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SUMMARY

The model for analysis of randomized complete block (RCB) experiments usually includes two factors: block and
treatment. If treatment is modelled as fixed, best linear unbiased estimation (BLUE) is used, and treatment means
estimate expected means. If treatment is modelled as random, best linear unbiased prediction (BLUP) shrinks the
treatment means towards the overall mean, which results in smaller root-mean-square error (RMSE) in prediction
of means. This theoretical result holds provided the variance components are known, but in practice the variance
components are estimated. BLUP using estimated variance components is called empirical best linear unbiased
prediction (EBLUP). In small experiments, estimates can be unreliable and the usefulness of EBLUP is uncertain.
The present paper investigates, through simulation, the performance of EBLUP in small RCB experiments with
normally as well as non-normally distributed random effects. The methods of Satterthwaite (1946) and of Kenward
& Roger (1997, 2009), as implemented in the SAS System, were studied. Performance was measured by RMSE, in
prediction of means, and coverage of prediction intervals. In addition, a Bayesian approach was used for
prediction of treatment differences and computation of credible intervals. EBLUP performed better than BLUEwith
regard to RMSE, also when the number of treatments was small and when the treatment effects were non-normally
distributed. The methods of Satterthwaite and of Kenward & Roger usually produced approximately correct
coverage of prediction intervals. The Bayesian method gave the smallest RMSE and usually more accurate
coverage of intervals than the other methods.

INTRODUCTION

The present paper studies methods for statistical
analysis of randomized complete block (RCB) exper-
iments. In such experiments, rv experimental units are
divided into r blocks, and v experimental treatments
are randomly allocated to experimental units within
each block, so that each of the v treatments occurs
once in each block. The present study is restricted to
this equireplicated design, and generalizations to
unequally replicated designs are commented on in
the Discussion. The standard linear statistical model
for theRCBdesign includes two factors, block and treat-
ment, and an error term that is assumed to be normally
distributed. Often the RCB experiment is comparative,
in which case the interest is in treatment contrasts

(Bailey 2008), usually pairwise differences in treatment
effects. The factor treatment can be modelled as fixed
or random. When modelled as fixed, parameters are
estimated for each treatment effect, whereas when
modelled as random, treatment effects are predicted,
assuming they belong to a parametric distribution,
usually the normal. In this case, the model has two
variance components: the treatment effects variance,
σG
2 , and the error variance, σE

2.
In the fixed effects model (i.e. when treatment is

modelled as fixed), the observed differences between
treatment means are the best linear unbiased estimates
(BLUE) of the expected differences (e.g. Searle 1971).
In other words, the observed difference m1−m2 be-
tween Treatments 1 and 2 is an unbiased estimator of
the expected difference between the effects of Treat-
ments 1 and 2, and among all conceivable unbiased
estimators that are linear functions of the observations,
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the difference m1−m2 is the one with the smallest
variance. However, estimators that give smaller ex-
pected mean square error exist. The expected mean
square error is the sum of the variance and the squared
bias. Thus, if biased estimators are accepted, it is
possible to use one that on average gives smaller
squared errors thanm1−m2 does. This can be accom-
plished, e.g. by modelling treatment as a random
factor. Predictions of treatment effects, obtained
through such modelling, are known as best linear
unbiased predictions (BLUP). In this acronym, the
letter U refers to ‘unbiased’, which in BLUPmeans that
randomly chosen predictions of effects are zero on
average. This does not imply that the difference be-
tween the predictions of Treatments 1 and 2 is an
unbiased estimate of the difference between the effects
of those treatments. On the contrary, the difference
between the BLUPs of Treatments 1 and 2 is biased as
an estimator of the true difference between the
treatments.

BLUP theoretically gives smaller mean square error
than fixed-effects model-based BLUE when the ratio
σG
2 /σE

2 is known (e.g. Robinson 1991). In practice,
variance components must be estimated and this ratio
is not known. BLUP is a shrinkage method (Copas
1983; Gruber 1998); using BLUP, the prediction of a
difference is closer to zero than the observed differ-
ence between the means. The prediction is shrunk
towards zero through multiplication with a shrinkage
multiplier, k, which is a function of σG

2 /σE
2. When

estimates are used, instead of actual variances, the
method is called empirical best linear unbiased pre-
diction (EBLUP). Prediction using EBLUP is adequate if
the variance components are well estimated. In small
experiments, this requirement is not fulfilled.

Generally, a shrinkage estimator has the form kz+
(1−k)c, where z is an observation and k is a shrinkage
multiplier, which is a function that takes values
between 0 and 1. In other words, the shrinkage esti-
mator is a weighted average of the observation, z, and
some other estimate, c. Thus, the shrinkage estimator is
shrunk towards c, which is an initial guess or an
estimate based on other information. In the context of
the present paper, z is an observed treatment mean,mj,
whereas c is the overall mean, which will be denoted
bym (i.e. the mean of treatment means). The shrinkage
estimator of the jth treatment mean is m+k(mj−m).
When treatment means are close to the overall mean,
treatment means support the idea that all expected
means canbe identical.When this happens, the shrink-
agemultiplier, k, is small, so that shrinkage towards the

overall mean is large. On the other hand, when treat-
ment means differ much, the overall mean is most
likely a poor estimate of treatment means. In this case,
the shrinkage multiplier is close to 1, and shrinkage
is slight. The shrinkage estimators k(m1−m) and
k(m1−m2), of the observed effect of Treatment 1 (i.e.
m1−m) and the observed difference between Treat-
ments 1 and 2 (i.e. m1−m2), respectively, are shrunk
towards c=0.

