.@ I o<x<t
qx’ _0

otherwise

and ¢ is exponentially distributed, a simple process is obtained which is of
interest e.g. in studies of telephone traffic, see Feller (1950, p. 377).

3.4. Distance models

Several types of processes can be obtained from
z(x) =2'q(x -vj)
i

if the ¢’s are allowed to be mutually dependent random functions. We shall
here mention briefly some rather special cases that will be called “distance-
models” since the distances from x to the centers (y;, ,, . . .) enter in the
definition of z(x).

Let the ordered sequence of distances from the point x to the centers pro-
duced by a Poisson process in R, be

o (%) < op(x) < ...
A model of the distance type is
2(x) =qloy (%), ay(x), - . -]
where ¢ is a fixed function.

A simple example is

(3.41)

q(x)={I ifoy(x)< 4 }

o) otherwise

Thus z(x) =1 if at least one center is within distance 4 from x.
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In the case n=2 the inodel (1) is closely related to a “bombing problem”
studied by several writers, see references in Solomon (1953). Bombs are dropped
at random over a region. Each bomb devastates the area within distance A4
from the point of impact. Of interest are the properties of the totalareaaffected.

By geometrical considerations
Efz(x)]=1-exp [ -1C,4"] (3-4-2)

where as before 4 is the intensity of the Poisson process, and C, is the volume
of the unit n-sphere (see 3.2). Further, the covariance function is

Cov. [2(%y), 2(%5)] =exp (- 24C,A") {exp [AV.(4, 4;v)] -1} (3.4.3)

where v=|x, —x,| and (cf. 3.2.6)
Va(d, 4;v) =2CnA”/ahn+2(w)dw (3.4.4)

is the volume common to two spheres with the radius 4 and the centers v
apart. The process partitions R, into two random sets, one with ¢=1, the
other with g =0. We shall therefore return to this example when discussing the
random sets models in the next section.

In conjunction with certain sampling survey problems it would be of interest
to consider models of the type

2 (x) = oy ()] (3-4-5)

for some low values of » and u (e.g. ¥<4, p= —2, 1, 2). Methods have been
developed for using observations of this kind to estimate the number of indi-
viduals (plants, larvae, etc.) per unit area, see Bauersachs (1942), Cottam &
Curtis (1956), Matérn (1959). The methods proposed are based on the assump-
tion that the location of the individuals follows a Poisson process. Similarly
such observations can be useful when testing the Poisson scheme against some
“contagious” or other model, cf. Skellam (1952), Strand (1954).

In studying the statistical properties of (5), one seems to run into rather
laborious and unwieldy computations. It is only the mean value that can be
immediately obtained

E{[ay ()]} =T (v + pun) | (AC, )T () (3-4.6)
For the simplest case, »=u=1, we further find .by geometrical arguments
Ploy (%) >a, oy(x5)>b] =exp[ -2U(a, b; v)] (3.4.7)

where

U(a,b;v) =Cpa"+Cpb" ~V,(a, b;v)
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is the volume of the union of the two spheres
x—x]<a % —x,| <b

with [x; —x,| =v. V, is given by (3.2.6). Using (7) it can be seen that

oo 0o

E [o (%) oy (%2)] = / S exp [ -2 Ula, b; v)]dadd (3-4.8)

An expression for the cov.f. of oq(x) can be obtained from (6) and (8). In the
case n=1I o,(x) is seen to have the cor.f.

(T+2Av) exp(—249v)

The same cor.f. was also obtained by the procedure of 3.2 with the fixed
weight function exp(—24v).

In some surveys (e.g. of market conditions for wood) it may be of more
interest to obtain data on “economic” distances (along roads, waterways,
etc.) than to find the mathematical distances. The correlation structure of
the corresponding process must however be connected with the structure of the
process oy(x) considered here. In other cases information is needed about
distances from a given point to the nearest point on a network of roads, or
waterways, etc., see v. Segebaden (1960). To treat the corresponding stochastic
process, we need first a basic mechanism generating a family of random curves
in Ry; cf. the end of section 2.6.

3.5. Models of random sets

This section treats processes which can take on only the two values o and 1.
We interpret the set of points » with 2(x) =1 as a “random set”, S, in R,. Thus
2(x) is the characteristic function of S in the set-theoretical meaning.

Throughout the section we assume

Plz(x) =1]=E[2(x)]=p

Pla(x) =0]=g=1-p (35-7)

The cov.f. is denoted ¢(x) or (in the isotropic case) c(v), where v =|x|, as before.
The cor f. is

7(x) =c(x)[pq

In the previous section one particular model of this type was mentioned,
i.e. the model (3.4.1) corresponding to a bombing problem.

The following model is also based on the Poisson process. To each center
y € R, produced by a Poisson process in R, is attached a “cell” Y consisting of
those points which have y as nearest center. It is then decided by a random
procedure with parameters given by (1) whether all points of Y shall have
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2(x) =T or z(x) =0. As above the points with z(x) = 1 form the “random set”
S. To complete the definition, S may be assumed to be closed. Further the
random procedures carried out for different Y’s will be supposed to be inde-
pendent. .

Both the above processes are isotropic. In the latter example the cor.f.
7(v) equals the probability that two points at distance v apart shall belong to
the same set. This probability is

r@) =4/ exp[=2U(|y ~m .|y - x| o)) dy (352)
"
where U is the same function as in (3.4.), %, and x, are two points at the
mutual distance v. For n =1 we have

7(v) =exp(—2Av) (T+Av) (3-5-3)

For n>1, (2) can be written as a double integral. Assume that x; and x, are
the two points

%,=(-v/2,0,0,...,0)
%5=(v/2,0,0,...,0)
Write y in (2) as ¥ = (¥4, ¥a, - - - , ¥u) and introduce two new variables by
t=y w= (" +yg*+ .. )
Then
o0 oo
7(v)=2A(n ~1)Cp_r S w*~2dw [ exp[ - AU (a, b; v)]dt (3.5.4)
o o
where

a?=(t +v[2)% +w? 02 =(f —v/2)% +w?
and C,_; is the volume of the unit sphere in R, _;.

It will now be briefly indicated that the derivative
l:dc (v) ,

.=
has a rather tangible meaning for the isotropic random set processes.

Let the boundary of the random set S be an (# —1)-dimensional area of
finite surface-content within every bounded part of R,. Denote by S(e¢) the
set of points within distance ¢ from the boundary of S, and by P(g) the probabili-
ty that an arbitrary point belongs to S(e). If x,¢ S(¢), a certain part of the
sphere |x —x,| <& consists of points x such that z(x)s£z(x,). For a small ¢ this
subset is approximately a spherical segment. The perpendicular distance
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from x, to the segment can be regarded as rectangularly distributed between
o and e. The expected n-dimensional volume of the segment, A(e) (say), is
then approximately given by

A) 1/s/candtfh,,+2 ) dw = Ca"/(n+2)B(n:3,:>

We then express the product P(e) 4(g) in the covariance function. We first
note that
Pla(x) #(x0)] =2[¢(0) - c(o)] ~ ~2 v ¢'(0)
with v=|x —x,|. Hence
P(e)A(e) = f Plz(x) # 2z (xo)]dx ~ — 2¢"(0) [vdx
where the integration is carried out over the sphere
=lx—xyl < e
Transforming the integral we obtain

neh+I

Pe)A(e) ~» —2¢'(0) feandv”= —2c (0') Cn P

Now for small ¢
Pleym2eT

where T is the expected surface-content of S within a unit volume of R,.
Eliminating P(¢) and A (e) from the above relations, and passing to the limit,

we finally get
T=—2¢(0) ﬁr("—;f—l-)/r <2f) (3.5.5)

Of course, these geometrical considerations do not constitute a rigorous proof
of (5). It would be of interest to describe more exactly the class of surfaces,
which have the properties implied in the above expressions. This is, however,
beyond the scope of the present investigation. Yet, it may be mentioned that
the definition of surface area as the limit of the quotient V(e)/2e [where V(e)
is the volume of S(e)] seems first to have been given by Minkowski in 1901,
see Cesari (1956, p. 77).
For low values of # (5) gives:

n=I T=-2¢c0)
n=2 T=-mc'(0)
n=3 T=-4¢c(0)
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Here, T signifies the number of boundary points (# =1), the length of boundary
lines (n =2), and the area of the bounding surface (# =3). The relation forn=1
is implicitly contained in a formula given by Williams (1956, p. 143, formula g).

It is seen that (5) is valid also for the process (3.2.1) if the weight function is
(3.2.10) with B=1. Then z(x) is constant within certain regions and changes
its value by the amount 1 when passing a boundary. An application to level
surfaces of a process with continuous realizations is indicated in § 4.3.

The formula may also be generalized in other ways. Suppose e.g. that R,
is divided into cells as in the second introductory example of this section. Let
all points x in a cell receive the same ‘“‘score” z(x) chosen from among the
values (ay, @y, . . .) with probabilities (p, p,, - . .). Let further the score given
to the points in a cell be independent of the scores of all other cells. Denoting
by T, the expected surface content (per unit volume )of the boundaries between

cells, we find
1}=-WXQVEF<”:I)/F<§> (3.5.6)

We can also prove the inequality

c(v) >c(o) +v ¢'(0)

which shows that the cov.f. of an isotropic random set model is (downward)
convex to the right of the origin. Proof. Let § denote the expected number of
boundary points on a line of unit length. Now

2(% +u) £ 2(x)

if there is an odd number of boundary points between x and x +#. The prob-
ability of this event is less than the expected number of boundary points on
the line, which is 0v, where v =|%|. Hence

2 [6(0) - c(v)] < 6o
Dividing by v, and letting v - o, we have
0=-2¢"0) (3:57)

and the inequality follows.
Combining this result with (5), we obtain

T=0 ﬁr(”;’l)/r(zf> (3-5.8)

This formula connects the average number of intersections between the bound-
ary of the random set and a fixed system of curves with the average surface-
content of the boundary. Here, average means “per unit length” and “per
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unit volume”, respectively. Formula (8) is valid also in the non-isotropic
case, if 6 denotes the average obtained when the system of curves is moved in
a random manner in R,; for a precise formulation, see books on integral geom-
etry, e.g. Santal6 (1953). For n=2

T=0mnl2
an expression relevant in Buffon’s needle problem.

We shall now consider some examples. We start with the model (3.4.1).
Differentiating (3.4.3) with respect to v and applying (5), it is seen that

T=nlC, A" *exp (- AC, A" (3-5.9)
For n=2
T=2mAAexp(-miA? (3-5.10)
The maximum value of T, involving “maximal patchiness”, is obtained for
fixed 4 if A=1/nA% Then (3.4.2) gives
Ez(x)]=1-1[e=0.632
As indicated by this result and intuitively clear, the model A(3.4.I) is unsymme-.
tric in so far as the region with z(x) =0 (the complement of S) cannot be ob-
tained by a procedure of the same nature as the one used in constructing S.

The second model considered in this section is symmetric in the above
respect. We first note the values

n=1I c'(0)=-Apq

[F <n:2> i (2_$>5(n)
(-3 3]

The first expression is immediately obtained from (3), the second can be found
from (4) after somewhat lengthy but trivial computations. Applying (5) we
find for n=1 and n=2

n>1 ¢ (0)=—2A"1"pg

n=1I T=22pq
n=2  T=4\ipq

For n=2, (6) further gives T;=2yA. This result implies that the average
perimeter per cell is 4/\/4, whereas the average area per cell is 1/A. Thus the
relation between area and perimeter in the average cell is the same as that in
a square.

In the case #»=1 the random set model can be interpreted as a type of a
“renewal process”, a system developing in time and alternating between the

Il
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two states z=0 and z=1. In other words, an infinite sequence of ‘“1-intervals”
and “‘o-intervals” covers the time-axis (cf. Wold 1949, esp. p. 77). We shall
now consider a model that is somewhat more general than the one with
cor.f. (3).

Assume that the length of a “1-interval” has the d.f. Fy,, (x), and that the
length of a “o-interval” is distributed according to F,, ; (x). Suppose further
that after a start in the infinitely remote past the states alternate in such a
way that the duration of a particular o- or 1-interval is independent of the
previous history of the system. (A slightly more general model is obtained if
we assume that the length of a o-interval is dependent on the length of the
immediately preceding 1-interval, cf. Pyke 1958.)

Let F,u, 4(x) denote the d.f. of the sum of m +# independent random vari-
ables, of which  have the d.f. F; , and » have the d.f. F, ;. Let u(m, n) be
the expectation of the corresponding random variable, which we suppose to be
finite. Also, suppose F; o (0) =F, :(0) =o0.

The probability that z(f) equals 1 is (see Pyke 1958)

P o)t 1) (3.5.11)

"When z(f) =1, the conditional d.f. of the remaining duration of the 1-interval
will be denoted J(x). We have

a] (x)]dx = [1 = Fr,o(x)]/u(T, 0) (3-5.12)

The conditional probability of z(f +x) =1, given that a o-interval starts in ¢, is

P()= E[Fs rs(¥) - Fos(1)] (3.5.13)

S$=1I

The formula presupposes that ¥ >o. Using (11) — (13) we then have if v >0

EG@2+) -2 -7 6) @+ Po-0a @] (3514

Denoting the convolution of J and F,, » by G, », we obtain from (13) and (14)
Elz@)z(t+v)]= {I -J(v) + ZJ'[Gs 5,s (V) = Gs, s ()]} (3.5.15)

By aid of (14) or (15) expressions for the cov.f. and cor.f. can be found.
An example, which is closely connected with the Poisson process, is obtained
if we choose type III distributions for F, ; and F; ,. We use the notation

B (2, 00) =™ x™ -1 exp (—ox) | I (m)

Ky, a) = fk,,,uzx an
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Assume now F; o, =Ky(x, @) and F,  =K,(x, §), where m and # are positive
integers. The corresponding system can be described in terms of two mutually
independent Poisson-processes with the intensities o« and f, respectively.
A 1-interval starts at a certain event in the “f-process’” and prevails until m
events have happened in the “a-process”’. The subsequent o-interval continues
until # events have appeared in the ““f-process”.

We have u(1, 0) =m/oc and u(o, 1) =#/f. Further

T =(afm) E K, (1,0

Using K, s(x, o, B) for the convolution of K,(x, «) and K,(», ) we find from the
well-known addition properties of type III variables

Gr,s (%) = (I/m)jfmIKmrﬁ, ns (%, o, B) (3.5.16)

In the simplest case, m=n=1, (15) and (16) give

c) =2 exp [ =0 (a+ )] (3.5.17)

If @ =p, it can be seen that for all integral » and #»

m+n-~1
- . . sin 7 @72
c(v)=(m+—7)_2 E exp ( — 2 aw sin? ¢y) cos [aw sin 2¢k]|: e q;l;k] - (3.5.18)
k=1

where @3 denotes sk/(m +n). Thus ¢(v) is a weighted sum of damped oscilla-
tions with varying wave-lengths. The easiest way to obtain (18) seems to be
by expanding into partial fractions the Fourier-Stieltjes transform of (15).

Some model of this kind seems to give a reasonably realistic picture of the
course of an activity where two types of work succeed one another. It will be
used to illustrate some sampling problems connected with time studies, see
§ 6.2. It is evident that the models just considered comprise cases of rather
high irregularity (low values of 7 and #) and also cases where the two activities
alternate in a very regular manner (high values of m and 7). At the extreme
we have the case where the 1-interval always has duration @ and the length
of a o-interval always is 0. Assuming 4 < b, we find the cor.{f.

I - (a+Db)x[ab o<x<a
) =3 —a/b a<x<b (3-5.19)
I-(a+d) (@a+b-x)[ab b<x<a+bd

The cor.f. is further periodic with period (4 +b).
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3.6. Models of randomly located points

Many authors have treated the distribution of points located in space
according to one or the other random procedure. Research has mainly concen-
trated on the frequency distribution of volume units containingo, 1,2, ...
points (or rather areal units, since the studies have chiefly been devoted to
distributions in the plane). A recent paper, containing references to earlier
contributions, is Gurland (1958).

For the present investigation this approach is unsufficient, since it does not
elucidate the covariance properties of the process. Also, it does not give satis-
factory clues to the mechanism underlying the spatial arrangement, as pointed
out by Skellam (1952, p. 347).

Papers devoted to more completely specified models are rather limited in
number. The pioneering contribution by Neyman (1939), and some subsequent
papers, as Thomas (1949), Skellam (1952), and Thompson (1954, 1955) should
be mentioned. (For comments on Neyman’s paper, see Feller 1943, and
Skellam 1958.) Also the general exposition in Bartlett (1954), referred to earlier,
should be mentioned in this context. The background of these papers is a
discussion of distributions encountered in ecology. As seen from the reviews
by Neyman & Scott (1958) and Fox (1958), already mentioned, similar models
can be relevant also in astronomy.

Most of the models met with in the literature are based upon a primary
Poisson distribution of “‘centers”. Each center is surrounded by a cluster of
“satellites”. The number of satellites in the cluster and their location result
from some random experiment. The experiment is carried out independently
for each center, also the location of a particular satellite in respect to its
center is independent of the corresponding location of the rest of the cluster.

Let Z(S) denote the number of satellites in a region S of R,. Z(S) isastationary
stochastic set function in the meaning of § 2.6.

Denote by 4 the intensity in the primary Poisson process. Assume that the
number of satellites belonging to a particular cluster has finite expectation
m and finite variance 72. Let f(x —y) be the probability density of the rectangu-
lar coordinates (x) of a satellite belonging to a center located in y. We introduce
the convolution

v)= S fw+y)f0)dy
Finally, let u(S) be the volume of S. Then
E[Z(S)]=Am u(S) (3.6.1)
Cov. [Z(S1), Z (Se)] =Am pu(S1 N Se) + 4 (m® + 72 — M)sfsf y(u-y)dudy (3.6.2)

It is seen that (2) is of the general form (2.6.2).
If the number of satellites belonging to a center has a Poisson distribution,
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the above expression simplifies in so far as 72=m. In this case Z is astationary
compound Porsson process in the meaning of § 2.6. The corresponding stochastic
intensity function is of the kind considered in § 3.2, a moving average process
with the constant weight function m f(x).
Thomas (1949) has dealt with the degenerate case where all satellites of a
particular cluster are contained in an infinitely smallregion. We then get from (2)
Cov. [Z(S1), Z(Sp)]=2 (m* +7%) (SN Sy) (3.6.3)
that is a formula of the form (2.6.1), characteristic of orthogonal set functions.
Z(S) is an example of a generalized Poisson process, cf. § 2.6.

The more general approach in Bartlett (1954) and Thompson (1955) is
formally equivalent to the compound Poisson process of § 2.6. The authors
quoted give a detailed description of the process. They do not confine their
interest to the properties derived from assumptions on E[A(x)] and
Cov. [A(x), A(y)]. They specify also higher moments or “product densities”,
E[IIA(%;)], and derive the corresponding higher moments of the stochastic set

function.

The models considered so far give ‘“‘contagious” distributions of points
over R,. The corresponding frequency distributions of number per unit area
is “supernormal”. In several applications we would prefer models involving
some kind of repulsion between the points (“‘sub-normal dispersion’). The
reason may simply be that the random points actually represent cells of finite
size (the random point may be the center or some other point of reference of
the cell), so that each point must be surrounded by a certain region where no
other point can exist. Cf. the discussion on hemacytometer counts in Turner
& Eadie (1957), Hamaker (1958).

A thorough discussion of such processes must involve considerations of
time: the random points existing at a certain moment must influence the future
course of the intensity function over R,. We shall here only deal with two very
simple models, in which no pair of random points is allowed to have a mutual
distance below a certain bound.

Consider a realization of a primary Poisson process of random events. Then
exclude every event such that the distance to its nearest neighbour is less than
a given positive number R. The remaining points form our model of sub-
normal variation. (If two points have a mutual distance < R, both of them are
excluded.) Let 4 denote the intensity of the primary process. Suppose that
two primary events are located in x and y. The conditional probability that
both of them shall be retained in the secondary process is a function, %(v), of
the distance v =|x —y|:

k(v)={

0 o<v<R
(3.6.4)

exp[-A UR,R;v)] R<v
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with U as in (3.4.7). We find for the secondary process
E [Z(S)] =adu(S) (3.6.5)

where u denotes volume and « is the probability for a primary point to survive
as secondary event:

o =exp (- AC,R") (3.6.6)
Further

Cov. [Z(S1), Z (Sa)] =i (S1 N S) +stf PR(z-y|) - o?ldxdy (3.6.7)

Thus the covariance expression is still of the general form (2.6.2). However,
it should be observed that the integrand in (%) and the corresponding function
in (2) are not cov.f.’s of an underlying stochastic intensity function. We
shall use the general term product densities for the integrands in (2.6.2) and
in the two covariance formulas above.

The process can be changed into a dynamic scheme, by assuming that the
primary process proceeds at a uniform speed in the time-interval o <f <.
The probability that a primary event occurs between ¢ and ¢ +d¢ in a volume
element dx is

Adx dt

A primary point P produced at time ¢ is retained in the secondary process if
no other primary event has occurred within distance R from P prior to . The
probability that a primary point survives is

a=[1 -exp(-Ay)]/Ay (3.6.8)

where y stands for the volume C,R” of the sphere of radius R in R,,. The con-
ditional probability that two primary points located in x and y shall both be
admitted as secondary points is denoted %(v), where v is the distance |x —y|.
We have

0 o<v<R
E()=12U(-e ) -2y (1 -e-*Y)
2pU (U -y)

6.
Re<y (3-6.9)

where U is written for U(R, R;v), see (3.4.7). The expectation and the covari-
ance of the secondary process can now be found from (5) and (7), if e and &(v)
are taken from (8) and (9).

It may instead be prescribed that a primary point P occurringat time?, shall
be accepted if no other secondary point has occurred before ¢ in the sphere
-of radius R around P..It seems however that even an attempt to find the
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probability corresponding to (8) leads to rather formidable mathematics in
this case. (Cf. the distinction between type I and type II counter models,
see e. g. Pyke 1958.)

3.7. Numerical examples

Some simple numerical examples, which all refer to R,, can illustrate the
exposition of this chapter.

The first example is a random set model of the type (3.4.1) withA=6,4 =o.17.
An appropriate number of primary points were located over the unit square
and a strip of width 0.17 bordering the square. The coordinates were chosen
from tables of random sampling numbers. For each point a circle of radius
0.17 was drawn. The ensuing random set (the intersection between the unit
square and the union of the circles around the primary points) is shown as a
shaded region in fig. 1. The corresponding cor.f. as obtained from (3.4.3) is
also shown in the figure.

The same primary points were then used to give a realization of a point
process of type (3.2.4) with 4 =0.17, B=1. This realization was then used as
intensity function for a generalized Poisson process. It was found that the
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highest value attained for the intensity function inside the square was 3. A
sample of points corresponding to the generalized Poisson process was there-
fore constructed in the following manner. A sequence of points (P, ..., P,)
inside the unit square was obtained from lists of random numbers. A score
v; from a rectangular distribution over the interval (o, 3) was attached to P;.
If y; was less than the value of the intensity function at P;, the point was
admitted as sample point, otherwise not. The result is shown in fig. 2, which -
also gives the cor.f. of the corresponding intensity function.

Fig. 2 presents the picture of a “contagious” or supernormal distribution
of points. To obtain a subnormal distribution, the last example of § 3.6 was
used. For R the value o.r was chosen. Thus a primary sequence of points
was located at random over the unit square and the bordering strip. A primary
point in the square was admitted as secondary point if no primary point had
been found earlier within distance 0.1 from the point in question. The procedure
was continued until no more secondary points could be obtained. This corre-
sponds to the limiting case A oo. The corresponding product density (cf.
3.6.9) is
: —I[y? v<R
2[/yU —1/y? v>R

It is shown, together with the sample of points obtained, in fig. 3.
It was possible in these three examples to obtain an exact realization over
a bounded region in a finite number of operations. For other models, an infinite
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sequence of steps would be needed. This means that some procedure of approxi-
mation must be used. It seems not necessary for the purpose of the present
investigation to enter into a discussion of the numerical questions that would
be involved in such procedures.

Chapter 4. Some remarks on the topographic variation

4.I. Local and ‘long-distance’’ variation

The patterns encountered in studies of the spatial variation often resemble
realizations of real-valued stationary stochastic processes. However, this is
usually true only as regards local (short-distance) variation. In dealing with
variations over long distances we must often introduce an evolutive element
in the probabilistic model or add a deterministic smooth trend, as mentioned
in § I.1.

For the applications treated in this paper.it is the local variation that is of
chief interest. The statistical properties of sampling schemes (and experimental
designs) are mostly dependent on the nature of the short distance variation.
See the discussion in Matérn (1947, pp. 63 ff.) and Jowett (1955). Of course
"“Jocal” and ““long-distance’ are relative concepts. They must be seen in relation
to the size of the sampling strata, the experimental blocks, etc.

