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Simulating Water and Pollutant Transport in Bark, Charcoal and 
Sand Filters for Greywater Treatment 

Abstract 
A septic tank combined with a sand filter is the most common onsite wastewater 
treatment system worldwide, since it is a simple, lowcost and reliable treatment 
method. Alternatives to sand in filters could be advantageous in terms of availability of 
material and enhanced treatment properties.  

In this study, flow dynamics and pollutant transport in three filter materials; sand, 
pine bark and activated charcoal, intermittently dosed with artificial greywater, were 
simulated using the HYDRUS wetland module. The simulated results were compared 
with observations from laboratory filters and model hydraulic and microbial parameters 
were calibrated. Emphasis was placed on simulating the removal of organic pollutants 
by each filter type. Furthermore, for the bark and charcoal filters, removal of organic 
matter was simulated for different hydraulic and organic loading rates (HLR = 32 and 
64 l m-2 day-1 and OLR = 13-6 and 28 g BOD5 m-2 day-1).  

Comparing simulated with measured cumulated effluent volume, the normalised root 
mean square error for all three filter materials was small (0.7-3.5%). The simulated 
bark filter COD removal in different loading regimes (HLR = 32 and 64 l m-2 day-1, 
OLR = 13-16 and 28 g BOD5 m-2 day-1) was overestimated by 13-20 percentage points 
compared with the measured values. When release of organic matter from the bark 
material itself was accounted for, the difference was reduced to 2-10 percentage points. 
Simulation of the charcoal filter demonstrated 94 and 91 % removal of COD for HLR = 
32 and OLR = 13 - 16 g BOD5 m-2 day-1, which compared well with the measured 
values, 95 ± 2 % and 89 ± 11 %, respectively. However, simulated COD removal for 
Run 2 (70%) and Run 5 (72%) was low compared with the measured values (90 ± 7 
and 84 ± 4 %). The measured sand filter effluent concentration of COD was 245 mg l-1 
and the simulated effluent concentration of COD was 134 mg l-1 for HLR = 32 and 
OLR = 14 g BOD5 m-2 day-1. After including an effect of water flow along the column 
wall in the model, the simulated effluent concentration of COD was 337 mg l-1. 

These simulations of bark, charcoal and sand filters improved understanding of filter 
functions and identified possible filter design developments. 
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1 Introduction 
Water scarcity, defined as annual water supply below 1000 m3 water per 
person, affects 700 million people in 43 countries today (WWAP, 2012). 
Generally, this means that water demand by all sectors (agricultural, industrial 
and urban) cannot be satisfied. Furthermore, it is predicted by that by 2015, 1.8 
billion people will be living with absolute water scarcity, an even worse 
condition defined as annual water supply below 500 m3 water per person. 

Reuse of greywater (i.e. household wastewater, excluding wastewater from 
toilets) can help sustain natural water resources (Nolde, 1999). Pit latrines are 
used worldwide by an estimated 1.77 billion people (Graham & Polizzotto 
2013). The wastewater from this type of household is either source separated 
by default, as greywater is not released into the pit latrine, or may easily be 
kept separate from the pit latrine. Appropriate treatment of greywater can 
enable sustainable reuse of large quantities of water and prevent release of 
pollutants to natural water bodies. 

Furthermore, 54% of the world’s population lives in urban areas, with the 
projection that this number will increase to 66% by 2050 (UN, 2014). Between 
15 and 20 % of the food consumed globally is produced by urban agriculture 
(Corbould, 2013). Implementing small-scale treatment of greywater in urban 
agriculture for re-use of water for irrigation could improve crop yields and also 
protect the environment from release of untreated greywater and/or overuse of 
natural water bodies. The suitability of using correctly treated greywater for 
irrigation is supported by WHO (2006). 

Regarding general water usage, approximately 70% is used for irrigation in 
agriculture, 20% for industrial use and 10% for direct human use (drinking, 
washing etc.). Urban wastewater is a significant point source of pollutants 
(WWAP, 2012). Conveying wastewater to a central wastewater treatment plant 
is common procedure in industrialised, high-income countries. However, 
centralised wastewater treatment systems require complex infrastructure, 
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expert knowledge and high investments. An alternative to centralised 
wastewater treatment is small-scale and/or onsite treatment. A septic tank 
combined with a sand filter is one of the most common onsite wastewater 
treatment systems worldwide, since it is a simple, low-cost and reliable 
treatment solution (USEPA 2002). The sand filter treats influent water through 
physical filtration, chemical transformation and biological processes in the 
biofilm developed by microbial growth as a response to the nutrients present. 
Common designs of sand filter systems are trenches and mounds. 

Using filter media other than sand could make filter and infiltration systems 
more accessible and enhance removal of pollutants. Bark is frequently 
available as a cheap waste product from industry and charcoal can be produced 
from lignocellulosic waste material. Seki et al. (1997) compared milled 
coniferous bark with activated carbon in terms of removal of heavy metals 
from water and concluded that bark could be used for pollution removal 
systems. Argun et al. (2009) also concluded that pine bark is an effective 
adsorbent of the heavy metals cadmium, lead, copper and nickel and that bark 
could therefore be a good alternative to more costly materials such as activated 
carbon. Lens et al. (1994) used laboratory columns to determine the treatment 
capacity of peat, bark and woodchips as filter materials for treating primary 
domestic sewage by percolation. Lens et al. (1994) concluded that bark and 
peat were applicable materials, whereas woodchips had insufficiently high 
capacity (26%) to lower the chemical oxygen demand (COD). 

Scholz & Xu (2002) investigated the treatment efficiency of vertical flow 
filters containing different macrophytes and granular media with different 
adsorption capacities. They used six filters with different layering of nine 
separate sand and charcoal filter materials (cobblestones, coarse gravel, fine 
gravel, pea-gravel, coarse sand, medium sand, Filtralite, granular activated 
carbon and charcoal). The filters were fed for 10 months with river water 
polluted by drainage water and sewage, and with copper and lead also added in 
the experiment. It was found that addition of expensive adsorption filter 
materials did not cause a statistically significant increase in removal of copper 
and lead. Furthermore, the overall filtration performance in terms of 
biochemical oxygen demand (BOD5) and turbidity removal was similar for all 
filters during the 10 months of operation. However, Dalahmeh et al. (2012) 
found that greywater treatment with bark or charcoal as filter materials 
outperformed sand as the filter medium. 

More research is needed to determine the full capacity of bark and charcoal 
as alternative filter materials to sand. Moreover, almost all available design 
guidelines for sand filters are based on empirical rules-of-thumb or simple 
first-order decay models (Langergraber et al., 2009). Modelling flow and 
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compound transport can provide a practical tool for design and operation 
optimisation of filter systems. Common models for such purposes include 
PHREEQC (Parkhurst & Appelo, 2013), PHWAT (Mao et al., 2006), 
FITOVERT (Giraldi et al., 2010) and the HYDRUS wetland module 
(Langergraber & Šim nek, 2012).  

PHREEQC (Parkhurst & Appelo, 2013) is a computer programme written 
in C and C++ and performs a wide variety of aqueous geochemical 
calculations. PHREEQC is suitable for speciation and saturation-index 
calculations, batch-reaction and one-dimensional (1D) transport calculations 
with reversible and irreversible reactions, surface complexation, ion exchange 
equilibria, specified mole transfers of reactants, kinetically controlled reactions 
and mixing of solutions, and also considers pressure and temperature changes. 
Furthermore, PHREEQC provides an inverse modelling tool for finding sets of 
mineral and gas mole transfers that account for differences in composition 
between waters. Herrmann et al. (2013) successfully used PHREEQC to 
simulate the removal of phosphate in laboratory-scale filter columns for 
domestic wastewater treatment using calcium-silicate sorbent (Filtralite) as the 
filter medium. 

Mao et al. (2006) combined PHREEQC with a density-dependent 
groundwater flow and solute transport model (SEAWAT; Guo & Langevin, 
2002) for simulating multi-component reactive transport in variable density 
groundwater flow and named the combined model PHWAT. The modular 
design of PHWAT allows easy incorporation of individual submodules. 
PHWAT was coupled with a modular numerical model describing biomass 
growth by Brovelli et al. (2009) to simulate clogging by microbial biomass of 
porous media, using experimental data from a sand filter fed with a solution 
containing growth medium.  

HYDRUS is Microsoft Windows-based software for modelling two- and 
three-dimensional movement of water, solutes and heat in variably saturated 
porous media (Šim nek et al., 2011). HYDRUS can be coupled with the 
HYDRUS wetland module, which considers transport and reactions in soil, 
including typical pollutants of wastewater such as organic matter, nitrogen and 
phosphorus (Langergraber & Šim nek, 2012). The HYDRUS wetland module 
was used by Rizzo et al. (2014) to simulate the response of a laboratory 
horizontal flow constructed wetland to variable loads of synthetic sewage 
wastewater. They found that the overall removal efficiency of simulated COD 
effluent was similar to experimental observations.  