James & Stein (1961) proposed an explicit shrinkage
estimator that gives smaller root-mean-square error
(RMSE) than the usual mean in the fixed effects model
with three or more treatments. Based on the assump-
tion of random treatment effects, and motivated by
breeding applications, Henderson (1963) derived
equations for BLUP in linear mixed models. In
these models, BLUP is equivalent to maximum
likelihood estimation as based on the joint distribution
of fixed effects and normally distributed random
effects (e.g. Pawitan 2001). Utilizing Bayesian meth-
odology for hierarchical models, BLUPs can also
be derived as empirical Bayes estimators. This is
achieved by considering the distribution of unob-
served random effects as a prior distribution (e.g.
Searle et al. 1992).

The interest of the present authors in small RCB
experiments originates from agricultural field research
and analysis of crop variety trials. Finney (1964)
pointed out that selection bias is introduced in variety
trials if the highest yielding varieties are chosen on the
basis of their observed means. Top yielding varieties in
an experiment may have performed well partly be-
cause of random errors. If the experiment were
repeated, those varieties would probably not perform
as well as in the first experiment (Galwey 2006).
EBLUP shrinks the means towards the overall mean,
which may give better predictions. EBLUP is often
used and recommended for breeding trials, where the
number of genotypes is large and the main interest is
ranking and prediction of genotype effects (e.g. Real
et al. 2000; Smith et al. 2006; Piepho et al. 2008),
although in many careful breeding studies genotype
effects are traditionally modelled as fixed (e.g. Sarker
et al. 2001). In the context of breeding, the treatment
variance estimate can be used for calculation of herit-
ability and expected genetic advance under selection
(Galwey 2006; Piepho & Möhring 2007). Smith et al.
(2001) argued for modelling effects of varieties as
random in analyses of single variety trials and series of
variety trials, since this provides ‘more reliable
estimates’. Cullis et al. (2000) reported that EBLUP is
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used in crop variety evaluation programmes in
Australia, and measured the efficiency of such pro-
grammes using random variety effects. Smith et al.
(2005) discussed the issue of modelling varieties
as fixed or random, concluding that BLUE should
be used when the aim of the analysis is to determine
the difference between specific pairs of varieties,
whereas BLUP should be used when the aim of the
analysis is selection of varieties. However, they
remarked that since EBLUP must be used in place
of BLUP, ‘the only question that remains’ is ‘whether
the estimates of the variance parameters are suffi-
ciently precise to ensure that the optimality of BLUP is
maintained’.
The present paper investigates performance of

EBLUP in small RCB experiments. In crop breeding
trials, the number of treatments (i.e. genetic lines) is
often very large, which makes it natural and easy
to model the treatment effects with a random dis-
tribution, but in official variety evaluations, in specific
crops sometimes less than ten treatments (i.e. cultivars
or potential cultivars) are compared. For this reason,
it is interesting to investigate how large the experi-
ments need to be for EBLUP to perform better than
BLUE.
The present study was performed using simulation

and the ‘mixed’ procedure in SAS (Littell et al. 2006).
Normally distributed treatment effects were simulated,
corresponding to various degrees of shrinkage, ob-
tained through varying the σG

2 /σE
2 ratio. In addition, the

sensitivity to the normal assumption was examined
through simulation of non-normally distributed ran-
dom effects. EBLUP was compared with BLUE in terms
of RMSE, in estimation and prediction of means, and
coverage of 0·95 confidence, prediction and credible
intervals. In calculation of prediction intervals, the
methods of Satterthwaite 1946; Giesbrecht & Burns
1985 and of Kenward & Roger (1997, 2009) for ap-
proximating denominator degrees of freedom and
calculating standard errors were compared, as well as
the so-called containment method, which is the de-
fault (SAS Institute 2008). A common problem with
small experiments is that the estimate of the treatment
variance can be zero, so that all predictions of treat-
ment means equal the overall mean and hence
treatments cannot be separated. When this occurs,
equations for approximate prediction intervals break
down. Therefore, a Bayesian approach was also inves-
tigated in the present study, which, based on an
assigned prior distribution of the parameters, simulates
a posterior distribution of the parameters. Bayesian

credible intervals for predictions were computed from
random samples from posterior distributions of treat-
ment effects, thereby avoiding the use of single-point
estimates in interval calculations.