Furthermore, data (tables, maps) on the spatial variation are often confined
to a very limited region, so that inferences cannot be made about the long-
distance variation. If a stationary model fits the data over a restricted region,
it can often be modified by introducing some additional low frequency waves
and still show the same agreement with the data. This means that two processes
with the cov.f’s o%(u) and A4 +0%(u), respectively, can give the same sort
of realizations over a bounded area, if 4 (>0) is very nearly constant over
the range of variation in question. Jowett (1955) has proposed to characterize
the variation by a function which does not suffer from this indeterminateness,
namely the “serial variation function’. For a stationary process z(x) in R, we
may accordingly define

o(u) =Yy E[lz(x +u) ~2(x)|*] =0*{ 1 ~Re[r(u)]} (4.1.1)

It is seen that v(#) does not change if a constant term is added to the cov.f.
Incidentally, Langsaeter (1926) used this way of expressing the variation,
when dealing with systematic sampling in forest surveys.

Although the variation function has some evident advantages, we shall
use the more traditional correlation function also in its empirical form, with
a correlogram as graphical representation. However, the above-mentioned
indeterminateness must be kept in mind (cf. Doob 1953, p. 531I). It should
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also be noted that a knowledge of the correlogram for distances of the same
magnitude as the dimensions of the observed region is not of much value, if
no additional information is available about the long-distance variation.

In this and the following chapters, only real-valued processes will be con-
sidered.

4.2. Some data on the spatial variation

In Matérn (1947) a number of correlograms were presented which were
based on data from the National Forest Survey of Sweden. The factors studied
included some areal distributions (total land, forest land, a particular site
class). Here the term areal distribution is used as an empirical analogue of the
random set model of § 3.5. Correlograms were also presented for the variation
in volume of trees. These correlograms were found to exhibit the following
general features:

(A) The correlation is monotonously decreasing with increasing distance.

(B) The correlation is often nearly isotropic but may show a certain influence
of direction as well as distance.

(C) The correlograms can be smoothed by curves that have negative deri-
vatives at the origin and are downward convex in the vicinity of the origin.

As to (C) the author used functions of the types exp(—av) and

P exp(—av) +q exp(—bv) (4.2.1)

with 9, ¢, a, b>o. It is of course possible to get an equally good graduation of
the data with several other types of functions that have the properties (4)
and (C). Formulas as well as experimental series (cf. Kendall 1946, p. 33)
show that an attempt to obtain accurate information about the structure of a
stationary process requires an overwhelming amount of data.

In this context it should be pointed out that we are here not concerned
with the general inference problem about stationary processes. Our aim is
only to get a rough picture of the behaviour of the topographic variation. For
the inference problem, see Grenander & Rosenblatt (1956), and literature
quoted in that book.

We add now some more correlograms of areal distributions. They all refer
to the distribution of land area on maps of the Stockholm region. Thus to
each observation point (x) we attach the value z(x) defined as 1 if x is on land,
and o if « is in water.

The first example is based on a map on the scale 1:250,000, showing aregion
of 56 x68 kilometers around Stockholm (KAXK:s bilatlas §ver Sverige, 1955,
blad 23). Twelve equidistant lines with direction E - W were drawn on the
map and z was registered for a sequence of points along each line. The distance
between two neighbouring points was T mm, corresponding to 250 meters in
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Table 2. Observed serial correlations (r.) of the distribution of land area
in the Stockholm region.

Series 1 Series 2 Series 3 Series 4
Map on the Map on the scale I : 50,000
Lag (%) scale P 5
IE 250,000 Four direc- East-west | North-south
ast-west tions
o 1.000 1.000 1.000 1.000
I 0.736 0.924 0.546 0.605
2 0.601 ' 0.868 0.463 0.485
3 0.537 0.834 0.395 0.423
4 0.491 0.803 0.332 0.393
5 0.442 0.767 0.294 0.33I
6 0.397 0.748 0.284 0.303
7 0.361 0.721 0.261 0.277
8 0.328 0.708 0.203 0.245
9 0.316 . 0.690 0.176 0.207
I0 0.308 0.656 0.168 0.205
II 0.285
12 0.255
15 0.606
20 0.572
Lag 1 corresponds to
the interval:
€315 54 -1 « I mm I mm I0 mm 10 mm
in the field........... 250 m 50m 500 M 500 m
No. point pairs for a
correlation.......... 3,120 1,945—3,259 | 2,091—2,550 | 2,09I1—2,550 |

the field. When the serial correlation, 7, with lag 2 mm (& <12), was computed
the 260 first points (counted from the west) on all lines were used as the fixed
series; the corresponding 260 points % steps to the east formed the other series.
(The total number of points on each line was 272). Thus each correlation is
based on 12260 =3120 pairs of points. The results are shown in table 2z and
figure 4.

Table 2z and fig. 4 also contain three other series of correlations, which are
all based on a map (scale I:50,000) over a part of the region shown on the
previous map (Topographic map of Sweden, Stockholm SE, Generalstabens
litografiska anstalt 1955). The area covered is 25 x 25 kilometers.

From each one of 18 points systematically located in the map, four rays of
length 50 mm were drawn in directions NE, N, NW, and W. On each ray z(x,
was registered for points at distance 1 mm (50 meters) apart. Since a few
lines cut the edge of the map, less than 50 points were surveyed in some cases.
All pairs on a line with mutual distance # mm were used for the calculation of
a correlation #;. Thus the correlation coefficients are based on a varying number
of point pairs (e.g. 3259 for 7, and 1945 for 7). The results are shown as
series 2 in table 2 and figure 4. '
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FiQ.Q.CorrcLoqréms of the distribution of land ares (table 2).

The series 3 and 4 are based on parallel lines running across the map in
direction east-west (series 3) and north-south (series 4). Points 10 mm (500
meters) apart were observed. Also in these cases all possible pairs of points
on a line were utilized when computing the correlation coefficients.

The estimated derivative at the origin for the correlogram of series 2 is
also entered in fig. 4. It was found that the rays surveyed had a total length
of 326.2 cm and a total of 88 intersections with the shore-line. If the centimeter
unit is used, we find for the derivative of the empiric covariance function
according to (3.5.7) ‘

¢'(0) = —0/2 = -*/,(88/362.2)

Further the water area (sea and lakes) comprised 23.18 per cent of the points
enumerated on the lines. Hence

7'(0) =¢'(0)/ 0.2318(x —0.2318) = —0.757

Incidentally, it may be noted that (when the rays cover the variation in four
directions) we can fairly well estimate the length of the shore-line in centimeter
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per sq. centimeter as On/2=0.424. This corresponds to 848 meters per sq.
kilometer in the field. (See formula 3.5.8.)

The properties (A) and (B) seem to be rather gemerally recognized, see
references in Matérn (1947). (As to the early discussion of the variation in
terms of correlation functions, the author wants to add to these references the
works of Mahalanobis 1944 and Nair 1944.) Also (C) seems to be recognized
by some authors as a common trait of the topographic correlation (see Quenouil-
le 1949, Jowett 1955), although, as pointed out by Whittle (1954), the exponen-
tial correlation mentioned earlier in this section cannot claim any divine right.

Unfortunately, not many correlograms of the topographic variation can
be obtained from published data. It may be noted, however, that the obser-
vations of Williams (1952, 1956) as well as those of Zubrzycki (1957) and
Whittle (1954) agree with (A) and (B). However one of Whittle’s correlograms
(p. 445) disagrees with (C).

Now it is clear from § 3.5 that the cor. f.’s of areal distributions must have
the property (C). Also the variation of many other factors, e. g. soil fertility,
may be influenced by discontinuities in the underlying areal distributions.

Property (C) is a question of the behaviour of the variation for very short
distances. Some special circumstances that are of interest in this context will
be discussed in the subsequent sections. The influence of errors of measure-
ment will be dealt with in 4.3. In 4.4 we shall briefly comment on the “inte-
gration” of the fertility in the neighbourhood that can be thought to be
represented in the growth of a plant. Some comments on the competition
between plants and its effect on the short distance correlation will be presented
in 4.5.

Indirect observations on the covariance structure of the topographic varia-
tion are given by authors reporting on the efficiency of various designs of
field experiments and areal sampling. Such observations rather unanimously
confirm (A), see Matérn (1947, p. 22). However, the possibility of a periodicity
in the topographic variation has been discussed, especially in connection with
systematic sampling. One well-known example by Finney (1950) will be
briefly reviewed in the concluding section of this chapter.

As to early reports on the topographic variation, the following contributions
should be added to those mentioned in Matérn (1947): Harris (1915), Smith
(1938); see also the discussion and the literature quoted by Cochran (1953,
pp. 176 ff.) and Milne (1959). '

4.3. Errors of observation

In several cases it is appropriate to think of the observed process (z) as the
sum of the frue process (z) and a superimposed ervor (z;). It should be clear
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that the observed process is known only in a finite number of points that not
necessarily form a regular pattern.

If z, has the nature of an error of measurement, it can be regarded as a ““cha-
otic”” process, independent of z,, with cor.f. (2.2.1). Then, the cor.f. of z gets
a discontinuity at the origin, see (2.2.2).

However, the same type of cor.f. can also result from other causes. A
factor (e.g. growth) connected with plants located in discrete points, may
be considered as composed of two parts, one with a continuous variation
expressing the influence of the environment, and the other of the chaotic
type representing the effect of the genetic structure of the plant (cf. Whittle
1954, P 445). :

Returning to the observational errors, we shall now shortly consider a type
of inaccuracy which can be called ““displacement error”. It can be expressed
in the formula

2(x) =2, (%)

where x, is a point in the neighbourhood of x, which happens to be selected,
when we attempt to locate x. It is realistic in some cases to assume that all
vectors (x; —«) have a common frequency function ¢(y) and that all displace-
ment errors are independent. For the cor.f. of the observed process we then
have

r)=J S q31) g o) 71 (w+ 1y, — o) Ay  dy, (4.3.1)

where 7, is the cor.f. of the true process. The formula is valid for #=o. It is
clear from (1) that also in this case the cor. f. of the observed process has a
discontinuity at the origin. For »> o0, 7() is a weighted average of the values
of 7, in some neighbourhood of #. The properties of this type of cor.f.’s will
be discussed further in the next section.

We shall also consider rounding off errors. Let the observed z(x) be defined
as a multiple, nA, of the length, %, of the rounding-off-interval, with » deter-
mined from

nh<z,(x) <n(h+1)
We thus consider rounding off to the nearest lower multiple of k. If the rounding
off is to the nearest multiple of %, the covariance structure is the same. Now,

if the distribution of each particular variable z,(¥) is such that Sheppard’s
corrections apply, approximately

¢(0) =c¢,(0) + A?[12 (4-3-2)
When the corresponding conditions for the two-variate distribution of
[2,(%), 2,(x +u)] are valid, we similarly have (cf. Wold 1934)
o(u) =¢,(w) (4-3-3)
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A strict derivation of these results is given by Grenander & Rosenblatt (1956,
pp. 55 ff.) in the case of a discrete-parameter normal (Gaussian) process.

In the case of a continuous-parameter process, it must be noted that (3)
cannot be used when ¢,(0) —¢,(#) is of the same or lower order of magnitude
than %42. It is for example intuitively clear that if ¢, (#) is continuous at the origin,
the same must hold true of ¢(u).

We shall now indicate how the properties of ¢(#) for small # can be found.
Only the case where ¢, is continuous at the origin, and 42 is small compared to
¢1(0), will be treated. Consider the two random variables z,(x) and 2z, (x +u).
Assume for the present only that the correlation of z,(¥) and z,(x +#) is not in
the vicinity of —1. Thus the sum of the variables has a distribution which is
not concentrated in an interval of the magnitude of 4. Introduce two auxiliary
random variables by

2.(% +u) + 2,(%) 2e(% +u) — 2,(x) '
R . b=

Suppose that the corresponding distributions are of the continuous type.
Let p(¢) denote the frequency function of §, and let ¢(s|f) denote the conditional
frequency function of & given f=¢ (see Cramér 1945, § 21.4). Consider also
the random variable

7= [2,(x +u)[h] - [2(x) 7]
where generally [a] is the largest integer < a. Let us further use the notation

Pn=P(r=n)

Now, write § as n+¢ with 0 <#<1. The conditional probability of the event
T=n is seen to be

o) 2-1

fq(n+zv+s|n+t)ds

v=-00 ¢

Thus we integrate over a part of length 2(1 ) of every interval of length 2.
The above sum can therefore be approximated simply as 1 —¢. Adding the
corresponding integral for the case —1I < < o, approximately

I

po= S (=]t p(n+1)dt

-I

If E(B?) is large and if the usual assumptions are made about high contact at
the end-points of the range of $(#), (3) follows from the above formula. If on
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a. b. c.

Fig-5.0riginal covariance function of a process (a) ; of the process with
superimposed errors of measurement (b)) of the process with
superimposed rounding of errors (c).

the contrary E(#?) is small, we need only consider $_;, p,, and p; in seeking
an approximation. In this case it can be seen that

I

E (7% m_{ (T —|t])p(x+0) +p(—1+1)di |

~ fltlp0@=5(p)

Now we must have
E(|p)) =k VE(B)
where &, is <I (see Cramér 1945, formula 15.4.6). In the case of a normal

distribution %, equals \/2/m. Thus, the following approximation is valid

o) =o (o) - e, \ /2O =) (434)

if » is such that
¢1(0) — ¢y (u) =o(h?)

This shows that ¢(u#) is continuous at the origin. However, it is also seen that
the graph of ¢(#) must show a cusp at the origin even if ¢,(#) has zero deriva-
tives for #=o0. This follows from theorems on the behaviour of a ch.f. in the
neighbourhood of the origin, see Cramér (1937, p. 26). It is also intuitively
clear from § 3.5, since z(x) is discrete-valued.

The difference in influence on the covariance structure between the various
types of errors is shown in fig. 5. (The figure refers to the isotropic case. It
can also be thought of as giving the covariance in one particular direction in
the general case.)

In many cases several types of errors of observation are in action at the
same time. The resulting cov.f. may then be a hybrid between the types (b)
and (c) of fig. 5.
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Incidentally, we can-also draw another conclusion from (4), which we
formulate for an isotropic process in R,. Suppose that each realization of z,(x)
is continuous and that the expected length of level curves (drawn with a certain
interval of altitude, %) is finite in any bounded area. Then the derivative
¢’(0) of the rounded off process must have a finite negative value, which implies
that ¢’;(0) =0. Assuming a Gaussian process and applying (3.5.5) to z(x)/h, we
find for the length (per unit area) of the level curves of z; the expected value

T \/?507(0—)
h 2

4-4. Local integration

Let ¢; be the cov.f. of the stochastic process z;. Assume that the spectrum
is absolutely continuous with spectral density f(x). A new process if formed
by the relation

2(2) =/ q(x —y)z () dy

where the integration takes place over the range of g(x —v) which is assumed
to be some neighbourhood of x. We shall only deal with the case where ¢ is
a fixed function. This type of “local integration’ can representant for example
the influence of the environment on a plant located in x, see Whittle (1954,
P- 445). ‘
Denote by ¢ the Fourier transform of ¢. It is seen that the spectral density
of 2z is
const. | gp(x)|2 f(x) (4.4.1)

T — o —

Fi¢.6.Covariance function of the orqinal; process (a);of the process
transformad by local integration (b).
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Table 3. Empirical covariances of the integrated intensity function z(x) (see text)
for the distribution of coniferous plants.

Field 37: 1 Field 37: 11
Values of ¢(z, 7) Values of ¢(z, 7)
j=o | j=1 | j=2 [j=3 j=o | j=1 | j=2 |j=3
1=-3 —o0.71 0.03 t=-3 I.0I — 0.04
i=-2 1.08 1.63 | 1.18 [i = -2 1.16 0.49 | 1.07
1==I 2.51 2.I1 | 1.33 [i=~1I I.3I 0.66 | 0.96
7 =0 4.91 2.62 2.31 | 2.20 [i =0 3.63 2.02 0.81 | 0.86
i=I 2.65 1.77 0.63 | 0.47 [t =1 2.69 1.90 1.2I | 0.75
=2 1.36 1.I4 | —0.I7 | 0.72 [i =2 1.59 I.45 1.73 | 0.43
i=3 —o0.30 | —1.55 0.26 i =3 1.20 1.47 1.29
Distance Average of ¢(z, ) Distance Average of ¢(z, §)
o 4.91 o 3.63
I 2.63 I 2.35
\Vz 2.14 V2 1.60
2 1.84 2 1.20
Vs 1.24 \/E I.12
V8 0.73 V8 1.11
-3 0.95 3 1.03
Vio —o0.1I \/1__2 1.05
Vi3 0.55 Vi3 0.68
Unit of distance: 2.5 cm in the map, corresponding to 2.5 meters in the field

(Doob 1953, p. 535)- The cov.i. of z can be directly obtained from (z.5.3)

c) =/ Sq(y) qs) c1 (s + 1 = ¥) dy, @y, (4-4.2)

ie. a formula of the type (4.3.1) valid for a process distorted by errors of
displacement. However, in the present case the cov.f. is continuous at the
origin, even if ¢;(#) is discontinuous for #=o0, and (2) is valid also for »=o.
The effect is one of smoothing the course of the cov.f., see fig. 6.

Observations on the topographic variation are very often referred to some
basic cells of positive area (squares, circles, etc.). The formulas apply also in
this case if g(x —v) is constant within the cell corresponding to the observation
point x.

We conclude this section by empirical correlograms, where the (indirectly)
observed process is of the integrated type.

The correlograms are based on maps of two experimental fields (37:1 and
37:1I) established by the Department of Forest Regeneration of the Swedish
Forest Research Institute. On each map, a square network of circular sample
plots was surveyed. The radius of each circle was 0.7 cm (corresponding to 0.7
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Fi¢.7.Empirical average covariances for the intensity
function of the distribution of coniferous seedlings. (table3)

meters in the field). The distance between the centers of the circles was 2.5
cm. The network comprised 14 x 14 =196 sample plots in each field. For each
plot the number of coniferous seedlings was observed.

Although the amount of data is rather limited, we may try to find the type
of intensity function (cf. 2.6 and 3.6) that may produce a distribution of plants
of the kind encountered. Then, let z(x) designate the integral of the intensity
function over a circle of radius 0.7 around x.

In field 37:1 the number of seedlings per plot was 800/196 =4.08. The
variance of seedlings per plot was

(5018 —8002/196) /195 =8.99

Formula (2.6.2) shows that this corresponds to the following variance of the
integrated intensity function z()

¢(0,0) =8.99 —4.08 =4.91

This value and the corresponding values of ¢(7, /) (covariance between two
circles with the following distances between the centers: ¢ steps in x-direction,
and 5 steps in y-direction) are entered in table 3, which also contains corre-
sponding information from field 37:II. The average number of plants per
plot (410/196 =2.09) was lower than in field 37: I.

It has already been remarked that the number of observations is small;
e.g. the covariance ¢(3, 2) is estimated from only 132 pairs of points. Although
there is some evidence of a directional effect on the variation, the covariances
in different directions have been averaged for each distance. These averages
are found in the lower half of table 3 and they are also shown in fig. 7.
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The effect of integration should be appreciable only in the case ¢(0,0). The
corresponding value ¢,(0, 0) of the cov.f. of the original intensity function
should be somewhat higher than ¢(0,0).

Occasionally it is sufficient to have information about a process obtained
by local integration. In the numerical example the knowledge of the above
covariance function ¢ may suffice if we want to compare different schemes for
locating sample plots of the fixed size. However, if we want to study the
effect of varying the size and shape of the sampling unit, it will be necessary
to delve deeper into the “micro-structure”, and information about the co-
variance, ¢;, of the “point-intensity-function” will be needed.

4.5. Effect of competition

Let z(x) denote the size (or growth, etc.) of a plant located in x. If the
difference #=x —y between the coordinates of two plants is small, it may
be expected that the correlation between z(x) and z(y) should be negative
owing to the competition between the plants. However, published observations
on the variation of the yield of agricultural fields and forest stands do seldom
exhibit traits of the kind that would be induced by this competition (excep-
tions are Hudson 1941, Johnson & Hixon 1952). It is possible that the correla-
tion in soil properties between neighbouring points is so strong that the effect
of the competition is obscured. Another possible explanation is that obser-

1.07

0.5 1
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vations seldom are made at very short distances. Also, as pointed out in the
preceding section, observations often refer to areas and not to points. These
areas may be large compared to the distances over which the competition is
effective.

The following process is of interest for certain applications in forest surveys.
To each point x is attached the value z(x) of the height of that part of a stem
which is perpendicularly above x. If z(x) is integrated over an area containing
one tree, the integral thus gives the volume of this tree. The cor.f. »(u) of
z(x) must be continuous at the origin. The effect of competition should mani-
fest itself in low values of #(#) at some distance from the origin (this distance
depends on the size of the trees), and the effect should be repeated as a sort
of damped oscillations. In the isotropic case in R, it is clear that the extreme
case of “periodicity” results in a cor.f. of the type

Aq (av) = J, (av)

see (2.3.7). This function, with a =1, is shown in fig. 8.

It has generally not been considered necessary to take into account the
effect in the following applications. Although the short-distance variation
here is of interest, the effect of competition can be considered as belonging to
a “micro-state’” with which we need not be concerned.

4.6. The occurrence of periodicities in the topographic variation

The possible existence of a more or less strictly periodic component of the
topographic variation has been mentioned by several authors, especially in
discussions of systematic sampling.

In the extreme case, a realization of the process z(xy, %,), where x; and «,
are the rectangular coordinates of a point in R,, would contain a component
such as

cos(Ax, +B) (4.6.1)
In (1) the wave-front moves perpendicular to the x;-axis. The cyclic pattern
will here be conspicuous if observations are taken along paths parallel to the
x,-axis, e.g. in observations-of the one-dimensional process

b
Z () = [ 2 (%1, %) dxy (4.6.2)

An instance of periodicities which has been extensively debated was re-
ported by Finney (1950). The data studied by Finney pertained to the average
volume per acre obtained from 292z strips in a survey of a forest at Dehra Dun,
India. Systematic samples with varying sampling intensities were taken from
these data, and the sampling variances of the corresponding means were
computed. When these variances were plotted as a function of the sampling
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ratio 1:, some striking irregularities were found. A marked peak was observed
for p =17, which indicates a possible periodicity with a cycle comprising
seventeen strips.

It has been suggested that irregularities of the same magnitude might be
obtained if purely random series are analysed in a similar way (Matérn 1953).
However, it is found in the Dehra Dun example that the means of the seven-
teen systematic samples show a wave-like pattern, see curve II in fig. 10.

An effect of this kind might be expected to appear in many types of auto-
regressive series. It may suffice to consider a simple Markoff chain. Hence
assume that in the series

21y %9y« + 5 2p (4.6.3)

the covariance of z; and z; is exp( —Av), where v=|z —4|. To avoid unnecessary
complications suppose further that n=pg, where  and ¢ are integers. The
means of p systematic samples from (3) with sampling ratio 1:p are

— r .
zi=(1/q) 2 Zispj (t=1,2,...,9) (4.6.4)
j=o
Then with v=17 —|

Cov. (&, %) = =2 (=hv) +exp[-h(p-v)]

g-gexp (- hp)
cosh (hv) 1 —exp (—hn)
T2 sinh® (Bp]2) (4.6.5)

When p and g are large the covariance is approximately proportional to
exp(—hv) +exp[ —h(p —v)]

Hence the random variables (4) are approximately cyclically correlated.
To obtain a numerical illustration we consider a series of 300 valuescomputed
in the following way

% =100(5 +z)

where for £ >0

V¢ =0.96y;_; +0.28 &

The numbers ¢ and y, were taken from Wold’s table of Random normal de-
viates (Wold 1948). Thus a stationary series with cov.f. (0.96)* was obtained.

All possible systematic samples of intensity 1:p withp=2, 3, ..., 30 were
selected from the ensuing series of 300 z-values. A variance per sample unit
was then computed from the p sample means corresponding to the ratio 1:4.
The variances are found in table 4. They are also shown in fig. 9.
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Table 4. Variance per sampling unit in systematic samples from an autoregressive
series. Sampling ratio: I/p.

Variance Variance
b per unit p per unit
16 3,100
2 12 17 715
3 91 . 18 1,585
4 613 19 1,530
5 219 20 1,126
6 144 21 604
7 349 22 2,317
8 913 23 2,686
9 813 24 1,060
10 719 25 1,478
II 672 26 947
12 644 27 1,223
I3 558. 28 1,834
14 336 29 1,633
I5 955 30 1,521
Variance
3000~
. 2000
1000 4
0 T T - T - \
0 5 10 15 20 25 30 p

Fiqu.Varianctz per sampling unit in systematic samples from an
autoregressive series. Sampling ratio:s.(Data from table 4)

It should be remarked that this is not the technique used by Finney in his
computations. Finney’s method is described in his earlier paper (1948).

The highest peak in fig. 9 is found for p=16. The variance per sample
point is 4.3 times larger than the value corresponding to p=17. Thus the.
interval 16 would be rather unfavourable in systematic sampling of this
particular realization of the process. The means of the 16 systematic samples
with ¢ =16 are shown in fig. 10, together with the means of the systematic
samples with ratio 1:17 from the Dehra Dun data. In both cases we have a
smooth curve not very different from a sine wave. Since the 16 means from
the autoregressive series are linked together in a circle with close correlation
between neighbours, some pattern of that kind should also be expected, cf. (5).