This is only a small selection of the ongoing work on hydrological and 
geochemical modelling. However, to the best of my knowledge the HYDRUS 
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wetland module or similar software has not been used previously for modelling 
vertical flow bark, charcoal and sand filters subjected to greywater.  

All models mentioned above are based on the same or similar mathematical 
equations for flow and solute transport, but a unique feature of the HYDRUS 
wetland module is the specialisation on constructed wetlands for wastewater 
treatment. In particular, it deals with the unsaturated flow occurring in vertical 
flow filters by applying differential flow equations, as opposed to rudimentary 
equations governing plug flow. 

1.1 Objectives 

The overall aim of this licentiate project was to test whether the flow and 
treatment processes of greywater in vertical bark, charcoal and sand filters with 
unsaturated flow could be accurately simulated using computer modelling. 

Specific objectives were to: (1) identify and evaluate procedures to increase 
the fit of the sand filter flow simulated results compared with observations 
(Paper I); (2) include and calibrate biomass in the filter media as a main 
treatment mechanism (Paper I and Paper II); (3) simulate organic matter 
degradation in vertical flow bark, charcoal and sand filters (Paper I and Paper 
II); and (4) simulate water flow and organic matter degradation under different 
hydraulic and organic loading rates for bark and charcoal filters (Paper II). 

To achieve these objectives, the software HYDRUS with its add-on wetland 
module was chosen as the modelling tool. The work was focused on calibrating 
the model parameters and evaluating the models by comparing simulated 
results with previous measurements obtained in a laboratory-scale set-up 
testing sand, bark and charcoal filters. 

1.2 Structure of the work 

Paper I in this thesis focused on modelling the performance of a vertical flow 
sand filter subjected to greywater. A novel feature of that study was varying 
the number of calibrated flow model parameters, which contributed to a better 
understanding of the model dynamics (Figure 1). The performance of vertical 
flow bark and charcoal filters subjected to greywater was studied in Paper II. 
A novel feature of that study was the simulation of organic matter removal by 
bark and charcoal filters under four loading regimes with different 
combinations of hydraulic loading rates (HLR; 32 or 64 l m-2 day-1) and 
organic loading rates (OLR; 13-16 or 28 g BOD5 m-2  day-1). 
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Calibrations of hydraulic parameters, biomass growth and simulation of 
filter effluent organic matter concentrations during a fixed artificial greywater 
loading regime were performed in both Paper I and Paper II (Figure 1).  

The results obtained in Papers I and II are compared and discussed in this 
thesis essay in relation to the stated objectives. In addition, a detailed 
sensitivity analysis of the HYDRUS wetland module and preliminary results 
for simulation of nitrogen and phosphorus compounds is reported in this essay, 
followed by suggestions for future research. 

 
Figure 1. Objectives of the studies reported in Paper I and Paper II. 

 
  

Obj. (1) Identify and evaluate 
procedures to increase the fit  of 
the sand filter flow simulated 

results compared with 
observations

Obj. (2) Include and calibrate 
biomass in the filter media as a 

main treatment mechanism

Obj. (3) Simulate organic matter 
degradation in vertical flow bark, 

charcoal and sand filters

Obj. (4) Simulate water flow and 
organic matter degradation 

during different hydraulic and 
organic loading rates for bark and 

charcoal filters

Paper I: modelling sand filter

Paper II: modelling bark and 
charcoal filter
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2 Background 

2.1 Wastewater treatment by infiltration 

The composition of household wastewater varies greatly depending on 
circumstances such as water availability and lifestyle of household members 
(e.g. presence of small children, animals, chemical use). In general, greywater 
contains lower levels of organic matter and nutrients than mixed household 
wastewater, since urine, faeces and toilet paper are not included (Eriksson et 
al., 2002).  

Greywater may contain pathogens, mainly originating from faecal 
contamination (e.g. from washing diapers), skin and mucous tissue and/or food 
handling (Maimon et al., 2010). Due to use of household chemicals such as 
detergents, soaps and beauty products etc., greywater also contains xenobiotic 
micro-pollutants that are harmful for the environment (Donner et al., 2010). 
Due to food waste from kitchens in particular, greywater also contains organic 
matter. Organic matter is commonly measured as biological oxygen demand 
(BOD) or chemical oxygen demand (COD). If wastewater containing organic 
matter reaches a natural water body, the organic matter is degraded there, 
creating a risk of depleting the oxygen, causing anaerobic conditions and 
sulphide production (Eriksson et al., 2002). 

The most commonly used systems for onsite treatment and release of 
wastewater are subsurface wastewater infiltration systems (Subramani & 
Akela, 2014). The wastewater is first directed to a septic tank, which acts as a 
combined settling tank and anaerobic bioreactor that removes most of the solid 
organic matter and, depending on the conditions (e.g. temperature), also digests 
some dissolved organic matter and may mineralise nitrogen (i.e. organic 
nitrogen is transformed to ammonium). The septic tank effluent is rich in 
organic matter and nutrients and may contain human pathogens. The effluent is 
infiltrated through permeable, unsaturated natural soil, which is the definition 
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of infiltration. If suitable soil is unavailable, a fill material can be used instead. 
As the wastewater passes through the soil or fill material, it is subjected to 
physical, chemical and biochemical processes and reactions, leading to 
removal of pollutants. The infiltration zone functions in an equivalent way to a 
fixed-film bioreactor. Organic pollutants in the wastewater are degraded by 
microorganisms, a process which requires oxygen. If the available oxygen is 
not sufficient, the metabolic processes of the microorganisms are retarded and 
over time the microbial community will adapt and change to anaerobic 
processes (Subramani & Akela, 2014).  

The top of the infiltration zone is the most biologically active and is also 
where most sorption reactions occur, because the negative water potential in 
the unsaturated zone causes percolating water to move into the micropores of 
the infiltration material, which increases the contact surface (Subramani & 
Akela, 2014). 

In an infiltration system, when the wastewater reaches the bottom of the 
infiltration material, it continues to percolate through the underlying soil and 
finally to the groundwater (Subramani & Akela, 2014). Another alternative, 
more common for filter systems, is to have a non-permeable layer in the 
bottom of the infiltration material and direct the effluent water through a pipe 
for release to either a ditch or directly into a nearby water body. 

2.2 Microbiology 

The potential of subsurface infiltration systems to remove pollutants from 
wastewater by microbial action has led to the concept of “living filters” 
(Kristiansen, 1981). The microflora in sand filters loaded with septic tank 
effluent consists of numerous different viruses, bacteria, fungi, protozoa and 
metazoa (Kristiansen, 1981; Calaway, 1957). 

Microbial activity within filters and infiltration systems can be considered 
to be closely related to soil microbiology. Microorganisms make up 0.5% of 
soil mass, even though the typical prokaryote microbial cell is only about 0.5 

m (Tate, 1995). There are more than 1016 microorganisms in a ton of soil 
(compared with 1011 stars in our galaxy). This led Curtis and Sloan (2005) to 
describe studying microbial diversity as exploring a largely unknown microbial 
universe, comparable with exploring outer space. Furthermore, the biochemical 
potential of soil microbes is significantly greater than that expressed at any 
particular point in time, as the populations are a mixture of actively growing 
and resting cells (Tate, 1995). Microbial growth in soil occurs at microsites, as 
a result of the spatial and temporal non-homogeneity of energy supply. In 



17 
 

addition, bacteria prefer in particular to attach to surfaces where phase 
transitions are occurring (Tate, 1995). 

A soil site needs to be evaluated both at the macro and micro scale to 
properly assess the conditions for microbial growth (Tate, 1995). Soil site 
properties which interact with microorganisms are nutrient and energy 
availability, moisture, oxygen availability, surface charges, redox potential, pH 
and temperature. Carbon resources generally control the microbial population, 
but as microbes are totally dependent on water for their activities, moisture is 
also essential. There is rarely only one stress factor limiting microbial growth 
and it is most often difficult to determine the exact conditions at each microsite 
(Tate, 1995). 

Microorganisms mainly consist of organic carbon, nitrogen and phosphorus. 
Aside from being an energy source, organic carbon is the building material for 
the microbial skeleton. Nitrogen is needed by the microorganisms to form 
proteins, cell wall components and nucleic acids. Phosphorus is a key substrate 
in the energy generation system and is also needed to form nucleic acids and 
phospholipids. For microorganisms to reach their full potential in wastewater 
treatment systems, a correct ratio of C:N:P in the substratum is vital 
(Thompson et al., 2005). Droste (1997) gives a general chemical formula for 
microbial biomass of C5H7O2NP0-074 which corresponds to a C:N:P ratio of 
100:5:1. 

