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Digestion and metabolism of carbohydrates in fish 

Abstract 

This thesis deals with the digestion and metabolism of carbohydrates in Arctic charr, 

Eurasian perch and tilapia. Two sources of carbohydrates, native starch (wheat) and 

chitin (zygomycete biomass), were evaluated.  

Gut tissue of Arctic charr displayed significant chitinase activity, of both 

endo- and exo-chitinase forms. Moreover, the distribution pattern along the 

gastrointestinal tract of Arctic charr differed between endo-chitinase and exo-chitinase. 

The endo-chitinase activity in stomach tissue and in the distal intestine was several 

hundred-fold higher than the exo-chitinase activity in stomach tissue. The greatest exo-

chitinase activity was found in the distal intestine fed a zygomycete-based diet. 

Disturbed intestinal integrity and increased uptake rate of the amino acid lysine were 

observed in the distal, but not proximal, intestine of fish fed the zygomycete-based 

feed. 

A 
1
HNMR metabolomics approach revealed no differences in metabolic 

profile in liver tissues of Arctic charr fingerlings fed a zygomycete-based diet and a 

fish-meal based diet.  

The inclusion of wheat starch did not affect α-amylase activity in gut tissue of 

Arctic charr and Eurasian perch. Overall, α-amylase activity was correlated with the 

trends obtained for starch digestibility. The apparent digestibility (AD) of crude 

protein, starch, crude fat and energy differed between the fish species, with on average 

higher values for all parameters in Eurasian perch than in Arctic charr. Within fish 

species, dietary starch level had no effect on AD of dry matter, crude protein, crude fat 

and energy.  

Studies of the metabolic response to wheat starch inclusion in Arctic charr 

and tilapia using 
1
HNMR base metabolomics indicated metabolic effects in tilapia, 

while inclusion of starch in the diet of Arctic charr resulted in partial or negligible 

metabolism effects. Thus there are species-related differences in the metabolic response 

to dietary starch inclusion. 
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1 Introduction 

Aquatic food products are an integral part of the human diet in many parts of 

the world and significantly contribute to the supply of high quality protein. 

Fish and fish products are obtained by fishing and by cultivation in available 

water resources. Global annual aquaculture production has been increasing at 

an average rate of 2.9% during the past four decades (FAO–FISHSTAT, 2012). 

Feed supply and feed costs are amongst the greatest challenges for the 

development of sustainable fish farming. Therefore, the aquaculture industry is 

searching for feed ingredients that can be used to formulate cheap fish feed 

(Stone, 2003). It was estimated that fish meal and fish oil contribute 75% of the 

protein and 35% of the energy in aquaculture feed (Tacon, 1999). The 

increasing costs and demand for fish meal and fish oil are a particular obstacle 

to achieving a long-term sustainable increase in fish production, so alternative 

feed sources that can replace fish meal and fish oil are required (Kristofersson 

& Anderson, 2006). These alternative feed sources possible to use can be of 

varying types and originate from plants, animals or microbes (Camacho-

Rodriguez et al., 2013; Slawski et al., 2013; Wang et al., 2013; Yun et al., 

2013). Carbohydrates are often cheaper dietary energy sources than protein and 

lipids. However, fish species show different ability to digest and metabolise 

alternative dietary components, in particular the carbohydrate fraction 

(Dabrowski & Guderley, 2002; Hemre et al., 2002). The digestion and 

metabolism of feed ingredients is dependent on fish species and on the source, 

inclusion level and treatment of the ingredient (Krogdahl et al., 2005; Stone, 

2003). Knowledge of the capacity to utilise carbohydrates in the diet is an 

essential pre-requisite for appropriate formulation of fish feed (Wilson, 1994). 

This thesis focuses on digestion and metabolism of carbohydrates 

from cereals, in the form of wheat starch, and from micro fungi, in the form of 

chitin. Both sources were used in unprocessed form in order to assess the 
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capacity of the various fish species studied to utilise the native forms of the 

two carbohydrates.     
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2 Background 

The human population is continually increasing world-wide and is projected to 

reach 10-12 billion people by 2050 (Welch & Grahm, 1999). This poses major 

challenges to increase food production in order to feed the growing population. 

In this context, the aquaculture sector has great potential, as it can provide 

nutritious and high-quality food products for humans (Diana, 2009). 

2.1 Aquaculture production in the Nordic countries 

Commercial rearing of Arctic charr (Salvenius alpinus), Atlantic salmon 

(Salmo salar), European eel (Anguilla Anguilla), Eurasian perch (Perca 

fluviatilis), rainbow trout (Oncorhynchus mykiss), pike perch (Stizostedion 

lucioperca), Nile tilapia (Oreochromis niloticus), sturgeon (Acipenseriformes) 

and European lobster (Homarus gammarus) is increasing in the Nordic 

countries (Dalsgaard et al., 2013). The natural environmental and ecological 

conditions adversely influence the aquaculture industry in the Nordic countries 

(Martins et al., 2010). Therefore, production of cost-effective feed for the 

commercial rearing of fish is essential for sustainable aquaculture in this part 

of Europe.  

2.2 Fish feed     

The cost of aquaculture production can be reduced by efficient feed 

formulation (Ganguly et al., 2013).  Fish have different dietary requirements 

and a varying capacity to utilise available feed resources, largely determined 

by their natural feeding habitats (Glencross et al., 2007). The current diets for 

most farmed fish are based mainly on fish meal (Gatlin et al., 2007). Fish meal 

is the main dietary protein source in aquafeeds and was estimated to constitute 

20-60% of fish diets (Glencross et al., 2007; Watanabe, 2002). However, the 
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availability of fish meal is limited and it is an expensive component of 

formulated aquafeeds (Gatlin et al., 2007). Therefore, fish meal is the major 

constraint for long-term sustainable development of aquaculture production.  

 

2.2.1. Feed and feeding practices in Arctic charr 

Arctic charr is a carnivorous, cold water salmonid fish well known for its 

quality of texture and taste (Cyprian et al., 2008). Arctic charr shows rapid 

growth in fresh water conditions and has great potential for commercial 

production (Wandsvik & Jobling, 1982; Gjedrem & Gunnes, 1978). Generally, 

the dietary protein requirements are reported to be similar to those of other 

salmonids (Jobling & Wandsvik, 1983). High growth rates have been achieved 

on diets containing 44-54% protein and 20% lipid in Arctic charr (Tabachek, 

1986).  