Besag &Higdon (1999) analysed an RCB variety trial
using Bayesian methods. Cotes et al. (2006), Theobald
et al. (2006) and Ghavi Hossein-Zadeh & Ardalan
(2011) have provided other examples of the usefulness
of Bayesian methods in agricultural research. Several
simulation studies have compared the methods of
Satterthwaite (1946) and of Kenward & Roger (1997,
2009) in models with fixed treatment effects and with
unbalanced data structures and various covariance
structures (Schaalje et al. 2002; Chen & Wei 2003;
Guiard et al. 2003; Savin et al. 2003; Spilke et al. 2004,
2005). The small-sample behaviour of EBLUP v. BLUE,
using the methods of Satterthwaite (1946) and of
Kenward & Roger (1997, 2009), has been less studied,
and comparisons of BLUE and EBLUP with Bayesian
approaches in the context of agricultural field exper-
iments are rare (Theobald et al. 2002; Edwards &
Jannink 2006). To the best of the present authors’
knowledge, these methods have not been simul-
taneously compared in small experimental designs
such as the RCB design.

THEORY AND METHODS

Consider an RCB experiment with r replicates and v
treatments. Let yij denote the observation of the jth
treatment in the ith block, i=1, 2, . . ., r and j=1, 2, . . .,
v. Let

yij = bi + tj + eij (1)
where βi is a fixed effect of the ith block, τj is a fixed
effect of the jth treatment, and eij is a normally
distributed random error term. Let mj be the mean of
the observations from the jth treatment, i.e.mj=Σi yij/r.
The BLUE of the difference between Treatments 1 and
2 is m1−m2.

The present paper studies the use of the RCB model
with random treatments. Let

yij = bi + uj + eij (2)
where βi is a fixed effect of the ith block, whereas uj and
eij are independent normally distributed random terms
with expected value zero and variances σG

2 and σE
2,

respectively. In comparative experiments, the differ-
ences between the treatments are examined, so the
present study focused on the difference between two
arbitrarily selected random Treatments 1 and 2.
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Conditionally on u1 and u2 in the mixed model in
Eqn (2), the bias in m1−m2 as a predictor of u1−u2 is
E((m1−m2)− (u1−u2)|u1, u2)=0 and the variance is
var(m1−m2|u1, u2)=2σE

2/r. When u1 and u2 vary
randomly, the square root of the expectedmean square
error (RMSE) in m1−m2 is

RMSE(BLUE) =
�����
2σ2E
r

√

Let m=Σij yij/(rt) denote the overall mean. The best
linear unbiased predictor of uj is ũj = k(mj −m), with
the shrinkage multiplier k defined as

k = σ2G/σ
2
E

σ2G/σ
2
E + 1/r

= σ2G
σ2G + σ2E/r

(3)

Conditioned on u1 and u2, the bias in ũ1 − ũ2 is
E((ũ1 − ũ2)− (u1−u2)| u1, u2)= (k−1)(u1−u2) and
var(ũ1 − ũ2| u1, u2)=2k

2σE
2/r. When u1 and u2 vary

randomly, the square root of the expectedmean square
error in the best linear unbiased predictor ũ1 − ũ2 of
u1−u2 is

RMSE BLUP( ) =
������������������������
2(k− 1)2σ2G + 2k2σ2E

r

√
=

������
2kσ2E
r

√

Let k̂ denote the empirical shrinkage multiplier,
calculated as in Eqn (3), but with the restricted
maximum likelihood (REML) estimates σ̂2G and σ̂2E
substituted for σG

2 and σE
2, respectively, and let

ûj = k̂(mj −m). Using the REML estimates, the em-
pirical best linear unbiased predictor of the difference

between Treatments 1 and 2 is û1 − û2 = k̂(m1 −m2).
The square root of the expected mean square error in
this predictor of the difference between the two
randomly selected Treatments 1 and 2 was investi-
gated by simulation.

RCB experiments with r=2, 4, 6 and 8 blocks and
with v=3, 6, 9 and 12 treatments were simulated using
the SAS System. The observation yij, from the ith block,
i=1, 2,. . ., r, and the jth treatment, j=1, 2,. . ., v, was
generated as

yij = 100+ uj + eij (4)
where uj and eij were independent random numbers
from distributions N(0,σG

2 ) and N(0,σE
2), respectively.

Eight cases, denoted I–VIII, were investigated, with
different values of σG

2 , σE
2 and r, as specified in Table 1.

These cases represent shrinkage multipliers ranging
from 0·33 (Case I) to 0·89 (Case VIII). Thus, for each
case of Table 1, four different experimental designs
were simulated, and the complete study comprised

8×4=32 different experimental conditions (i.e. com-
binations of σG

2 , σE
2, r and v). Each experimental

condition was simulated 10000 times according to
Eqn (4). Altogether 320000 normally distributed data-
sets were generated.

The performance of EBLUP might be sensitive to the
requirement that the random effects are normally
distributed. To investigate this sensitivity, observations
with non-normally distributed random effects were
simulated. Four non-normal distributions were inves-
tigated: (i) an exponential distribution (highly skewed),
(ii) a gamma distribution (slightly skewed), (iii) a con-
tinuous uniform distribution (not skewed) and (iv) a
mixture of two normal distributions (bimodal). Figure 1
shows the investigated distributions. The probability
density function of gamma(α, λ) is

f (x) = 1
Γ(α) λ

αxα−1 e−λx, x . 0

where α is the shape parameter and λ−1 the scale
parameter. Two gamma distributions were used:
gamma(1, 0·2), which is an exponential distribution
with rate parameter λ=0·2, and gamma (4, 0·4). The
random effects were centred around their expected
values, i.e. we let uj=X−α/λ in Eqn (4), where the X is
gamma(α, λ), so that E(uj)=0. The variance of a
gamma(α, λ) distribution is α/λ2, which equals 25 for
both distributions, so that the standard deviation is
σG=5. The chosen uniform distribution, U(−3001/2/2,
3001/2/2), has expected value 0 and variance 25. The
normal mixture had mixture weights 1/2 and com-
ponents N(−4·5, 4·75) and N(4·5, 4·75). This mixture
also has expected value 0 and variance 25. When the
random effects belong to a bimodal mixture of normal
distributions, the predictions of the random effects can