Unlike soil, infiltration and filter-type systems for treatment of wastewater 
provide conditions with continuous inflow of energy, carbon and nutrients for 
the microbes to thrive on. Wastewater from particular households is likely to 
be homogeneous over time compared with the natural energy inputs to soils 
and the microflora within an infiltration system will therefore be highly 
specialised. 

According to Calaway (1957), while filtration and adsorption play an 
important part in the purification of wastewater in intermittent sand filters, 
biological oxidation is the most important function. 

2.3 Computer modelling 

The first device to be used for mathematical calculations in human history was 
arguably the tally stick. Tally sticks are used to record and document numbers, 
quantities and even messages, mostly for financial transactions. The first tally 
stick ever used by Man is believed to be the Ishango bone, dated to the Upper 
Paleolithic era (50 000-10 000 years ago) (Rudman, 2006). However, the most 
rapid progress in the field of computer modelling and simulations has been 
over the last two decades. 
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Computer simulations are tools for extending the class of tractable 
mathematics, which thereby support scientific progress (Frigg & Reiss, 2007). 
However, computer modelling methods are argued by some to be essentially 
different from the understanding and evaluation of traditional theories 
(Humphreys, 2004) and are thought of as an intermediate between traditional 
theoretical science and its empirical methods of experimentation and 
observation (Rohrlich, 1990). 

In contrast, Frigg & Reiss (2007) argue that simulation is not different from 
the empirical methods of experimentation and observation. They claim that like 
computer modelling, many physical experiments could be perceived as 
creating a parallel world where explanations are found for some real world 
phenomena, in the sense that experiments are conducted on proximate systems 
rather than the target system themselves.  

However, Peschard (2010), argues that there is a misconception in the 
assumption that experimentation and simulation are similar, in the sense that 
what is manipulated is a system representing a target system. The confusion 
lies with the intermixing of the epistemic target and epistemic motivation of an 
experiment. To gain knowledge (epistemic motivation) on some non-computer 
related real-life phenomenon, computer modelling can be used. However, the 
computer (the epistemic target) is only similar to the studied phenomenon in 
very abstract terms. 

How well a computer model can represent reality brings in the processes of 
verification and validation. A common interpretation of the term verification is 
that the computer simulation has been tested for algorithm inconsistencies 
within the code and that numerical errors such as round-off errors, propagating 
errors in iterative methods and errors in discretisation have been evaluated 
(Oberkampf & Roy, 2010). Validation, in contrast to verification, is commonly 
meant as evaluating how well the simulation represents reality. The most 
common way of doing this is to compare simulated results with observed data 
(Oberkampf & Roy, 2010). 

However, the concepts of verification and validation of computer models 
can be questioned. For example, Oreskes et al. (1994) argue that verification is 
only possible in closed systems and, since numerical models of natural systems 
are open, verification/validation is unattainable. Furthermore, in ‘verification’ 
of numerical solutions, they argue that the congruence between a numerical 
and an analytical solution indicates nothing about the agreement of either one 
with material reality. 

Oreskes et al. (1994) point out another important issue, namely that if the 
verification/validation fails, the fault can be either in the hypothesis or in the 
auxiliary assumptions. Even when the model is validated in the sense that 
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simulated data match observed data, more than one set of parameters chosen 
for the model can produce the same output, a situation which is referred to as 
non-uniqueness or underdetermination. In the case of non-uniqueness, it can be 
difficult to judge which of the parameter sets is more correct.  

Regardless of the debate on the nature of computer modelling and whether 
it can truly represent reality, the impact of computer simulations on modern 
science can be found almost everywhere. According to Rohrlich (1990), 
computer simulations can be seen as a milestone similar to those reached by 
Galileo (start of the empirical approach) and Newton and Laplace (start of the 
deterministic mathematical approach to dynamics). 

2.4 HYDRUS wetland module 

The software HYDRUS with its add-on wetland module was chosen as the 
modelling tool used for both Paper I and Paper II, mainly because of its 
specialisation in relevant compounds found in household wastewater and its 
ability to manage unsaturated flow simulation.  

HYDRUS is a Microsoft Windows based software for modelling two- and 
three-dimensional movement of water, solutes and heat in variably saturated 
porous media (Šim nek et al., 2011). HYDRUS uses partial differential 
equations; a modified form of Richard’s equation for water flow and 
convection-dispersion type equations for heat and solute transport (Šim nek et 
al., 2011): 

    (1) 

where  is volumetric water content (cm3 cm-3), h is pressure head (cm), S is 
a sink term (h-1), xi is spatial coordinates (cm), t is time (h-1),  is a 
component of a dimensionless anisotropy tensor KA and  is an unsaturated 
hydraulic conductivity function, (cm h-1). The unsaturated hydraulic 
conductivity function in the modified Richard’s equation is the product of the 
relative hydraulic conductivity (Kr, cm h-1) and the saturated hydraulic 
conductivity (Ks, cm h-1): 

   (2) 

HYDRUS provides five different analytical models for the hydraulic 
parameters of the unsaturated hydraulic conductivity function: the equations by 
Brooks and Corey (1964), the modified van Genuchten type equations by 
Vogel and Cislerová (1988), the lognormal distribution model of Kosugi 
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(1995), the dual porosity model by Durner (1994) and the van Genuchten–
Mualem model (van Genuchten, 1980). 

The van Genuchten- Mualem model is that most commonly used and was 
chosen for the modelling in Papers I and II. It gives the water content as: 

   (3) 

 
Furthermore, the hydraulic conductivity is given by: 

    (4) 

where r and s are the residual and saturated water content (cm3 cm-3),  is 
the inverse of the air entry value (cm-1), n is the pore-size distribution index (-) 
and l is the pore-connectivity parameter (-). In this thesis, the saturated water 
content was taken to be the porosity. Furthermore, m is given by: 

   (5) 

For the macroscopic transport of components in the system, the following 
equation is used: 

 (6) 

where i = 1,…, N (N is number of components), ci is the concentration in 
the aqueous phase (mg cm-3), Si is the concentration in the solid phase (mg mg-

1),  is the volumetric water content (cm3 cm-3),  is the soil bulk density (mg 
cm-3), Di is the effective dispersion tensor (cm2) to include molecular diffusion 
and longitudinal and transverse dispersion, q is the volumetric flux density 
(cm3 cm-2 h-1), S is a source-sink term (cm3 cm-3 h-1), cs,i is the concentration of 
the source or sink (mg cm-3) and ri is a reaction term (mg cm-3 h-1). 

The partial differential equations in HYDRUS are numerically solved using 
the finite element method. The finite element works analogously to the idea 
that a circle can be constructed using numerous tiny, connected straight lines. 
In the finite element method, numerous simple element equations over small 
subdomains (finite elements) approximate a more complex equation over the 
complete domain. The finite element subdomain differs depending on the 
dimension of the problem. For 1-D, the subdomain is a line with one node 
located at each end. For 2-D, the element is a triangle with one node in each 
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corner of the triangle and for 3-D the element is a tetrahedron with one node in 
each corner. The field variables, i.e. the dependent variables of interest 
governed by the differential equations, are explicitly calculated in the nodes at 
each time step. The values at the nodes are then used to approximate the values 
in the element interior by interpolation (Polyanin, 2002). 

The HYDRUS wetland module considers transport and reactions in soil, 
including typical pollutants of wastewater such as organic matter, nitrogen and 
phosphorus (Langergraber & Šim nek, 2012). The module is based on the 
principles of the Activated Sludge Model (ASM) (Henze et al., 1987). ASM is 
the collective name for several mathematical methods that model activated 
sludge systems and is often applied to full-scale wastewater treatment plants. 
Activated sludge systems depend on treating wastewater using air and 
biological flocs composed of bacteria and protozoa. 

The HYDRUS wetland module has two settings; Constructed Wetland 
Model No. 1 (CWM1) and Constructed Wetlands 2D (CW2D). CWM1 applies 
to horizontal flow filter types with saturated flow, while CW2D simulates 
unsaturated flow in e.g. vertical flow filter types (Langergraber & Šim nek, 
2012). CW2D has 12 components: 

 
 Dissolved oxygen (SO, mg l-1)  
 Readily biodegradable organic matter (CR, mg COD l-1)  
 Slowly biodegradable organic matter (CS, mg COD l-1)  
 Inert organic matter (CI, mg COD l-1)  
 Heterotrophic microorganisms (XH, g COD g filter material-1) 
 Nitrosomonas, autotrophic bacteria (NS, g COD g filter material-1)  
 Nitrobacter, autotrophic bacteria (NB, g COD g filter material-1)  
 Ammonium nitrogen, NH+

4-N and ammonia nitrogen, NH3-N (NH4N, 
mg l-1)  

 Nitrite nitrogen, NO2-N (NO2N, mg l-1)  
 Nitrate nitrogen, NO3-N (NO3N, mg l-1)  
 Dinitrogen gas, N2 (N2, mg l-1)  
 Inorganic phosphorus, PO4 

3- (IP, mg l-1)  
 

Key processes included in CW2D are hydrolysis (conversion between the 
organic matter fractions CS, CR and CI) and microbial growth and lysis for 
XH, NS and NB (Langergraber & Šim nek, 2012). The full equations of 
HYDRUS CW2D can be found in Appendix A. 
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3 Material and methods 
The input data used for modelling in this thesis were taken from a series of 
previous studies testing the performance of vertical flow bark, charcoal and 
sand filters treating greywater in laboratory-scale filter experiments (Dalahmeh 
et al., 2012, 2014a, 2014b). Supplementary data on cumulative effluent volume 
were obtained from another experiment (Karlsson, 2012). A brief description 
of the experiments is presented in the following sections. 