 

2.2.2. Feed and feeding practices in Eurasian perch 

Eurasian perch (Perca fluviatilis) is a carnivorous fish and has been recognised 

as a promising aquaculture candidate (Kestemont & Mélard, 2000). In most 

cases, the feed formulated and designed for perch has been similar to that used 

for salmon, trout or sea bass (Fontaine et al., 1997). However, these diets have 

failed to meet the nutritional requirements of Eurasian perch (Melard et al., 

1996). Generally, it is believed that perch has the potential and ability to 

metabolise carbohydrates efficiently (Borrebaek & Christophersen, 2000). For 

example, it has been reported that perch has the ability to utilise dietary 

carbohydrates (20-40%) and fibre (15%) (Allan et al., 2000). However, the 

utilisation and digestion abilities in silver perch could be influenced by type, 

source and physical state of dietary carbohydrates (Stone et al., 2003).  

  

2.2.3. Feed and feeding practices in tilapia 

Tilapia is an omnivorous, warm water fish widely distributed in many 

countries around the world (Trewavas, 1983). It has been reported that tilapia 

has greater potential to utilise starch than carnivorous fish species (Krogdahl et 

al., 2005). Several studies have reported that an increase in dietary 

carbohydrate content improves metabolism and growth in tilapia (Azaza et al., 

2013; Shiau, 1997; Tung & Shiau, 1993). Improved growth was observed in 

tilapia fed diets with 10-40% inclusion of starch (Amirkolaie et al., 2006; 

Anderson et al., 1984). 
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2.3. Protein sparing effect of carbohydrates  
Protein is usually the most expensive ingredient in the formulated aquafeed. 

Thus, feed production and utilisation per unit cost is of highly significant in the 

development of an economically sound aquafeed. Carbohydrates are easily 

available and inexpensive sources in formulated feed which are efficiently 

utilised in several fish species (Zhao et al., 2011; Gao et al., 2010). 

Carbohydrates are of great value as they have protein sparing effects in 

salmonid and tilapia fish species (Azaza et al., 2013; Hemre et al., 1995). On 

the other hand, nutrient requirements are specific for different fish species with 

respect to protein and carbohydrates (Wilson, 1994).        

  

2.4. Alternative ingredients in fish feed 

An adequate and long-term sustainable feed supply is a critical for fish culture. 

Moreover, the cost of feed ingredients is of major concern, as it constitutes the 

greatest production cost (40-60%) (Gatlin et al., 2007). Most commercial fish 

feeds contain fish meal (30-70%) as a major source of protein (Rumsey, 1993). 

The high cost of fish meal used in aquafeeds necessitates its replacement with 

cheaper alternative feed ingredients. In recent studies some conventional, 

widely available alternative dietary ingredients such as lupin kernel meal 

(Molina-Povedaa et al., 2013; Zhang et al., 2012b) soybean meal (Rossi et al., 

2013) yeast extract (Trosvik et al., 2013), corn germ meal (Li et al., 2013a), 

sea cucumber meal and canola protein (Slawski et al., 2013) have been tested 

in various cultured fish species. It was shown that these feed ingredients could 

successfully be used in formulated aquafeed as a replacement for fish meal. 

However, these ingredients are also used for human and farm animal 

consumption. With this in mind, use of carbohydrate by-products such as spent 

sulphite liquor from the paper pulp industry in the formulation of aquafeed 

would be of great value as a renewable resource for sustainable aquaculture 

production (Kiessling, 2009). It has been shown that high biomass yield can be 

achieved by cultivation of the fungus Rhizopus oryzae on paper pulp spent 

sulphite liquor (Taherzadeh et al., 2003). 

 

2.4.1. Carbohydrates 

Carbohydrates are the main source of energy in most animal diets and are 

classified based on the constituent sugars, structure, composition, degree of 

polymerisation and glycosidic linkage into e.g. non-monomer carbohydrates 

such as oligosaccharides (lactose, maltose), polysaccharides (starch, chitin, 

cellulose) and monomer sugars (glucose, fructose) (Englyst & Hudson, 1996). 

Carbohydrate properties, such as digestion and absorption rate, viscosity, 
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structural features, water-binding capacity and fermentation ability in the GI 

tract, are of vital importance for their nutritional effects (Asp, 1996). Starch is 

an energy storage nutrient in wheat and constitutes approximately 60% of the 

total grain (Novus, 1992) and is composed of glucose molecules linked 

together by α-glycosidic bonds and this linkage of glucose units influence the 

enzymatic activities in fish (Smith, 1989). Dietary carbohydrate inclusion in 

the several fish species appears to produce positive effects on growth and 

digestibility (Li et al., 2013b; Hung et al., 2003; Watanabe, 2002). However, 

using the appropriate level of carbohydrates in aquafeeds is of great 

importance, because if the appropriate amount of carbohydrates is not 

provided, this may have negative effects on nutrient utilisation, growth, 

metabolism and health (Li et al., 2012; Erfanullah & Jafri, 1998). 

 

2.4.2. Chitin 

Chitin is a heteropolysaccharide comprising β-(1-4) linked N-

acetylglucosamine molecules and is the second most abundant compound 

found around the globe (Flach et al., 1992). This polymer is found and 

synthesised in various living organisms (Rinaudo, 2006; Kumar, 2000). 

Naturally, chitin contained as a supporting material in arthropods, fungi, 

yeasts, sponges, sea corals, crustaceans, crabs, shrimp, lobster, krill and prawn 

(Mathur & Narang, 1990). Waste production in the form of crustacean shells 

and other aquatic waste is estimated to approximately 1.2×10
6 

tons annually, 

which is a major environmental concern (Knorr, 1991). It has been reported 

that inclusion of chitin in aquafeed results in improved growth rate in some fish 

species (Tibbetts & Lall, 2013; Harikrishnan et al., 2012). Moreover, 

supplementation of chitin or chitosan in the diets of kelp grouper and orange-

spotted grouper fish enhances the immune response and affords disease 

resistance against pathogens (Harikrishnan et al., 2012; Zhang et al., 2012a).  

 

 

2.5.  Utilisation of carbohydrates  

Fish have to adopt a range of strategies for coping with food deprivation or 

variations in their natural diet. In this context, the different fish species display 

metabolic patterns which meet their dietary requirements (Bellamy, 1968). 

Digestion and metabolism of dietary carbohydrates varies and depends upon 

several factors in addition to fish species, such as environmental conditions, 

and type and source of carbohydrates (Hutchins et al., 1998; Grisdale-Helland 

& Helland, 1997; Gaylord & Gatlin, 1996). It is generally believed that warm 

water fish species utilise carbohydrates more efficiently and at higher levels 



17 

than cold water and marine fish species (Wilson, 1994). Omnivorous fish 

species such as Nile tilapia and common carp, which feed at low trophic levels, 

can efficiently utilise high dietary levels of carbohydrates (30-50%) in 

comparison to the high trophic level carnivorous fish species (Enes et al., 

2011; Enes et al., 2006; Hemre et al., 2002; Wilson, 1994). In fact, no 

particular dietary carbohydrate level has been defined for fish. However, some 

carbohydrates must be supplied in aquafeed in order to maintain the normal 

growth of fish (Peragon et al., 1999). Interestingly, fish have similar 

carbohydrate metabolic pathways as other mammals, but lower carbohydrate 

tolerance than mammals (Moon, 2001).   