In conclusion, the rather manifest periodicity in the sample means of the
autoregressive series cannot be attributed to any underlying cycle-producing

5—Medd. fran Statens skogsforskwingsinstitut, Band 49:5.
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mechanism. Its high amplitude can be explained as a result of the selective
procedure used to choose the particular wave-length studied. (Certain more
complicated schemes of the autoregressive or moving-average type are known
to induce periodicities with wave-lengths and amplitudes that can be predicted
from the underlying mechanism, see Slutzky 1937 and Wold 1938.)

What are the implications as to the usefulness of systematic sampling in
obtaining information about the mean value of a series such as the one con-
sidered here?

‘When an empiric series is analysed in the way illustrated by fig. 9, one must
find some values of $ for which the systematic sampling gives comparatively
poor efficiency. Therefore, if systematic sampling is practised, occasionally
values of p will be used, that are not very well suited to the particular series.

However, it can be argued that something of this nature may happen also
when a random selection of sampling units is applied. To take an example,
consider all possible ways of selecting a sample of 5 units from a population
of 20 elements, numbered 1, 2, . . ., 20. A set of 15,504 different combinations
is then obtained. This set can be partitioned into e.g. 272 subsets each with
57 members. It seems safe to assume that for any population of 20 units, one
or two of the 272 subsets will be rather unsuited for use in sampling. When
unrestricted random sampling is applied, the sample actually selected will
sometimes belong to one of these subsets which are especially unfavourable
for the population in question.

Although the analogy is far from perfect, this may suffice as an illustration
of the simple fact that when an actual sample is chosen (or considered as
chosen) from a small number of combinations of units, the precision of the
sample may now and then come out as rather low, on other occasions as
extremely high. This cannot be considered as a very serious argument against
systematic sampling.

However, the possibility of mechanisms producing strong periodicities must
be excluded if systematic sampling is to be advised; or the wave-lengths should
be known in advance, so that an unfavourable sampling interval could be
avoided.

If cyclic patterns were common in the topographic variation, they would
represent a serious problem in forestry, since systematic sampling is extensively
practised in this field. For this reason it is of interest to review briefly the
opinion expressed by A. Milne (1959) after a discussion of the problem and a
close scrutiny of the Dehra Dun data.

Milne’s article disclosed that the 292 strips in the survey actually consisted
of two distinct sets of equidistant strips (strips 1—187 and 188—292 with
an unsurveyed portion corresponding to 24 strips between no. 187 and no.
188). The same periodic pattern was found in both sets. There was, however,
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Fig.10 Means of systematic sarnples from an autoregressive series(I)
and from observations of the cubic volume (II).

a displacement of phase equal to half a “period”. These findings and other
considerations gave Milne ‘“the not unreasonable impression that the perio-
dicity does not in reality exist in Dehra Dun but is a result of the mechanism
of the enumeration”.

Milne also studied 2o complete enumerations (yields of agricultural crops,
horticultural and orchard crops; number of larvae, eggs or adults of several
kinds of beetles) and discovered no sign of periodicity. Nor could he find “rea-
sonable grounds for expecting spatial periodicity anywhere on this earth
except where man himself, either directly or indirectly, has imposed periodic
conditions sufficiently accurate to override the natural environmental irreg-
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ularity”. Milne also was of the opinion that “man-made spatial periodicity
will nearly always be suspected either from external signs or past history”.
The surface drainage of irrigation channels and the equal spacing of planted
trees were mentioned as examples.

Milne’s formulation must probably be considered as an overstatement. It
is not difficult to find spatial “quasi-periodicity’’: the reflection of the yearly
cycle in sedimentary rocks and soils, the regular patterns in organic tissues
(cf. Ladell 1959), not to speak of sea-waves and the effect of their action on
the shore. However, regarding the spatial variation that is encountered in
forest surveys, it may be concluded that no clear case of periodicity has been
reported.

If a cor.f. of a stationary process in R, is isotropic or “elliptic”” with moderate
excentricity (see end of § 2.4), it can only contain a damped oscillatory com-
ponent, as stated in the preceding section, see fig. 8. The same holds true a
fortiori in higher dimensional spaces. On the other hand, strict periodicities
can be induced in cor.f.’s in R, by mechanisms of competition etc. that only
give damped waves in higher spaces; examples are found in 3.5. A short dis-
cussion of the implications for systematic sampling is found in 6.2.

Realizations of a process in R, can contain linear waves such as (1) even if
the cor.f. is isotropic, which is clear from the model (3.1.2). The experience
reviewed in this chapter, however, would indicate that we can exclude such
patologic cases in seeking abstractions of the topographic variation. This
means that rather far-reaching qualities of ergodic nature might be assumed.
The empiric correlations of a realization would then have “nearly isotropic”
properties.

Chapter 5. On the efficiency of some methods of locating
sample points in R,
5.I. Introduction

This chapter is concerned with the estimation of an integral
S 2(x)dx
Q

by means of the values attained by z(x) in a certain subset, the “sample”,
of the set Q. As an illustration of the use of the theory of stationary processes in
such contexts, we shall at some length discuss one particular example, namely
the case when Q is a region in R, and the sample consists of a finite number of
points in Q.
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We shall mainly deal with the problem of estimating the average (cf. 2.5)
2(Q) =sz(x) ax /Qf dx

by the statistic
7= (z/n)iz"; 2(x)

where (%, %y, . . . , %) are the sample points.

The reason for this restriction to the unweighted mean is the notion that
the use of any other estimator is advisable only in cases where rather detailed
prior information about the structure of the process is at hand. Our interest
here is not to find the optimum estimation procedure for particular processes;
instead we study how the “robust” estimate z performs under different con-
ditions. ‘

We shall speak of a sample design (plan, scheme) to denote a set of rules
for choosing the sample points. These rules may involve a random experiment,
but not necessarily so. The main object will be to compare the performance
of different sample designs.

A good sample scheme should lead to a low value of the sampling error,
z —2(Q), and it should further be reasonably unexpensive to apply in practice.
We shall in this chapter give some comments on the aspect of costs, but the
emphasis will be on the precision of the estimates.

One way of obtaining an idea of the precision is, of course, to carry out
sampling experiments in actual populations of the type appearing in a special
field of application. When the sampling is of the random type, the precision
can be expressed in simple estimates of the variation existing in the population
under survey. If the random element is small or completely lacking (for
example in so-called systematic sampling), the collection of empirical evidence
about the precision is a very painstaking work. Extensive research of this
kind, however, has been made in the case of the “line surveys” used in forestry;
the first large-scale such investigations seem to be those of Langsaeter (1932)
and Ostlind (1932).

Another approach is the one of W. G. & L. H. Madow (1944). These authors
studied the average outcome of a (more or less restricted) random selection
in the case of an analytically defined function (in R,).

We shall instead study the average performance of a design in a family of
functions. To characterize the performance we shall use the variance

E{[z-z(0)1% (5.1.1)

where the expectation is taken over the family of functions and also over the
possible outcomes of the random procedure that may form part of the sample
plan. This is the approach of Cochran (1946).
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The family of functions will be restricted to the set of realizations of a stationary
and isotropic process that has a decreasing correlation function. In a particular
field of application it might of course be useful to consider some more special
type of process. However, existing evidence about the topographic variation
(see Ch. 4) indicates that a first comparison of sample plans should be confined
to the above case. The restriction to isotropic processes may be considered a
severe limitation. As indicated in § 5.2 below, however, it is very easy to form
conclusions about the case of “elliptic correlation” from a study of the isotropic
processes. If the isotropic case is considered of prime interest, the elliptic
case deserves the second place.

The variance (1) depends not only on the structure of the process and the
sample scheme adopted. It is also dependent upon the size and shape of the
region Q. If the number of sample points is small, the geometry of Q produces
a “border effect” that may be rather complicated. It seems however reasonable
that we neglect this effect in seeking a first characterization of the sample
designs. We shall therefore concentrate on the limiting case where the average
number of sample points per unit area is fixed, whereas the region Q extends
to infinity in all directions. We shall then mainly consider the wvariance per
sample poing, defined as

Lim - £ {F, ~2(Qa)1%} (5.1.2)

where Q,, can be specified for example as a square of area n4, A being a fixed
number; z, is the mean pertaining to the sample points in Q,.

The results may be applied also in the case where the sampling units are
plots of positive area. Each observed z(x) should then be considered as the
integral of some primary process z;, the integration being performed over a
certain plot with x as center. If not only z, but also z shall be isotropic, this
sample plot should be circular, or its orientation should be chosen at random.
However (except for distances of the order of magnitude of the diameter of
the plot) the isotropic properties of z, are practically retained even with other
types of sample plots. It may further be necessary to include in the covariance
of z(x;) and z(x,) a component proportional to the area of the intersection be-
tween sample plots centered in x; and x,, respectively; see the discussionattached
to (2.6.2) and (3.6.7). A purely “chaotic” component should be added to de-
scribe the influence of errors of observation. Thus it can be assumed that the
cov.f. is a sum of two components

C=Cp+C (5.1.3)

Of these terms ¢, can be conceived as containing the influence from the factors
mentioned above, thus practically vanishing for distances larger than 24,
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where d is the maximum radius of a sample plot. It can then be assumed that
¢, is continuous and develops smoothly. Further ¢, (but not ¢,) can be supposed
to be independent of the size of the sample plot. It is therefore possible to
rank different designs according to the variance per sample plot solely by
considering the influence of ¢;. Of course, it must then be presumed that the
sample plots are equal in all the plans, and further that in all cases the distance
between sample plots is large in comparison with 4.

After comparing some types of design as to their efficiency in estimating
the mean in the limiting case (§§ 5.2—5.4), we shall comment on the “small
sample” problems (§5.5). In this connection, some data from experimental
samplings of maps will be presented (§ 5.6).

As already mentioned, the choice of a sample design is depending not only
on the precision of the estimates but also on the costs of sampling. When dif-
ferent designs are compared, it is, of course, especially important to consider
those items of cost which depend on the design. In field sampling — as distin-
guished from the sampling of maps and the sampling of small surfaces in the
laboratory — the cost of travel may be important. This cost is roughly pro-
portional to the total distance covered when all sample points are visited.
Some results concerning the air-line distances which must be covered when
visiting the sample points will be presented in § 5.7. Although these investi-
gations are not concerned with the stochastic processes sampled, they are
intimately connected with the geometric questions that seem to emerge in
almost all discussions of planar and spatial processes.

A unified treatment of the strategy of choosing a sample plan with due
regard to all items of debit and credit will not be attempted. However, the
final section (5.8) contains a short discussion of the efficiency of the various
sample schemes. Here the previous results concerning precision and length of
travel are utilized.

For the fundamental aspects of sampling the reader is referred to textbooks
on the theory and method of sample surveys, such as Cochran (1953), Hansen,
Hurwitz & Madow (1953), Yates (1953). Questions more directly connected
with the theme of the present chapter can also be found in these books, espe-
cially in conjunction with the treatment of systematic sampling. As to other
contributions references are found in the textbooks and in the author’s earlier
paper (1947). Further, a review of the literature of systematic sampling by
Buckland (1951) should be especially mentioned. It is mainly confined to
English and American papers. Contributions have also been made by Indian
authors, see for example B. Ghosh (1949) and Das (1950). Among recent
investigations Hajek (1959), Milne (1959), and Zubrzycki (1958) may be
mentioned.
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5.2. Size and shape of strata in stratified random sampling

The simplest type of random sampling is the unrestricted random sampling,
also called simple random sampling. In the present case this type of sampling
means that each sample point is selected with a uniform probability distri-
bution over the whole of Q, independently of the selection of the other sample
points. In the limiting case the variance per sample point is ¢(0), where ¢(v)
is the cov.f. of the process z(x). For the sake of simplicity it is here assumed
that the process has no spectral mass at the origin. The corresponding com-
ponent of the process would not have made any contribution to the variance
(5.1.2) of any sampling scheme.

We then pass to the stratified random sampling. We assume that the region
to be surveyed can be subdivided into a number of non-overlapping congruent
strata. From each stratum % sample points are chosen at random. Let ¢ stand
for one particular stratum and let o,2(q) denote the variance per sample
point, cf. (5.1.2). This quantity is uniquely determined, for the orientation of
g does not affect the variance owing to the assumption of isotropy. We have

0p*(g) =¢(0) - D?[2(q)] (5.2.1)

Here, in accordance with Cramér (1945, p. 180) D? denotes variance. Whereas
0p%(g) is the variance within stratum, D2[z(g)] is the variance between strata (in
an infinite region). By means of the formulas in § 2.5

Dis(1=/ e()b(o; v (5.2.2)

where b(v; g) is the frequency function of the distance between two points
chosen at random and independently in g.

Under the assumptions made on ¢(v), see § 5.1, ¢ must be small and compact
in shape, if 0,%(g) shall attain a low value.

Let g and ¢, be regions of the same form with areas 4 and A4, respectively.
Then

©o

D?[z(q))] = f c(vyA4,/4) b(v; q) dv (5.2.3)

From (3) we immediately conclude: If 4, > 4, then
0" (91) > 05 (q)

Hence, if the shape of the stratum and the sampling intensity are given, the
lowest sampling error is obtained if the stratum is made to contain one sample
point only. As indicated in Ch. 6, however, we may for other reasons want at
least two sample points per stratum.

It would be of interest to find mathematically precise formulations for the
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optimum shape of the stratum under various conditions. We shall however
mainly confine ourselves to numerical illustrations showing the influence of
the shape of the stratum on the variance.

By partial integration of (2) and inserting in (1)

0%(g) = —of [1 - B (v; g)]dc (v) (5.2.4)

Here B stands for the d.f. corresponding to the frequency functioﬁ b(v; q).
According to the assumptions —dc(v)> 0. Therefore: If

B(v;q1) =B (v; gs)
for all v, then
052 (91) < 05%(g2)

The above inequality between the distribution functions is valid for example
if ¢, is a circle and g, is a square of the same area as ¢,; also if ¢, is a rectangle
and ¢, is another rectangle of the same area but with longer diagonal. This is
found by a numerical study of the distributions given in (2.5.18) and (2.5.20).
If (2.5.22) and (2.5.23), too, are used, the following ranking of regions with
equal area is obtained:

Circle

Regular hexagon
Square

Equilateral triangle

We shall then make use of the equality (z.5.19)

2wy 2 Py?
b (7); q) = a YT +
where 4 is the area of ¢ and P is the perimeter. From this development some
simple and obvious conclusions can be drawn.

Consider the class of plane figures of given area, for convenience here taken
as unity. Further, fix a certain class of isotropic cov.f.’s, that may consist
of all non-increasing functions, or may be a subclass that contains all completely
monotone functions or all convex functions. In the class of functions there
are members which are decreasing very rapidly towards o, such as exp(—av)
with a high value of a. For such a function only that part of b(v, ¢) which is
nearest to the origin has any influence on 0,2(g). Thus, it can be concluded
from (2.5.19) that of two regions with unit area the one with the shortest
boundary has the lowest variance. If there is any region optimal for the whole
class of cov.i.’s, it must therefore be the circle. However, it seldom happens
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Table 5. Characteristics of seven regions of area I.

Region (g) Perimeter Jv b(v; g)dv Jv? b(v; g)dv
Circle...oovviiiinii i, 3.545 0.5108 0.3183
Regular hexagon............... 3.722 0.5126 0.3208
Square. ......coiiiiiiiiiiinn. 4.000 0.52I4 0.3333
Equilateral triangle............. 4.559 0.5544 0.3849
Rectangle a=2................. 4.243 0.5691 0.4167
Rectangle o=4................. 5.000 0.7137 0.7083
Rectangle a=16................ 8.500 . 1.3426 2.6771

that the region to be surveyed consists of a number of disjoint circles. It is
more appropriate to deal with such strata that can form a network (mosaic),
covering R, without overlapping. As is well known (Fejes Téth 1953, p. 70), the
regular hexagon is then optimal in the sense that it has the shortest boundary.
We conjecture that it is optimal in relation to the whole class of non-increasing
isotropic correlation functions.

As already indicated, this line will not be pursued further. It will be clear
from examples that the difference in shape between figures such as the circle,
the regular hexagon, and the square entails only unsignificant differences in
variance. Although mathematically interesting, the problem of the optimal
shape of a stratum, has therefore no immediate practical consequence.

If the correlation is rapidly decreasing, the area and perimeter of ¢ suffice
to characterize the performance of ¢ as a stratum. At the other extreme, if
the cov.f. is falling rather slowly (in relation to the size of the stratum),
the lowest moments of b(v; ¢) may be thought of as suitable characteristics.
The first two moments and the perimeters of figures of the type already dis-
cussed are presented in table 5. As to the notation for rectangles, the shape is
characterized by the ratio between the lengths of the sides. Throughout the
chapter this ratio is denoted «. The reason for including the equilateral triangle,
the square, and the regular hexagon in the table and elsewhere in this chapter,
is that these three figures are the only regular polygons which can form a
network over R, (see e.g. Sommerville 1929).

With one exception concordant rankings are obtained whichever charac-
teristic is used as basis. However, it is evident that the rankings according to
the moments and the perimeter may be quite different if non-convex regions
are included.

We then proceed to numerical illustrations. We consider first the case of
an exponential correlation. In table 6 is shown the variance per sample point
in a number of cases when the cov.f. is exp(—v). It may be noticed that by
aid of (3) also variances in some additional cases can be obtained from the
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table. Let 0,2 be the variance in the case of cov.f. exp(—v) and a stratum of
area 4. The variance remains the same when the cov.{. is replaced by exp( — Av)
if at the same time the stratum is changed into a figure of similar shape and
area A[h%.

To indicate briefly how the values in table 6 and those of the subsequent
table # were computed we take as example the case of circular strata and
exponential correlation. The variance for a stratum of radius 7 is

I -9 (7')

where
v (1) =/ exp (=70)f (v) dv (5-2.5)

Here f(v) is the frequency function of the distance between two random points
in a circle of radius 1, see (2.5.20). For low values of 7 (5) was computed by
means of a series development

72
Yo(r) =1 RLCR Iy (5.2.6)

Here my, m,, . . ., are the moments of f(v). Explicit expressions were obtained
for the moments in all cases studied. Numerical integration was used for high
values of 7, and for the cov.f. used in table 7. The number of ordinates was
30—r100 and the integration procedure was usually the “3/8th-rule”. The
major part of the computations was performed with the aid of the electronic
computer Facit EDB at the Board of Computing Machinery in Stockholm.
As in other cases, mentioned in subsequent sections, the programs were written
by the author in the “alpha code” of Autocode Co.

It is immediately apparent from table 6 that the circle, the regular hexagon
and the square give equivalent values of the variance. For a circular stratum

Table 6. Variance GP2(q) for different strata.
Covariance function: exp(-v).

Variance when the stratum is

Area of Rectangle (o is ratio between sides)

Equi-
stratum Circle I]ie ig’l lﬁrn lateral =1
g triangle . =2 a =4 a =16
(square)

1/100 0.0495 0.0497 0.0536 0.0505 0.0549 0.0680 0.122

1/4 0.220 0.221 0.235 0.224 0.239 0.283 0.436
I 0.383 0.384 0.404 0.388 0.408 0.464 0.629
4 0.598 0.599 0.619 0.604 0.622 0.669 0.791

16 0.803 0.804 0.815 0.807 0.815 0.838 0.896

64 0.929 0.929 0.933 0.930 0.932 0.937 0.955
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the variance is between 98.0 per cent and 100.0 per cent of the variance
obtained when an equally large square stratum is used. The minimum value,
98.0 per cent, is attained when the area approaches zero. Hence, it equals the
ratio between the mean values of the corresponding distributions of distance
between random points, as is clear from (6). The same bounds, 98.0 per cent
and 100.0 per cent, are valid for the whole class of completely monotonic
covariance functions, cf. (2.4.10). The regular hexagon is seen to be inter-
mediate between the circle and the square. It is further seen that the rectangle
with the long side twice the length of the short side (x=2) has a variance of
between 100.0 per cent and 109.2 per cent of that obtained for an equally
large square. Similar computations for the rectangle with ¢=1.5, a case not
included in table 6, gave the bounds 100.0 per cent and 103.2 per cent when
comparisons are made with the square. Thus, the rectangles that are only
moderately oblong are not much less efficient than the figures that are more
compactly shaped. However, in some cases, the efficiency of a very elongated
rectangle can be very poor in comparison with that of the square or the regular
hexagon. Calculations show that a rectangle with «=16 can be less efficient
than a square of six times larger area. As might be expected from table 5,
an equilateral triangle is about as efficient as a rectangle that has the same
area and where one side is twice the length of the other. It is further evident
that the differences in variance between the figures are rather small when the
correlation is rapidly falling in relation to the size of the strata. The bottom
rows of table 6 show that in this case the stratified sampling is only slightly
more efficient than the simple random sampling.

The function exp( —v) has a cusp at the origin, a trait characteristic of areal
distributions, see 3.5 and 4.2. It seemed desirable to include also an isotropic
correlation with zero derivative at the origin. The process with cov.f. exp(—v?)
is computationally easy. However, it was thought to be “too continuous” to
be realistic. In fact it is deterministic along any straight line in R,, see Karhunen
(1952). Instead, the function v K, (v) was chosen. This function is suggested in
Whittle (1954), see the remark following formula (2.4.9). It may be considered
as intermediate between exp(—v) and exp(-1v?); in the vicinity of the origin
I —v K (v) is of the order of magnitude v2log v. Fig. 11 shows this function and
the cov.f. exp(—v) of table 6.

Variances computed with the cov.f. v K,(v) are shown in table 7. The
comparisons between different strata produce about the same results as those
obtained in the case of exponential correlation. The maximum difference
between variances of two different figures, however, is somewhat larger in
the present case. :

We conclude this section with a brief remark about elliptic correlation (see
formulas 2.4.14—16). For the sake of convenience we assume that the process



SPATIAL VARIATION 79

49:5
1.0 -
054 VK1 (V)
Q—V
0o T T T
0 1 2 3 v

Fig.11.The functions exp (-Vv) and vKi(v).

z(x, v) has strongest correlation along the x-axis. A simple compression of the
xy-plane transforms z into an isotropic process z; defined by the equation

2w, 9) =#(0%, 3)

where b < 1. Let now & be a random point in the region ¢. Then

2(8) —2(q) =2,(&) ‘ﬁ(ﬁ)

where &, is a random point in ¢;; ¢, is the mapping of ¢ by the transformation
%, =bx, y;=v. Thus, if Q is the region to be surveyed, the effectiveness of
various strata in estimating z(Q) can immediately be referred to the correspond-
ing quantities in the isotropic case, viz. the case of estimating z,(Q,), where
Q, is the mapping of Q by the above transformation.

A simple example may suffice as an illustration. It was found that the square
was nearly optimal in the isotropic case. Now if ¢, is a square in thex,y;-plane,
its inverse image obtained by the above transformation is a parallelogram

Table 7. Variance o'pz(q) for different strata.
Covariance function: »K,(»).

Variance when the stratum is
Area of Equi- Rectangle (« is ratio between sides)
stratum . Regular
Circle h lateral
exagon | . a=1 _ _ _
riangle a=2 =4 o =16
(square)
1/4 0.0698 0.0701I 0.0791 0.0720 0.0826 0.II5 0.248
I 0.180 0.181 0.199 0.185 0.206 0.265 0.460
4 0.390 0.391 0.417 0.397 0.423 0.493 0.676
16 0.661 0.662 0.683 0.66%7 0.684 0.726 0.830
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elongated in the x-direction. The simplest case is that of a square with the sides
parallel to the axes. The corresponding ‘‘nearly optimum” stratum for the
process with elliptic correlation is a rectangle with one side along the x-axis
and the other along the y-axis, and the ratio 1/b between the lengths of these
two sides.

5.3. Sampling by a latin square design

This section will briefly deal with a case of what has been called “deep
stratification” (see Tepping, Hurwitz & Deming 1943, Patterson 1954),
viz. sampling by means of the latin square design. It is supposed that the area
to be surveyed consists of a number of congruent rectangular blocks. Each
block is subdivided into #* “‘plots” of rectangular form and size 4 x B. They
are arranged in columns and rows with # plots in each row and # plots in each
column. From each block # sample points are selected by the following two-
stage procedure. First a cluster of # plots is chosen at random, with the restric-
tion, however, that each column and each row is represented by one plot. In
the second stage one sample point is selected at random from each one of the
# plots chosen in the first stage.

The variance per sample point is

oo

c(0) = f ¢(v)a(v)dv (5.3.1)
o
As before c(v) signifies the cov. f., assumed to be isotropic. The ‘“‘distance
function™ a(v) is given by

a(v) =n—_I—_—I ma(v;nd,B)+na(v; A,nB) —n a(v;,nA, nB) -a(v; A,B) 1(5.3.2)

The symbol a(v; s, s') is used for the frequency function of the distance between
two random points in a rectangle with side-lengths s and s’ (see 2.5.18). The
right-hand side of (2) is derived by straightforward considerations of the
probabilities involved in the sampling scheme.