3.1 Experimental set-up 

The same laboratory-scale experimental set-up was used in all experiments 
form which data were obtained for this thesis. The set-up consisted of acrylic 
columns (20 cm diameter) filled with filter material to a height of 60 cm 
(Figure 2). There were six columns in total (two replicate filters each of bark, 
charcoal and sand). The filter materials were sieved so that the effective 
particle size and uniformity coefficient were equal for all three filter types. 
Other characteristics of the filter material, such as porosity and saturated 
hydraulic conductivity, were measured.  

The filter system was designed for intermittent feeding, with three portions 
(70, 10 and 20 %) of the total daily load applied at 09.00, 16.00 and 20.00 h, 
respectively. The intermittent artificial greywater loadings to which the filters 
were subjected contained only a small amount of solid particles (100-120 mg l-
1), in order to mimic greywater that had already passed through a septic tank or 
other pre-treatment step. The feeding procedure for the filters was computer-
controlled, with a pumping system connected to a heater to keep a constant 
temperature of 25 oC, which corresponded to room temperature. The loads 
were evenly distributed through sprinklers. During the experiments the influent 
and effluent from the filters were collected and analysed for pollutant 
concentrations (e.g. organic matter, nitrogen and phosphorus compounds). 
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Figure 2. Experimental set-up of the bark, charcoal and sand vertical flow filters from which 
input data were obtained for the modelling work presented in this thesis. 

3.1.1 Fixed hydraulic and organic loading regime 

For the first experiment (Run 0), the filters were fed 1 l artificial greywater per 
day, which is equal to a hydraulic loading rate (HLR) of 32 l m-2 day-1 (Figure 
3). The artificial greywater was prepared in the laboratory by mixing various 
ingredients such as shampoo, washing power and maize oil to obtain a fluid 
similar to real household greywater, although omitting solid waste. The 
artificial greywater was prepared according to a strict recipe to ensure 
consistent composition throughout the experiment. It was inoculated with a 
small volume of wastewater from a municipal wastewater treatment plant to 
get a natural microflora and was dosed at an OLR of 14 g BOD5 m-2 day-1. 

To assess the microbial activity in the filter materials, substrate-induced 
potential respiration was measured at different depths (0-2, 20, 40 and 60 cm) 
in the filters on day 14, 28, 42, 56 and 84 of the 112-day run period (Figure 3). 

Measured influent and effluent concentrations of nitrogen, phosphorus and 
organic matter in the filters were used in the modelling work in Papers I and 
II. The potential respiration rate measurements for each filter type were also 
used in the modelling in Papers I and II to estimate the filter biomass. 
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3.1.2 Different hydraulic and organic loading regimes 

The second experiment consisted of two trials. The filters were first subjected 
to loading regimes with OLR = 13-16 g BOD5 m-2 day-1 and increasing HLR 
(32, 64 and 128 l m-2 day-1) and then to HLR = 32 l m-2 day-1 and increasing 
OLR (13-16, 28 and 76 g BOD5 m-2 day-1). This experiment had a total 
duration of 150 days, with each loading regime running in succession over 3 
weeks. It was performed after the filters had been resting for several months 
following the experiment with fixed hydraulic and organic loads (Figure 3). 

Measured influent and effluent concentrations of organic matter for the bark 
and charcoal filters under the different hydraulic and organic loading rates 
were later used in the modelling in Paper II. 
The removal of pollutants in the filters was calculated according to: 

    (7) 

 where Cin is the influent concentration and Cout is the filter effluent 
concentration of the pollutant. Calculation of removal (%) was also used to 
evaluate simulated results in Papers I and II. 

 
Figure 3. Experimental regime testing different hydraulic and organic loading rates from which 
input data were obtained for the modelling work presented in this thesis. 

3.1.3 Cumulative flow measurements 

In order to simulate water transport, there was an additional need for 
observation of flow through the filters. The cumulative effluent volume was 
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therefore measured in a separate experiment, which was performed when the 
filters had been resting for approximately one year after the second experiment.  

In this experiment, the filters were loaded with tap water, following the 
intermittent scheme with three fractions (70, 10 and 20 %) of the total daily 
load applied at 09.00, 16.00 and 20.00 h, and the filter effluent was collected in 
a bucket placed on top of a digital scale connected to a computer recording the 
weight once a minute. This allowed the cumulative effluent volume to be 
measured. 

In the experiment, duplicate columns of each filter type were loaded with 1 
l day-1 and cumulative effluent was measured over 3-5 days. The columns were 
then subjected to a double load, 2 l day-1, for 3 more days. However, due to 
drift in calibration of the dosing device, the loadings were approximately 85% 
of the expected amount of 1 and 2 l day-1 (Karlsson, 2012). 
Cumulative effluent measurements were used to estimate parameters for the 
sand filter flow model in Paper I and the bark and charcoal filter flow models 
in Paper II.  

3.2 Modelling 

3.2.1 Semantics 

In this thesis, the HYDRUS wetland module is referred to as ‘software’. The 
term ‘modelling’ is used for choosing fixed parameter values within the 
software and a fixed set of parameters make up a ‘model’. ‘Simulation’ is 
referred to as using the ‘model’ with different inputs, such as varied HLR or 
OLR.  

3.2.2 Numerical set-up 

HYDRUS-2D version 2.01.1240 (Šim nek et al., 2012) was used for 
simulating greywater flow through the filters. The transport domain for each 
filter model was set to a “2D – Simple” geometry, with diameter 20 cm and 
height 60 cm, to match the experimental set-up with the filter columns (Figure 
4). 

Following the HYDRUS manual guidelines, the transport domain was 
discretised into 10 columns and 20 rows, with rows distributed more closely at 
the top because the top layer of the filter was expected to be critical for the 
treatment performance. This set-up resulted in a two-dimensional finite 
element mesh with 231 nodes (60 which were boundary nodes) and 400 
triangular finite elements (Figure 4).  
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Figure 4. Vertical flow filter model transport domain in “2D – Simple” geometry, 20 x 60 cm 
(diam. x height), displaying the 231 nodes and 400 triangular finite elements over 10 columns and 
20 rows, used in all simulations. 

The top layer of the transport domain was assigned an atmospheric 
boundary condition and the bottom drainage layer a constant pressure head 
boundary condition (-2 cm). The time resolution was set to minutes, with a 
minimum and maximum time step of 0.00001 and 1 minute, respectively, 
which are the HYDRUS default values. However, in the settings, it was 
specified that the output should be printed out as only one value per minute, to 
give a data set equal to the flow measurements, which were recorded once a 
minute. For details of numerical set-up not mentioned here, the study followed 
the HYDRUS manual guidelines (Šim nek et al., 2001).  

The numerical set-up as described here was used in modelling the sand 
filter in Paper I and the bark and charcoal filters in Paper II.  
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3.2.3 Flow parameter estimation 

To model the hydraulic properties of the sand filter in Paper I, flow 
parameters were estimated by utilising the built-in inverse simulation function 
of HYDRUS-2D, which produces the optimal estimates of the selected fitting 
parameters through a Marquardt-Levenberg type parameter estimation 
technique (Šim nek et al. 2012). This was also done for the bark and charcoal 
filters in Paper II. 

The cumulative effluent data for each filter type were calculated to a mean 
one-day time series from the duplicate filters and five-day measurements. This 
one-day time series was set as the objective function (i.e. cumulative effluent 
data as a function of time constituted the objective function). The objective 
function corresponded to 1440 data points (one measurement per minute for 24 
hours) for the inverse simulation of sand and bark filter flow parameter 
estimation. For estimating parameters for the charcoal filter the inverse 
simulation did not converge. Therefore, the objective function was cut to 
include only the first 400 minutes during which the first loading (70% of daily 
amount) took place. 