 

2.5.1. Digestibility 

The nutritive value of the feed depends on the digestibility of each ingredient 

in the diet, but also on the interactions among ingredients (Alexis, 1990). The 

digestibility of starch varies in fish species in the dietary levels. For instance, in 

Atlantic halibut the digestibility of starch decreases from 84 to 53% when the 

dietary inclusion level is increased from 8 to 17% (Grisdale-Helland & 

Helland, 1998). Moreover, some fish species show reduced growth rates when 

fed carbohydrate-free diets (Wilson, 1994). Digestible efficiency of digestible 

and non-digestible carbohydrates varies in herbivorous and carnivorous fish 

species (Panserat et al., 2009; Krogdahl et al., 2005). The herbivorous fish 

species can utilise part of the non-starch carbohydrates in the diet due to 

symbiosis with the gut microbiota. However, most fish species are unable to 

utilise non-starch carbohydrates properly because of lack of adequate gut 

microbiota for their digestion (Krogdahl et al., 2005). 

Feed ingredient digestibility can be assessed by two techniques, i.e. 

the direct method and the indirect method. In the direct method, total feed 

consumed and faeces voided from the fish are quantified (NRC, 1993; Smith, 

1971). The method can be used in determining digestible energy, metabolisable 

energy and carbon and nitrogen balance (NRC, 1993). The indirect method is 

involving the use of a non-digestible marker (e.g. chromium oxide or titanium 

dioxide) and spot-sampling of excreta to measure the digestion coefficients for 

energy and dietary components (NRC, 1993; Cho et al., 1982).         

 

 

2.5.2. Enzymology  

Enzymes are protein in nature and comprise biological molecules which are 

involved in metabolic processes in living organisms (Grisham & Reginald, 

1999). The efficiency of feed utilisation depends on physiological capacity to 

digest and transform ingested nutrients (Furne et al., 2008). The digestion and 
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absorption of nutrients are mostly dependent on enzyme activities involved in 

breakdown and assimilation of food (Klein et al., 1998). Therefore, analysis of 

enzyme activities is a convenient and reliable technique that can provide 

comprehensive information relating to digestive physiology and nutritional 

conditions in the fish (Bolasina et al., 2006). The information obtained can be 

helpful for the design of feeding strategies and formulation of fish diets 

(Verreth & Segner, 1995). Digestive enzyme activities in fishes are associated 

with feeding ecology and composition of diet (Fernandez et al., 2011). In 

general, herbivorous fish species possess greater carbohydrate enzyme activity, 

while carnivorous fish species exhibit higher proteolytic enzyme activity 

(Hidalgo et al., 1999).    

  

2.5.2.1.  Amylase  

The main digestive enzymes involved in the metabolism of starch α-amylase 

and α-glucosidase. These enzymes hydrolyse the α-glycoside linkage of starch 

to produce glucose (Mizutani et al., 2012; Fernandez et al., 2011; Kuzmina, 

1996). Usually, amylase activity is varies with different developmental stages 

of fish. Amylase is synthesised in the pancreas and is secreted into the gut 

(Fish, 1960), where most of the enzyme is found, and absorbed into the mucosa 

of the intestine and the pyloric ceca (Munillamoran & Stark, 1990; Ugolev et 

al., 1983). The actual amylase activity generally depends on the natural diet of 

the different fish species (Hidalgo et al., 1999; Hofer et al., 1982). However, 

amylase activity can be influenced by degree of filling of gut, nutritional status, 

temperature and adaptive mechanisms induced by the diet (Kuzmina, 1996; 

Bitterlich, 1985; Takii et al., 1985). Generally, omnivorous fish species possess 

higher amylase activity than carnivorous fish. For example, carp, goldfish and 

trench show higher amylase activity than seabream, eel and trout (Hidalgo et 

al., 1999). It has been reported that inclusion of dietary starch result in increase 

in amylase activity in sea bass and yellow croaker (Yu et al., 2012; Peres et al., 

1996).    

 

2.5.2.2. Chitinases 

Chitinolytic enzymes are involved in degradation of chitin into oligomers 

composed of N-acetyl-glucosamine. Chitinase plays a significant role for the 

digestion of chitin containing food in fish (Gutowska et al., 2004) and host 

defence against chitin-coated pathogens (Okada et al., 2013; Zhang et al., 

2013). In vertebrates, chitinase is found in various organs such as stomach, 

intestine, spleen, kidney and macrophage cells (Ikeda et al., 2013; Lindsay et 

al., 1984). In fish stomach, chitinases are involved in the degradation of chitin 

and prevention of fragment blockage in the intestine (Lindsay et al., 1984). 
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Chitinases are comprised of two main groups, i.e. endo-chitinase and 

exo-chitinase (Nord & Wadstrom, 1972; Wadstrom, 1971). Endo-chitinase is 

involved randomly catalysis the breakdown of chitin to produce chitin to 

produce chitin oligosaccharides (Ikeda et al., 2009; Kang et al., 1999). 

Exochitinase is involved in the cleavage of chitin into monomers of N-

acetylglucosamine (Kang et al., 1999).  

 

 

2.6. Gut physiology  
Gut functions in animals are of vital importance for their performance, health 

and survival. The physiology of each gut region must functional properly in 

order to maintain food digestion and absorption processes (Jutfelt, 2011). 

Intestinal barriers are involved in preventing the penetration of dietary 

components, allergens and pathogens into the mucosa (Jutfelt, 2011; Martin-

Venegas et al., 2006). Therefore, maintaining the intact integrity of the primary 

barriers is essential for healthy fish production and reduced infection 

susceptibility. Harmful diet components can lead to adverse effects on 

intestinal barrier functions and local inflammation (Knudsen et al., 2008; 

Jutfelt et al., 2007).  

Intestinal barrier functions can be assessed using the Ussing chamber, 

which is a standard technique to investigate secretion and absorption of ions 

and intestinal physiology. The method is a valuable tool for the quantitative 

and qualitative analysis of transportation of various nutrients and ions across 

the intestinal epithelium (Wright, 1993; Stevens, 1964).             

 

 

2.7. Metabolomics  

Metabolomics has emerged as a developing discipline that deals with chemical 

and biological processes associated with metabolites. The discipline provides a 

promising and valuable tool for high-throughput identification and 

quantification of several metabolites in biological systems, with high accuracy 

and quality in comparison to traditional approaches used in past decades (Dunn 

& Hankemeier, 2013; Dunn et al., 2013).  