By (2.5.19)

a(v) =5% - (%)2 (A+B)+... (5.3.3)

for small values of v. The first term is the same as that found in stratified
sampling with the same sampling intensity and one point per stratum. If
the sampling ratio is one point per unit area, (3) is simply

2m0 —4(A +B) v2 +. ..
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Table 8. The nXn latin square. Plots with sides A and B. One sample point per
unit area. Values of the moment f» a(v) dv.

n A|B=1 A|B=2 A|B=4 A[B=16
2 0.433 0.458 0.543 0.961
3 0.420 0.433 0.486 0.798
4 0.426 0.432 0.463 0.705
6 0.456 0.452 0.455 0.605
8 0.492 0.481 0.466 0.553

12 0.564 0.546 0.506 0.508

16 0.631 © 0.607 0.550 0.494

If ¢(v) is rapidly falling it would hence be advantageous to use a small value
of (4 +B), which can be obtained by choosing a high order () of the latin
square, and by making the plots square in shape. However, it will be clear
from the results presented in table g, that these considerations apply only in
cases where the cor.f. is decreasing so fast that the first term in (3) is of dom-
inating importance when compared with the following terms. As indicated
in § 5.2, in this case no sampling scheme can give any substantial advantage
over the simple random sampling.

The performance in the case of a slowly decreasing correlation is of higher
interest. Then (1) is dependent upon the whole course of the distance function.
However, in contrast to the corresponding function in stratified random
sampling (2) has a complicated course with change of sign. It was thought,
however, that the first moment

oo

S va(v) dv

o

would give some indication of the effectiveness of the various designs, since
the variance (1) is proportional to this quantity in the limiting case when
& — o in the cor.f. #(v) =exp( - Av). The first moment has therefore been tabulat-
ed in a few cases (table 8). It should be noticed that the corresponding moment
in stratified sampling with square stratum is 0.5214 (table 5). It is seen that
this quantity is also obtained as a limiting value when the order of the latin
square tends to infinity and when the shape of the plot is adjusted so that

Jv a(v) dv is made as small as possible (i.e. a plot approximately 1 xi) It is

further seen from table 8 that in some cases a substantial reduction (in com-
parison with the best stratified design) is attained. See e.g. the plans of order
2 X 2 to 4 x 4 with square or nearly square plots.
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Table g contains some variances for latin square designs with square plots.
The cov.i.’s are of the type used in the computations of the preceding section.
Two cases of stratified sampling are included for reference as well as a number
of systematic sample schemes to be discussed in the next section. For the case
of square plots it may evidently be concluded that latin squares of low order,
ie. <6x6, give a smaller variance than the stratified samples. However,
further investigations are required if more definite conclusions are to be
reached.:

5.4. Some cases of systematic sampling

In systematic sampling the cluster of sampling units forms some regular
geometric pattern. We shall here only discuss some special cases of sampling
by a lattice of points in a parallelogram arrangement. Thus, it is understood
that the sample points (¥, ¥u») are given by a relation of the type

X =a(E+u) +b(n+v) cosp

YVur =b(n +7) sin ¢ (5.4.1)

Here a, b, and @ are fixed constants. The sampling procedure is as follows: a
point (&, ) is first chosen in the unit square. As sample points are then used
all those lattice points which are given by (1) and belong to the region under
survey. The scheme (1) is restricted in so far as it has one side of the basic
parallelogram parallel to the x-axis. However, this restriction is of no con-
sequence when isotropic processes are dealt with.

Since we shall neglect the border effect, as mentioned in § 5.1, the variances
will be the same if the set of sample points is chosen without any random
procedure, e.g. by fixing in advance £=#%=o0, or by centering the sample
points with reference to the boundary of the region (Yates 1948, Milne 1959).

We first note that the number of sample points per unit area is

I
ab sin @

For the sake of convenience the sampling ratio giving I point per unit area
will be applied in the sequel. Thus ab sin ¢ =1. We notice the following special
cases:

The triangular (or hexagonal) network, a=b= ‘i/;Tg,, @ =n[3. The six points
closest to any given point in the network are the corners of a regular hexagon
with the given point as center.

T he square network, a=b=1, p =n/2.

The modified square network, a=1, b=\/5/4, tg p =2. This system isobtained
from the square network by moving every second of the lines parallel to the
x-axis one half step to the left or to the right.
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The general vectangular case, ab=1, ¢ =x[2. In dealing with this case the
ratio a/b will be denoted o.

We shall now study the performance of systematic schemes when the same
type of processes as those treated in the earlier sections of this chapter are
sampled. First the formulas which have been used in the calculations will be
presented.

We then start with the notationally simplest case, the square network. To
avoid complications at the borders, it is assumed that the region under survey,
Q, is a rectangle with the sides parallel to the axes and the size # x n, where
m and 7 are integers. The variance per sample point is then

i | E 2wt in -]} -

- %DZ[Z& (,%)] = mnD2[z(Q)] (5.4-2)

Expressing (2) in the cov.f. it is convenient to usefor this function a notation
valid also in the non-isotropic case. Rearranging the terms of (2) we find

E S fulim) @ p|im) ey -

”

=/ [ (@=|xlim) (= |yl /e, 5) drdy

When m and # tend to infinity, this expression approaches

o < o]

opt=2 Ze(u,v)- /) [ c(x,y)dxdy (5.4.3)
-0 -0 -0 -00
Assume now for simplicity that c(o, o) =1. If further the spectral distri-
bution is absolutely continuous, (3) can be expressed in the spectral density.
Denoting this density by f(x, y), Poisson’s formula gives (Bochner 1932, p.
203) '

o =4 £ Zt(aap,2m) -1(0,0) ] (5.44)

It should be observed that even in the limiting case the problem is not that of
estimating the a priori mean E[z(x, y)] of the process. In (4) it is exactly the
subtraction of f(o, 0) that constitutes the distinction.

When the cov.f. is falling rapidly, as exp( —Av) with a high value of 7, it is
easy to evaluate the variance from (3) since only a few terms of the double
sum have to be computed and the value of the integral is directly obtained;
it equals 27z/A? in this case.

6—Medd. frin Statens skogsforskningsinstitut. Band 49:5.
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With this exception, (4) has been used in the computations. The relevant
spectral densities have been given in § 2.4. The spectral density corresponding
to the cov.f. exp(-/v) is

h
Pyl Ca b (5-4.5)

whereas the density corresponding to dv K (bv) is

Dty (5.4.6)

The computations with f given by (5) were carried out on the computer
Facit EDB already mentioned. The calculations consisted of a straightforward
summation for all lattice points within a certain radius (of the order of magni-
tude 20—60) from the origin, and an approximation by integration for the
points outside this radius. The accuracy was checked by varying the radius.

The density (6) is rational. In this case, the summation was first carried out
row-wise by means of formulas for the decomposition into partial fractions
of the hyperbolic functions. The ensuing summation by columns was reduced to
adding a small number of relevant terms.

Returning to the general case (1) we introduce the process

2 (%, y) =z(ax +by cos ¢, by sin ¢) (5-47)

Sampling z by the scheme (1) is equivalent to sampling z, by a square network.
Thus, (3) and (4) apply if the cov.f. and the spectral density (respectively)
of z, are inserted in the formulas. These functions are given by the following
equations

¢ (%, ¥) =c(ax + by cos @, by sin ¢) (5-4.8)

% ay — bx cos (p) (5.4-9)

h(r9) = (xfabsing) f(%, 220
where ¢ and f are the corresponding functions for z.

The program written for the computer in the case (5) was made to include
summation of any expression of type (9). The methods indicated above work
also when (g) is applied to (6).

" In this way the values in the lower half of table g were obtained. It is seen
that the triangular network gives the highest precision of all schemes included
in the table—for all values of # and b in (5) and (6). However, the modified
square network and the square network give variances which are but slightly
higher than those obtained in the triangular system. It is also seen in some
cases that the gain over all the random schemes is considerable.
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Table 9. Variance for different sample designs with one sample point per unit of
area. The variance in unrestricted random sampling = 100.

Variance in per cent of unrestricted random sampling when
the covariance function is

Sample design

exp( - hv) with 2 = bvK,(bv) with b =

o.1 0.5 I 2 4 0.5 I 2 4
Stratified
(square strata)
1 point per stratum | 5.05 | 22.4 | 38.8 | 60.4 | 80.7 | 7.20 | 185 | 39.7 [ 66.7
2 points per stratum| 7.05 | 29.8 | 49.2 | 71.2 | 88.0 | 11.8 | 278 | 53.2 | 78.3
Latin square
(square plots)
2 X2t 4.25 | 19.6 | 35.2 | 57.1 | 79.0 | 5.24 | 14.8 | 35.1 | 63.8 |
P N 421 | 198 | 359 | 58.0 | 79.3 | 5.12 | 15.2 | 36.4 | 64.4 |
6X6.vvviiiianinnn 4.52 | 21.1 | 38.0 | 60.1 | 80.3 | 585 | 17.2 | 39.4 | 66.4 |
I6 XTI6.veeerennnn. 6.26 | 28.2 | 47.3 | 68.0 | 84.1 | 10.5 | 26.9 | 51.0 | 73.5 |
Systematic . :
Triangular......... 2.25 | I1.2 | 22.1 | 41.7 | 69.4 | 1.16 | 4.50 | 16.3 | 46.1 '
Modified square....| 2.26 | 11.3 | 22.2 | 41.9 | 69.5 | 1.I7 | 4.55 | 16.4 | 46.3
Square............ 2.29 | I1.4 | 22.4 | 42.2 | 69.7 | 1.19 | 4.68 | 16.8 | 46. |
Rectangular i
O=2 iuiinennnnenns 2.90 | 14.4 | 27.8 | 500 | 749 | 2.08 | 7.86 | 25.5 | 57.0
O=deeienenenennnn 5.70 | 27.7 | 51.3 | 79.8 | 92.3 |- 6.85 | 24.1 | 62.4 | 90.2
O0=8. ittt 14.3 | 67.6 I15 144 125 | 25.5 | 79.6 152 149
O=I6.c.cieenrnnnn 30.2 174 258 252 177 | 93.3 | 238 319 239
=640, 306 | 1015 978 647 369

Meanwhile, it is seen by an argument used in discussing the optimum shape
of a stratum (5.2) that the only system which can be optimum for a wide class
of non-increasing isotropic correlations is the triangular network. For when
the cor. f. is rapidly decreasing, the lowest variance is obtained for a system
with the highest lower bound for the distance between two different sample
points. The triangular system has this property (for a fixed sampling ratio),
see Fejes (1940).

It is further seen from table g, that even a moderate deviation from the square
pattern such as a rectangular system with « =2 (i.e. the system a =\/2, b =1/
can give a substantial increase in the sampling error. In extreme cases such as.
those with =16 and oe=64 the sampling errors may be much higher than
those occurring in unrestricted random sampling. These extreme cases are of
the type known as “line-plot survey” in forestry.

5.5. Some remarks about the case of small samples

When the total number of sample units is small, certain “‘border effects’
appear. Effects of this kind may be encountered even in a large-scale survey
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when estimates for subregions of the total region under survey are required.
Such a subregion may be of a rather complicated nature, consisting for example
of a large number of scattered disjoint domains.

We shall here deal with the same sample schemes as in the preceding sections.
Let us consider for example a network of congruent strata. Assume that this
network is placed at random over the plane without any consideration of the
pattern which the network forms over the particular subregion. The corre-
sponding assumptions are made in the case of designs of the latin square or
the systematic type. Problems such as the determination of the optimal
arrangement of four sample points in a square region, etc., will not be discussed
at all. An attempt to find general results of practical interest would evidently
lead into an enumeration of a very large number of particular cases.

The case chosen for discussion here corresponds fairly well to the situation
in forest surveys. A rigid frame of sampling units is often located without
reference to the boundaries of the region surveyed. It seems realistic then to
think of the frame of sampling units as randomly located over the area.

As to the general problems arising when estimates for a subpopulation are
tequired from a sample which has been chosen without specific regard to the
particular subpopulation, a discussion is found in Durbin (1958). In this
context it may be mentioned that the following remarks concern other cases
of plane sampling, too, such as “line sampling”’, “line-plot sampling”, etc.

We now consider, as before, a stationary isotropic process z(x) with xeR,.
Some sample scheme of the types treated in the earlier sections of this chapter
is assumed. We suppose that the scheme consists of a procedure for locating
sample points at a given sampling intensity over a very large region Q,, that
contains the small region Q for which estimates are wanted. Instead of assuming
that a frame of e.g. basic strata is placed at random over Q,, it will be convenient
to assume that the frame is fixed in advance and that Q is placed at random
in Q. This is explained by the following procedure. A point P and a direction
PB are fixed in the given figure Q. For the location of Q in Q, it is then assumed
that P is placed in a point which is chosen at random with uniform probability
over Q,, and that the angle between PB and a fixed direction in (), is selected
at random with uniform probability over the interval (o, 2n), cf. the kinematic
measure in plane integral geometry (Santaldé 1953, p. 21).

The inclusion of Q, in the considerations is, of course, merely a device intended
to simplify the discussion. As to the assumptions on z(x), it seems natural to
suppose that the mechanism producing realizations of the process does not
contain any long-wave components, i.e. long with respect to the size of Q. Thus
the overall behaviour of z(x) in Q would not be very much dependent upon the

location of Q in Q,.
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We denote the areas of @ and @, by 4 and 4,, respectively. We then introduce
{ I xeQ
e(x) = .
0 otherwise
and define
2 (%) =z (%) e (%)

Assuming that @, is so large that its border effects can be neglected, we can
regard e(x) and z,(x) as stationary inside Q,, where further ¢(x) is independent
of z(x). Neglecting terms which are small in comparison with 4/4,, the following
moment formulas are obtained for x, y £ Q,

Ele(x)]=4/4,

Cov. [e(x), e(y)]= 2‘% : ‘i’;z(’;)

(5.5.1)
Elz (x)]=mA[4,
Cov. [ (), 20)) =4 G o (o) + Y

Here v denotes the distance |%—y|, whereas m and ¢(v) are the mean value
and the cov.f., resp., of the process z(x). Moreover, f(v) is the frequency func-
tion of the distance between random points in Q. The cov.f. for the process
e¢(x) is obtained by considering the conditional probability of the event e(y) =
=1, given e(x) = I.

Next, consider the estimation of the integral

Z© =Q/ 2 (%) dx
by means of the sum
Z=2% )

extended over all sample points in Q. For the sake of simplicity, it is here
supposed that there is on the average one sample point per unit of area, thus
A, sample points in Qp. The number of sample points in Q is not fixed, it is a
random variable depending on the size and shape of Q and the sampling plan
used.

It is first noted that E [Z - Z(Q)] = o, i.e. the estimate is unbiased. For the
variance

E{[Z-ZQ)1}

the formulas of the preceding sections can be applied. After multiplication by
A,, the cov.f. of z, given in (), can be inserted in the previous formulas.
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It would carry too far to discuss all sample plans. We shall therefore mainly
deal with the notationally simplest cases, i.e. the unrestricted and the stratified
random sampling.

For the first type of samplmg we find

E{[Z-Z(Q)}=ADm*+¢(0)] (5.5.2)

If the stratum is denoted by g, as in 5.2, the variance in the case of stratified
sampling is (cf. 5.2.1 and 5.2.2)

Am?+¢(0)] Af[m2+c )]‘igz)b(v;q)dv (3.5.3)

Assuming Q to be compact in shape and large in comparison with the stratum,
g, we may use the expansion (2.5.19) for f(v). Thus the following approximation
is obtained where P denotes the perimeter of Q

oo

E{[Z-Z(Q% ~ A{e(0)~ /o) bliq)dv+

o)

20 Tt o(o)]o blo; @) o) (5.5.4)

The conclusion regarding the influence of the shape of Q on the variance is
obvious. It is also clearly seen that the recommendations concerning the choice
of ¢ must chiefly be the same in the present case as those made in the limiting
case (see 5.2).

The special case m = 1, ¢(v) = o, is equivalent to the estimation of the
area of Q. In unrestricted random sampling the estimate has a Poisson distri-
bution with the mean value 4. In the stratified case the variance is

A[ Aff (v;9) dv:| (5.5.5)

‘When the conditions underlying (4) are valid, we get the approximation
E[(Z - 4)]=mP|n (5.5-6)
where #, is the mean distance between random points in g.

Formula (5) constitutes a rather simple expression for the way in which the
sample points are distributed over Q, in stratified sampling. It is of some interest
to compare this formula with the corresponding one in systematic sampling.
When the sample points are given by the general formula (5.4.1) but with 1
sample point per unit area (i.e. 4b sin ¢ = 1) the variance in the estimate of

{ Z Z P } (5:5-7)

p=-00 ¥v=-co
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where
92 =a?u® + 0% + 2 abuy cosp

For y = v = o, f(w) /27w should be replaced by its limit value 1/4, cf. (2.5.19).
Some simple examples of variances computed from (5) and (7) are shown
in table 10. A square stratum is assumed in the case (5), whereas a square
network is chosen in (7). The variance in unrestricted random sampling, too,
is included. It equals the true value of the area to be estimated.
Consider now the estimation of the average

2(Q) =Qf % (x) dx é /e () dx

As estimate of z(Q) the following ratio is used
z=22z (%) [ Xe(x)

with summation over all sample points in Q,.
We consider first the unrestricted random sampling. If the number of sample
points in Q is known, we have the conditional expectation '

(o)

E{Z-z@P}=[c(0) - J c()}(v)dv] [ (5.5-8)

o

The number of sample points, 7, has a Poisson distribution. In the truncated
distribution where # = o0 is excluded, the expectation of 1/# can be approximat-
ed as

I

A-1-14 (5-5.9)

The expected value of # is 4, since we have assumed on the average I sample
point per unit area. The exact value of E(x/n) in the truncated distribution

Table 10. Estimating the area of a randomly located figure. Variances for three types
of sampling. (Sampling ratio: I sample point per unit area.)

Variance in
. Stratified .
Figure Unrestricted random sample Systematic
. sample
random sample 1 point per Sauare network
square of area 1 q °
Square with side I/\/z.T ........... 0.500 0.354 0.250
Square with side I.............. 1.000 0.557 0.045
Square with side \/9 ............. 6.000 1.518 1.058
Rectangle \/E XENG o 1.000 0.695 0.564
Regular hexagon with side 1..... 2.598 1.957 0.619
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is found from tables of the exponential integral, E¢(x), since (Jahnke & Emde
1945, cf. Grab & Savage 1954)

. 00

z « -
) n‘T=Ei(x) -C —lng

i=1

Before treating the remaining designs we must introduce some restrictions.
In spite of this the results will be approximations only. This is, of course, the
common situation in dealing with ratio estimates. Assume that the sums

22y (%) 2e(x,)

show deviations from their expectations which are small in comparison with
the expectations. The expected value of the first sum is 4. Let the expectation
of the second sum be denoted ‘B. According to the assumptions made

- ‘ B
F-2(Q) ~ (0/4) | Zra () - B- B [Se(n) - 1)
We introduce a new process by the equation
B
() =2 (x) - — e() (5.5.10)

Clearly u(x) is stationary and isotropic. The following approximate expression
is obtained for the variance of z

E{Z-z(Q))} ~ (1/4%) E({Zu()-E[Zu(x)]}?)

We can now use for example (3) and (4) if # and c(v) are replaced by the
corresponding characteristics of #(x).
A similar device can be used in the more general case of estimating a ratio

S @)z | [ 2 (x)dx
0 0

where z; and z, are arbitrary, see Matérn (1947, pp. 79 ff.).

5.6. Empirical examples

This section will comprise two empirical examples, the first of which refers
to the “small sample” case.

This example concerns four subregions cut out from a map on the scale
1:200,000 (Stockholms och Uppsala lin samt Stockholms Overstathéllarskap,
Generalstabens litografiska anstalt, 1947). Administrative lines of demarcation
form the boundaries of the regions. They are shown in fig. 12.
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Areal unit

}4i(m

—_—
4 kmy

Fig. 12.Four regions in Uppland.
.(Black asreas are forests)

Sampling experiments were performed with a sampling ratio giving on the
average one point per unit area. The unit area was 4 sq. cm on the map (16
sq. km in the field). In such units the areas of the four regions are

I. 13.8 II: 15.6 III:20.3 IV:11.6

The results of the experiments and information about the sampling designs
used are found in table 11. The values in the table are empirical variances,
except those in the last column (G: unrestricted random sampling), which are
theoretical expressions, belonging to the Poisson distribution or calculated from
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Table 11. Sampling from a map of the province of Uppland. Variances estimated
from experiments (A—F) or computed theoretically (G).

. Sampling scheme
Estimate of
A B (& D E F G
Total area
Region I..........c.coooian.. 1.32 | 1.19 | 2.03 | 2.29 [ 3.08 | 1.86 | 13.8
5 1.59 | 1.19 | 7.17 | 2.99 | 5.14 | 3.00 | 15.6
IIT.. i 1.54 | 1.28 | 3.22 | 2.46 | 5.09 | 2.28 | 20.3
IV o075 | 1.00 | 1.58 | 2.79 | 2.21 | 1.94 | I1.6
Average........ooiiiiiiiiiiinn 1.30 | 1.16 | 3.50 | 2.63 | 3.88 | 2.27 | 15.3
Total forest area
Region I......... e 3.3 3.2 3.0 3.4 4.9 6.0 7.4
II.....ooeee erseseeses 3.6 2.2 5.1 4.8 8.1 4.4 | 10.3
III........... SN 2.3 2.1 4.5 3.6 | 3.1 3.3 5.8
IV 1.9 2.9 4.0 4.5 4.3 2.0 6.3
Average........coiiiiiiiiann., 2.8 2.6 4.1 4.1 5.1 3.9 7.5
Total water area
Region I............. e 0.3 0.5 0.2 0.2 0.2 0.2 0.4
8 0.9 I.I I.I 0.5 0.8 0.8 I.0
8 8 1.9 1.7 2.7 3.8 3.0 2.0 2.5
IV, i . 1.5 0.8 2.4 1.7 2.1 0.8 2.7
Average......... ..o, 1.2 1.0 1.6 1.6 1.5 1.0 1.6
Forest area percentage
Region I..........coocivuan.. 113 128 199 119 162 273 195
5 116 8o 110 78 169 129 154
IIT. oo 61 54 86 81 73 93 106
IV 133 172 186 250 346 152 236
Average.........oiiiiiiiiiin... 106 108 145 132 188 161 173
‘Water area percentage
Region I...................... 17 27 12 10 10 11 22
IL..oi i 35 43 35 22 38 30 40
IIT. .o 42 43 63 72 65 45 56
IV 89 67 171 118 132 62 172
Average.........coiiiiiiiiiiin, 46 45 70 56 61 37 72

A—C: Systematic samples, A) Triangular, B) Square, C) Rectangular 2 x 1/,

D—E: Stratified samples, D) 1 point per unit square, E) Four points per 2 x 2square
F: Latin square design, 4 x 4 square plots of size 1/, x 1/,

G: Unrestricted random sample

(5.5.8) and (5.5.9). For each of the remaining six sample plans, 25 independent
experiments were carried out in every region. A basic frame of strata or of
systematically located sample points was then oriented at random over the
region, as described in § 5.5. The following observations were made in each
experiment: the total number of sample points, the number of points in areas
marked as forest land, and the number of points in areas marked as water.
From these numbers also two percentages were computed: number of points
in forest area and number of points in water area in per cent of the total
number of points in the region.
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It should be observed that the variances are based on 24 degrees of freedom
only, for every particular region. Still, it might be of certain interest to compare
for example the approximation (5.5.6) with the empirical variances found in
the stratified sampling for comparatively small strata (scheme D with stratum
= unit square). The constant ,'in (5.5.6) equals 0.5214 (table 5). The per-
imeter values of the four regions were approximately

I. 18.6 II: 206 IIl:22.2 1IV:15.3

Hence the following approximate variances for the estimated areas are obtained
from (5.5.6)

3.0 3.4 37 25 (average 3.2)
whereas the corresponding empirical values of table 11 are
23 3.0 25 28 (average 2.6)

The agreement is fairly good. It is easily seen that (5.5.6) always must overesti-
mate the variance. ’

In the second example a square grid of 50 X 50 points was located on the
map (scale I:50,000) which furnished three of the correlograms of table 2
(§ 4.2). The distance between successive points in the grid was in either direc-
tion I cm (0.5 km). For each of the 2,500 points it was noted whether situated
on land or on water. Six different designs for selecting 25 points from the
population of 2,500 points were applied. The designs are listed in table 12. In
this case no experimental sampling was carried out. Each variance in the
table expresses the variation among all possible outcomes of the particular
sampling plan. It should be noted that no border effects are operating in this
case. To take the third design as an example, the population of 50 X 50 points
was divided into five exactly equal strata of 10 X 50 points.

Table 12. Sampling from the map ¢‘Stockholm SO’ (1:50,000). Seven designs with
the same sampling intensity. Variances in per cent of that in unrestricted random

sampling.
Degrees of
Sampling scheme fre:s(il:grrr:afcgro’;he Variance
variance
Unrestricted random sampling. ................. 2,499 100
Stratified random sampling:
I point PEer I0 X IO SQUATE. . . vvvvernirnnnnnn. 2,475 68.6
5 points per each 10 x 50 rectangle............. 2,495 85.2
5 points per each 50 x 10 rectangle............. 2,495 92.2
Latin square design, 5 points per plot. 5 plots se-
lected from 25 plots of 10 x 10 points .......... 2,491 77.4
Systematic sampling. Square pattern (10 x 10)..... 99 64.9
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The values in table 12 are variances expressed in per cent of the variance in
unrestricted random sampling.