The inverse simulation function requires initial values to be specified for 
the parameters to be estimated. Different initial values for each estimated 
parameter were tested and the best result selected using the “Inverse Solution 
Results” tab in HYDRUS, which gives the correlation matrix and various 
goodness-of-fit measures. This same procedure was applied for the sand filter 
model in Paper I and for the bark and charcoal models in Paper II. 

In Paper I, varying the degree of flow model calibration was tested through 
increasing the number of fitting parameters. This was done by first using zero 
fitting parameters (i.e. the default values available in HYDRUS), then fitting 
the inverse air entry value and pore connectivity parameters for a second 
model. A suspected effect of water flowing faster along the column wall was 
also included in a third model to investigate whether this improved the fit. This 
was done with specifying a second material in the transport domain to make up 
a ‘wall layer’ (Figure 5). For the ‘wall layer’, all hydraulic parameters (seven 
in total) were estimated in the model. 
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Figure 5. Sand filter model 3 transport domain in “2D – Simple” geometry, 20 x 60 cm (diam. x 
height), displaying the 231 nodes and 400 triangular finite elements (over 10 columns and 20 
rows) and the material distribution (inner filter material and outer wall layer). 

The estimated flow model parameters in Papers I and II were validated by 
using them to simulate a hydraulic load that was approximately twice the 
volume of the original load. The simulated results were then compared with 
observations (using one-day mean time series) and goodness-of-fit measures 
were calculated. 

3.2.4 Biological degradation of organic matter 

For the studies in Papers I and II, the HYDRUS wetland module with the 
CW2D setting chosen was used to simulate the degradation of organic matter 
inside the filters once the flow model had been calibrated.  

To assess the microbial activity, substrate-induced potential respiration rate 
observations were analysed during the 112-day initial experiment (Run 0) as 
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described in Dalahmeh et al. (2014a). For the modelling, it was assumed that 
the filters were operating under approximate steady-state conditions for the 
112-day initial experiment (Run 0). Therefore, the potential respiration rate 
(measured on four occasions) was calculated as a mean value for each depth 
(0-2, 20, 40 and 60 cm).  

Since the HYDRUS wetland module describes microbial activity with units 
g COD g material-1, the measured mean potential respiration rate (mg O2 l-1 

day-1) had to be converted before being used to calibrate the growth of 
heterotrophic biomass (XH, g COD g material-1) in the model. The measured 
mean values of respiration rates were converted to g biomass COD g material-

1 using empirical equations 8 and 9, from Anderson and Domsch (1977) and 
Langergraber et al. (2007), respectively: 

     (8) 

 (9) 

The initial level of heterotrophic biomass in each filter model was set as the 
estimated mean value of filter biomass at each depth (0-2, 20, 40 and 60 cm). 
A linear relationship was used to interpolate the values between the measured 
depths. Model parameters limiting microbial growth, the heterotrophic lysis 
rate constant (bH, day-1) and maximum aerobic growth rate ( H, day-1), were 
adjusted to set values that ensured simulated biomass (XH) matched 
observations and did not grow excessively during simulations (1-5 simulated 
days). With the HYDRUS wetland module, it is not possible to calibrate so that 
XH stays entirely constant or to impose a maximum threshold. 

Both Paper I and Paper II used the method described here to calibrate the 
growth of heterotrophic biomass to match the observed microbial activity in 
the filter materials. 

3.2.5 Specifying the influent greywater composition 

In CW2D, total COD is divided into three fractions: readily biodegradable 
soluble COD (CR), slowly biodegradable soluble COD (CS) and inert soluble 
COD (CI). When specifying the COD of the greywater into these three COD 
fractions as input for the models, different approaches were used in Paper I 
and Paper II. 

In Paper I, considering the ingredients of the artificial greywater as 
described by Dalahmeh et al. (2012), CI was estimated to constitute 10% of the 
measured COD concentration. Furthermore, it was assumed that CR 
corresponded to the measured BOD5 concentration, since CR is the fraction of 
organic matter that is readily accessible to the microbes. CS is a more slowly 
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degradable fraction of the substrate and was chosen to correspond to the 
remaining amount of COD. 

In Paper II, the CI was estimated for each loading regime as 0.5 times the 
outgoing COD concentration of the charcoal filter. This was done in agreement 
with other studies, where CI was chosen as a factor 0.5-0.9 times the COD 
effluent concentration (Dittmer et al., 2005; Henrichs et al., 2007; 
Langergraber et al., 2007; Toscano et al., 2009). The outgoing COD 
concentration of the bark filter was not used because the bark filter released 
COD from the bark material itself, which would give a bias. The bark influent 
fractionation was therefore assumed to equal the estimated influent 
fractionation for the charcoal filter.  

The CR and CS were then estimated according to the formula CR = 2 x CS, 
also according to the studies cited (Dittmer et al., 2005; Henrichs et al., 2007; 
Langergraber et al., 2007; Toscano et al., 2009). 

In this thesis, the initial experiment with HLR = 32 l m-2 day-1 and OLR = 14 
g BOD5 m-2 day-1 is denoted Run 0 (Table 1). The initial experiment was 
simulated with the sand filter model in Paper I and with the bark and charcoal 
filter models in Paper II.  

Out of the seven loading regimes in the second experiment, only three 
regimes were simulated in Paper II with the bark and charcoal filter models. 
The simulated regimes are denoted here (as in Paper II) Run 1, Run 2 and Run 
5, following the order in which the regimes were conducted in the experiment 
(Figure 3). Run 1 had a HLR of 32 l m-2 day-1 and an OLR of 13 - 16 g BOD5 
m-2 day-1, Run 2 had a HLR = 64 l m-2 day-1 and an OLR of 14 g BOD5 m-2 day-

1 and Run 5 had a HLR of 32 l m-2 day-1 and an OLR of 28 g BOD5 m-2 day-1 
(Table 1). The most extreme loading regimes (Runs 3 and 6) were not 
simulated, and the remaining loading regimes (Runs 4 and 7) were duplicate 
regimes of Run 1.  

Although Run 0 and Run 1 had similar OLR in terms of BOD5, the mean 
influent COD concentration differed between the two (885 ± 127, n = 2 and 
1450 ± 470, n = 4 respectively, mean value ± standard deviation, Table 1). 
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Table 1. Influent greywater concentrations (mean ± standard deviation) in the different loading 
regimes: Run 0, Run 1, Run 2 and Run 5 of the measured BOD5 and COD and calculated CR, CS 
and CI 

Parameter (abbrev., unit) Run 0 No. of 
samples for 
Run 0 

Run 1 Run 2 Run 5 No. of samples 
for Runs 1, 2 and 
5 

Hydraulic loading rate 
(HLR, l m-2 day-1) 

32 - 32 64 32 - 

Organic loading rate (OLR, 
g BOD5 m-2 day-1) 

14 - 13-16 14 28 - 

Readily biodegradable 
organic matter (CR, mg l-1) 

574 - 913 494 1879 - 

Slowly biodegradable 
matter (CS, mg l-1) 

287 - 457 247 940 - 

Inert organic matter (CI, 
mg l-1) 

24 - 80 39 241 - 

Biochemical oxygen 
demand (BOD5, mg l-1) 

425 ± 
152 

12 490 ± 
49 

198 ± 
13 

875 ± 
452 

2 

Chemical oxygen demand 
(COD, mg l-1) 

885 ± 
127 

2 1450 ± 
470 

780 ± 
110 

3060 ± 
830 

4 

3.2.6 Time-span and initial conditions 

Because of the excessive increase in heterotrophic biomass (XH) over time in 
the models, the simulated time span was not set to equal the experimental time 
span (112 days for the initial experiment and 3 weeks for each loading regime 
in the second experiment). In Paper I, the sand filter model was set to simulate 
24 hours, representing an arbitrary day towards the end of the initial 112-day 
experiment. Initial conditions for all model components except XH were 
imported from the last time layer of a 20-day simulation where pseudo steady 
state had been reached.  

In Paper II, the simulation time span was set to 5 days for each loading 
regime, in contrast to the experimental run period of 112 days for Run 0 and 3 
weeks each for Runs 1, 2 and 5.  

For initial conditions, Run 0 was re-simulated once with the conditions of 
the last simulated time layer as initial conditions. Initial conditions for Run 1 
were set to match the conditions of the last simulated time layer of Run 0. For 
both Run 2 and Run 5, initial conditions were set to match the conditions of the 
last simulated time layer of Run 1, since in the experimental scheme the 
loading regime preceding Run 5 was identical that preceding  Run 1.  
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3.3 Goodness-of-fit measures 

Assessment of the quality of the model fit achieved is required in all modelling 
work (Moriasi et al., 2012; Ahnert et al., 2007). Both Paper I and Paper II 
followed the recommendations for goodness-of-fit measures for numerical 
modelling in urban water management by Ahnert et al. (2007). The 
recommendations are to make a visual evaluation, such as a time series, and to 
use Coefficient of Efficiency (E) as a goodness-of-fit measure.  