Two highly sophisticated techniques, i.e. mass spectrometry (MS) and 

nuclear magnetic resonance (NMR) spectrometry are currently being applied in 

the field of metabolomics research. The techniques can be used to identify the 

thousands of metabolite(s) of interest in the sample, with limited or without 

prior information of composition of the sample (Dunn et al., 2013). The 

techniques permit accurate identification of small molecules (<1500 Da) in 

biological samples that can be related to nutritional interventions (Wishart et 
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al., 2007; Moco et al., 2006) and provide information that is not possible to 

achieve with previous traditional methods. NMR is being extensively applied 

in food analysis and food processing (Marcone et al., 2013), e.g. for edible oil 

(Barison et al., 2010), fish (Wagner et al., 2014; Nestor et al., 2010), beef 

(Pereira et al., 2013), milk (Maher et al., 2013), cheese (Mulas et al., 2013), 

tomatoes (Iglesias et al., 2014), coffee (Wei et al., 2012) and bread (Sivam et 

al., 2013). However, the high costs of instrumentation and lower sensitivity are 

the major concerns of the 
1
HNMR approach (Marcone et al., 2013; Sitter et al., 

2006). 
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3 Aims of the thesis 

The overall objective of this thesis was to investigate the digestion and 

metabolism of carbohydrates in Arctic charr, tilapia and Eurasian perch. This 

was achieved through performing in vivo experiments with fish fed different 

diets, and by collecting faecal and tissue specimens for analysis of enzyme 

activities, digestibility characteristics, gut function and concentration of 

metabolites.  

 

The specific aims were:  

 

 To investigate the ability of Artic charr to utilise chitin/chitosan rich 

diets through measuring chitinolytic activity and to evaluate the effect 

of inclusion of dietary zygomycetes on intestinal primary barrier 

function in Arctic charr.  

 To compare the metabolic finger-prints in the liver of Arctic charr fed 

a fish meal-based diet, a zygomycete-based diet and a commercial 

diet.  

 To evaluate the metabolic responses in Arctic charr to inclusion of 

native wheat starch in the diet with tilapia as a reference.  

 To investigate the effect of diets containing different levels of native 

wheat starch on digestibility and amylase activity in Arctic charr and 

Eurasian perch.  
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4 Materials and Methods 

4.1 Experimental design  

Four experiments were performed, with the different diets fed to triplicate 

groups (Papers I, II and III) and quadruplicate groups (Paper IV) of fish. 

Before the start of each experiment, the fish were acclimatised. At the start and 

end of the experiments, the fish were individually weighed. The numbers of the 

fish were equally distributed into tanks for each treatment in the different 

experiments. The fish were randomly allocated to the experimental diets (two 

diets in Paper I; three diets in Papers II and III; six diets in Paper IV).  

4.2 Experimental diets 

The experimental diets used for studies of chitinase activity, metabolic profile 

and barrier function were iso-nitrogenous fish meal-based diets, with or 

without zygomycete biomass (Papers I and II) and a diet standard commercial 

(ST) (Skretting Nutra Parr) (Paper II). Three iso-nitrogenous diets containing 

0, 10 and 20 % of native wheat starch were formulated to investigate the 

metabolic profiles in Arctic charr (Salvelinus alpinus) and tilapia (Oreochromis 

mossambicus) (Paper III). Six diets containing 0 (control), 10, 15, 20, 25 and 

30 % of native wheat starch were formulated for assessment of digestibility 

and amylase activity in Arctic charr and Eurasian perch (Perca fluviatilis) 

(Paper IV).  

4.3 Fish rearing  

Arctic charr fingerlings (initial body weight 105 ± 0.5 g in Paper I and 97 ± 22 

g in Paper II) were reared at a water temperature of 6 ± 1
o
C. Fingerlings of 

tilapia (initial body weight 15 ± 0.5 g) were reared at a water temperature of 28 



 

 

24 

±1 
o
C (Paper III). Fingerlings of Arctic charr (initial body weight of 86 ± 7 g) 

were reared at a water temperature of 10 ± 1
o
C (Paper III). Fingerlings of 

Eurasian perch (initial body weight of 190 ± 0.5 g) were reared at a water 
temperature of 21 ± 1

o
C (Paper IV). Arctic charr fingerlings (initial body 

weight of 102 ± 7 g) were reared at a water temperature of 10 ± 1
o
C (Paper 

IV). The fish were fed twice daily with a total daily allowance of 2% of body 

weight during the experiment. The fish accepted the experimental diets and no 

mortality were observed during the entire experiments. 

4.4 Sample collection 

At collection of tissue specimens for analysis, the fish were anesthetised with 

Tricane methane sulphonate (MS-222) solution (50 mg/L) and killed with a 

sharp blow to the head. The tissues (liver, stomach, pyloric caeca, proximal 

and distal intestine) were dissected from the fish and immediately transferred 

into liquid nitrogen (Papers I-IV). All liver tissue samples were kept frozen at -

80 
o
C for further NMR (nuclear magnetic resonance) analyses. The distal 

intestine was dissected and the faecal material collected (Paper IV). A pooled 

sample from each tank was freeze-dried, finely ground, and stored at -80 
o
C for 

further analyses.  

4.5 Determination of enzyme activity 

4.5.1 Chitinase activity   

Chitinase activity in gut samples was determined using chitin from crab shell 

(Sigma # C9752) and 4-nitrophenyl N-acetyl-β-D-glucose aminide (Sigma# 

N9376) substrates (Paper I). The chitinase activity was measured according to 

the recommendations of the manufacturer (Sigma Chemical Co., St. Louis, 

Missouri 63103, USA). 

4.5.2 Amylase activity  

The amylase activity in the proximal and distal intestine of the fish species was 

measured using the Ceralpha kit (Megazyme K-CERA, Wicklow, Ireland) 

according to the Ceralpha procedure (Sigma, St. Louis, MO, USA) (Paper IV).  

4.6 Biomass analysis  

The glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) contents in the 

experimental diets were measured (Paper I) according to previously described 

methods (Ferreira et al., 2012; Zamani et al., 2008).   
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4.7 Ussing chamber experiment   

Lysine across the intestinal epithelial tissues was measured using a set of 

custom made Ussing chambers, especially designed for fish intestines (Sundell 

et al., 2003). The intestinal segments were mounted into the Ussing chambers 

and electrical characteristics such as transepithelial potential (TEP), 

transepithelial resistance (TER), short circuit current (SCC) and transepithelial 

potential (TEP), were determined as described previously (Sundell & Sundh, 

2012).   