It can be shown that the variances in table 1z are in good agreement with
those expected from the correlograms of table z. This however should be almost
self-evident, since the basic data are identical for table 12 and the correlograms.

5.7. Average travel distance between sample points

This section will present some results concerning the length of a route
covering all sample points of one or the other sample scheme applied to a plane
region. Only the limiting case when border effects can be neglected will be
discussed. Further, by distance is meant air-line distance, as already mentioned
in § 5.1,

The treatment of the systematic sampling plans presents no problems. It
seems to be immediately clear in each case which path is the shortest one, see
further the cases entered in table 13.

However, a random element present in the sampling introduces obstacles
which appear almost unsurmountable, at least when the exact expectation of
the shortest route is wanted. However, it would seldom be economically
feasible to determine the permutation of the sample points that gives the
exact minimum length. It would probably be of greater value to develop an
easily applicable method of constructing a path which is (for practical purposes)
sufficiently close to the minimum length.

This course will be followed here. Hence, a rigid rule of determining a path
connecting the sample points will be assumed for each particular design, and
the corresponding average length will be computed. However, it will usually
be possible to shorten the path by occasional deviations from the rule, devia-
tions which are easily conceived once the sample points are selected. Therefore
the values presented here for the random schemes will generally be higher than
those which are attained in practice.

‘We consider first the stratified sample with rectangular strata and one sample
point per stratum. We suppose that the strata are arranged in rows, and that
the strata forming a row have contact along their long sides, which are assumed
to be parallel to the y-axis. The sample points in every row can be arranged in a
sequence according to ascending x-coordinates. The path chosen here covers
the points of every second row in the above order, and the points of the
intermediate rows in the opposite order.

Let the sides of the rectangle have lengths 4 and b with a > b. The average
distance from one sample point to the next one is

2M(a, 25) - M (a, b) (5.7.1)
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where M(a, b) is the expected distance between two points chosen at random
and independently in a rectangle with sides of the lengths a and 5. The expres-
sion (1) is derived by elementary calculus of probability. For easy reference we
give here the function M (a, b) (see Ghosh 1951)

M (a, b) = \/ab [m (a/b) + m (ba)] (5.7.2)

wherein

m{t) =—— 285+ (3 —~2 ) VI + &+ 52 Arsinh (1/4)]
30Vt

Values computed from (2) have been given in table 5 of § 5.2. The formula was

also employed at the calculation of table 8 in § 5.3.

Similar serpentine routes have been presupposed for all random designs
entered in table 13.

Only one case of stratified sampling with more than one point per stratum
is considered here, viz. the selection of two points from each square stratum of
size \/z X \/2. Here, too, the strata are supposed to be arranged in rows, and
the points in a row are covered in order of ascending or descending x-coordi-
nates. This means that the average entered in table 13 is computed by the
formula

EVE[M(I, 0+ [ eWarf \/x2+y2h(y)dy:|

with
4x(1—%)+2x33 o<x<I
g(x)={2(2_x)3/3 I<x<2
h(y)= 2(1-y)

Here g and % are frequency functions with the following meaning. Two unit
squares have a common side along the y-axis. In each one two random points
are selected. The point in the 7th square that is closest to the y-axis is denoted
(%i, ¥i). Then g and 4 are the frequency functions of the distances | #; — %, and
| %1 = ¥5], respectively.

The two latin square designs of table 13 refer to the case of square plots.
It is assumed that the latin squares are arranged in rows, and that the points
in a row are covered as described above. The averages are easily obtained as
linear expressions in values of M(a, b).

We now pass to the unrestricted random sampling. Thls seems to be the
most intriguing case of those considered here. We assume that there is on the
average one sample point per unit area. Since the border effects are neglected,
the system of sampling points can be regarded as a realization. of a plane
Poisson process with intensity 1.
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Table 13. Average length per sample point of a path passing through all sample
points in a plane region. Sample ratio: I point per unit area. Limits when the area
of the region tends to infinity.

. Average
Sampling scheme length
Systematic
Triangular network. . ... ..o 1.0746
Square NetWOIK. .o vvvre ittt i i i e e 1.0000
Rectangular network Yz x \/1_/2 ................................. 0.7071
Rectangular network 2 x%/y. . ovi ittt i 0.5000
Stratified, 1 point per stratum
Stratum square I XTI (=I).....ccuiuinininiiiiiiiiiiiininan, 1.0881
Stratum rectangle V2 x V1, (@ =2) .. .eurrrenenrenniniaan 0.9057
Stratum rectangle \/3 x \,/T/-3 [ 0.8792
Stratum rectangle 2 x3p (0 =4).. o vt i i 0.8958
Stratified, 2 points per stratum
Stratum square Vz x \/; ...................................... 0.9261
Latin square, square plots -
2 points in a 2 x 2 square (Plot VI x VD) e e v evvneiiieinneinnnns 0.9741
4 points in a 4 x 4 square (Plot 1/ x1fs) v vvvvni it 1.0192
Unrestricted random. ... . covit ittt ettt 0.9212

Before proceeding to the construction of the rules for covering all the sample
points, we give some indications about certain investigations related to the
present problem.

Several authors have dealt with different aspects of the shortest path through
a number of points in a plane region. We shall here only be concerned with the
conclusion which can be drawn for the present problem from the published
results. We denote the average length of a segment of the shortest path (i.e. a
straight line joining two sample points) by L. From Few’s investigation (1955)
can be concluded that L <\/z for any location of the sample points, as soon as
the overall sampling intensity is 1. According to a conjecture by Verblunsky
(1951) the upper bound is 1.073, i.e. equal to the distance between neighbouring
points in a hexagonal lattice. For the expected value of L in simple random
sampling the following inequality is found from Marks (1948) and M. N. Ghosh

(1949)
0.50<E(L)<1.27 (5.7.3)
Ghosh, who established the upper bound, partly based his result on artificial

sampling. This bound is outside the range of possible L-values if Verblunsky’s
conjecture is correct.
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Now it is possible by simple means to replace (3) with a somewhat sharpened
inequality, viz.
0.625 < E (L) <0.922 (5.7.4)

The lower bound is immediately obtained by observing that the total length
of the two sections of the shortest path through one particular sample point
cannot be less than the sum of the distances from this point to the nearest
and the second nearest among the neighbouring sample points. According to
(3.4.6) this sum is 0.5 4 0.75 = 2-0.625.

The upper bound corresponds to a serpentine road of the same kind as the
one dealt with in the earlier cases of random sampling. It is found in the follow-
ing way. The plane is divided into strips that have a width of w and are parallel
to the x-axis. Let

R € T VN C 7Y 7Y P C 7P 2) P
be the sample points in one such strip ordered such that
L <X <Xy <A < .

The average distance between two successive points in this sequence is seen to
be

2 [ exp (- xw)dx [ (1 - y|w) Va? + y2dy (5.7.5)

o

By numerical integration it can be shown that the minimum of (5) is 0.9212.
Tt is attained for w close to \/3. In this way the right hand side of (4) is obtained,
as well as a rule for a path through the random points.

Judging from sampling experiments, carried out by the author, it seems
probable that E(L) is close to o.70. Therefore, it should usually be easy by
occasional deviations from the rule to get an average L not insignificantly
lower than 0.9212. The value 0.9212 has been entered in table 13, however.

Values for other sampling intensities than 1 can easily be obtained from
table 13. If the ratio is changed to I point per area 4, the averages of the table

should be multiplied by \/4.

5.8. Comparisons between some cases of stratified and systematic sampling

The sections 5.1—5.6 give some information about the ranking of different
point sampling designs. We shall now give some indications about the quanti-
tative measurement of the merits of the schemes. The discussion will be
confined to the systematic and stratified designs and to the case of an isotropic
exponential correlation. It will also be supposed that the region surveyed extends
to infinity in all directions.
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We shall express the comparative merits of two sampling schemes by aid of
the number of sample points necessary in each scheme to obtain a prescribed
precision. The ratio between these two numbers is a relative efficiency (cf.
Kendall & Buckland 1957). As a complement, the corresponding travel
distances will also be evaluated.

Let us first consider the systematic design. With the cov.f. exp(— Av) and
the I X I square lattice of sample points, the variance per point is found from
(5.4-3) or (5.4.4). Write V(%) for this variance. Some values of V; can be ob-
tained from table g: V;(0.I) = 0.0229, V;(0.5) = 0.114, etc.

In the general case of an a X a square grid the variance per unit area is

a2V, (ah)

The meaning of the term variance per unit area should be clear from the follow-
ing relation: If ¢? is the variance per unit area with a certain sampling plan,
then the estimate of the mean of a region of area 4 has the variance ¢%/4, if
border effects still are negligible. We now introduce the function

pa(0) =22V, () (5.8.1)
Thus, when the cov.f. is exp( - Av) and an @ X a square grid is used the variance
per unit area is

s (ah) |1

Further let V,(h) be the variance per sample point in a stratified random
sampling with the stratum equal to the 1 X I square. In the general case of %
sample points per stratum of size 4 X a the variance per unit area is (cf. 5.2.3)

a?V,(ah)[k

It is convenient to use a function y,, corresponding to (1) and defined by the
equation

Yo (%) =22V, (x) (5.8.2)
The variance per unit area in the preceding case can now be written

Yo (ak) Wk

The scanty information about the functions (1) and (2) which can be found
from table 9 has been supplemented by the computation of some additional
values. Thus the figures of table 14 have been obtained. For the numerical
methods used, see § 5.2 and § 5.4.

Table 14 can now be used as shown in the following example. Suppose that
the cov.f. is exp( — #v) and that a variance of I per unit area is prescribed. This
precision can be obtained by an unrestricted random sample with intensity 1.
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Table 14. Values of (%) and y,(%).

2 P1(h) AQ]
o.I 0.0002288 0.0005051
0.2 0.001829 0.003917
0.3 0.006166 0.01282
0.4 0.0I1459 0.02948
0.5 0.02849 0.05590
0.6 0.04904 0.09381
0.7 0.07767 0.1447%7
0.8 0.1156 0.2100
0.9 0.1640 0.2908
I.0 0.2240 0.3881
1.25 0.4325 0.7093
1.5 0.7372 1.149
1.75 1.152 1.716
2 1.689 2.414
2.5 3.167 4.215
3 5.223 6.565
4 II.I5 12.9I
6 30.10 32.04
8 57.80 59.53

97

If a systematic sample with an @ X a square grid is used, 2 must be determined
from the equation
py (ah)[h? =1

If e.g. 5 =o0.25, graphical interpolation gives the solution a = 2.61; i.e. one
sample point per 6.8 units of area, or 0.15 points per unit area. In a stratified
sample with £ points in each stratum of size A x A, A shall be chosen so that

va (AR)[H%h =1

With % = 0.25, & = I, we find graphically the approximate solution 4 = 2.08,
or 1 point per 4.3 units of area; 0.23 points per unit area. Thus the efficiency of
the stratified sampling is 0.8 (= 0.15/0.23) when compared with the systematic
design. It should be noted in this case that the relative efficiency depends not
only on *he structure of the stochastic process but also on the precision required.

Computations of the required number of sample points have been carried out
for four values of 4: 1/16, 1/4, I, and 4. Some other sampling schemes have been
included in addition to those mentioned. However, in these cases, very few
values of the functions corresponding to y, and y, have been available. Approxi-
mate.additional values have been obtained by graphical interpolation where
the curves of p; and g, have been useful in governing the course of the remaining
graphs.

The results are shown in table 15. For each value of % and each sample plan,
the table gives the number of points (#) per unit area, which is needed. to

7—Medd. fran Statens skogsforskningsinstitut. Band 49:5.
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Table 15. Number of points (#) and travel distance (f) per unit area in different
sample schemes. Covariance function exp(-#42).

All schemes in the same column give estimates with equal precision. The table refers

to the limiting case when the region surveyed extends to infinity in all directions.

For a rectangular grid and a rectangular stratum the ratio between the lengths of
the sides of the rectangle is denoted «.

Sampling scheme h—>o | h=1[16| h=1/4 h=1 h=4 h—o0
Systematic

Square grid, & =1 .| # 0.58 0.06 0.15 0.35 0.75 1.00

t 0.76 0.24 0.38 0.60 0.86 1.00
Rectangular grid
O =4ereenennnnnns " 1.06 0.11 0.27 0.60 0.90 1.00

14 0.52 0.16 0.26 0.39 0.48 0.50
C=I6....c0uurnn. n 3.85 0.39 1.00 2.10 2.30 1.00

t 0.49 0.16 0.25 0.36 0.38 0.25
=64 ... n 15.2 1.6 3.8 7.7 8.3 1.00

¢ 0.49 0.16 0.24 0.35 0.36 0.125

Stratified random, 1
point per stratum

Square stratum . .. » 1.00 o0.10 0.23 0.49 .| 0.83 1.00
t 1.09 0.34 0.52 0.76 0.99 1.09
Rectangular stratum
C=2.0einininnann " 1.06 0.10 0.24 0.51I 0.83 1.00
t 0.93 0.29 0.45 0.65 0.83 0.91
O =f4eveunenencnns n 1.23 0.12 0.27 0.55 0.85 1.00

t 0.99 0.31 0.47 0.67 0.83 0.90

Stratified random, 2
points per stratum

Square stratum. . .| » 1.26 0.12 0.28 0.58 0.90 1.00
t 1.04 0.32 0.49 0.70 0.88 0.93

Unrestricted random | » o 1.00 1.00 1.00 1.00 1.00
13 o5} 0.92 0.92 0.92 0.92 0.92

obtain the same precision as that in unrestricted random sampling with one
point per unit area. Further, the table gives the length (f) per unit area of the
corresponding path through the sample points. Owing to the crude method of
computation, the values of table 15 must be regarded as approximate.

In addition to the four A-values mentioned, calculations have also been
carried out for the two limiting cases: #—o0 and #—>oco. When % tends to infinity,
the correlation tends.to be inappreciable for any finite distance and all sample
schemes become equivalent with respect to the precision. When % approaches
0,.all plans involving stratification and all systematic schemes tend to become
infinitely efficient in relation to the simple random sampling. In this case the'
values of # have been calculated from series developments in powers of % of
the icorfesponding variances. Taking the two previously treated cases as exam-
ples, we find from (5.4.4) and (5.4.5) "} - ' '
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P () =32 X (4003, =0228723+...  (5.8.3)

pu=1I ¥=0
and from (5.2.6)
Py (%) =0.52T4 %% +. .. (5.8.4)

The constants in (3) and the corresponding expressions for other systematic
schemes have been obtained by extrapolating the computed values of ¢,/ to
h = o, cf. text after (5.4.6). The constants in (4) and analogous expressions in
other cases are found from table 5 of § 5.2. In the present case (4 —o0) the values
of » have been standardized by taking # = 1 for the stratified random sample
with one point per each 1 X I square stratum. The corresponding systematic
sample with an a X a grid is therefore determined by aid of (3) and (4) as
follows
h®0.5214 a®h®0.2287
A2 - 2

or a=1V0.5214/0.2287 =1.31. Hence

n=a-%=0.58

points are required in the systematic sampling. Analogous computations have
given the remaining values of .

It may be noticed that the value 0.58 just mentioned represents the lowest
ratio between the efficiencies of the two sampling designs in question (i.e.
stratified sampling with one point per square stratum and systematic sampling
of points in a square grid) that can be obtained with a cor.f. of the form exp(- 4v).
Similarly, the lower bound of the ratio of the efficiencies of the stratified
samples with two points per square and one point per square respectively is.
1/1.23 = 273 = 0.79.

The very few examples of table 15 cannot give any definite guidance as to
which scheme gives the required precision with a minimum of travelling. It
may be surmised, however, that some rectangular lattice should be near the:
optimum. If the correlation is appreciable only at very short distances (short:
in relation to the distance between sample points), then a rectangle with high
value of « should be chosen, as illustrated by the columns pertaining to large
values of 4. The conclusion is the same if the error of measurement or a similar
chaotic component is responsible for a considerable part of the variation. In
the opposite case (low values of %) it seems not to matter very much which.
value of « is chosen as long as « is not too near 1. According to the indications.
obtained by some rough calculations it may be prescribed that « should never
be smaller than 3. The problem will be discussed from a slightly different:
point of view in § 6.11.
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As to the random designs, it is seen that the scheme with square stratum and
one sample point per stratum always gives longer travel distances than the
.other three stratified designs. Methods of multi-stage sampling, cluster sam-

pling, etc. may provide considerable reduction of the travel distancein the cases
Tepresented by high %-values. It seems hardly possible, however, to construct
:a random design which would be superior to the best systematic scheme of
the rectangular type under the present assumption of exponential correlation.

Chapter 6. Various problems in sample surveys

6.1. Introduction

The sampling schemes which can be considered when information about
plane or spatial processes is soiught are not'confined to the point sampling
methods dealt with in the preceding chapter. In fact, a very large variety of
plans involving sampling units of 0~—3 dimensions can be considered, and
-examples of their application can easily be found.

It will not be attempted to examine these other schemes in the detailed
‘manner of Ch. 5. Instead, a number of miscellaneous questions that areassociat-
ed with different sampling methods will be discussed; each topic will therefore
.get a very brief treatment. Most of the questions emanate from problems-
encountered in forest surveys. It seems appropriate to review in this introduc
tory section the background and interrelationship of the questions.

The sampling of points in one dimension has been studied by several au-
thors, see references in § 5.1. The so-called line-surveys in two dimensions can
also be treated as one-dimensional samples of points. This is achieved by consid-
ering the projection of the plane on a line perpendicular to the direction of
the survey lines. The sampling of a three-dimensional manifold (e.g. microscopic
sstudies of tissues) by means of parallel plane sections can also be reduced to a
-one-dimensional problem in an analogous way. References on the line-survey
are found in Matérn (1947). An example of the three-dimensional problem is
found in Block (1948). :

A brief study of the point sampling in R, (§6.2) shows that the relative merit
of _the‘systematic scheme is somewhat less conspicuous than in R,.

- If systematic sampling is applied to a time-series, the possibility of periodic-
Vari‘gition creates special problems. Such problems must be considered for
example if the random selection of time points in the “ratio delay’” method
of time studies is to be replaced by a systematic selection. (Cf. Kilander I§57, ‘
P- 22. The “ratio delay” or “snap reading” method consists in recording at
random instants the state of an activity, thus providing estimates of the average.
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percentage of time the activity is in the different states, see Tippet 1934 and
Barnes 1957.) Some illustrations of this question are also given in § 6.2.

It is usually possible to estimate the sampling error in random sampling
from the sampling results themselves. However, there are cases which present
difficulties. The stratified sampling with selection of only one unit per stratum
is one such case. If this scheme is used when samples are taken from a stationary
time series or a stationary spatial series, it will be possible, however, to find
methods of estimating the sampling error that impose no seriously limitating
assumptions on the phenomenon under survey. This is discussed in the one-
dimension:al case (§ 6.3). The methods can immediately be extended to higher
dimensions.

The sampling scheme of § 6.3 is used in § 6.4 to illustrate a situation where it
is important to have accurate estimators of the sampling error. This occurs
in multi-phase sampling when regression methods are used to estimate the
population means. To take an example from forestry, we may want to combine
a large-scale sample of eye-estimates or estimates from aerial maps with a small
sub-sample of measurements in the field (see Matérn 1947, Ch. VII). In this
case the method of estimating the error affects the primary estimates of the
population means directly.

It is particularly in conjunction with systematic sampling that the estima-
tion of the sampling error presents difficulties. Valid estimates of the sampling
error can be obtained from the sample itself if some special a priori assumptions
on the structure of the population are made. In other cases recourse can be
had to supplementary data for the specific purpose of obtaining information
about the sampling errors (cf. Yates 1948). However, a large number of methods
of estimating the sampling error from the data of a systematic survey have
been suggested. They are usually based on quadratic forms in the observations.
We shall compare different such forms using the same approach as in Ch. 5.
Thus we shall study the average performance of the formulas in an ensemble
of realizations of a stationary process with decreasing correlation function.

Section 6.5 treats the systematic sample in R, with the before-mentioned
restriction to the case of decreasing correlation. Nevertheless, it seems im-
possible to find any general method of obtaining unbiased or even nearly
unbiased estimates of the variance of the sampling error. The methods seem to
have a general tendency to overestimate the variance.

However, very accurate a posteriori estimates of the sampling error are not
always required. The need for information about the precision is often more
urgent in the planning stage. We may therefore want to utilize the data from
a sample to obtain information about the precision that may be expected in
future surveys of similar populations. Data from a systematic sample can
usually furnish estimates of the precision of systematic samples of lower
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intensity than that of the original survey. This is illustrated in the papers by
Langseter (1932) and Ostlind (1932) referred to in § 5.1. However, the deter-
mination of the “degrees of freedom” among the sub-sample means presents
some difficulties which will also be discussed in § 6.5.

The following section (6.6) deals with the case of a systematic sample in R,.
The section gives some examples supplementary to those found in Matérn
(1947). If the correlation is isotropic and decreasing with distance, there are
(except in the case of some special designs) methods of estimating the precision
which do not give any serious bias. Some of the methods are more “robust”
than others in the sense that no serious underestimation of the sampling error
occurs when the methods are applied to cases that show some deviations from
isotropy.

Like the discussion in the author’s earlier paper on the problem of estimating
the error, the treatment so far (§§ 6.3—6.6) is concerned with the limiting case
when the border effects are negligible. Methods to handle the border effects
are described in § 6.7.

The following three sections deal with problems associated with the sam-
pling schemes used in the third national forest survey of Sweden. Some features
of this design will now be reviewed. For details the reader is referred to Hag-
berg (1957).

The primary sampling units, so-called #racts, consist of squares with a side-
length of 1—=2 km. A systematic sample of tracts is taken annually. Observa-
tions on land-use classes, forest site-classes, etc. are made along the periphery
of the tract. Circular plots of radius 6.64 meters constitute secondary sampling
units. There are usually four sample plots of this kind on every side of the
square. All trees on the sample plots are calipered. A certain number of sample
trees are measured with respect to various features. Additional sample plots,
so-called stump plots, are located 100 meters apart on the periphery of the
tract. In these plots stumps after recent fellings are recorded. The scheme is of a
rotational type, and provides for a re-survey of the same tracts at ten-year
intervals. Thus the tracts surveyed in ten years constitute ten different samples.
Jointly they form a systematic sample with a sampling intensity ten times
higher than that of one year’s tracts.

The size of a survey tract is different for various regions of the country. It is
chosen so as to enable the completion of one tract per day. The reason for
making the tract a closed curve is that the crew then will return to its starting
point, usually an intersection with the road system. A problem which arises
in this context is the shape that a closed figure should have to give efficient
estimates. Some comments on this question are given in § 6.8.

Two different schemes for locating the sample plots along the periphery of
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a square are compared in § 6.9. The case of sample plots along the sides of an.
octagonal tract is included in the comparisons.

As already mentioned, the size of a tract in the Swedish survey should
correspond to one day’s work. Yet, it is of interest to study the influence of
a slight change of tract size on the precision. This problem is treated in § 6.10.

In 6.10, as in most of the other sections, the stationary process with expo-
nential correlation is chosen for numerical illustrations. The computation
technique used in 6.10 can also be applied to illustrate the difference in effi-
ciency between sample plot surveys and strip surveys. Other illustrations of
this problem are afforded by the calculations of § 5.4.

If the survey crew proceeds along straight lines between the sample plots,
little additional time is required to record land use classes, site classes, etc.
along these lines. However, some additional costs are incurred in the field
work and in the processing of the data. The extra observations are warranted
if corresponding estimates are distinctly better than those which can be based
solely on the plots. A comparison between plots and lines is found in § 6.11.

The important question of choosing the size and shape of the sample plot
in a forest survey will not be discussed, since investigations of this question
are initiated at the Forest Research Institute. Some comments, however, shall
be made in § 6.12 on the empirically deduced “Fairfield Smith’s law’’ about
the dependence of the variance on the size of a plot. It may be remarked in
this context that the ranking of different geometric figures according to their
performance as sample plots must be exactly opposite to the ranking according
to their properties as strata in sampling of points (§ 5.2).

6.2. Point sampling in R,
The problem discussed in the present section concerns the estimation of a

mean value
n

2=(1/n) [ z(x)dx (6.2.1)
]

by means of the arithmetic mean z of a number of observations made in sample
points (%, %,, . .) chosen in the interval.

The case when z(x) is a sample function of a real stationary process with
exponential correlation function has been treated by several authors, cf.
Cochran (1946) and Yates (1948). For convenience the relevant expressions
for the variance will be given here. If # equidistant sample points are selected
(%, at random between o and 1, #; = %; + ¢ — I), the variance in the general
stationary case is found from '

nE {[z - z]%} =_Z;[I =17] /7] ) —_{ (X —|x|/n] c(x)dx (6.2.2)
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In the limit when #—o0, (2) can be replaced by

Z’c (1 - fc (6.2.3)

When c(x) equals exp( - |#x|), we obtain the special case
coth (hj2) — 2/h (6.2.4)

In a stratified sampling where each stratum is an interval of length a, the
variance per sample point is

—(1/a) ;c (x)[x—|x]|/a]dx (6.2.5)

in the general case, and
I-2/ah+2 (1- e~ [ah? (6.2.6)

in the exponential case. It is here supposed that # is a multiple of a.