Table 1. Cases investigated in simulation. Standard
deviation between treatments (σG), error standard
deviation (σE), number of replicates (r), and shrinkage
multiplier (k)

Case σG σE r k

I 5 10 2 0·33
II 5 10 4 0·50
III 5 10 6 0·60
IV 5 10 8 0·67
V 10 10 2 0·67
VI 10 10 4 0·80
VII 10 10 6 0·86
VIII 10 10 8 0·89
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be unimodal (Verbeke & Lesaffre 1996). In practice,
the mixture distribution can occur if the treatments
belong to two subpopulations.
The robustness was investigated for Case II (Table 1)

only. Observations were generated using non-
normally distributed random effects and normally
distributed error effects: eij*N(0, σE

2), σE=10. Again,
experiments with v=3, 6, 9 and 12 treatments were
simulated. Altogether 16 experimental conditions
were simulated 10000 times so that 160000 non-
normally distributed datasets were generated.
To each simulated dataset of rv observations, the

RCBmixed model of Eqn (2) was fitted using the mixed
procedure in SAS 9.2 (Littell et al. 2006). An
exemplifying SAS program can be downloaded from
the Journal of Agricultural Science, Cambridge web-
page (Supplementary Materials 1 and 3; available at
http://journals.cambridge.org/AGS). The variance
components were estimated using the REML method,
constrained to give non-negative estimates. Let ujp
denote the random effect uj, for the jth treatment,
generated in the pth simulation of a specific exper-
imental condition, and let û jp denote the BLUP ûj of uj
in the pth simulation, P=1, 2, . . ., 10000. The square
root of the expected mean square error in the EBLUP
of the difference between Treatments 1 and 2 was

estimated by

RMSE EBLUP( ) =
����������������������������������������∑10 000

p=1 ((û1p − û2p) − (u1p − u2p))2
10 000

√

For each model fit, that is for each simulated dataset
and estimation method, three approximate 0·95 pre-
diction intervals for u1−u2 were calculated. The
calculations were performed using the containment,
Satterthwaite (1946) and Kenward & Roger (1997,
2009) methods, within the mixed procedure of the SAS
System. Through the containment method, which is
the default method of the mixed procedure, the 0·95
prediction interval is calculated as

k̂× (m1 −m2)+ t(r−1)(v−1)

������
2k̂σ̂2E
r

√
(5)

where t(r −1)(v −1) denotes the 97·5th percentile of a
t-distribution with (r−1)(v−1) degrees of freedom.
Through the Satterthwaite (1946) method, the mean
square error in Eqn (5) is assumed to be approximately
chi-square distributed with max{1, d} degrees of
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Fig. 1. Distributions used for simulation of random effects in the study of robustness. The distributions are centred around
zero and have variance 25.
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freedom, where

d =
k̂
2(r − 1)(v − 1)

k̂
2(r + 3) − 2k̂(r + 1) + r

(6)

Equation (6) is derived in Appendix 1. The 0·95
prediction interval for u1−u2 is calculated as

k̂× (m1 −m2)+ td

������
2k̂σ̂2E
r

√
(7)

where td is the 97·5th percentile of a t-distribution
with d, from Eqn (6), degrees of freedom. Prasad &
Rao (1990) and Kenward & Roger (1997, 2009)
considered the extent to which the estimate of the
mean square error tends to be underestimated when
the variance in the estimates of the variance com-
ponents is not taken into account and proposed
correction terms based on linear approximations. For
the considered experimental design, the Kenward &
Roger (1997, 2009) 0·95 prediction interval, as
implemented in the mixed procedure of the SAS
System, is

k̂× (m1 −m2)+ td

������������������������
2k̂σ̂2E
r

+ 8σ̂2E(1− k̂)
(r − 1)(v − 1)

√
(8)

with td defined as in Eqn (7). The correction term

8σ̂2E(1− k̂)/((r − 1)(v − 1)) in Eqn (8) is derived in
Appendix 2.

When σ̂2G = 0, also k̂ = 0 and the EBLUP

û1 − û2 = k̂× (m1 −m2) = 0. As a result, the approxi-
mate prediction intervals of Eqns (5), (7) and (8) break
down, and the confidence in the prediction
û1 − û2 = 0 cannot be expressed. In balanced exper-
iments, the REML estimates of the variance com-
ponents are the same as the ANOVA estimates,
provided the latter are non-negative, and the prob-
ability of a zero REML estimate is therefore easily
calculated as Pr(σ̂2G = 0)=Pr(F<(σE

2/(rσG
2 +σE

2)), where F
is F distributed with v−1 and (v−1)(r−1) degrees of
freedom (Searle et al. 1992). This probability was
calculated for the examined cases and numbers of
treatments.