4.8 NMR analyses 

The samples for NMR were prepared (Papers II and III) as described 

previously (Moazzami et al., 2011; Atherton et al., 2006). The NMR spectrum 

of liver tissue extracts was determined at 5-mm broad-band probe using a 

Bruker AV 600 NMR spectrometer (Karlsruhe, Germany). NMR spectra were 

measured at 298 K with 264 scans and 32,764 data points with a spectral width 

of 6009.61 Hz. Standard one-dimensional 
1
HNMR spectra were obtained using 

water pre-saturation for high peak pulse sequence at 2.72 s (Paper II) / 1.82 s 

(Paper III) and relaxation delay for 5.0 s (Paper II) /4.0 s (Paper III). NMR 

spectral data were processed using Bruker Topspin 1.3 software and were 

Fourier-transformed after multiplication by a line broadening of 0.3 Hz and 

referred to TSP (sodium-3-(trimethylsily)-2,2,3,3-tetradeuteriopropionate) at 

0.0 ppm (Papers II and III). The constituent metabolites were identified and 

quantified and the data analysed statistically. Metabolic profiling (Paper II) and 

identification of 
1
HNMR signals of metabolites were performed using 

ChenomX software (Evaluation version, ChenomX Inc., Canada). 

4.9 Chemical analyses  

The chemical composition of feed ingredients was determined using standard 

methods (Cowey & Froster, 1971). The dry matter (DM) content of feed and 

faeces was measured by drying at 105
o
C for 24 h; total nitrogen (N) content 

was determined using the Kjeldahl method and crude protein (CP) calculated 

as N x 6.25; fat content was analysed using the Soxhlet method. Ash content 

was determined using incineration in a muffle furnace at 550 
o
C for 12 h. Gross 

energy (GE, MJ Kg
-1

) was determined using a bomb calorimeter (Parr 6300, 

Parr Instrument Company, Molin, IL, USA).  
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4.10 Statistical analyses  

Chitinolytic activity and Ussing chamber data were analysed using three-

factorial analyses of variance (ANOVA) in a general linear model (GLM) 

(SAS, Cary NC, USA)(Paper I). In Paper III, significant metabolite signals 

were analysed using two-factor orthogonal ANOVA and univariate comparison 

was performed using Bonferroni correction (p=0.05 divided by number of 

variables). The data on growth performance, digestibility, enzyme activity and 

metabolic profiles were analysed statistically using the MINITAB® statistical 

software package (Version 16; Minitab, State College, Pennsylvania) under 

Proc GLM (Papers I-IV).        
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5. Summary of results   

5.1  Influence on growth performance, chitinolytic activity and 
intestinal permeability of feeding fish zygomycete based and 
fish meal-based diets (Paper I) 

Body weight of Arctic charr was increased by 15 ± 3% (mean ± SD) during the 

4-week experimental period. The fish did not show differences in growth 

performance between the diets (interaction between diet and time, p=0.592). 

Also, there was no difference observed between fish tanks (interaction between 

tank and time, p=0.766).  

The highest exo-chitinase activity was observed in the distal intestinal 

tissue of fish fed the zygomycete-based diet (FZ) and lowest in the stomach 

tissues fed diet fish meal-based (FM). Differences in exo-chitinase activity 

were observed in the GI tract region (p<0.001), with greater activity in the 

distal intestine compared with other GI regions. Overall, there were no 

significant dietary differences (P>0.05) between the two diets on exo-chitinase 

activity in the gut tissues of Arctic charr. However, there was tendency for an 

interaction between diet and GI region (P=0.061). The highest endo-chitinase 

activity was noted in stomach and the lowest in proximal intestine of fish fed 

diet FM. Endo-chitinase activity was not influenced by diet (P>0.05). 

However, an interaction was observed between diet and GI region (p<0.001). 

The endo-chitinase activity in the stomach tissue was higher in fish fed diet FM 

than diet FZ, whereas no influence was found in the pylorus, proximal and 

distal intestine.   

The paracellular permeability (Papp) was similar in the two dietary 

treatments (p>0.05). However, for the factor “region”, the permeability of the 

distal intestine was higher than that of the proximal intestine (p<0.001) (Paper 

I). There was tendency towards an interaction between the factors diet and 

intestinal region. There was a tendency for reduced TER in the distal intestine 
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of fish fed diet FZ compared with diet FM (p=0.06), while the proximal 

intestine was unaffected. Multiple post hoc comparison revealed that diet FZ 

affected Papp and promoted lysine transport in the distal intestine (p<0.05), 

whereas there was no dietary effect on lysine uptake in the proximal intestine.    

5.2. Metabolic profile in fish fed zygomycete-based and fish 
meal-based diets (Paper II)  

PCA analysis was performed on liver samples collected from Arctic charr fed 

diets FZ, FM and ST. The PCA score scatter plot with first versus second 

components exhibited no apparent clustering difference in the different dietary 

treatments. However, OPLS-DA analysis revealed variation between diets with 

regard to the pre-defined classes of metabolites. OPLS-DA models were fitted 

including two diets at each time (FM vs. FZ, FM vs. ST, and FZ vs. ST). The 

model revealed that diets FM and FZ were not significantly (p ≥ 0.05) different 

using CV-ANOVA. However, the other models, i.e. FM vs. ST, and FZ vs. ST 

were found significant using CV-ANOVA (p ˂ 0.05). OPLS-DA models 

indicated that the diet ST apparently separated from the FM and FZ diets. 

The comparative analysis of diet FM with diet ST revealed 

discrimination of metabolites such as acetate, creatine, choline, formate, SN-

glycero-3-phosphocholine and an unknown signal were present at higher levels 

in diet FM than diet ST. Whereas, asparagine was contained in lower level in 

diet FM than diet ST. The metabolic comparative analysis performed between 

FZ and ST diets exhibited the discrimination of metabolites, e.g. lysine, β-

alanine, creatine, formate, glucose, inosine, SN-glycero-3-phosphocholine and 

an unknown signal were present in higher level in diet FZ than diet ST. 

Whereas, asparagine and succinate were observed lower level in diet FZ than 

diet ST.  

5.3. Metabolic profile in Arctic charr and tilapia fed diets 
containing different rates of wheat starch (Paper III) 

In tilapia, the PCA analysis revealed there was no clear trend of separation 

among the clusters on the different diets. In Arctic charr, apparent clustering 

separation was observed among the dietary starch levels. The PCA score 

scatter plot indicated that treatments exhibited a clear variation in the clusters 

related to diets when compared across the fish species. The OPLS-DA score 

plot showed clear separation among the class components of the diets fed to 

tilapia and Arctic charr. There were significant interaction observed between 

treatment and species. In tilapia, the diet containing 20% native wheat starch 
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resulted in significant effects on the concentration of some metabolites, e.g. 