We can now make a comparison between different sample schemes in the
manner of § 5.8. Table 16 shows the number of sample points per unit length
needed under different conditions to obtain a required precision. Besides the
unrestricted random sampling the sampling plans included are the systematic
scheme, and the stratified plans with one and two sample points per stratum,
respectively. With respect to the systematic scheme, the table refers to the
limiting case when the variance is given by (4). The table shows marked
differences in efficiency between the three sample methods for small values of
k. In these cases it is further seen that the difference in efficiency between
the plan with 2 points per stratum and the one with 1 point per stratum ap-
proximately equals the difference between the latter scheme and the systematic
design. This agrees with empirical evidence (see Yates 1948, p. 372). When the
corresponding comparisons were made in R, (table 15), it was found that the

Table 16. Number of points per unit length in three different sampling schemes.
Covariance function exp(-#4v).
The schemes in the same column give estimates with equal precision. The table refers
to the limiting case where the number of sample points tends to infinity.

Sampling scheme h—>o h=1]16 | h=1/4 h=1 h=4 h—>o
Systematic......... 0.707 0.1I02 0.202 0.388 0.A70 1.000
Stratified random

I point per stratum 1.000 0.137 0.258 0.457 0.708 1.000
2 points per stratum| 1.414 0.189 0.347. 0.582 0.817 1.000

Unrestricted random o0 1.000 1.000 I.000 1.000 1.000
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gain with the square grid type of systematic sampling over stratified random
sampling with one point per stratum is greater than the gain of the latter
plan over the stratified sampling with two points per stratum.

The exponential correlation is a special case of formula (3.5.18) which belongs
to a model of the development of a system alternating between two states.
The model also contains cases in which the cov.f. is non-monotonic. In degener-
ate cases it may even be strictly periodic. The general expression is a sum of
damped sine waves, the damping function of which is exponential. Thus, the
terms are of the type

exp (—av) cos (fv)

The corresponding component in the variance per point in systematic sampling
with sampling interval a is seen to be f,(ac, aff), where

sinh o 20
cosha—cosf a2+ g2

f(e, B)=

For o« = %, 8 = o, we obtain (4) asa épecial case. The variance within a stratum
of length a is fy(ax, af), where

cos@_ 2
B

sin 6 = (% - o) | (8% + o)

fola, f)=1 - [sin § —exp (- o) sin (0 + S)]

wherein

Putting &« = %, f =0, we get the special case (6). By these formulas it is
possible to compute the precision in sampling a realization of any process
with cov.f. of the type (3.5.18).

Variances have been computed for the systematic sampling and the stratified
random sampling with one sample point per interval in two special cases, namely
m=mn=2 and m =#» =3 in (3.5.18). With m = #» = 2 the variance in
systematic sampling was found to be between 50.0 and 100.7 per cent of the
variance in stratified sampling with the same sampling intensity. The cov.f.
is in this case

exp (— awv) cos (aw)
With m = n = 3, the cov.f. is
[exp (- 2 aw) + 8 exp ( —aw/2) cos (aw \/3/2)]/36

In this case the variance of the systematic sample ranges from 50.0 to 109.1
per cent of the variance of the stratified sampling of the same sampling in-
tensity.

In these two examples, the systematic sample is less efficient than the strati-
fied sample with one point per stratum for some values of the sampling ratio.
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The efficiency of the systematic sampling attains its lowest value when the
sampling interval is approximately equal to the average duration of a whole
cycle in the process (including one interval in each state), as is also intuitively
clear. The highest efficiency is obtained in the limit when the sampling ratio
approaches infinity. ' |

The examples seem to indicate that a considerable loss of precision by ap-
plying a systematic design appears only when the stochastic process comes
rather close to the case of strict periodicity. : »

6.3. Estimating the sampling error from the data of a stratified sample with
one sampling unit per stratum

Let z(x) be a realization of a real stationary process in R;. As an estimate of
the mean value (6.2.1) we use the arithmetic mean of a sample of » values

%1, 89, -« 5 %n

Here z; is written for z(x;), where x; is supposed to be chosen at random (uni-
form distribution) in the interval ¢ — 1<<x<C¢. All the x;’s are assumed to be
independent.

The variance per sample point is given by (6.2.5) with a = 1. We use here
0,2 to denote the variance per point within a stratum of length a.

A common device used to estimate a variance in the case of one sampling
unit per stratum would here imply that we form the average of a number of
expressions of the type

I
2 (#ivx— 2) (6.3.1)

as an estimate of ¢,2 The expectation of (1) is
0% =20,2- 0,2 (6.3.2)

If the cor.f. is decreasing, ¢”is not only greater than ¢, but also greater than o,.
In the case ¢(v) = exp( - hv) with small %, we have approximately

c.2=ahl3 o?=h (6.3.3)

Thus (2) may give a considerable overestimation.
However, as indicated by Yates (1948, p. 376), it is possible to form a
consistent estimate of ¢,2 from the data. Let #; be defined by

() Xiy1— X >1

-2 otherwise
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and form the ratio
=Xt (2 - 2) | D t; (6.3.4)

It is immediately seen that the expectation of the numerator of (4) is ¢,2 times
that of the denominator. However, the corresponding variances are infinite,
which indicates that (4) requires a very high value of # to become an effective
estimate. It may therefore be advisable to replace #; by a step function. Thus
an approximation such as

(550" +35:° +5,%)/9 (6.3:5)

may be suggested. Here s;2 denotes the average of expressions (1) for which

113 <%ix=%<(+1)[3 (6.3.6)

When ¢(v) = exp(— kv) with a small 4, the expectation of (5) is approximately
158 4/405 =0.390 A

This refers to the conditional expectation of (5) when differences are found
in each one of the three intervals (6).

Similar methods are applicable in spaces of higher dimensions, and in fact
whenever use is made of a continuous variable of stratification (on this concept
see Dalenius 1957, pp. 159 ff.). In other cases, sharp boundaries may exist
between the strata. No information of within stratum variance can then be
obtained from observations on the variation between units in different strata.

It should be emphasized that the use of formulas such as (4) or (5) is not
confined to the case of strict stationarity. The formulas can be derived under
an assumption of “local stationarity” which implies that a stationary model is
sufficiently accurate for each section of the axis that equals the length of two
strata. Similar extensions of the validity of formulas for estimating the sampling
error may also be made in the cases dealt with in the following sections of this
chapter, cf. Matérn (1947, pp. 56—57, 127).

The approach to the problem of error estimation which is basic to this and
other sections of Ch. 6 can be expressed, somewhat vaguely, in the following
way. The expectation of the unknown variance is a certain functional of the
cov.f. ¢(v). The estimate of the variance has an expectation which is also a
functional of ¢(v). In order that the estimate shall be “nearly unbiased” for
a wide class of functions ¢(v), the two functionals must show a close resem-
blance.

6.4. A digression on two-phase sampling
Let z; and z, be realizations of two stationarily correlated processes in R;
(cf. § 2.2). Let the mean values be m, and m, and the autocovariance functions
¢, and ¢, respectively. Denote further the cross covariance function by c¢;,.
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We shall consider the problem of estimating the mean value of z,(x) in the
interval o<Cx<C# by means of a two-phase sample: a large sample of x-values
for which z, is known and a small subsample for which also the values of z,
are determined. To avoid unnecessary complications we shall deal with the
limiting case when z (x) is known for all values of # in the interval. We are
then concerned with the estimation of

2o="1|m) /"22 (x)dx (6.4.1)

by an expression of the form

Zy=Zy +b[(1/n) /”31 (%) dx — 74] (6.4.2)

where z, and 2, are the sample means. The sample is assumed to consist of %
points, chosen by the stratified plan discussed in the preceding section.

The precision of (2) as an estimate of (1) depends on the procedure used for
the computation of b from the sample. We assume that, with this procedure, 5
has the expectation f. As in earlier sections, the expectation is here taken
both over realizations of the process and over different outcomes of the selec-
tion of sample points. Supposing further that # is large, we approximate the
variance of (2) as 62/n, where (see 6.2.5)

0%=¢5(0) —2 fcy, (0) + B2 (0) -
—of [ea (v) =2 feya (v) + By (v)]2 (1 - v) dv (6.4.3)

- Consider then the case when the estimation of the error is based on the variance
between sampling units in two adjacent strata. Correspondingly, b is found
by minimizing an expression such as

sy (5122) ~ 2 (3) = B sz e:) = 5 () (6.4.4)

(cf. 6.3.1). Using (6.3.2) and (6.2.5) we get approximately

C12 (O) - f Cio ('U) f ('U) Jv
p= " (6.4.5)
¢y (0) = f c1(v)] (v) dv

with
v o<v<=

2 -0 I<v<2



49°s SPATIAL VARIATION 109
The corresponding estimate of the variance of (2) is
T|zn (6.4.6)

where T is the minimum of (4). (The divisor may be replaced by 2xn — 2.)

A numerical example shows that this may lead to an estimate %, that has a
lower efficiency than that of the sample mean z,.

Assume that for all ¥ >0

¢1(v) =¢5(v) =¢15(v) =exp (- 0.29)
and that
4(0) =61y (0) = 1 61(0) = 1.6

This corresponds to a situation where 2z, equals z, with a superimposed purely
random error of observation and possibly an additive bias, independent of .
Suppose further that z, is observed in such a large sample that the formulas in
the limiting case are applicable and that #» is sufficiently large to admit the use
of the “large-sample approximations” mentioned above.

In practical survey, this detailed information about the structure of the
two-dimensional process z, z, is not available. We therefore assume that b is
estimated by minimizing (4) and that (6) is used for estimating the error. The
large-sample approximations give

b=0.2293 T|2n=0.1376]n

The corresponding estimate of the variance of Zz, is approximately 0.1785/%.
Using unbiased estimates of the variarce it is found that %, and Zz, have the
approximate variances

0.0692/n and 0.0635/n

respectively. Thus, instead of the apparent decrease in error variance from
0.1785/n to 0.1376/n, the use of the concomitant variate has resulted in a real
loss of information concerning the value of ().

If instead (3) is minimized, § is approximately 0.0956. The corresponding
estimate of (1) has the asymptotic variance

0.0574/[n

Although this numerical example is rather extreme, we may conclude that
it is especially important to have ‘“practically unbiased” estimators of the
sampling errors in multi-phase sampling. This may call for a very careful exami-
nation of the way in which the errors are estimated from the data of the survey,
or for the collection of additional data for the purpose of estimating the error.

It might be added that a detailed description of the use of regression estimates
in connection with systematic sampling has been given in Matérn (1947, Ch. VII).



IIO BERTIL MATERN 49:5
6.5. Estimating the sampling error from the data of a systematic sample in R,

Let

2y, gy o ey 2n (6.5.1)

be observations attached to the sample points ;, %,, . . . , %, where %, is chosen
at random between o and 1, and #;,; = #; + 1. The arithmetic mean of the
n observations, z, is used to estimate the corresponding average of all z’s in
the interval (0<<x<<#), z in (6.2.1). In the following it will be assumed that »
is so large that the variance per sample point can be computed with sufficient
accuracy from (6.2.3).

We shall now consider non-negative quadratic forms in the observations (1)
that are intended to estimate the variance per sample point. Each form of
this kind can be written as an average of a number of squares of the type

(@20 + . . .+ By24)? (6.5.2)

In order to get meaningful estimates the following restrictions must be imposed
on the coefficients of (2)

ay+...+a,=0 (6.5.3)
Pt otal=1 (6.5.4)

While (3) is required to make (2) independent of the mean E[z(x)], (4) is
needed to give unbiased estimates when all 2’s are uncorrelated random varia-
bles. Thus, if # contains a purely random, “‘chaotic”, part (see 4.3), the corre-
sponding component in the variance of the sampling error will automatically
get an unbiased estimate. The introduction of a purely random component
into any numerical example used in this and the following section would
therefore tend to reduce the relative amount of bias in any formula that satis-
fies (4).
When (3) and (4) are satisfied, (z) has the expectation
n—-1I

c(0) +2 2c(f)4; (6-5.5)

I
with

Aj=a10y 15+ Aoy i+ . ..+ Ay_jlp (6.5.6)

The following two special cases of (2) will be considered

Dy = (Az)? / (2:) | (6.5.7)

Yi=[-2+223,-22+22,—...+(-1)* (22— 2341)2/(4%k —2)  (6.5.8)
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Several formulas based on squared differences such as (7) have been suggested
for strip surveys of forests, see references in Langsater (1932). Yates (1953,
p- 231) has proposed the use of (8) with 2 =8 (¢ = 8 is a ““convenient com-
promise’’). He calls the linear expression in 2’s appearing in (8) a “balanced
difference”.

It may first be remarked that D; and Y} should have about the same expec-
tation for a high value of %, since

lim E (Dg) =lim E (Y;) =c¢(0) + 22 (- 1)7¢ () (6.5.9)
k=>00 k—>00 1
It should be noticed that (9) equals
2V,-V, (6.5.10)

where V, designates the variance per sample point in systematic sampling
with a sampling interval of length a. This relation can be derived from the
general expression corresponding to (6.2.3) but it is also clear from the following
simple consideration. Let y, and y, be the means of the observations with
odd and even numbers, respectively, in (1). Then

(n/4) (y1 = 35)% = (n]2) (y1 = 2)2 + (n[2) (y, = 2)* =5 [(y, +y5)[2 = 2]?

Taking expectations on both sides and letting » tend to infinity, (x0) follows.
(Cf. the analogous case 6.3.2.)

When the cov.f. is decreasing, V, is an increasing function of 4. In this case
(9) exceeds not only V; but also V,.

Now (5) is a quadratic form in 4y, . . . , a,, and its minimum under the restric-
tion (4) equals the smallest eigenvalue. In the case of exponential correlation,
¢(v) = exp( — Av), it is seen that all eigenvalues exceed

tanh (4/2) (6. 5.11)

see Grenander & Szegd (1958, p. 69). However, (11) is identical with the limiting
value (9) in the present case. Thus, the lowest possible expectation of (2) is
obtained from (9) or (10) in the exponential case. Also 4, in (5) gets its minimum
value (- 2), which is important in the case of a rapidly falling cor.f.

Table 17 shows the expectation of different forms (7) and (8). In the table
the true variance according to (6.2.4) and the corresponding values in stratified
sampling (with the same sampling intensity and one and two points per stratum,
respectively) are included for comparison.

It seems evident that no form of the type considered here can avoid a
considerable overestimation of the sampling error in cases where the corre-
lation decreases slowly. When expressions of the type (7) and (8) are used, it
is also seen that little is gained by choosing % higher than 6, say. It may further



112 BERTIL MATERN 49: 5

Table 17. Expectation of various quadratic forms intended as estimates of the vari-
ance of systematic samples in R;. Variance per pcint in systematic and stratified
sampling. Covariance function: exp(-/v).

h=¢ h=o0.1 h=o0.5 h=1 h=2 h =4

E(D) =E(Yy)....... & 0.0952 0.3935 0.6321 0.8647 0.9817
E(D;) =E(Y3) ...... 2 ¢[3 0.0665 0.3139 0.5546 0.8257 0.9757
E(Dg)eevieiiinunnn. 3¢l5 0.0599 0.2886 0.5244 0.8077 0.9727
EDg)eeveeeininnnn. 4 ¢€l7 0.0571 0.2767 0.5088 0.7976 0.9710
EDg)ecveeneiennnnn 6 gl11 0.0545 0.2654 0.4931 0.7865 0.9690
E(Yg eeeieeiannnn 4 €l7 0.0570 0.2725 0.4982 0.7876 0.9690
E(Yg)eeeieieenonn, 6 ¢gl1I 0.0544 0.2620 0.4848 0.7781 0.9672
E(Yg) coveveeeunann 8 g/15 0.0532 0.2573 0.4787 0.7737 0.9663
lim E(YE).......... glz 0.0500 0.2445 0.4621 0.7616 0.9640
Variance per point

Systematic sampling.| ¢/6 0.0167 0.0830 0.1640 0.3130 0.5373
Stratified sampling

1 point per stratum..| ¢/3 0.0325 0.1478 0.2642 0.4323 0.6227
2 points per stratum.| 2¢/3 0.0635 0.2642 0.4323 0.6227 0.7812

be remarked that E(Y};)< E(D;) in all cases included in the table. Since Y,
is easier to compute than Dy, it may be concluded that the expression suggested
by Yates is “nearly optimal” among the non-negative quadratic forms.

The crucial point in estimating the error is that the observations cannot
give information on the behaviour of the cor.f. #(v) for values of v lower than
the length of the sampling interval. It seems that Langsater (1926) is the
first author to have recognized this dilemma.

If £ = n -1 1in (8), we get essentially an expression for the variation between
two systematic samples with sampling interval 2. It is clear from (ro) that
this expression cannot provide an unbiased estimate of V,, contrary to what
might be surmised at first glance.

In the more general case, the original sample (1) is subdivided into p system-
atic samples, each one with a sampling interval p times the original. To avoid
complications we assume that #» = ¢g, where p and g are integers. Further ¢
will be supposed so large that the end-effects can be neglected. Introducing
the average

—_ 7-r
Zi=(1/q) X 2+
j=o0
we form

i
Sp=2q(zi~z)? (6.5.12)

The expectation is (in generalization of formula 10)
E(Sp)=pVp-Vy (6. 5.13)
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If the correlation is decreasing with distance, V] is less than V. Thus
P-I<E(S)[Vy<p

(In the exponential case the ratio lies between $ — 1 and  — 1/p.) The “degrees
of freedom” by which we shall divide S, to get an unbiased estimate of V, are
therefore somewhat indeterminate. Especially for small p, expressions of the
form

Syl - 1)
give distinct overestimates. (This applies i.a. to the first values in table 4 of
§ 4.6.)
A numerical illustration can be obtained by means of an empiric formula
found in Ostlind (1932). Ostlind gives the following expression for the standard

error of the estimated cubic volume per hectare in a strip survey of a forest
(width of strips 10 meters)

0.085 (L —10)°75 4 - °-5m°-® (6.5.14)

Here L is the distance between survey lines in meters; 4 is the area of the forest
in hectares; # is the volume in cubic meters per hectare. This formula has been
basic in planning strip-surveys in Swedish forestry.

If L/1o is large, the theory of point sampling may be applied. In cases
where (14) is valid

E(Sp|Vy) =t —p (L —10)"5 (Lp —10) "3 (6.5.15)

(L is the distance between lines in the original survey and Lp the distance
between lines in the subsamples.) Approximately

E(Sp/Vy)=p-p * (6.5.16)

It is of a certain interest to apply (15) to the data presented by Ostlind,
since (14) was derived by somewhat different methods.

Ostlind’s data are observations from strip surveys of 173 forests in central
and southern Sweden. For the volume estimates of the surveys standard
errors were computed by a formula of type (7) with 2 = 2. These standard
errors were then graduated by means of an expression of type (14). An overall
correction factor was applied to the function obtained in this way. For this
purpese, the surveys were subdivided into systematic subsamples of lower
intensity. The standard error corresponding to a survey of 100 hectares of
forest land was estimated from a set of subsamples by the expression
(4/100) [S,/(p ~ )]

8—Medd. fran Statens skogsforskningsinstitut. Band 49:5.

(6.5.17)
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The estimates (17) were added in a number of classes with varying values of p
and L. Estimates from the graduating formula were added in the same way.
The ratio between the sums of standard errors computed by the two different
methods was used as correction factor.

Some classes were excluded, however, before the final summation took
place. It was found that (17) gave rather low values for p =2 and p = 3.
The corresponding classes were therefore discarded.

It is of interest in this context to know the amount of bias in (17). To obtain
a very rough approximation, we assume that the ratio

E(VS,) VE(Sy)

is the same as the corresponding ratio for a y2 with $ — 1 degrees of freedom
The moment formulas for 4% and (16) give

P 2 3 4 5 6 7 8

——
EI: /___?___]0.907 0.975 0.995 1.003 1I1.006 1I1.008 1I1.009
V-7,

The list covers the values of p used in Ostlind’s paper. It is seen that the
two cases where the bias is appreciable (p = 2 and $ = 3) correspond to the
exclusions made by Ostlind.

To avoid some of the complications encountered by Ostlind, we may compute
the estimated variance per 100 hectares of forest land, with degrees of freedom
taken from (15), for every set of subsamples. This can be compared with the
variance obtained by squaring (14) with 4 = 100 and m equal to the actual
volume per hectare in each particular case.

Variances estimated as indicated above were added for each combination
of L and p considered by Ostlind (1932, table 3). The sum was then expressed
in per cent of the corresponding sum of variances obtained according to (14).

Table 18. Variances estimated as VPSP/E(SP) with E(SP) from (6.5.15) in per cent of
variances according to (6.5.14). Data from Ostlind (1932).

Distance between survey Sum of degrees of freedom | VS, |E(S,) in per cent
lines, meters (Lp) according to (6.5.15) of V,, according to (6.5.14)

200 99.8 59

300 138.0 65

400 86.3 78

450—500 71.0 81
600—750 98.3 63
800—1,200 116.7 100
1,400—4,000 62.6 74
200—4,000 672.7 74
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A summary of the results is found in table 18. The percentages have been
pooled by using the “degrees of freedom” (from formula 15) as weights.

It is seen that the estimated variances are on the average smaller than
the graduated values. This is partly due to a further correction (1.02)2 introduced
by Ostlind for some technical reasons. Even if this is considered, (14) must
be said to include a safety margin, especially for short distances. It seems
reasonable that Ostlind should get a tendency to give higher overestimation
with short sampling intervals than that obtained with long intervals (cf.
table 17). Some evidence in the same direction is reported by Hagberg (1958).

The values for large Lp in table 18 are in fact based on rather scanty data.
For distances > 1 200 meters, all computations refer to data from only five
surveys, which have been subdivided into subsamples in different ways.
Therefore, no far-reaching conclusions can be drawn. A priori, it seems not
unreasonable, however, that Ostlind’s formula should overestimate the error
for a large distance between lines. It may be argued that the decrease in the
cor.f. should be very slow for large distances. This ought to result in a tendency
for the sampling error of the survey to increase with L only slightly faster
than L°5 and not as fast as the factor L°75 in (14). In conformity with the
remarks made earlier, it is reasonable to expect that the sampling error increases
more rapidly than L°75 for low values of L.

6.6. Estimating the sampling error from the data of a systematic sample of
points in R,.

The purpose of this section is to discuss error estimation for the sampling
schemes presented in § 5.4. (Sections 5.1 and 5.4 contain the basic assumptions.
and the notation.)

Consider first the case ¢ =5 =1, ¢ ==/2 in (5.4.I), that is the square:
network of integer lattice points. Assume that the region surveyed is large,
so that border effects can be neglected. As in 6.5 only positive semi-definite-
quadratic forms in the observations will be treated. Such a form can be written
as the average of a number of expressions of the type

T=[ 3 Z(-v+iaz, 7)] (6.6.1)

i=1j=1
with (cf. 6.5.3—4)
2X(-1)Haj=0 XZgt=1
The following three cases will be considered.
T, obtained from (1) by choosing # = 2, a; = 1/,;
Ty, =4, a3 = a4y = Gy = dyy = 0.05, dyy = dyg = dgy = dgg = 0.45, the
remaining 4’s equal 0.15;
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Ty n=4, @y =ay =ay=ay =01, Gy =ly = a4y = dyy = 0.4, the
remaining 4’s equal 0.2.
T, can also be written

(x/4)[4:4jz(x, 1)]?
See further Matérn (1947, p. 90) and Seth (1955, p. 47). Similarly
Ty =(x/400) [424] z(1, 1)]?

T,, which is found in Yates (1953, p. 231) is a particular case of a general
formula corresponding to (6.5.8). If the adjustments of the bordering elements
are neglected, the general formula would be

n n 2
w2 T F(-1)+ia, 7')]
1=1I7=1

The squared expression is the difference between sums that pertain to two
sets of sample points. Each one of these sets consists of a square network of
points with distance \/2 between next neighbours. We denote by T, the limiting
case, #—>oo. Similarly, T5 will denote the limiting case of (6.5.8), k—oo. It
has been shown in 6.5 that among all forms in observations from one line of
sample points T has certain optimum properties.

Let z(x, y) be a realization of an ¢sofropic process, and denote by V, the
variance per sample point in a square system of points with distance a between
neighbours.

The previous remark on T, means that

E(T)=2V;-V, (6.6.2)

Tt can be seen that (2) also is the expectation in the limiting case of formulas
based on differences in two directions.

Table 19 gives numerical values of the quadratic forms in the case ¢(v) =
exp( — hv). For comparison, the true variance in systematic sampling and the’
variances in stratified random sampling (one, respectively two sample points
per stratum) are included.

The table shows that all the quadratic forms give a substantial overestimate
if % is small. However, a comparison with table 17 indicates that the situation
is somewhat more favourable than that in the corresponding one-dimensional
case. Table 19 further shows that already the simple form T, has smaller bias
than T, the optimal form among all those which measure the variation in
one direction only.