E ranges from -  to 1, with E = 1 indicating a perfect fit. E is calculated 
according to: 

      (10) 

where O is the observed value, P is the model prediction and N is the 
number of observations. When j = 2, this equation becomes the original 
equation given for E by Nash and Sutcliffe (1970). Using j = 1 gives the 
modified E usually denoted in the literature as E1, which was first presented by 
Legates and McCabe (1999). The modified E is recommended over the original 
with j = 2, because the original E reaches high values even with mediocre 
modelling results. Thus, in this thesis and in Papers I and II, E with j = 1 was 
used, and referred to as E. 

The Index of Agreement (d) was also used as a goodness-of-fit measure in 
both Paper I and Paper II and was calculated according to: 

     (11) 

where O is the observation, P is the model prediction and N is the number 
of observations. When j = 2, this equation becomes the original equation 
published by Willmott (1981). However, as this formula was increasingly used 
for evaluating model performance, a suspicion arose that squaring the errors 
prior to summing them was causing a numerical problem. Willmott et al. 
(1985) therefore suggested a new version, d1, which is calculated with j = 1. 
This modified d has since been preferred over the original d with j = 2, because 
it provides greater separation when comparing models that perform relatively 
well and is much less sensitive to the shape of the error frequency distribution 
(meaning less sensitivity to errors concentrated in outliers). Thus, in both this 
thesis and in Papers I and II, d with j = 1 was used, and referred to as d. 

Besides E and d, the Root Mean Square Error (RMSE) between observed 
and modelled data was calculated in both Paper I and Paper II. To facilitate 
comparison between the RMSE of simulations of different hydraulic loading 
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rates, the Normalised Root Mean Square Error (NRMSE), i.e. the RMSE 
divided by the range of observed values, was also determined. 

3.4 Sensitivity analysis of filter models 

A sensitivity analysis was performed on each filter model in order to determine 
the relationships between model parameters and the simulated COD and to 
identify the parameters with the largest impact on simulated organic matter 
degradation. Evaluating the effect on model outputs exerted by individually 
varying one of the model parameters at a time across a range of values, while 
holding all other parameters at their nominal or base-scenario values, is a 
method called Nominal Range Sensitivity Analysis (NRSA) (Cullen & Frey, 
1999). The difference in the model output due to the change in the input 
variable compared with the base scenario output is referred to as the sensitivity 
of the model to the varied parameter (Morgan & Henrion, 1990). 

To check the sensitivity of the bark, charcoal and sand filter models, NRSA 
was performed. The base scenario was set as the chosen parameters for each 
filter model. Each parameter was varied as 0.5, 0.8, 0.9, 1.1, 1.2 and 1.5 times 
the base scenario value.  

For the bark and charcoal filter models, 51 parameters were varied in 306 
simulations. For the sand filter model, which had a second material specified 
for the simulation of wall flow effects, a total of 57 parameters were varied in 
342 simulations. To carry out the simulations for the NRSA automatically, a 
script was created that manipulated the input variables in the HYDRUS 
wetland module input files. The sensitivity was calculated as positive (or 
negative) percentage change compared with the base scenario effluent COD. 

When the mean of the absolute value percentage changes in effluent COD 
concentrations for a particular parameter (varied as 0.5, 0.8, 0.9, 1.1, 1.2 and 
1.5 times its base scenario value) was larger than 3%, the model was 
considered sensitive to that particular parameter.  
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4 Results 

4.1 Simulated filter column flow 

The parameter values used for the sand filter material (Paper I) are presented 
together with the parameter values used for the bark and the charcoal filter 
materials (Paper II) in Table 2.  

Table 2. Default (*), measured (**) and estimated (unmarked) water flow parameters used for the 
models of bark, charcoal and sand filters when simulating with the HYDRUS wetland module 

Parameter 
(abbrev., unit) 

Bark filter model Charcoal filter 
model 

Sand filter model, 
inner material 

Sand filter model, 
wall  material 

Residual soil 
water content 
( r,-) 

0.045* 0.045* 0.045* 0.001 

Porosity ( s, -) 0.41 (0.73**) 0.14 (0.85**) 0.34** 0.28 
Inverse air entry 
value,  (cm-1) 

0.0694 0.3746 0.1007 0.0609 

Pore connectivity 
parameter, n (-) 

5.818 1.596 3.333 4.829 

Saturated 
hydraulic 
conductivity, Ks 
(cm h-1) 

330* 500* 360* 3720 

The estimation of selected hydraulic parameters resulted in a close fit 
between simulated and measured cumulative effluent, with the best fit seen for 
the sand and charcoal models (Figure 6a). The close fit was further 
demonstrated by viewing the residuals, which were largest for bark but close to 
zero for the sand and charcoal models (Figure 6b). 
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Figure 6. (a) Observed and simulated cumulative effluent volume as a function of time for the 
bark, charcoal and sand filter models and (b) calculated residual of simulated cumulative effluent 
volume compared with observed values for the bark, charcoal and sand filter models. 

4.1.1 Sand filter wall flow effect 

In Paper I, the first sand filter model with standard hydraulic parameters for 
sand resulted in moderate agreement between simulated and measured 
cumulative effluent values (Sand mod. 1, Figure 7a). Estimating the inverse air 
entry value  and the pore connectivity parameter n in a second sand filter 
model improved the fit (Sand mod. 2, Figure 7a). The improved fit was also 
demonstrated by decreased residuals (Figure 7b). Introducing wall flow effects 
in a third sand filter model by setting a 1 cm thick wall layer with all 
parameters estimated (Figure 5) further improved the fit between simulated and 
observed values (Sand mod. 3, Figure 7a). The estimation was done using the 
HYDRUS inbuilt inverse simulation tool, as explained in section 3.2.3. The 
resulting parameter values of the three different sand models are given in Table 
3. 

Models with estimated parameters were better at simulating cumulative 
effluent in terms of all fitness measures than using a model with standard 
parameters (Table 4). Sand model 3 with inclusion of wall flow effects gave 
the best fit (Table 4).  
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Table 3.  CW2D water flow parameters in sand filter test models, default (*), measured (**) and 
estimated (unmarked) values (Paper I) 

Parameter 
(abbrev., unit) 

Sand model 1, 
standard 
parameter set 

Sand model 2, 
est.  and n  

Sand model 3, 
est.  and n, inner 
material   

Sand model 3, 
est. , n, r, s, 
and Ks, wall 
material  

Residual soil 
water content 
( r,-) 

0.045* 0.045* 0.045* 0.001 

Porosity ( s, -) 0.34** 0.34** 0.34** 0.28 
Inverse air entry 
value,  (cm-1) 

0.1450 0.0516 0.1007 0.0609 

Pore connectivity 
parameter, n (-) 

2.680 3.196 3.333 4.829 

Saturated 
hydraulic 
conductivity, Ks 
(cm h-1) 

360* 360* 360* 3720 

 

 
Figure 7. (a) Observed (Obs.) and simulated cumulative effluent volume as a function of time for 
Sand model 1 (standard parameters used), Sand model 2 (parameters estimated from inverse 
simulation) and Sand model 3 (parameters estimated from inverse simulation including wall flow 
effects) and (b) calculated residual of simulated cumulative effluent volume compared with 
observed values for Sand models 1-3 (Paper I). 

4.1.2 Validation of flow models 

The sand filter model (Paper I) and the bark and charcoal filter models (Paper 
II) were all able to simulate a doubled hydraulic load, with a close fit to the 
corresponding measured cumulative effluent volume (Figures 8a-c).  
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Figure 8. Observed and simulated cumulative effluent volume and calculated residual cumulative 
effluent volume with a doubled hydraulic load for (a) the bark filter model, (b) the charcoal filter 
model and (c) sand filter model 3. 

4.1.3 Flow model goodness-of-fit 

The goodness-of-fit measures for the sand filter models were calculated in 
Paper I and for the bark and charcoal filter models in Paper II. In general, the 
fit of simulated results compared with observations was good for all filter 
models (Table 4). 

When the flow models were used to simulate a doubled hydraulic load and 
the results were compared with measured data, the goodness-of-fit measures 
for all filter models demonstrated E equal to 0.92 and d equal to 0.96. 

The normalised RMSE ranged from 0.7-3.7% in all simulations where the 
filter models had estimated parameters. The only model with no estimated 
parameters, Sand model 1, which used HYDRUS wetland module standard 
values, had a normalised RMSE of 16.4%. 
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4.2 Simulated biomass 

The heterotrophic biomass parameters bH and H (heterotrophic lysis rate 
constant and maximum aerobic growth rate, respectively) were calibrated for 
all three filter models (bark, charcoal and sand; Table 5). For the sand filter 
model (Paper I) the simulated biomass (XH) in Run 0 corresponded well to the 
observed value. A difference in simulated biomass concentration between the 
inner sand filter material and the outer wall layer was noted. For the charcoal 
filter model, the simulated biomass in Run 0 remained at fairly constant levels 
close to the observed values over the simulated five-day time span. The bark 
filter model demonstrated overestimation of biomass when simulating Run 0, 
primarily in the top 0-20 cm of the filter (Figures 9a & b).  