ADP, creatine, glutamine, glycine UDP-glucuronate and O-phosphocholine. In 

Arctic charr, significant high concentrations of 3-aminoiso-butyrate, 

asparagine, alanine and glutamine and lower concentration of choline and 

glucose were present in 10 and 20 % native wheat starch. 

5.4. Effect on amylase activity and digestibility characteristics 
in Arctic charr and Eurasian perch of feeding graded 
levels of wheat starch diets (Paper IV)  

The AD of DM in Arctic charr was higher with a diet containing 10% wheat 

starch (diet WS10) than 30% wheat starch (diet WS30) and control diets. In 

Eurasian perch, the AD of DM was higher in diets WS10 and a diet containing 

15% wheat starch (diet WS15) than control diet. There were no significant 

differences in the AD of CP between graded levels of wheat starch inclusion in 

the diets of the two fish species. The AD of DM, CP, ether extract (EE), starch 

and GE differed between the fish species (p<0.001), with consistently lower 

AD values in Arctic charr than in Eurasian perch. The most marked difference 

in AD between the fish species was observed for wheat starch, where the 

average AD differed by 21.6% units. 

The α-amylase activity was greater in Eurasian perch than in Arctic 

charr. It was revealed that the proximal region contained higher α-amylase 

activity than the distal intestine (p<0.001). However, within species, α-amylase 

activity in gut tissues did not differ at different wheat starch inclusion levels. 
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6. General discussion   

6.1. Biomass based diet in relation to growth in Arctic charr 

The success of large scale aquaculture farming in the future chiefly be based on 

the formulation of diets that can be prepared from cheap feed ingredients 

(Higgs et al., 1995). This thesis focused on the utilisation and metabolism of a 

renewable natural source of biomass (zygomycete) when included in the diet of 

Arctic charr (Papers I and II). The findings support those of previous study in 

Atlantic salmon showing a good growth response when fed a mycelium 

biomass based diet (Bankefors et al., 2011). Steelhead fish showed 

significantly higher growth when fed a diet containing chitin than when fed 

diets based on fish meal, squid meal and canthaxanthin (Lellis & Barrows, 

2000). Also, dietary chitin show improved growth response and immune 

response in ovate pompano (Lin et al., 2012). In fact, it is known that chitin 

allows protein sparing effects in the diet of juvenile haddock and turbot 

(Tibbetts & Lall, 2013; Kroeckel et al., 2012) and fry tilapia (Fall et al., 2013). 

In contrast, dietary supplementation with chitin and chitosan depresses growth 

in tilapia (Shiau & Yu, 1999). The studies presented in this thesis revealed no 

significant difference in growth of Arctic charr fed a fish meal-based diet or a 

zygomycete-based diet (Paper I). The findings on growth performance were 

consistent with previous report of a study in which a mycelium based biomass 

diet replaced a fish meal-based diet (Bankefors et al., 2011). However further 

studies are required to investigate the growth performance of fish fed graded 

levels of the biomass based diet.  
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6.2. Zygomycete ingredients in the diets enhance chitinolytic 
activity and disturb nutrient uptake and intestinal integrity  

Chitinases and their role have been observed in the GI-tract of dover sole, 

sablefish, shortspine thornyhead and rockfish (Gutowska et al., 2004) and these 

enzymes are correlated to chitin content in the diet (Fange et al., 1979). In the 

present study (Paper I), there was an indication of a correlation between diet 

and chitinase activity in the gut tissues of Arctic charr. The zygomycete-based 

diet (FZ) fed to the fish greatly affected exo-chitinase activity in the different 

regions of GI-tract. The fish meal-based diet (FM) showed greater endo-

chitinase activity in the gut tissues of the fish. It is hypothesized that the 

differences in chitinolytic activity in the gut tissues of Arctic charr may reflect 

their capacity to digest and absorb chitin in the diet. It has also been claimed 

that feeding a chitin-rich diet to cod fish enhances the chitinase activity 

(Danulat, 1986). Moreover, chitinolytic activity is reported to remain 

unaffected in the GI-tract of rainbow trout fed 10% dietary chitin (Lindsay et 

al., 1984). In juvenile shrimp, increasing dietary levels of chitin greatly reduce 

chitinase activity in the GI-tract (Fox, 1993). Therefore, further studies are 

needed to identify differences in chitinolytic activity and their impact on 

digestive physiology when feeding different sources of microbial biomass. 

The chitin molecules produced as a result of chitinase activity show 

variation in the rate of absorption in dover sole, sablefish, shortspine 

thornyhead, rockfish, juvenile shrimp and rainbow trout (Gutowska et al., 

2004; Lindsay et al., 1984; Peres, 1981). In general, nutrient absorption 

depends on the rate at which chitin molecule come into contact with the 

absorptive epithelium. In Paper I, the apparent differences observed in 

paracellular permeability (Papp) in regions of the GI tract suggested that the test 

diets produced different effects in the different regions. The higher Papp value 

in the distal intestine of Arctic charr fed the zygomycete diet could be due to 

disturbed intestinal integrity and leakage in the region, and a sign of impaired 

intestinal barrier function. The intestinal barrier function may be reduced by 

exposure of the intestinal mucosa to the zygomycete ingredient, which can act 

as an irritant (Mydland et al., 2009).  

It has been demonstrated that dietary chitosan is most likely 

responsible for interfering with nutrient absorption in the intestinal epithelium 

(Deuchi et al., 1994). The higher lysine uptake in the distal intestine induced 

by the zygomycete-based diet and the lack of response in the proximal intestine 

suggest a negative effect on nutrient absorption of this diet. This indicates 

disturbed integrity in the distal intestine resulting in higher Papp, which may 

allow increased diffusional passage of nutrients across this intestinal region. 

Taken together, the results presented in this thesis indicated that the 
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zygomycete-based diet influenced chitinolytic activities differently in different 

regions of the GI tract and exerted negative effects on the paracellular 

permeability of nutrients in the intestinal tissues of Arctic charr. 

6.3. Zygomycete-based and fish meal-based diets cause no  
difference in metabolic response in Arctic charr 

In this thesis, we explored a zygomycete biomass based diet as an alternative 

feed ingredient using highly advanced 
1
HNMR technology (Paper II). PCA is a 

unsupervised method that is commonly used to identify how one sample is 

different from another, which variable contributes to significant differences 

and whether those variables are correlated or independent from one another 

(Wishart, 2008). The PCA score scatter plot demonstrated no apparent 

separation or clear trend in the clusters of the diets (Paper II). OPLS-DA, 

which is a supervised method, is used to determine and increase the separation 

between groups of observations (Wishart, 2008). The OPLS-DA model 

revealed that it could discriminate among the FZ, FM and ST diets due to 

differences in the spectral data (Paper II). The findings demonstrated that the 

zygomycete-based and fish meal-based diets showed no difference in 

metabolic profile (Paper II) and these results were supported by the growth 

response of the fish (Paper I). Most of the metabolites obtained when feeding 

these two diets to Arctic charr were consistent with previously obtained 

metabolic profile fed fish meal and biomass based diets to Atlantic salmon 

(Bankefors et al., 2011; Castejon et al., 2010). It has been demonstrated using 
1
HNMR spectroscopy that plant and bacterial protein meal can replace up to 

25% of fish meal in the diet without affecting the growth rate in rainbow trout 

and Atlantic salmon  (Storebakken et al., 2004; Perera et al., 1995).  