In addition, sampling-based Bayesian analyses were
performed, also using the mixed procedure. In
Bayesian analysis, the prior distribution of the par-
ameters is combined with the observed data to yield
the so-called posterior distribution of the parameters,
including the variance components. The method im-
plemented in the mixed procedure uses a flat (equal to
1) prior for the fixed block effects and Jeffrey’s prior

(equal to the square root of the determinant of the
inverse of Matrix A, in Appendix 1, Eqn (A1)) for the
variance components. As the posterior distribution
cannot be computed in analytical form, the mixed pro-
cedure uses an independence chain algorithm
(Tierney 1994) to obtain samples from the posterior
distribution. With a sufficiently large Monte Carlo
sample, all properties of the posterior distribution
(means, modes, credible intervals) can be computed
with good precision. The default settings were used,
but with 50000 posterior samples (the default is 1000).
For each posterior sample, the mixed procedure
generated random treatment effects (u1*, u2*) from
the conditional posterior distribution of (u1, u2), given
the parameters. The mean of u1*−u2* was considered
as a prediction of the true difference u1−u2, and a
0·95 credible interval was calculated with limits set to
the 2·5th and 97·5th percentiles of u1*−u2*.

Coverage of prediction intervals, Eqns (5), (7) and
(8), and Bayesian credible intervals (i.e. frequencies of
intervals covering true differences u1−u2), was
computed. In the calculations of coverage for predic-
tion intervals, simulated datasets for which σ̂2G = 0
were excluded, because at these incidences prediction
intervals could not be constructed. These interesting
datasets were included, however, in the calculation of
coverage of Bayesian credible intervals. Occasionally,
the Bayesian posterior sampling was stopped by the
mixed procedure, because the acceptance ratewas too
low. These datasets were excluded before calculation
of coverage of credible intervals.

RESULTS

Normally distributed random effects

Figure 2 presents, for Cases I–IV (Table 1), simulated
RMSE for EBLUP of the difference between the
treatment effects. The lower dashed lines are RMSE
for BLUP. These are the RMSE calculated assuming
that the variances were known. When the variances
were estimated (EBLUP), the observed RMSE were
larger, as indicated by the circles. As a consequence of
improved estimates of the variance components, larger
numbers of treatments produced smaller RMSE. The
upper dotted lines show the RMSE for BLUE. In Cases
I–IV, EBLUP was always better than BLUE with regard
to RMSE, also when the number of replicates and
the number of treatments were small. The Bayesian
analysis produced slightly smaller RMSE than the
EBLUP, as seen by comparing triangles with circles.
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Figure 3 illustrates Cases V–VIII. In these cases the
shrinkage multiplier was larger than in the correspond-
ing Cases I–IV. Consequently, the differences between
RMSE of BLUP and RMSE of BLUE were smaller. In
Cases VII and VIII the RMSE of EBLUP was larger than
the RMSE of BLUE, when the experiment comprised
only three treatments. In these situations it was slightly
better to use simple averages than to use EBLUP,
because the variance components were poorly esti-
mated. In Case VI with three treatments, the difference
between EBLUP and BLUE was very small. In all other
simulations, EBLUP outperformed BLUE. Themeans of
the Bayesian posterior samples (triangles) showed
smaller RMSE than EBLUP (circles).
The first eight rows of Table 2 show computed

theoretical probabilities of the treatment variance σG
2

being estimated to be zero. The observed frequencies
of zero estimates were close to the theoretical prob-
abilities. When the shrinkage multiplier (cf. Table 1)
and the numbers of treatments are small, the prob-
ability of the variance between treatments being esti-
mated to be zero is not negligible. At these
occurrences, Eqns (5), (7) and (8) cannot measure the
precision in the predictions. For 0·0015 of the datasets,
the Bayesian posterior sampling was stopped by the
mixed procedure, because of a low acceptance rate.

Figures 4 and 5 report coverage of prediction inter-
vals and credible intervals. Figure 4 shows the results
for Cases I–IV. Without any adjustment of degrees of
freedom (unfilled circles), coverage of the approximate
0·95 prediction intervals was too small. Using the
Satterthwaite (1946) method (shaded circles), cover-
age was usually much improved. The Kenward &
Roger (1997, 2009) method (filled circles) often pro-
duced prediction intervals that were too wide. In most
situations, the Bayesian credible intervals showed
coverage close to the nominal level 0·95.

Also in Cases V–VIII (Fig. 5), the containment
method (unfilled circles) produced prediction inter-
vals that were too small. The Satterthwaite (1946)
approximation (shaded circles) improved coverage.
The Kenward & Roger (1997, 2009) method (filled
circles) tended to produce prediction intervals that
were slightly toowide. The Bayesian (triangles) and the
Satterthwaite (1946); shaded circles) methods gave
similar coverage.