Table 5. Calibrated model heterotrophic biomass parameters for the sand filter model in Paper I 
and the bark and charcoal filter models in Paper II 

Parameter (abbrev., unit) Bark filter 
model 

Charcoal filter 
model 

Sand filter 
model 

Default values 

Heterotrophic lysis rate 
constant (bH, min-1) 

0.0005 0.0005 0.0003 0.00027 

Maximum aerobic growth 
rate ( H, min-1) 

0.005 0.003 0.003 0.0042 

 
Figure 9. Observed (error bars display standard deviations, n = 10) and simulated concentration 
of heterotrophic microorganisms (XH) for Run 0 at filter depths 0, 20, 40 and 60 cm in (a) the 
bark and charcoal filter models, mean values taken during the five-day simulation time span 
(Paper II) and (b) the sand filter model, simulated mean values taken from centre of filter and 
from the wall layer (Sand mod. wall) during the one-day simulation time span (Paper I). 
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4.2.1 Simulated biomass under increased HLR and OLR  

The results of the model simulations showed an increase in biomass (XH) in 
the two top layers of the bark and charcoal filters with increasing OLR (Figures 
10a & b; Paper II). For the bark filter, XH also tended to increase when HLR 
increased, as can be seen on comparing Run 1 and Run 2 (Figure 10a). 
However, this was not the case for the charcoal filter, where the XH remained 
fairly constant for both Run 1 and Run 2 (Figures 10a & b). 

 
Figure 10. Mean simulated filter concentration of heterotrophic microorganisms (XH, error bars 
indicate the range) at filter depths 0-2, 20, 40 and 60 cm for different hydraulic and organic 
loading rates (Run 0: HLR = 32 l m-2 day-1, OLR = 14 g BOD5 m-2 day-1; Run 1: HLR = 32 l m-2 

day-1, OLR = 13-16 g BOD5 m-2 day-1; Run 2: HLR = 64 l m-2 day-1, OLR = 14 g BOD5 m-2 day-1; 
Run 5: HLR = 32 l m-2 day-1, OLR = 28 g BOD5 m-2 day-1), simulated for 5 days with (a) the bark 
filter model and (b) the charcoal filter model (Paper II). 

4.3 Simulated organic matter degradation 

Both Paper I and Paper II included simulation of organic matter degradation 
in the filters. In Paper I, the sand filter demonstrated a simulated effluent COD 
concentration of 338 mg l-1 which was higher than the measured 245 ± 106 mg 
l-1 but well within the standard deviation of the measurement. In Paper II, the 
simulated bark filter effluent concentration of COD (92 mg l-1) was less than 
the measured value (200 ± 7 mg l-1). The simulated charcoal filter effluent 
concentration of COD (57 mg l-1) was consistent with the measured value (48 ± 
11 mg l-1) (Figure 11).  
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Figure 11. Simulated mean effluent COD concentration and observed values (*, bars represent 
standard deviations, n = 4) in effluent from the bark, charcoal and sand filters compared with 
average influent COD concentration (---, mg l-1). 

In Paper I, different sand filter models with varying degrees of calibration of 
flow model parameters were tested. The results were then compared against 
each other, with the best fitting sand filter model also used for a simulation 
with increased biomass levels.  

The simulated results indicated that the sand filter model without wall flow 
effects underestimated the effluent COD compared with the measured effluent 
concentration (Sand model 2, Table 6). The simulated effluent COD consisted 
mainly of the CI fraction. The simulated CR fraction, expected to correspond to 
measured BOD5, was greatly underestimated (Sand model 2, Table 6). 
Simulation with the sand filter model including wall flow effects, on the other 
hand, slightly overestimated the total organic matter concentration in the 
effluent compared with measured values. However, the simulated effluent CR 
compared well with measured BOD5 (S.Mod. 3, Table 6). 

When the sand filter model including wall flow effects was modified as 
having more biomass, less COD was present in the effluent. This reduction in 
effluent concentration of organic matter was mainly seen for the CR fraction 
(Table 6). 
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Table 6. Observed (Obs.) mean sand filter influent (Infl.) and effluent concentrations of BOD5 and 
COD (Dalahmeh et al., 2012) and the simulated organic matter content of three sand filter 
models (Paper I).  

Parameter (abbrev.) Infl. concentrations 
(mg l-1) 

Effluent concentrations  (mg l-1) 

 Obs. Sim.  
 

Obs.  
 

Sim.  

Sand 
mod. 2 

Sand 
mod. 3 

Sand mod. 3, 
incr. biomass 

Readily biodegradable 
organic matter (CR) 

- 425 - 2 139 94 

Slowly biodegradable 
organic matter (CS) 

- 374 -  6 98 94 

Inert organic matter (CI) - 86 - 125 101 112 
Biochemical oxygen 
demand (BOD5)* 

425 ± 56 - 108 ± 
57 

2 139 94 

Chemical oxygen demand 
(COD)** 

885 ± 130  885 245 ± 
106 

133 338 300 

*Mean ± standard deviation, n = 24. 
** Mean ± standard deviation, n = 4. 

4.3.1 Simulated organic matter under increased HLR and OLR  

In Paper II, the bark and charcoal filter models simulated the effluent 
concentrations of pollutants under the varying loading regimes. The bark filter 
model overestimated the COD removal in all loading regimes by 13-20 
percentage points compared with measured values (Figure 12). 

The charcoal filter model, on the other hand, simulated the COD removal 
accurately relative to measured values for Run 0 and Run 1 (94 and 91 % 
compared with observed 95 ± 2 and 89 ± 11 %, respectively). For Run 2 and 
Run 5, the simulated COD removal of the charcoal filter model was 70 and 72 
%, respectively, meaning underestimation of removal by 20 and 12 percentage 
points compared with the observed 90 ± 7 and 84 ± 4, respectively (Figure 12).  



44 
 

 
Figure 12. Simulated and observed (*, bars represent standard deviations, n = 4) bark and 
charcoal filter COD removal (%) in four loading regimes: Run 0: HLR = 32 l m-2 day-1, OLR = 14 
g BOD5 m-2 day-1; Run 1: HLR = 32 l m-2 day-1, OLR = 13-16 g BOD5 m-2 day-1; Run 2: HLR = 64 
l m-2 day-1, OLR = 14 g BOD5 m-2 day-1

; Run 5: HLR = 32 l m-2 day-1, OLR = 28 g BOD5 m-2 day-1 
(Paper II). 

4.4 Sensitivity analysis 

The sensitive parameters for COD effluent concentration simulation identified 
for each filter model are summarised in Table 7 and detailed results for each 
filter model are described in the following sections. The complete results of the 
NRSA can be found in Appendix B. 
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Table 7. Sensitive model parameters for simulation of COD effluent concentration 

 Parameter abbreviation and description (unit) Noted filter model sensitivity* 

 Bark Charcoal Sand 

 Inner 
material 

Wall 
layer 

 Inverse air entry value (cm-1) x x x x 
n Pore connectivity (-)  x x x x 

s Porosity (-) x x x x 

r Residual soil water content (-) x x x  
Ks Saturated hydraulic conductivity (cm h-1)    x 
bH Heterotrophic bacteria rate constant for lysis 

(h-1) 
x x x 

fBM,CI Fraction of CI generated in biomass lysis (-) x x x 
YHet Yield coefficient for XH (-) x x x 
Kh Hydrolysis rate constant (h-1) x x  
KX Saturation/inhibition coefficient for hydrolysis 

(-) 
 x  

H Maximum aerobic growth (h-1)   x 
iN, BM N content of biomass (-)   x 

* When the mean of the absolute value percentage changes in simulated effluent COD concentrations was 
larger than 3 % for a particular parameter (parameter varied as 0.5, 0.8, 0.9, 1.1, 1.2 and 1.5 times its base 
scenario value). 
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4.4.1 Bark filter model 

The NRSA showed that the bark filter model demonstrated sensitivity to 
mainly material parameters, in particular the inverse air entry value ( ) but also 
the heterotrophic bacteria rate constant for lysis (bH) and the fraction of CI 
generated in biomass lysis (fBM,CI, Figure 13). 