6.4. Metabolic response in Arctic charr and tilapia fed different 
levels of wheat starch  

The PCA scatter score plot indicated that feeding different levels of wheat 

starch to tilapia did not result in any tendency for clustering. In Arctic charr 

there was a clear tendency for clustering and clusters of the diets were distinct 

from each other (Paper III). These findings imply a significant effect on 

metabolite clusters related to starch level in the diet of Arctic charr. OPLS-DA 

revealed discrimination of components of pre-defined classes suggested diet 

effects on the metabolic profiles of Arctic charr and tilapia. In Arctic charr, 

discrimination of glucose and choline were prominent in the control diet and 

discrimination of asparagine, lactate and 3-aminobutyrate were prominent in 
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the diets containing 10% and 20% wheat starch. This suggests that in Arctic 

charr, there is a partial or negligible influence on the metabolism of dietary 

starch. These findings may in relation to carnivorous fish species have lower 

utilisation efficiency of carbohydrates (NRC, 2011; Arockiaraj et al., 1999). In 

accordance with described, lower growth response and glucose metabolism 

blunt snout bream fed the highest carbohydrates/lipid ratio (Li et al., 2013b). It 

is believed that if fish are not supplied with an appropriate amount of dietary 

carbohydrates, they metabolise other nutrients, e.g. proteins and lipids, for their 

energy needs (Wilson, 1994). It is reported that deamination of aspargine is 

result of gluconeogenesis in rainbow trout (French et al., 1981). In tilapia, 

discrimination of the metabolites ADP, creatine, UDP-glucuronate and O-

phosphocholine was prominent in 20% wheat starch samples, which indicates 

more efficient metabolism of dietary starch. It has been demonstrated that 

tilapia metabolise high dietary starch using hepatic enzymes involved in the 

glycolysis pathway (Azaza et al., 2013). Carbohydrates are metabolised by 

glycolysis or the pentose phosphate pathway, leading to generation of energy 

transfer molecules in fish (Polakof et al., 2012; Richard et al., 2006). Also, 

dietary carbohydrates could depress the increase rate of amino acid metabolism 

and utilisation by gluconeogenic pathways in salmon fish (Sanchez-Muros et 

al., 1996). Certain fish species such as tilapia, channel catfish and grass carp 

possess the ability to utilise up to 40% dietary starch (Lin, 1991; Luquet, 1991; 

Satoh, 1991). Overall, the different levels of wheat starch fed to Arctic charr 

and tilapia resulted in variation in metabolic profiles. 

6.5. Apparent digestibility and amylase activity in relation to 
dietary starch levels                                             

Digestibility and enzyme activity in response to dietary carbohydrates differ 

between fish species and usually depend on level of dietary intake, source and 

composition of diet (Enes et al., 2011; Peres et al., 1996). In this thesis, Arctic 

charr, Eurasian perch and tilapia fed diets containing different amounts and 

sources of carbohydrates responded differently (Papers I-IV). Apparently, each 

fish species possesses specific properties which affect its capacity to utilise and 

metabolise carbohydrates. Importantly, within fish species the enzymatic, 

digestive and metabolic characteristics in response to feeding starch were not 

influenced by inclusion level (Papers III and IV). However, the metabolic 

characteristics and amylase activities showed variations between fish species 

fed similar inclusion levels. The findings of low digestibility of starch in Arctic 

charr (Paper IV) support previous findings in other salmonid fish species 

(Krogdahl et al., 2005; Hemre et al., 1995). The lower digestibility of starch 
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may be due to carnivorous fish species possess lower ability to utilise dietary 

carbohydrates than omnivorous and herbivorous fish (Enes et al., 2011; Enes et 

al., 2006; Rust, 2002). In Eurasian perch, the higher digestibility of the 20% 

wheat starch diet than the other diets (Paper IV) indicates an impact of starch 

inclusion level on the efficiency of utilisation. The reason for this is unknown 

and merits further investigation. Moreover, further work is needed to establish 

the most appropriate amount of starch of varying origin, in native and 

processed form, in the diet of Arctic charr and Eurasian perch.  
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7. General conclusions   

 Arctic charr showed significant chitinolytic activity in tissues of the 

gastrointestinal tract and feeding a zygomycete-based diet (rich in 

chitin) resulted in increased chitinolytic activity. However, inclusion 

of zygomycete biomass in the diet disturbed intestinal primary barrier 

functions and negatively influenced nutrient uptake and intestinal 

integrity in the fish.  

 A zygomycete-based diet and a fish meal-based diet fed to Arctic 

charr did not exhibit differences in metabolic response analysed using 
1
H NMR technique.  

 
1
H NMR metabolomics approach revealed differences and apparent 

variations in metabolic profiles in liver tissues of tilapia and Arctic 

charr fed different starch level. 

 Eurasian perch and Arctic charr possess starch digestive capacity, but 

with markedly higher starch digestibility in Eurasian perch. 

Differences in starch digestive ability were supported by α-amylase 

activity in the intestinal region. 
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8. Implications and future research   

The data presented in this thesis on metabolism in Arctic charr, tilapia and 

Eurasian perch fed dietary zygomycete biomass and wheat starch in their diet 

can be of great value in practical diet formulation for these fish species. 

Moreover, the information on enzyme activity, digestibility and growth 

performance can be practically applied to improve utilisation of carbohydrates 

included in the diets of these fish species. The information generated will be 

useful in the search for replacements for fish meal using cheap, renewable 

alternative resources in the formulation of fish diets for sustainable aquaculture 

production.  

 

Future studies are needed in order to: 

 

 Evaluate the impact of different levels of dietary inclusion of 

microbial biomass on the digestive physiology and growth 

performance of Arctic charr, tilapia and Eurasian perch.   

 

 Investigate the influence on growth characteristics and metabolic 

activities of inclusion of different dietary levels and sources of 

carbohydrates in aquafeeds for different fish species. 