The comparisons in Figs 4 and 5, between EBLUP
and the Bayesian method is of practical value, but
they are not strictly fair, because the calculations
of coverage were made on partly different datasets:
simulated datasets for which σ̂2G = 0 were excluded
from the calculations of coverage of prediction
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Fig. 2. RMSE in a difference between two treatments, using BLUE (dotted line), BLUP (dashed line), EBLUP (circles) and
Bayesian posterior means (triangles) when the treatment standard deviation σG is 5, the error standard deviation σE is 10, the
number of blocks is r=2, 4, 6 and 8, and the number of treatments is v=3, 6, 9 and 12.
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intervals, since no such calculations could be made,
and simulated datasets for which the Bayesian pos-
terior sampling failed were excluded from the calcu-
lation of coverage of the Bayesian credible intervals.
This reflects what would be done in practice: when a

method fails, the results are discarded, and another
method is used. However, a fair comparison of
the methods was also conducted, using all simulated
datasets with both positive σ̂2G and successful Bayesian
sampling. The results obtained were similar to those
in Figs 4 and 5 (not shown), but in Case I with three
and six treatments and Case II with three treatments
the Bayesian method gave similar coverage as the
Satterthwaite (1946) method, and in Case V with three
treatments, coverage of the Bayesian method was
0·90.

Study of robustness: non-normally distributed
random effects

Figure 6 compares EBLUP (circles) and the Bayesian
method (triangles) with each other and with BLUE
(dotted line) for the four non-normal distributions
included in the study. The normal-theory based EBLUP
performed appreciably better than BLUE with regard
to RMSE. The difference between EBLUP and the
Bayesian approach was small, but Bayesian posterior
means produced slightly smaller RMSE than EBLUP.

The last four rows of Table 2 reports the observed
frequencies of the treatment variance σG

2 being esti-
mated to be zero. Gamma distributed random effects
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Fig. 3. RMSE in a difference between two treatments, using BLUE (dotted line), BLUP (dashed line), EBLUP (circles) and
Bayesian posterior means (triangles) when the treatment standard deviation σG is 10, the error standard deviation σE is 10,
the number of blocks is r=2, 4, 6 and 8, and the number of treatments is v=3, 6, 9 and 12.

Table 2. Probabilities of the estimator σ̂2G being zero
(exact probabilities for the normal distribution and
observed frequencies for the non-normal
distributions)

Distribution Case

Number of treatments (v)

3 6 9 12

N(0, 5) I 0·40 0·33 0·29 0·26
N(0, 5) II 0·37 0·23 0·16 0·11
N(0, 5) III 0·32 0·16 0·09 0·05
N(0, 5) IV 0·28 0·11 0·05 0·02
N(0, 5) V 0·25 0·13 0·07 0·04
N(0, 5) VI 0·18 0·04 0·01 0·00
N(0, 5) VII 0·13 0·02 0·00 0·00
N(0, 5) VIII 0·10 0·01 0·00 0·00
Gamma(4, 0·4) II 0·38 0·24 0·17 0·12
Gamma(1, 0·2) II 0·40 0·27 0·20 0·15
Uniform II 0·36 0·21 0·13 0·10
Mixture II 0·36 0·21 0·14 0·09
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resulted in zero estimates more often than normally
distributed random effects (Case II), but uniform and
mixture distributed random effects gave zero estimates
less often. The Bayesian posterior sampling failed in
0·0023 of all non-normally distributed datasets.
Figure 7 illustrates observed coverage of 0·95

prediction intervals and 0·95 credible intervals for
the non-normal distributions. The containment meth-
od gave much too low coverage, often smaller than
0·90, and the Kenward & Roger (1997, 2009) method
produced too large coverage. In most situations, the
Satterthwaite (1946) method resulted in coverage
closer to the nominal level 0·95 than the Kenward &
Roger (1997, 2009) method. The Bayesian method
outperformed the other methods, usually presenting
coverage very close to 0·95.
A counterpart to Fig. 7, based on all simulated

datasets with both positive σ̂2G and successful Bayesian
sampling, looked almost identical to Fig. 7. However,
in this figure, coverage of the Bayesian credible
intervals was approx. 0·94 in experiments with three
treatments, regardless of the probability distribution
(not shown).

DISCUSSION

The present paper studied comparative RCB exper-
iments with small numbers of treatments. The RCB
design is appropriate when the number of treatments is
small; otherwise resolvable incomplete block designs
are recommended (John & Williams 1995), for
example alpha designs (Patterson & Williams 1976).
For a comparison of BLUP and BLUE for incomplete
block designs, see Piepho & Williams (2006). A
comparison of Bayesian methods with BLUP for this
kind of design would be interesting, but is beyond the
scope of the present paper.

Arguments against using EBLUP in small RCB
experiments include:

1. The treatment effects cannot reasonably be re-
garded as randomly sampled from a normal
distribution.

2. In small experiments, the variance components
may be imprecisely estimated, with poor predic-
tions of the random effects as a result.