The case when the sample plots are located in the pattern of a “line-plot”
survey (short distances between points on the same survey-line, and compara-
tively long distances between the lines) can be dealt with by the same methods
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Table 19. Expectation of various quadratic forms for estimating the variance in

systematic sampling in R, (sample points in a square network). Corresponding true

variance and the variance in stratified sampling with the same sampling intensity.
Covariance function: exp(-/v).

h=¢ h=o.1 h=o0.5 h=1 h=2 h=4

E(Ty.eeiiiinne. 0.5858 ¢ 0.0584 0.2800 0.5074 0.7884 0.9669
E(Ty) . eveiiiiaiann. 0.4663 & 0.0466 0.2288 0.4343 0.7296 0.9531
E(Tg)eeeeeieinnenn. 0.4540 € 0.0454 0.2231 0.4250 0.7204 0.9505
E(T) eeviiivinenn. 0.4183 ¢ 0.0418 0.2064 0.3968 0.6904 0.9411
E(Tg)eeeeiieinienn. 0.5000 € 0.0500 0.2449 0.4621 0.7616 0.9640
Variance per point
Systematic sampling

with integral lat-

tice points ....... 0.2288 ¢ 0.0229 0.1138 0.2240 0.4222 0.6970
Stratified sampling
1 point per unit

SQUATE. . vt vvnnnn 0.52I4 & 0.0505 0.2237 0.3881 0.6035 0.8068
2 points per Vz x\2

SQUATE ¢ v vvvvvanan 0.7374 € 0.0705 0.2978 0.4922 0.7121 0.8800

as those used for the “line surveys’ (the sample consists of parallel equidistant
lines).

The error estimation in the case when the sampling units are parallel lines
can be treated as a one-dimensional problem, as in the preceding section.
Doing so, however, we abstain from using information concerning the short-
distance variation, which can be obtained by using short segments of the Jines.
Formulas based on segments of lines were proposed by Nislund (1939) and
several such formulas were examined by Matérn (1947).

A numerical example will now be treated as a supplement to the author’s
earlier investigation. This example directly pertains to the systematic sampling
of points. The following symbols will be used. Points are situated at distance p
apart along lines. The distance between neighbouring lines is L. The sample
points are of the type (x;, ;) with

% =1p yj=4L (6.6.3)

A sequence of %2 sample points on the same line shall be referred to as a
k-section. The sum of observations from a k-section is written

k-1
Z(a,b; k) =2z(a+1p,b) (6.6.4)
Only two types of quadratic forms in Z-values will be treated. The first is
an average of squares of the type

k[z (= 1)Z (a+ bk, b; k)] | (6.6.5)



118 BERTIL MATERN 49:5
whereas the second expression is based on squares

2n
Vel 20z b L k)T (6.6.6)
U and V are similar to the squared “balanced differences” proposed by Yates,
cf. (6.5.8). While U measures the variation of Z-values along the same line,
V is an expression of the variation in a sequence of Z-valuesbelonging toseparate
lines.
One of the cases dealt with in 5.4, namely p =1/4, L = 4, and the exponen-
tial cov.f. exp(— Av), is chosen as a numerical illustration. Confining the study
to the limiting case # —+ oo, we introduce

W, (k) =lim E (U) (6.6.7)
W, (k) =L E (V) (6.6.8)

The same limiting expectations are obtained if (5) and (6) are replaced by
squared differences of order #. In table 2o are found values of W; and W,
for some different %, as well as the variance per point in the sample survey.
For the computation of the latter value, see 5.4. In the computation of W,,
the covariance of expressions Z (a, b; k) and Z (a, b’; k) with & £ b has been
approximated as

Rrexp (—h|b-b])

Formulas for the allowable minimum length of a segment are given in Matérn
(r947). If the segments exceed the minimum length, the corresponding quad-
ratic form cannot have a negative bias in the isotropic case. An application
to the present problem gives the following minimum value for %

CL/p (6.6.9)

where C depends on the particular quadratic form used. In (5) with #—>co we
have C = 2/x (cf. Matérn 1947, formula 71 b), whereas in (6) the corresponding
value is 1/z for all # (sbidem, formula 69 a).

If L =4, p = 1/4, the condition for (5) is

k>10.186 (6.6.10)
For (6)

k>5.003 (6.6.11)
In agreement with (10) table 20 shows that /,(8) gives underestimates and

that W;(12) gives overestimates. The bias of W,(10) is rather small. It is
further seen that W,(5) gives overestimates in all the tabulated cases, while
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Table 20. The expectations W; and W, (6.6.7—8) and the variance per point in the
4 X I/4 systematic sample in R,. Covariance function: exp(- /Av).

h=o.1 h=o0.5 h=1 h=2 h=4 h=38
1ZZ81 ) I, 0.158 0.751 1.302 1.719 1.553 1.192
Wi8)eevvvinoonn. 0.274 1.253 1.981 2.195 1.704 1.223
Wi(10) e evvvvnvnn. 0.422 | 1.842 2.641 2.537 1.796 I.241
Wi(12)eevenvnnonn. 0.603 2.489 3.239 2.784 1.857 1.253
Wi(16) eevnvnnnn. 1.058 3.851 4.206 3.104 1.934 1.268
/236 0.527 1.981 2.335 2.052 1.581 1.193
Wao(4) oo eveviniin, 0.668 2.493 2.867 2.387 I.712 1.223
[/Z2%6) 0.793 2.947 3.319 2.641 1.798 I.24I
Wo(6) oo ovvvvnnn 0.903 3.349 3.704 2.838 1.858 1.253
[ZZ21C:) I 1.079 4.013 4.313 3.116 1.934 1.268
Variance per point
in the 4 x1/, sys-
tematic sampling..| 0.392 1.742 2.578 2.522 1.771 1.215

Wy(4) has a positive bias in some cases and a negative bias in other cases.
This is in agreement with (11).
Table 20 will now be used to indicate the result when an error estimation
adapted to the isotropic case is used in a case of non-isotropic correlation.
Consider a process z (¥, ) defined by

2 (x«' y) =2z (x: Oty)
where z is isotropic with cov.f. exp(— Av). The cov.f. of 2, is

exp (— A Va2 + a?y?) (6.6.12)

The ratio between the lengths of the axes of the “isocorrelation ellipses” of
(12) equals e. Let us further suppose that a realization of z is sampled in the
points (x;, ¥;), where

wi=ils  yi=4ila (6.6.13)
Thus the observations can be written
z1 (3[4, 47]o) =2 (2/4, 47)

Hence they correspond to a 4X1/4 systematic sample of the basic process z.
This means that the variance per sample point for # = 0.1, 0.5, etc., is the
one given in table 2o.

However, the observations pertain to 2, and the sample points (13), not to
2. Let us imagine that the sampling is carried out under the false assumption
that z, is isotropic. Consequently, the error estimation is made by (5) or (6)
with the length of the section determined as in the isotropic case. Assuming
that (5) is used with a high value of %, & is chosen as the integer closest to

32/me=10.186/ (6.6.14)
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whereas in (6) the corresponding value is
16/7a =5.093 et (6.6.15)

It may suffice to consider two numerical examples. Take first the case
o = 5/3. The correlation is strongest in the direction of the x-axis. From (14)
is found & = 6, while (15) gives & = 3. The expectations of the estimated
variances are W,;(6) and W,(3), respectively. Table 2o shows that W,(6)
always underestimates the variance, W,(3) gives in some cases an overesti-
mate, in other cases an underestimate. The risk for a substantial underesti-
mation, however, is present only in the case of W;(6).

A value of o > 1 corresponds to the case where the lines of a line-plot survey
run parallel to the main topographic direction of the region under survey.
However, one usually tries to let the lines cross valleys and ridges perpendic-
ularly. This corresponds to o <C 1. We consider the example « = 5/8. Then
(r4) and (15) give the values 16 and 8, respectively. Table 20 shows that the
corresponding expectations W,(16) and W,(8) overestimate the variance. The
overestimation is about equal in the two cases.

These examples, and others obtained from table 20, indicate that the formulas
based on expressions of type (6) are preferable to those based on (5), sirce
they seem to be less affected by strong deviations from isotropy.

Many other formulas could be considered. We might use k-sections of differ-
ent lengths in the same formula. Further, expressions of the variation in
different directions may be combined, etc. Similarly, for systematic samples
in R, (for example equidistant plane sections of tissues), a rich variety of
expressions for the variation can be obtained from the data.

6.7. Allowance for border effects in estimating the sampling error

The formulas for error estimation given in the preceding sections are derived,
like those in Matérn (1947), under the assumption that the border effects are
negligible. However, these effects cannot always be neglected. For example,
when the total area of a region is estimated by a systematic sample of points,
the border effect is the only source of sampling errors, cf. (5.5.5—6) and an
example in Strand (1951).

General formulas for the border effect being presented in § 5.5, it may suffice
to indicate here by means of an example how the border effects can be con-
sidered in the present particular problem.

Take the case of a square grid of sample points in R,. The sample survey is
supposed to pertain to a certain region Q. The following observations are
made for each sample point x;

2 (%;) =height above sea-level (e.g.)
: { 1 if % eQ

e(x;) =
() o) otherwise
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FiQ.13. Sample points used in estimating the error of a
systematic survay.

Let the product of z and ¢ be denoted z,. To estimate the mean z(Q) we use
the average

7 =1 () Ze ()

where the summation can be extended also to the lattice points outside Q.

Assume further for the sake of simplicity that the error-estimation is based
on a formula involving groups of only four sample points, viz. the special
case Ty of (6.6.1). The four points of a group form the corners of a square. A
certain regular configuration of such quadruplets of sample points is used.
Let N be the total number of quadruplets with at least one point inside Q.
These quadruplets are indicated by crosses in fig. 13.

Consider the residual

2 (W) =2 (x) ~Ze() = () (z(2) ~7]

Let x,, %,, %3, and x, be the four points in a quadruplet. Put (cf. 6.6.1)

T = (1/4) [25 (%1) — 25 (%3) — 25 (%3) + 25 (%4)]?

Let Ty, T,, . . . , Ty be the corresponding expressions for the N quadruplets
intersecting Q. Let further ¢ denote the ratio between the number of sample
points and the number of quadruplets. This ratio depends on the geometric
pattern chosen for the system of quadruplets; in fig. 13, e.g., ¢ is 9. The
expression
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N 2
¢IT / [Z'e (x,):l (6.7.7)

where the summation in the denominator extends over all sample points with
e # o, can then be applied as an estimate of D?(z).

Since T and z, vanish outside Q, both summations in (1) can be regarded
as extended over the whole of R,. In fact, the procedure is essentially a “large
sample method” of estimating the error of the ratio z/e. The method can
readily be adapted also to the more general case of estimating a ratio of the
type Z3(Q)/Z4(Q), where Z;(Q) is, for example, the total volume of forest
trees in Q and Z,(Q) is the total forest area in Q. For aspects on the practical
computations, see Matérn (1947, pp. 79 ff., 129).

6.8. Linear sampling units (‘““tracts’’) in R,
Let z(x, y) be a realization of an isotropic process in R, with cov.f. ¢(v).
Consider also in R, a curve C of length P. The average, z(C), is defined as
(1IP) [ #(x,9)ds

where ds is the element of arc length measured along C.
The variance is found from

o]

D2[z(C)]= / c(v)}(v) dv (6.8.1)

o

where f(v) is the frequency function of the distance between two points
chosen independently and with uniform distribution over C.
Some special cases should be noted. If C is a circle with radius R

I

f(@) = (1/nR) (1 - v?}/4R?) * o<v<2R (6.8.2)
If C is a line segment of length P
f(v) =2 (P -v)[P? o<v<P (6.8.3)
Finally, let C be the contour of a rectangle of size 4 X B. Then
(4 +B)*}(s) = Ap (v]A; B/4) + By (v/B; A/B) (6.8.4)
with
I-x+mx2 o<x<I
P k)= T . —
kx/\Vx*— 1 +2xarcsin (1/x) —x —qwx/2 T<x<\TI+A?

Like (2) and (3), ¢(#; k) shall be understood to vanish outside the intervals
for which an expression is given.
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' When C is the periphery of a closed polygon with all angles obtuse, we find

f(v)=1§+%§i<:‘i;jj-x)+o(v) (6.8.5)

where 4,, . . ., Ay are the (interior) angles of the polygon.
If C is a closed curve with continuously changing curvature, the frequency
function is

P
f(v)=2/P+ (v]2P)? f [K (s)]2ds + 0 (v?) (6.8.6)
Here K(s) deitotes the curvature of C. For a closed curve

P
SEK(s)ds=2m
By Schwarz’s inequality
P P P 2
[ ds [|K(s) |2ds>[fK(s) ds] (6.8.7)

Hence, whatever the shape of a closed curve of length P, the coefficient of v2
in (6) cannot fall below 7% P3. This minimum is attained when the curvature
is constant, i.e. when the curve is a circle.

When the correlation is decreasing rapidly, the course of f(v) in the vicinity
of o is decisive for the value of (). It is seen from (5) and (6) that, to a first
approximation, the variance is inversely proportional to P, as is also. intui-
tively clear. Comparing closed curves of equal length, we find from (5) and (6)
that the curves with continuous curvature give lower variance than the poly-
gons, and that minimum is obtained for the circle. If the restriction to closed
contours is removed, it is easily seen that the line segment has the corre-
sponding optimum property in the wider class of continuous curves of given
length.

Table 21. Characteristics of eight curves of length 4.

Curve JSof()dv Jvf(v)dv
Linesegment................ian.. 1.333 2.667
Circle, radius 2. .o oot vvii it 0.811 0.811
Square  T.OXI.Oi....iiiiiiiiiieiiin.nn 0.735
Rectangle 0.8 XI.2.....ocvvuviiiinn.. 0.731
Rectangle 0.6 XT.4o.vvvieveinnneinn., 0.721 0.66
Rectangle 0.4 XI.6.....coiiiiiiin., 0.703 007
Rectangle 0.2 xI.8.......... ..ol 0.682
Rectangle 0.0 x2.0...covvviiiiiii.., 0.667
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The first two moments can be used to characterize roughly the whole course
of f(v). Table 21 shows these characteristics for eight different curves of
length 4. The values may give some indication about the performance of the
different curves in the case of a slowly decreasing correlation. The curves are
shown in fig. 14.

As a further illustration, the variance (1) has been computed for some curves
under the assumption that the correlation is exponential. The results are
presented in table 22. They are computed by numerical integration.

The cor.f.

0.4exp(—v)+0.6exp(—120) (6.8.8)

has been used to smooth an empiric correlogram for the distribution of forest
land in a Swedish province (Matérn 1947, p. 58). In (8) v is expressed in kilo-
meters. We change the unit to 2 km to obtain variances that refer to figures
with a perimeter of 8 km (roughly corresponding to the perimeter of the “tract”
used at present in the northern regions of Sweden in the national forest
survey). Thus (8) is transformed into

0.4 exp (—29)+0.6 exp (- 24v)

a.
b. c. d.

a. f.

Q. h.
——) -

Fig 14.The 8 curves of table 21.

Table 22. Variance of the mean of observations made along continuous curves of
length 4. Covariance function: exp(-/v).

Curve h=o0.1 h=o0.5 h=1 h=2 h=4
Line segment of length 4....... 0.879 0.568 0.377 0.219 0.117
Circle, radius 2/m.............. 0.923 0.680 0.482 0.274 0.131
Square  I.OXI.O............. 0.930 0.704 0.5I2 0.299 0.144
Rectangle 0.5 XI.5............. 0.934 0.720 0.536 0.325 0.157
Rectangle 0.0 x2.0............. 0.937 0.736 0.568 0.377 0.219
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The variances are computed by taking the component corresponding to
exp(— 2v) from table 22, while the second component is approximated by
means of the asymptotic formulas (5) and (6). Expressing all the variances
in per cent of that pertaining to the square, we obtain the following series

Figure Variance
Line segment (8 km) 75.5
Circle (perimeter 8 km) 92.2
Square (2 X 2 km) 100.0
Rectangle (13 km) 107.7
“Rectangle” (0x 4 km) 132.5

It must be noticed that these variances, like those in table 22, are directly
applicable only in the case of unrestricted random sampling of a large area.
However, the variances can be used to discriminate between different types
of figures also in many other designs. Yet, in the case of a systematic selection,
the spacing of the sampling units must be such that the covariance between
the means of two neighbouring sampling units can be approximated as ¢(a)
where a is the distance between the centers of the two units. Therefore, the
variances given here for straight lines are of no use when the sampling units
are connected into a continuous chain of segments. Similarly, in stratified
sampling, the stratum must be large in comparison with the sampling unit.

As to the inclusion of the circle in the above computations it may be remarked
that this figure is hardly a tract feasible in a field survey. However, the data
given for the circle may be considered as approximations to those of figures
such as the regular hexagon and octagon.

6.9. Locating sample plots on the periphery of a tract

Fig. 15 shows two ways (A, B) of locating 16 equidistant sample points on
the periphery of a square tract. When applied in field the two different systems
are almost exactly equal as to all items of cost. It might be intuitively felt
that system A should give more precise estimates than system B.

In fig. 15 are also shown (C) 16 equidistant sample points on the periphery
of a regular octagon of the same perimeter as the square. The reason for
considering this case here is that it may be surmised from § 6.8 that the octagon
gives more precise estimates than the square when observations are made
continuously along the contour. It is therefore of some interest to see if such
a conclusion can be drawn also in the case of sample plots.

The observations made on the sample plots can be attached to the centers
of the plots. We have then to deal with observations z(x) of the “local inte-
gration” type (see 4.4 and 5.1). The observations may also be affected by
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Fig.15. Locating sample points on the periphery of a square
(A,B) and a regular octagon(C). ’

observational errors. However, from the discussion attached to (5.1.3) it is
obviously not necessary to consider the short-distance properties of the varia-
tion when our sole object is to rank the three methods of locating sample
points on a closed contour. Thus, properties connected with the shape and
size of the plots may be disregarded. We therefore assume that »(x) is a
realization of an isotropic process with smoothly running cov.f., ¢(v).

The comparisons of the variances per point are based on

I
T Ee(la—s) (6.0.1

where |x,—;| is the distance between the sample points x; and x;, belonging
to one or the other of the three systems of fig. 15. It should then be under-
stood that a further component, constant for all the ways of locating the
sample plots, should be added. Generally, this component should be decreasing
when the size of the sample plot increases.

Values according to (1) have been computed for the three systems in the
case ¢(v) = exp(— hv). The variances of the systems B and C in per cent of
those of A were found to be:

/2 0.25 0.5 I 2 4 8
Variance of B 101.5 102.6 103.9 104.3 102.0 100.2
Variance of C 05.8 04.0 94.9 08.3 99.9 100.0

A close comparison between A and B shows that the minimum relative
efficiency of B is about 95.7 9%, in the case of an exponential correlation (the
minimum is attained for 4 &~ 1.7) and 91.8 per cent if the correlation is Gaussian,
ie. ¢c(v) = exp (- h?. v

Now we also take an example more directly connected with forest survey
problems. A correlogram for the volume of stems observed on sample plots
was graduated by



4015 SPATIAL VARIATION 127
0.4 exp (—3v) +0.6 exp (—120) (6.9.2)

with the kilometer as unit of length (Matérn 1947, p. 62). If A is once more
used as basis, the following variances are obtained when then the plots are
located 500 meters apart
A B C
100.0 102.6 98.4

Thus, there are small but distinct differences between the three systems.
The advantage of the octagonal system, surmised from the investigation in
§ 6.8, subsists.

6.10. The size of a tract

The precision of a “tract survey”’ depends i.a. on the size of the tract.
Studying this dependence we shall only consider observations from equidistant
plots along the sides of a square tract. It is assumed that these plots are located
at a spacing of 100 meters, like the stump plots of the current Swedish survey.

For simplicity, assume that the side of the square is always a multiple of
the distance between stump plots. Further, suppose that the plots are situated
as shown in fig. 15 A. Let #» denote the number of plots per side. Thus the
total number per tract is 47, and the side of the square is 0.17 km.

The stump plot observations are now, as in 6.9, represented as values z(x,),
z(%,), . . . , attached to the centers of the plots. Let us consider the variance
per point

4nD?[ Xz (%;)[4m] (6.10.1)

This variance has been computed for » = 12(2)22, and c¢(v) = exp(— Av).
The calculations have been made on the electronic computer referred to earlier.

Table 23. Variance per sample point when 4z points are located equidistantly on
the periphery of a square with the side 0.1 #. Covariance function: exp(-/4v).

n =12 n =14 n =16 n =18 n =20 n =22 n = oo
h=1...... 21.83 22.76 23.38 23.75 23.96 24.04 20.02
h=1.5.... 15.83 16.01 16.02 15.95 15.83 15.69 13.36
h=2...... 12.02 11.04 11.81 11.66 I11.52 11.38 10.03
h=3...... 779 7.65 7.53 743 7.35 7.29 6.72
h=4...... 5.67 5.57 | 5.50 5.45 5.41 5.38 5.07
h=5...... 4.45 4.39 4.35 4.32 4.30 4.28 4.08
h=8...... 2.76 2.74 2.73 2.72 . 2.1 2.70 2.63
h=10..... 2.24 2.23 2.22 2.21 2.21 2.21 2.16
h=12..... I1.9I 1.90 1.90 1.89 1.89 1.89 1.86
h=20..... 1.32 1.32 1.32 1.32 I1.32 1.32 1.31
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The results are presented in table 23. Further, the limiting value when # tends
to infinity
coth (k[20) (6.10.2)

is shown in the table under the heading # = oo.

Table 23, and some additional calculations, show that the variance per
point first is an increasing function of # (for a given %). After passing a maximum,
it slowly decreases towards (2).

Consider again the cov.f. (6.8.8) derived from a correlogram for the distri-
bution of forest area. The following variances of the mean of a tract, z, are
obtained on the basis of table 23

n 12 14 16 18 20 22
D2(z) 139.3 123.9 I10.9 100.0 90.7 82.7

The figures are percentages of the variance for » = 18. Corresponding calcu-
lations for the cov.f. (6.9.2) give

7 12 14 16 18 20 22
D2(z) 155.5 I3I.4 113.6 100.0 89.3 80.6

A reduction of the side length by 200 meters gives in both cases an increase
in D?(z) of 10—20 per cent.

It should be borne in mind (cf. 6.9) that a realistic model should contain
expressions for the effect of errors of observation, local integration, etc. The
component exp ( — 12 Av) in the covariances (6.8.8) and (6.9.2) may be regarded
as a rough description of the influences of these and other factors which are
effective over short distances.

The examples suggest that the variance per plot is “practically’”’ independent
of the size of the tract if the inter-plot distance is fixed. Hence, the variance
per tract would be inversely proportional to the length of the tract. The same
conclusion would be valid also for estimates based on observations made
continuously along the contour. However, the conclusion is evidently invali-
dated if the distance between the plots and the length of the tract side are
changed simultaneously.

Finally, it should be noticed that the calculations and the conclusions
refer to the case when the tracts are selected by unrestricted random sampling.
In many other schemes (cf. the formulas of 5.2—5.4), a term which is approxi-
mately independent of the size of the tract should be subtracted. This means
that the influence of the size of the tract on the sampling error can be some-
what larger in these cases than that in unrestricted random sampling. However,
the formulas will be more complicated and extensive calculations would be
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needed, for example when the distance between neighbouring tracts in a
systematic sample is of the same order as the length of the side of the tract.
A similar remark can be made in the case when the tract is of the same order
of magnitude as the stratum in stratified sampling. See further the discussion
in § 6.8.

6.11. A comparison between strip surveys and plot surveys

One set of observations made in forest surveys consists of records of land-
use classes, site-classes, etc. These observations can usually be thought of as
referring to the center of the sample plot or to the center of the survey strip.
This is applicable also to records of the height above sea-level, the distance
to the nearest point on a network of roads or waterways, etc. Treating such
observations, we may deal with lines and points instead of strips and plots,
respectively.

The distance between lines in a system of equidistant lines is chosen as
unit of length. Sample points are located on the lines at a spacing of p, where
p is supposed < 1. We assume that the sample points form a rectangular
array. The sampling error of the point survey can then be found from com-
putations already utilized in previous sections (5.4 and 6.6). They refer to the
limiting case when the size of the region surveyed approaches infinity. The
original computations gave the variance per sample point. Now there are 1/p
sample points per unit length of the lines. Multiplying the previous variances
by p, we obtain the variances per unit length. Variances of thiskind are present-
ed in table 24 for a series of values of $, and for some cases of the covariances
exp(— hv) and by K;(bv). The table should be regarded as a byproduct of the
earlier investigations. This should explain the gaps in the table and the fact

Table 24. Variance per unit distance in a <line-point> survey. Distance between
lines: 1. Distance between points: p.