 

 Formulate fish diets from chitin rich aquatic organisms and to evaluate 

their impact on feed intake, adaptation, metabolism and growth 

performance in different fish species.       
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9. Smältbarhet och omsättning av 
kolhydrater i fisk   

Akvatiska produkter utgör en väsentlig del av människors föda i stora delar av 

världen och de bidrar påtagligt till intaget av högvärdigt protein. Fisk och 

produkter från fisk kommer från viltfångad fisk och från odling av fisk i olika 

vatten. Under de senaste fyra decennierna har den globala odlingen av fisk och 

andra akvatiska organismer ökat med cirka 2,9 % per år.   

Tillgång till foder och kostnader för foder utgör en av de största 

utmaningarna för en långsiktigt uthållig odling av fisk. Fiskindustrin söker 

därför aktivt efter fodermedel som kan användas för produktion av billigt 

fiskfoder. Under lång tid har fiskmjöl varit den dominerande proteinkällan i 

fiskfoder och fiskolja har ingått till betydande del för att höja fodrets 

energiinnehåll. Ökad efterfrågan och ökade kostnader för fiskmjöl och fiskolja 

utgör uppenbara hinder för en långsiktigt uthållig ökning av fiskodling, och det 

behövs alternativa fodermedel som kan användas som ersättning.  

Möjliga alternativa fodermedel som kan användas som ersättning kan 

variera i ursprung, och kan komma från växter, djur eller mikroorganismer. 

Vanligtvis är kolhydrater billigare som energikälla än protein och fett. 

Emmelertid uppvisar fiskar en varierande förmåga att smälta och omsätta olika 

beståndsdelar i fodret, detta gäller särskilt kolhydraterna. Studier visar att 

smältbarhet och omsättning av olika fodermedel beror på fiskart, men också på 

ursprung, inblandningsnivå i fodret, och eventuell behandling av fodermedlet. 

Ingående kunskap om fiskars förmåga ett utnyttja kolhydrater i fodret är en 

viktig förutsättning för att framgångsrikt kunna utforma väl fungerande 

fiskfoder.  

Fokus för denna doktorsavhandling har varit att öka kunskapen om 

fiskars förmåga att smälta och omsätta kolhydrater från cerealier, i form av 

stärkelse från vete, och från mikrosvampar, i form av kitin. I de foder som 

användes ingick båda stärkelse och kitin i obehandlad form, för att kunna 
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bedöma de studerade fiskarnas förmåga att utnyttja dessa kolhydrater i nativ 

form.  

Det övergripande målet med denna avhandling var att studera digestion 

och omsättning av kolhydrater i röding (Arctic charr) och abborre (Eurasian 

perch). För att åstadkomma detta genomfördes försök in vivo med fiskar som 

utfodrades med olika foder, och genom insamling av vävnadsprover för analys 

av enzymaktivitet, tarmfunktion och koncentration av metaboliter.  

De specifika målen var att:  

 Undersöka förmågan hos röding att utnyttja foder med högt innehåll 

av kitin/kitosan genom att bestämma den kitinolytiska aktiviteten i 

tarmvävnad och absorptionen av aminosyror genom tarmvävnad hos 

fiskar som utfodrats med ett foder baserat på fiskmjöl, med eller utan 

inblandning av biomassa från zygomycet (Rhizopus orycae).  

 Utvärdera inverkan av utfodring med biomassa från zygomycet på 

tarmens barriärfunktion hos röding.  

 Jämföra metabolitprofilen i lever hos röding som utfodrats med ett 

foder baserat på fiskmjöl, ett foder baserat på zygomycet och ett 

kommersiellt foder.   

 Utvärdera metabolitprofilen hos röding som utfodrats med nativ 

vetestärkelse, i jämförelse med metabolitprofilen hos tilapia 

(Oreochromis mossambicus).   

 Undersöka inverkan av olika inblandningsnivåer av nativ vetestärkelse 

på smältbarhet och amylasaktivitet hos röding och abborre.   

De genomförda studierna visar att tarmvävnad hos röding uppvisar 

betydande kitinasaktivitet, både endo-och exo-kitinasaktivitet. Studierna visar 

också att kitinasaktivitetens fördelning längs tarmen hos röding varierade 

mellan endo- och exo-kitinas.  Endo-kitinasaktiviteten i magsäcksvävnad och i 

vävnad från den distala delen av tarmen var flera hundra gånger högre än exo-

kitinasaktiviteten i magsäcksvävnad. Den högsta exo-kitinasaktiviteten 

uppmättes i vävnad från den distala tarmen. Utfodring av röding med det 

zygomycetbaserade fodret resulterade i högre kitinolytisk aktivitet i 

tarmvävnad än utfodring med det fiskmjölsbaserade fodret. Röding som 

utfodrats med det zygomycetbaserade fodret uppvisade störd tarmfunktion och 

ett ökat upptag av aminosyran lysin i den distala delen av tarmen, men inte i 

den proximala delen av tarmen. 

Metabolomik, baserad på kärnmagnetisk resonans (
1
H-NMR), kunde inte 

påvisa några skillnader I metabolitprofiler i levervävnad från röding som 

utfodrats med ett zygomycetbaserat foder respektive ett fiskmjölsbaserat foder. 
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Vetestärkelse påverkade inte aktiviteten hos α-amylas i tarmvävnad från 

röding och abborre. Generellt, var aktiviteten för α-amylas korrelerad till de 

skillnader som uppmättes för stärkelsens smältbarhet.  Den skenbara fekala 

smältbarheten för råprotein, stärkelse, råfett och energi skiljde sig mellan 

fiskarter med i genomsnitt högre värden för samtliga variabler hos abborre 

jämfört med röding. Inom fiskart hade fodrets innehåll av vetestärkelse ingen 

påverkan på den skenbara fekala smältbarheten för torrsubstans, råprotein, 

råfett och energi.  

Det metabola svaret på utfodring med vetestärkelse hos röding och tilapia 

studerades med metabolomik baserad på 
1
H-NMR. Resultaten visar att 

metabolismen hos tilapia påverkades av utfodring med vetestärkelse, medan 

metabolismen hos röding påverkades partiellt eller försumbart. Resultaten 

tyder på artspecifika skillnader i det metabola svaret på utfodring med 

vetestärkelse.    

Ytterligare studier behöver genomföras för att: 

 Utvärdera inverkan på tarmfysiologi och tillväxt hos röding, abborre 

och tilapia av gradvis ökande inblandning av mikrobiell biomassa i 

fodret.    

 Undersöka inverkan på tillväxtmönster och metabol aktivitet hos olika 

fiskarter vid utfodring med olika kolhydratkällor och med gradvis 

ökande inblandningsnivå.  

 Utforma fiskfoder baserat på kitinrikt avfall från vattenbruk och 

utvärdera deras påverkan på foderintag, tillvänjning, omsättning och 

tillväxt hos olika fiskarter.  
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