3. There are no exact methods for statistical inference
on random effects.
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Fig. 4. Coverage of 0·95 prediction intervals for a difference between two treatments using the containment method
(unfilled circles), the Satterthwaite (1946) method (shaded circles) and the Kenward & Roger (1997, 2009) method (filled
circles), and coverage of 0·95 credible intervals for a difference between two treatments using the Bayesian method
(triangles), when the treatment standard deviation σG is 5, the error standard deviation σE is 10, the number of blocks is
r=2, 4, 6 and 8, and the number of treatments is v=3, 6, 9 and 12. The dashed line indicates the nominal level 0·95.
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Regarding Argument 1, the present study indicated that
EBLUP performs well in small RCB experiments also if
the distribution of the random effects is not normal: the
RMSE of EBLUP was consistently smaller than with
BLUE in the simulated experiments with non-normally
distributed random effects. This result is not surprising
considering the theoretical result derived by James &
Stein (1961) that shrunken means can give smaller
RMSE than simple means in a model with fixed
treatment effects. In the fixed-effects model, the gain of
shrinkage of treatment means towards the overall
mean is largest when all (unobservable) expected
means are the same. In this case, observed treatment
means differ only because of random errors, and the
overall mean is the common best estimator. When the
expectedmeans differ, as they usually do, the potential
gain in RMSE of shrinkage towards the overall mean
still exists, although it is smaller. As mentioned in the
Introduction, when observed means are similar, this
supports the overall mean as an initial estimate of
expected treatment means, which makes shrinkage
estimation efficient. It should be noticed that for this
result, treatment effects need not be random. Lee et al.

(2006) pointed out the similarity between the James-
Stein estimator and BLUP in the one-way model for
completely randomized experiments.

In practice, when there are few treatments, it is
difficult to determine whether the treatments can be
regarded as sampled from a normal distribution or
not. Sometimes the treatments of the experiment, for
example the varieties in a crop variety trial, can be
considered as a subset of a larger set of treatments with
approximately normally distributed effects. However,
Stanek (1997) proved that BLUP can be better than
BLUE in sampling from finite populations of random
effects, and argued that the effects can be modelled as
random although the population of random effects is
not larger than the sample. In this view, the treatments
of the experiment need not be a sample from a larger
population of treatments in order to justify the use of
BLUP.

The results of the present simulation study indicated
that imprecise estimates of variance components
(Argument 2, above) are not a severe problem for the
use of EBLUP in small RCB experiments. Usually the
RMSE of EBLUP was smaller, or only slightly larger,
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circles), and coverage of 0·95 credible intervals for a difference between two treatments using the Bayesian method
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than the RMSE of BLUE, even when the number of
treatments was small. The simulations showed that the
methods of Satterthwaite (1946) and Kenward & Roger
(1997, 2009), and also the Bayesian method, per-
formed well in most situations, which mitigates
Argument 3 to a large extent.
In RCB experiments, with one observation per

treatment in each block, the ranking of treatments is
the same whether BLUE or EBLUP is used, but when
replication is unequal, the two methods may rank the
treatments differently (e.g. Galwey 2006). The simu-
lation study of the present paper was restricted to the
standard, balanced, RCB experiment as defined in
the Introduction. In practice, unequal replication often
occurs, for example when some observations are
missing or when some treatments have extra replica-
tion. When extended to unequal replication, there are
many variations of the RCB experiment, some of which
are orthogonal (John & Williams 1995). It would be
interesting to investigate the performance of BLUP and
Bayesian prediction under various unbalanced scen-
arios with missing data or extra replication. A simu-
lation study of such small block experiments was
beyond the scope of the present paper. Piepho &
Williams (2006) showed that EBLUP outperformed

BLUE in large (120 treatments) incomplete block
experiments.

When the treatment-effects variance is estimated to
be zero, which frequently happens when the number
of treatments is small, prediction intervals cannot be
constructed for EBLUP, so the present method is
practically useless in this case. The Bayesian method
does not share this problem. Moreover, the Bayesian
method usually performed better than the other
methods with regard to RMSE and coverage. Thus,
the Bayesian framework is particularly appealing, even
for researchers more inclined towards frequentist
methods of analysis. The present results may be of
special interest to users of the open source software R
(www.r-project.org, verified 6 April 2012). The lmer
function, in the R package lme4, for fitting mixed
models does not include the methods of Satterthwaite
(1946) or Kenward & Roger (1997, 2009). An R script
for analysis of an RCB experiment with fixed block
effects and random treatment effects, including com-
putation of prediction intervals based on the approxi-
mations of Satterthwaite (1946) and Kenward & Roger
(1997, 2009), can be downloaded from the Journal of
Agricultural Science website (Supplementary Material
2 & 3; go to http://journals.cambridge.org/AGS). In a
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discussion about the absence of P values in R when
using the lmer function, Bates (2006) advocated the
use of Markov chain Monte Carlo methods in place
of methods for approximating degrees of freedoms.
Bayesian posterior sampling can be performed using
the R function mcmcsamp, but this function does
not reproduce the mixed procedure in SAS. The per-
formance of the mcmcsamp function was not inves-
tigated and coverage intervals in R will probably differ
from those obtained using the mixed procedure.
In SAS, other Bayesian analyses can be performed
using the mcmc procedure. Albert (2009) provided
many examples of how to perform Bayesian modelling
in R.

In Bayesian analysis, conventional probability
values cannot be computed. However, the probability
that one treatment is better than another, which is not
meaningful using standard frequentist methods (Cohen
1994), can be calculated from the Bayesian posterior
distribution. Generally confidence, prediction or
credible intervals are preferred to P values, since the
latter do not express precision of estimates and do not

represent the kind of probability that many prac-
titioners would be most interested in.