Covarlance | oy | p=1jz | p=1/s | p=1/8 |p=1/16|p=1/64|p=1/256
exp(—o0.250)....| 0.057I 0.0256! | 0.0178 0.0158! [ 0.0154 | 0.0152
exp(—-0.50)..... 0.1I4 0.0510! [ 0.0354 0.0314' | 0.0305 | 0.0302
exXp(—V)eeeunnnn 0.224 o.100! 0.0694 | o0.061% 0.060 0.059
exp(—20) ... 0.422 o.190! 0.128 o.113! 0.109 0.108
exp(—40)..e.n.. 0.697 0.3I5 0.199 0.168 0.161 0.159
exp(—-8v)....... 0.903 0.421 0.231 0.173 0.158 0.153 0.152
exp(—169)...... 0.975 0.476 0.235 0.140 0.III 0.101 0.1I00
exp(—320)...... 0.994 0.494 0.244 0.124 0.0759 | 0.0577 | 0.0565
20 Ki(20) oo 0.168 0.072% 0.0602 0.060! 0.0583
40 Ki(40) oo oo e 0.468 0.21% 0.156 o.15! 0.149

1 Interpolated values.

9—Medd. frin Statens skogsforskmingsinstitut. Band 49:5.
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that some values are approximations, obtained by a crude interpolation. In
each case, the variance for the lowest value of $ gives a good approximation of
the variance in a complete line-survey.

When the correlation is decreasing as exp( — 4v) or 2vK;(2v) or still slower,
the variance is not very much reduced by a change of $ from 1/8 to lower
values. In all cases, however, the variance is substantially reduced when we
pass from p = 1top = 1/2; and to a gradually smaller degree when $ decreases
to 1/4 and 1/8.

Supplementing table 24, the following limiting values are found when %z -0
in exp( — Av):

P I 1/2 1/4 1/8 I/16  1/64
Variance per unit distance  375.5 168.3 1I17.0 1I04.2 I0I.0 I00.0

Here the variances are expressed in per cent of the value corresponding to
p =1/64.

Meanwhile, it may be noticed for the cases entered in table 24 that the
variance is at least twice as high when p = 1 as it is in the case p = 1/2.

Consider then 4» equidistant sample points on the periphery of a unit
square (fig. 15 A). Let = 1/n denote the distance between the sample points.
The variance of the mean of the 4» points has been computed for some cases
of exponential correlation and for  of the form 27, see table 25. The values
tabulated thus are

(1/4n)2 X Zexp( — hlx; - %) (6.11.1)

It may be noted in some cases that (1) increases when the number of sample
points is augmented. This indicates that some gain in efficiency may be achieved
by giving the sample points different weights when calculating the mean.
Disregarding this possibility of increasing the precision, we find that almost
no efficiency is gained when p is passing from a value in the interval
(1/h>p>1/2h) to any smaller value.

To obtain some further illustrations, we consider the correlations

0.5 exp( — 0.20) + 0.5 exp( — 2.5) ( )
0.4 exp( —v) + 0.6 exp( — 59) A )
0.4 exp( —v) + 0.6 exp( — 12v) - (6.11.4)
0.4 exp( — 3v) + 0.6 exp( — 12v) o ( )

Formula (2) gives a fairly good graduation of some empiric correlations
in table 2 (series 3 and 4) of Ch. 4. The corresponding observations refer to
the distribution of land area. The expressions (3)—(5) are taken from Matérn
(1947). While (3) and (4) pertain to the distribution of forest land, (5) was
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Table 25. Variance of the mean of observations from 4z sample points, located
equidistantly on the sides of a unit square. Distance between sample points: p=1/n.
Covariance function: exp(-/%v). '

7 n=1 n=2 n=4 n=38 n=16 n=32 7 =64
p=1 P=1; P=, P=s p="%e | P=Yn p="/es
0.25 0.815 0.829 0.834
0.5 0.677 0.695 0.701
I 0.495 0.504 0.510 0.5I1 ‘
2 0.332 0.303 0.300 0.299 0.299 0.299 0.299
4 0.260 0.173 0.150 0.I45 0.144 0.144 0.144
8 0.250 0.130 0.0842 0.0712 0.0680 0.0672 0.0671
16 0.250 0.125 0.0649 0.0416 0.0347 0.0329 0.0325

obtained by smoothing a correlogram derived from volumes on sample plots.
It might also represent the areal distribution of a particular site class. (This
is seen by comparing the columns 7 and 8 of table 5 in Matérn 1947, p. 60.)
The expressions (4) and (5) have been used in previous sections of the present
chapter (6.8.8 and 6.9.2). It should be noticed that the kilometer is unit of
length in (2)—(5).

The variances per tract of size 1.6X1.6 km with a varying number (#)
of sample points are shown in table 26 for the covariances (2)—(5). Tracts of
this size have been used in region III in the current Swedish survey. Since
some of the values are obtained graphically, only two figures are given in the
table.

The values in the column “# = 64"’ can represent the variances with suffi-
cient accuracy in a complete survey of the contour of the tract. When # is
passing from # = 4 to n = 64 a reduction of the variance worth mentioning
appears in the case (5) only. Even in this case it seems not reasonable to go
beyond 7 = 16. ‘ :

So far the results seem to indicate that the. extra information on areal
distributions which can be obtained from observations made between sample
plots has a rather limited value when the distance between the plots is of the

Table 26. Variance of the mean of observations from 4z sample points, located
equidistantly on the sides of a 1.6 X 1.6 square. Distance between sample points:
p =1.6/n. Four different covariance functions of exponential type.

n=1I n=4 n=38 n=16 |n=064.

Covariance function p- 1.6 p=0.4 p=0.2 P —o.I p=0.025

(6.IT.2) v e veveeiiieiiniiienenn, 0.52 0.48 0.47 0.47 0.47
(6.IT.3) e e v evinniennnnnanenns 0.30 0.19 0.19 0.18 0.18
(6.TTe4)eeveeenneiennnnnnnenn, 0.30 0.18 0.17 0.16 0.16
(6.IT.5)eeeennnniiinnanenns 0.25 0.087 0.068 0.063 0.061
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order of 100—400 meters. This conclusion, however, should be regarded as
tentative. More empirical evidence on the relevant topographic variation as
well as economic data on the field work and office work connected with the
different forms of survey, are required, if more definite recommendations
are to be reached.

6.12. The size and shape of sample plots

In a paper (1938) Fairfield Smith examined a large number of published
uniformity trials, chiefly from agricultural and horticultural fields. Studying
the relationship between the variance per plot (V) and the size (4) of the plot,
he found that most data could be described fairly well by a formula of the type

V = const. A~? (6.12.1)

The exponent b varied from field to field; most values belonged to the interval
0.2—o0.8. (For methods of determining & empirically, see Hatheway & Wil-
liams 1958.) The shape of the plot did not seem to have any noticeable effect
on V.

Variance
10 F\
X,
5 | \\\ Square oy =0
% .\\ —— . — » (o0} =1
;‘~§~\ —————e Rectangle oy =0
2 | ‘\.'\ e » Uo ’4
x “.\...\ —+ —+ Asymptotes
1 .
05 1
0.2 ]
04 -
0.05
0.021
0.01 T T T

04 02 0s 1 2 5 1 20 50 {00 200 500
Area of plot
Fig.16.Variance per unit area according to (6.12.2) with c(v)=exp (-v).
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Variance
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‘\§ —_——— » Oy =1
R —-—-— Ractangle o,=0
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0.2 5

01 1
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Fig.17. Variance per unit arca according to (6.122) with c(v)=2v Kq (@V).

The object of this section is to show that (1) can be obtained as a good
approximation by considering an isotropic process.

We start from the following expression for the variance of an isotropic
set function (cf. § 2.6)

V = D2a(q)] = 0% 4 + 1 o{t) f{v3q) do (6.12.2)

Here A4 is the area of g; f is the frequency function of the distance between

two random points in g; ¢(v) is the cov.f. of the continuous component of z.

The term oy2/4 should be conceived of as representing e.g. the influence of

the random variation in plant number and the effect of errors of measurement.

[It is then assumed that the observations are made for some small basic cells,

and that z(g) is an average of the data obtained from the basic cells in g¢.]
The following two covariance functions have been used

exp( —v) (6.12.3)
20K, (2v) (6.12.4)
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Variances according to (2) have been computed for squares and for oblong
vectangles (ratio 1:16 between the lengths of the sides). The area has been
varied from o.1 to 200—500. The expressions (3) and (4) and the two sets of
figures have been combined with the two values oy =0 and ¢, =1 in (2).
The basic computations have been described in § 5.2, where they have been
utilized for other purposes. For this reason, a graphic presentation of the results
seems to be sufficient here.

If logarithmic scales are used on both axes, the relationship (1) between V
and A4 would be represented as a straight line. Fig. 16 shows the corresponding
relationship for the cov.f. (3); case (4) is illustrated in fig. 17.

It is immediately apparent that the equation (2) can be represented closely
enough by (1) over a fairly large range of A-values, if an appropriate value of
0y is chosen. The approximation seems to be equally good for both functions
(3) and (4). The asymptotic properties of (2) indicate that similar results may
hold for a wide class of correlation functions. For small values of 4, (2) gives

V=024 +c0)+... (6.12.5)
‘We then define

[o0]
mp = fv* c(v) dv
and assume that m, is finite. Using (2.5.19) we obtain the following develop-
ment, valid for large 4

oo +2mm, 2Pmy

|4 v - (6.12.6)

Here P denotes the perimeter of g. The asymptotic straight lines corresponding
to (5) and (6) have been indicated in the figures. If a cov.f. is decreasing and
has a finite m,, the relationship between ¥V and 4 must be roughly similar to
those obtained with (3) and (4): an S-shaped curve traversing the band between
(5) and (6) when A passes from o to co. Thus (1) can be expected to give a
good approximation in a large number of cases. The problem of finding a
cov.f. such that (1) is exactly valid for some range of 4 presents intricate
difficulties, see Whittle (1956).

The figures do not corroborate Smith’s observation that the wvariance
should be largely independent of the shape of the plot. However, the asymp-
totes depend on the area 4 only. The dependence on shape is therefore weak
for very small and very large values of 4. In these cases V varies approximately
as A-%, whereas the exponents reported by Smith (1938) mostly were numeri-
cally smaller than 1, see above. It should be added in this context that many
authors have given further evidence supporting ‘Fairfield Smith’s law” (1)
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(for examples from forestry see Strand 1957). However, contrary to Smith
(1938), several investigators have found a clear relationship between precision
and shape of plot, i.a. Christidis (1931), Justesen (1932), Kalamkar (1932),
and Bormann (1953).

Sammanfattning

Stokastiska modeller och deras tillimpning pa nigra problem i skogstaxering
och andra samplingundersskningar

Uppsatsen behandlar vissa statistiska problem, som inte kan utredas noggrant
utan matematiska termer och symboler. I denna sammanfattning skall emellertid
ett sddant framstdllningssitt inte nyttjas. Det blir ddrfér hir lika mycket fraga
om en i huvudsak icke-matematisk kommentar till uppsatsen som om en samman-
fattning.

Kap. 1. Inledning

Som 6verrubrik till uppsatsen har valts »Spatial variation». Ndgon god mot-
svarighet p4 svenska till denna term har forf. icke funnit. Vad for slags variation,
som avses, kanske dock framgar av féljande exempel:

lokaliseringen av mikroskopiska partiklar uppslammade i en vitska,

fordelningen av vintergator i rymden,

de geometriska monster, som aterfinnes pa kartor over t.ex. bergarternas ut-
bredning i en region,

det sitt pd vilket individ av ndgon vixt- eller djurart ar utspridda 6ver en lokal,

det monster som bildas av ojadmnheter pd ytan av en fabricerad artikel av metall,
tré, papper o. s. v.

For en mera begrinsad klass av fenomen har forf. tidigare anvint termen
stopografisk variations. Denna beteckning avser dock inte enbart vixlingar i
topografin i egentlig mening utan syftar dven pa variation i frdga om markens
bordighet, vegetationen, de klimatiska och geologiska faktorerna, o. s. v.

Den variation ver en yta eller i en rymd varom det 4r fraga hér, dr i allmédnhet
s& komplicerad och oregelbunden att man maste inskrianka sig till en statistisk
beskrivning. Detsamma, géller den variation man moter hos ménga slag av tidsserier
(meteorologiska, ekonomiska o. s. v.). I teorin for stokastiska processer, som intar
en framskjuten plats i modern matematisk statistik, har skapats en mangfald
modeller eller schemata for sddana serier. Denna teori har efterhand generaliserats.
Den kan nu sédgas innefatta modeller f6r fenomen som variera i en godtycklig
matematisk rymd. Utmirkande f6r dessa modeller dr att de innehaller stokastiska
(slumpmaissiga) moment som enligt en eller annan mekanism sprider sitt inflytande
i rummet eller tiden. Aven om man sillan kommer fram till en fullt realistisk
modell, kan man ofta finna goda approximationer. Teorin ger dartill begrepp och
termer som dr limpliga for en allmén klassificering och en 6verslagsméssig beskriv-
ning av olika foreteelser.

De i denna uppsats redovisade undersokningarna sammanhénger med statistiska
problem som moéter vid planliggningen av en stickprovsundersokning av typ
skogtaxering eller vid uppgorandet av filtforsoksplaner. Vid behandlingen av
dessa problem &r det visentligt att man har en i stora drag riktig férestillning om
strukturen hos variationen i det omrade undersskningen avser.
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Kap. 2. Stationdva stokastiska processev © R,

Kapitlet behandlar matematiska modeller av fenomen, som varierar i 1, 2, 3 eller
flera dimensioner, varvid variationen férutsittes vara stationir (homogen). Mycket
vagt uttryckt innebdr detta att variationen &4r av visentligen samma struktur i
alla delar av rymden.

Till varje punkt ¥ antages hora ett virde z(¥), som anger tillstdndet i punkten »
hos det fenomen som studeras (t. ex. h6jden 6ver havet i punkten ). De enklaste
egenskaperna hos en matematisk modell fér variationen hos z(x) kan uttryckas i
medelvirdet (matematisk forvdntan) och variansen for det enskilda virdet z(x)
och i korrelationen mellan vdrden z(¥) och 2(y), anknutna till tva olika punkter.
Antagandet om stationaritet betyder att medelvérdet och variansen idr oberoende av
x» samt att korrelationen endast beror pd det inbordes liget av punkterna x och
y. Om korrelationen endast beror pd avstandet 4r det fraga om en isotropisk modell.

Kap. 2 sysslar framfor allt med egenskaperna hos de »korrelationsfunktioners som
uttrycker korrelationens beroende av tva punkters inbordes lige. Ett stort antal
exempel pd isotropiska korrelationsfunktioner limnas.

Genom en integration av till punkter knutna virden z(x) kan man bilda summor
och medeltal som avser omraden (t. ex. genomsnittlig h6jd 6ver havet inom ett om-
rdde). Allmidnna formler meddelas fér varianser och korrelationer som avser dylika
medeltal.

Kap. 3. Ndgra speciella modelley

Kapitel 3 ger en illustration till den foregdende allménna framstéllningen genom
en tdmligen detaljerad beskrivning av ndgra speciella modeller. Det kan kanske
hir ricka med att peka pa nigra mycket enkla exempel dtergivna i fig. 1—3, sid.
49,50. Fig. 1 har erhdllits genom en grov mekanism fér en slumpmadssig uppdel-
ning av en plan region i tvad typer av omrdden. Fig. 2 och 3 visar »dvernormals
resp. »undernormal» utspridning av punkter 6ver ett plant omrade.

Kap. 4. Ndgra anmdvkningar om den topografiska variationen

Den empiriska motsvarigheten till en korrelationsfunktion 4r ett korrelogram,
som anger hur graden av samvariation i ett omrade beror pa avstand och riktning.
Man kan vinta sig att samvariationen skall vara stark mellan nirbeligna punkter
medan den bor fértunnas med vixande avstdnd. Detta har styrkts genom manga
undersokningar. I kap. 4 ldmnas ytterligare bekriftelse genom ett par korrelogram.

I kapitlet diskuteras dven hur korrelogrammet paverkas av observationsfel
och avrundningsfel samt effekten av »lokal integration» och konkurrens om ljus,
niring etc. (Exv. kan en plantas tillvixt sigas »integrera» bordighet och 6vriga
betingelser i omgivningen.) En avslutande paragraf behandlar fradgan om eventuell
periodicitet i den topografiska variationen. Om en stark periodicitet foreligger,
skulle en systematisk sampling (t. ex. ett regelbundet férband av ytor eller linjer)
kunna giva helt vilseledande resultat. Ett av Finney (1950) anfort exempel pa
periodisk variation i resultat frdn en linjetaxering synes dock ej vara 6vertygande,
vilket bl. a. utretts av Milne (1959).

Kap. 5. Om effektiviteten hos ndgra metoder att vilja samplingpunkier © planct

Man onskar uppskatta medeltalet av alla de vérden en funktion 2(x) antar i
ett plant omride, Q. Som uppskattning av detta medeltal tages medeltalet, 7,
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av de z-vidrden som observeras i ett dndligt antal samplingpunkter i Q. Uppskatt-
ningens precision beror pd hur funktionen varierar inom Q och pd det sitt pa
vilket samplingpunkterna placeras ut. En diskussion av precisionen hos z kan vara
vigledande dven for lokalisering av andra typer av samplingenheter, t. ex. provytor
och »trakter».

Det antas att z-vdardena kan betraktas som resultatet av en viss slumpmaéssig
procedur (z-vdrdena representerar med andra ord en realisation av en stokastisk
process). Det forutséttes vidare att denna mekanism karakteriseras av en isotropisk
och avtagande korrelationsfunktion. I kapitlet studeras vissa allmédnna typer av
sddana mekanismer. For detta slag av funktioner z(x) gores en del jamfdrelser
mellan olika metoder att lokalisera ett pa forhand fixerat antal samplingpunkter
i omradet Q.

Av de undersokta metoderna visar sig den systematiska samplingen i form av
ett regelbundet triangelférband ge hogst precision. Det regelbundna kvadrat-
forbandet ger emellertid endast obetydligt storre medelfel. Samplingfelen 4r siledes
i dessa fall mindre 4n i de undersokta fallen av slumpmaissig (srandom») sampling.
Vad betriffar s. k. stratifierad sampling, ger strata i form av regelbundna sexhor-
ningar den hogsta precisionen. En viss forbéttring kan astadkommas genom »djup
stratifiering» t. ex. med anordningar av typ »romersk kvadraty. Dessa jimiforelser
4r av intresse i de fall d4 samplingkostnaden huvudsakligen beror pa antalet
samplingenheter och inte pd lingden av den vidg som man maste folja for att
uppsoka samplingpunkterna (ex. sampling frin karta). Nagra experimentella
samplingundersokningar har givit resultat i ndgorlunda &verensstimmelse med
dem som erhallits med de teoretiska modellerna. For att pd rent empirisk vig fa
sdakra hallpunkter for ett val av samplingmetodik erfordras emellertid utomordentligt
omfattande undersokningar.

Vid sampling i filt 4r kostnaden rdtt mycket avhingig av den vigstricka man
méste tillryggaldgga for att uppsdka alla samplingpunkter. Kap. 5 innehdller
nagra data om viglingder (fagelvigen) for olika former av punktsampling. Medan
dessa lingder omedelbart kan anges i friga om sampling med regelbundna férband
av punkter, fordras det rdtt ingdende geometriska 6vervdganden for att man skall
kunna uppskatta motsvarande genomsnittliga lingder vid de olika formerna
av slumpmissig sampling. Om kostnaden beror endast pa viglingden visar det
sig att det basta av de undersokta systemen &r ett rektangelférband, dar punkterna
ligger odndligt tétt i ena riktningen, d. v.s. ett system av parallella och ekvidi-
stanta linjer.

Kap. 6. Diverse problem sammanhiovande med samplingundeysokningay

Den inledande paragrafen till kap. 6 avser att ge en bakgrund till de utred-
ningar som redovisas i kapitlet. D4 en del av dessa undersokningar knyter an till
den nu pigéende svenska riksskogstaxeringen, limnas dven uppgifter om den
samplingmetodik som tillimpas vid denna taxering.

I § 6.2 diskuteras sampling av en endimensionell population (tdnkbara tillimp-
ningar: sampling av en tidsserie, skogstaxering med parallella taxeringsbilten).
Det systematiska stickprovet dr, som pévisats av ménga forfattare, Sverligset
de slumpmaissiga metoderna for vissa typer av populationer. I paragrafen behandlas
dven de risker for snedvridning av den systematiska samplingens resultat som
kan uppkomma om en samplad tidsserie innehaller en mer eller mindre utpriglat
periodisk komponent.
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Ibland stéter man pd principiella svarigheter nédr det giller att bedoma ett
stickprovs noggrannhet med hjilp av det insamlade siffermaterialet. Ett sidant
fall behandlas i § 6.3, ndmligen stratifierad sampling med en samplingenhet per
stratum.

Vid vissa tillimpningar av »dubbel sampling» dr det sirskilt viktigt att man
forfogar over korrekta metoder {6r skattning av precisionen. Ett exempel 4r f6ljande.
For ett stort sampel av provytor gors en okuldr bestimning av t. ex. stamvolymen
enligt 6gonmétt (i filt eller pd flygbild). For ett delstickprov gbrs en noggrann
uppmitning, vilken anvindes till kalibrering av den okuldra bedémningens virden.
I detta fall kommer valet av metod foér precisionsuppskattningen att direkt pé-
verka dven volymsuppskattningen. Som antydes genom ett exempel i § 6.4 kan
en oldmplig medelfelsformel medféra att det kombinerade stickprovet utnyttjas
mycket daligt. Skattningen av volymen kan bli simre #&n den man skulle fi
av enbart delstickprovets métningar.

I paragraferna 6.5 och 6.6 behandlas en del metoder f6r uppskattning av medel-
felet till systematiska stickprov pad en linje resp. i ett plan. Dessa paragrafer,
liksom ett tidigare arbete av forf. (1947), avser fallet med ett »stort sampel». Till
komplettering ldmnas i § 6.7 anvisningar for det fall att stickprovet 4r si litet att
man méste taga hiansyn till kanteffekter.

I nidsta avsnitt, 6.8, diskuteras strakt-sampling», varvid med trakt avses en
sluten plan kontur (cirkel, kvadrat, rektangel o.s. v.). Fér den tidigare antydda
klassen av stokastiska processer har en del berdkningar utforts rérande precisionen
hos olika slag av trakter, se fig. 14, sid. 124. Det visar sig att av de undersckta
slutna figurerna med given omkrets ger cirkeln den hogsta precisionen. Kvadraten
ar i sin tur 6verldgsen en avlidng rektangel med samma perimeter. Om man vidgar
jamfcrelsen till att avse d&ven andra kontinuerliga kurvor 4n de slutna, synes det
rdta linjesegmentet (fig. 14, a) vara béttre 4n andra kurvor med samma lingd.
(De berakningar som avser cirkeln torde kunna ge en viss férestédllning om precisionen
hos regelbundna sex- och attahorningar.)

I § 6.9 jamfores tva olika metoder att placera ut provytor pa sidorna av en kvad-
rat, se fig. 15, (A) och (B), sid. 126. Jimforelsen ger ett svagt men klart féretrade
at system (A). En ndgot hogre precision erhilles med system (C), dir de sexton
ytorna ar placerade lings en &ttasiding med samma omkrets som kvadraterna i
(A) och (B).

Darefter foljer, i § 6.10, en diskussion av frdgan hur storleken av en trakt pé-
verkar samplingfelen. Framstédllningen knyter an till skattningar grundade pa
provytor placerade pd samma sitt som »sstubb-ytorna» vid den tredje svenska
riksskogstaxeringen, d.v.s. med 100 meters mellanrum lings periferin av en
kvadrat. Berdkningar har utforts for kvadrater med sidolingder varierande frin
1 200 till 2 200 meter. Om trakterna 4r utplacerade genom ett rent slumpmissigt
forfarande (»unrestricted random sampling»), synes man kunna rikna med en
varians (per trakt) som approximativt 4r omvint proportionell mot traktsidans
lingd. Berdkningarna dr grundade pd korrelationsfunktioner som erhallits vid
utjimning av korrelogram fran skogstaxeringsmaterial.

Vissa observationer vid skogstaxering giller arealens f6rdelning: dgoslag, bonitet
0. s. v. Man kan ifrdgasitta om en kontinuerlig registrering av sddana observationer
langs taxeringslinjer eller traktsidor &r ndmnvirt bittre dn en registrering som
inskrinkes till intermittenta punkter pa linjerna eller traktsidorna. Vissa berik-
ningar har utférts pa grundval bl. a. av grafiskt utjimnade korrelogram (§ 6.11).



49:5 SPATIAL VARIATION 139

De tycks ge vid handen att man (med den stickprovstithet man har vid de
svenska riksskogstaxeringarna) torde vinna féga genom att observationer &ver
arealfordelningen liggs pa kortare inbdrdes avstand 4n négot hundratal meter.

Ett viktigt problem vid skogstaxering och vid sampling av &kerjord etc. ir
vilken form och storlek de undersdkta provytorna skall ha. Empiriska undersok-
ningar har visat att sambandet mellan variansen och provytans storlek ungefirligen
foljer en formel, som brukar bendmnas »Fairfield Smith’s lagy. I den avslutande
paragrafen, 6.12, visas att man erhaller resultat i ganska god Overensstimmelse
med denna lag dven dd observationerna avser matematiska modeller av det slag
som behandlats i detta arbetes tidigare avsnitt. :
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