Jeffrey’s prior was used in the simulations. This prior
is vague (intended for situations where no information
is available about the variance components) and im-
proper (it does not integrate to 1). For RCB experiments
with fixed block effects and random treatment effects,
Jeffrey’s prior gives proper posterior distributions when
the number of treatments, v, is larger than the number
of replicates, r (Datta & Smith 2003, Theorem 1).
Notably, the method performed well with regard to
RMSE and coverage even when this condition was not
fulfilled. In applications, proper prior distributions, for
example inverse gamma distributions might be pre-
ferred, especially since this makes it possible to in-
clude prior information in the analyses, which should
increase the benefit from the Bayesian approach.

In the present paper, the Bayesian method studied
used vague improper prior distributions and an indepe-
ndence chain algorithm for posterior sampling.
Minimum mean square error in treatment differences,
and coverage of 0·95 confidence, prediction and
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credible intervals for treatment differences, were used
as criteria for assessment of method performance. Pre-
diction intervals were constructed using the methods
of Satterthwaite (1946) and Kenward & Roger (1997,
2009), as implemented in the mixed procedure of SAS.
Based on the results of the present paper, the following
conclusions can bemade regardingmodelling of small
RCB experiments with normally distributed errors:
(i) When the treatment effects are normally distributed,
a model with normally distributed random effects can
be recommended, even if the number of treatments is
small; (ii) Also if the random effects are not normally
distributed, the model with normally distributed
random effects is often preferable to the model with
fixed treatment effects; (iii) The sampling-based
Bayesian method can be recommended for inference
about differences in random treatment effects; and (iv)
EBLUP and the use of Bayesian inference deserve
further study in other settings, especially in exper-
iments where degrees of freedom approximations may
not be satisfactory, for example in block experiments
with extra replication in some treatments or with
missing data.
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APPENDIX 1

For the problem of approximating a linear combination
of mean squares with a chi-square distribution,
Satterthwaite (1946) utilized the result that a chi-
square distributed random variable Y has 2(E(Y ))2/
var(Y ) degrees of freedom. The Satterthwaite method
for mixed models (Giesbrecht & Burns 1985) is a
generalization of the original method. Considering the
standard error in Eqn (5), it is assumed that Y, defined as

Y = 2k̂σ̂2E/r, is approximately chi-square distributed
with d=2(E(Y ))2/var(Y ) degrees of freedom. Provided
that σ̂2G . 0, the REML estimators σ̂2G and σ̂2E equal the
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ANOVA estimators with known covariance matrix
(Searle 1971).

A = var(σ̂2G, σ̂2E)′

=
2
r2

(rσ2G + σ2E)2
v − 1

+ σ4E
(r − 1)(v − 1)

( ) −2σ4E
(r − 1)(v − 1)

−2σ4E
(r − 1)(v − 1)

2σ4E
r(r − 1)(v − 1)







(A1)
The observed covariance matrix Â is (A1), with σ̂2G
and σ̂2E substituted for σG

2 and σE
2, respectively. Let

g′ = (∂Y/∂σ̂2G, ∂Y/∂σ̂2E) = (2(1− k̂)2, 2k̂
2
/r).

Then g′Âg approximates var(Y ). The Satterthwaite

approximation of the degrees of freedom is 2Y2/g′Âg,
which can be written as Eqn (6).

APPENDIX 2

Let y be the vector of all observations yij, sorted first
by treatments and then by replicates. Model (2)
can be written y=Xβ+Zu+e, where X=1v⊗Ir;

β= (β1,β2,. . .,βr)’; Z= Iv⊗1r; u= (u1,u2,. . .,uv)’; e=
(e11, e21,. . .,evr)’; u is MVN(0, G); G=σG

2 Iv; e is
MVN(0, R); R=σE

2Irv. Then V=ZGZ’+R= It⊗
(σG

2 Jr+σE
2Ir), where Jr is a matrix of ones, and

V−1= It⊗(σG
2 Jr+σE

2Ir)
−1= It⊗((Ir−σG

2 /(rσG
2 +σE

2)Jr)/σE
2).

For the prediction of u1−u2, letm denote the v-vector
(1,−1, 0, . . ., 0)’, and b’=m’GZ’V−1= (1’r(1−k) σG

2 /
σE
2, −1’r (1−k) σG

2 /σE
2, 0, . . .,0). Prasad & Rao (1990)

proposed the correction term λ=trace(d’VdA), where
d=(∂b/∂σG

2 ,∂b/∂σE
2) and A is defined as in

Appendix 1. Since

∂

∂σ2G

(1− k)σ2G
σ2E

= σ2E
(rσ2G + σ2E)2

,
∂

∂σ2E

(1− k)σ2G
σ2E

= −σ2G
(rσ2G + σ2E)2

algebra gives λ=4σE
2(1−k)/((r−1)(v−1)). The

Kenward and Roger method adds 2λ̂ to the mean

square error in the prediction of u1−u2, where λ̂

equals λ, but with σ̂2G and σ̂2E substituted for σG
2 andσE

2,
respectively.
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