 
Figure 13. Simulated percentage change in effluent COD concentration for simulations with 
selected bark model parameters varied one at a time as 0.5, 0.8, 0.9, 1.1, 1.2 and 1.5 times the 
parameter base scenario value (p.b.s.v.). Selection based on when the mean of the absolute 
percentage change in simulated effluent COD concentrations was larger than 3 % for a particular 
parameter (varied as 0.5, 0.8, 0.9, 1.1, 1.2 and 1.5 times its p.b.s.v.). 

  

-20 0 20 40 60 80 100 120
Change in effluent COD concentration (%)

Bark filter model

 

 

r  

s  

n  

Kh  

YHet  

fBM,CI  

bH  

  

0.5 * p.b.s.v.
0.8 * p.b.s.v.
0.9 * p.b.s.v.
1.1 * p.b.s.v.
1.2 * p.b.s.v.
1.5 * p.b.s.v.



47 
 

4.4.2 Charcoal filter model 

The charcoal filter model demonstrated inordinate sensitivity to the yield 
coefficient for XH (YHet). The material parameter determining porosity also 
demonstrated excessive sensitivity when decreased by 50% ( s; Figure 14). 
The charcoal filter model was the only model demonstrating sensitivity to the 
saturation/inhibition coefficient for hydrolysis (KX; Table 7). 

 
Figure 14. Simulated percentage change in effluent COD concentration for simulations with 
selected charcoal model parameters varied one at a time as 0.5, 0.8, 0.9, 1.1, 1.2 and 1.5 times the 
parameter base scenario value (p.b.s.v.). Selection based on when the mean of the absolute 
percentage change in simulated effluent COD concentrations was larger than 3 % for a particular 
parameter (varied as 0.5, 0.8, 0.9, 1.1, 1.2 and 1.5 times its p.b.s.v.). 
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4.4.3 Sand filter model 

The sand filter model demonstrated sensitivity mainly to parameters 
concerning hydraulic properties of the filter material (Figure 15). The sand 
filter model was the only model demonstrating sensitivity to the saturated 
hydraulic conductivity (Ks), the maximum aerobic growth ( H) and the biomass 
N content (iN, BM ; Table 7). 

 
Figure 15. Simulated percentage change in effluent COD concentration for simulations with 
selected sand model parameters varied one at a time as 0.5, 0.8, 0.9, 1.1, 1.2 and 1.5 times the 
parameter base scenario value (p.b.s.v.). Selection based on when the mean of the absolute 
percentage changes of simulated effluent COD concentrations was larger than 3 % for a particular 
parameter (varied as 0.5, 0.8, 0.9, 1.1, 1.2 and 1.5 times its p.b.s.v.). 
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5 Discussion 

5.1 Flow model results 

The estimated parameters for the sand filter model greatly improved the fit (d = 
0.99, E = 0.94), and the fit was further improved by adding the wall flow 
effects to a second sand filter model (d = 0.999, E = 0.996) compared with a 
model using a HYDRUS wetland module standard parameter set (d = 0.66, E = 
0.18) (Table 4) (Paper I). Obtaining an increase in fit due to a higher degree of 
adjustment of the model was anticipated. The built-in inverse simulation 
function of HYDRUS, that was used to determine the flow parameters, has 
been applied successfully in previous studies (Dittmer et al., 2005; Toscano et 
al., 2009). 

With this experience gained on calibrating the sand flow model, it was 
assumed that using the built-in inverse simulation function for parameter 
estimation was suitable also for modelling the bark and charcoal filters in 
(Paper II).  

For the bark and charcoal filter models, the porosity was used as a fitting 
parameter even though it had previously been measured. The measured 
porosity was 0.73 for bark and 0.85 for charcoal (Dalahmeh et al., 2012), in 
contrast to the estimated values of 0.41 and 0.14 respectively. The hydraulic 
properties of the filter material, such as the porosity, were measured before the 
filters were subjected to artificial greywater loadings. The difference might 
therefore be explained by compaction of the filter material during the 
experiments, mainly due to shrinking and swelling in the bark filter material 
and crushing of pellets for the charcoal filter.  

Comparing simulated with measured cumulative effluent volume, all filter 
models performed well, with small NRMSE of 0.7-3.5% (Table 4), which 
demonstrates that HYDRUS is suitable for simulating water flow through sand 
as well as bark and charcoal filter media. 
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5.1.1 Flow model uncertainties and model deficiencies 

There were a couple of suspected minor contributors to uncertainty and model 
incorrectness. For the charcoal flow model the inverse simulation for 
estimation of flow parameters failed, meaning that the simulation stopped 
without producing results, when the full one-day length data set was used as 
input (Paper II). The main suspected cause of this failure was the large 
number of data points in the objective function and/or uncertainty of the exact 
loading time.  

When the function was run with a reduced number of data points, including 
only the first 400 minutes after the first loading, the parameter estimation was 
successful. When the estimated parameter set was tested on the full one-day 
length data-set with doubled HLR, the fit was good, demonstrating that the 
reduced objective function was sufficient for estimating the hydraulic 
parameters. 

One model inaccuracy identified for the bark filter was swelling of the 
material not being incorporated in the model (Paper II). The swelling probably 
had an effect on porosity, being a function of water content. If it had been 
possible to include this aspect in the modelling with HYDRUS, the bark filter 
model might have produced simulated results with a better fit to measured 
values.  

For all three filter types, the fact that evaporation in the experimental set-up 
was not completely prevented was neglected in the modelling. The amount of 
water lost due to evaporation is mainly dependent on upper surface area and 
should have been about the same for both hydraulic loadings (1 and 2 l day-1). 
This means that evaporation should have had a larger effect on the 
observations made of the smaller loading of 1 l day-1 and this was the dataset 
used for estimation of parameters. The validation of the filter models with 
double flow, demonstrating good fit (Table 4), indicated that the parameter 
estimation was not disturbed to a considerable extent by the exclusion of 
evaporation. 

5.1.2 Validation of flow models 

The validation of the models supported the overall reliability of the estimated 
parameters since the calculated goodness-of-fit measures comparing simulated 
with observed cumulative effluent data indicated a close fit (E = 0.92 and d = 
0.96, for all three filter types) (Table 4) (Paper I and Paper II). The validation 
hence indicated that the models were suitable for simulations of different HLR 
within the range tested (up to 1840 ml loadings). 

Moriasi et al. (2012) established common guidelines for calibration and 
validation of hydrological models, including HYDRUS. Moriasi et al. (2012) 
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also stressed the need for calibration and validation of models before use in 
research or other applications. The recommended validation approach for most 
models, including HYDRUS, is split sample. The suggested performance 
evaluation for HYDRUS is demonstrating time series or statistical calculation 
of coefficient of determination and objective functions (Moriasi et al., 2012). 
Using one data series for calibration and another for validation, as was done in 
this thesis, is arguably an even stronger evaluation than split sample. Following 
the recommendations of Ahnert et al. (2007), calculating E and d also provides 
a solid demonstration of the goodness-of-fit. 

 However, E has been shown by Willmott et al. (2012) to be a more well-
behaved measure than d and they suggest a refined version of d to replace the 
earlier versions. This refined d was not included in the present thesis as it is 
monotonically and functionally related to E. The d as given here in its old form 
served the purpose of providing a basis for comparison with other, earlier 
work. 

5.1.3 Wall flow effect in sand filter 

Different degrees of calibration of the flow model for the sand filter were 
tested (Paper I). Estimated parameters (  and n) greatly improved the fit (d = 
0.99, E = 0.94) and the fit was further improved by including wall flow effects 
(d = 0.999, E = 0.996) (Table 4). The sensitivity analysis also demonstrated 
that the hydraulic parameters of the outer wall layer had a large impact on the 
simulated effluent COD. However, increasing the number of fitting parameters 
from two to seven risks ‘ill-posedness’ of the inverse problem, as pointed out 
by Morvannou et al. (2013). Even though the model supported the occurrence 
of wall flow effects, both due to improved flow model fit (Table 4) and 
simulated BOD5 in the effluent, wall flow effects were not confirmed to have 
occurred in the experimental set-up.  

The estimated Ks for the outer wall layer (3720 cm h-1) could, through the 
Hagen-Poiseuille equation, be interpreted as the wall layer having pores of 5 
mm. In the experimental set-up, by visual inspection the pores next to the wall 
of the sand filter were most likely smaller than this. Furthermore, the 
distribution of uranin in the sand filters after adding a pulse of this fluorescent 
tracer displayed only moderate to low wall flow effects. After adding an NaCl 
tracer there was a rapid increase in EC in the sand filter effluent, which 
confirmed rapid transport of the greywater through the sand filters, but this 
could have been the result of either channel flow within the filter or wall 
effects (Paper I).  

It was concluded that constructing an experimental set-up which isolates the 
wall layer for measurement of Qs and Ks would reduce the number of fitting 
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parameters and allow in-depth study of wall flow effects. However, wall flow 
effects are most likely a problem that only occurs in laboratory-scale filters, in 
particular when using columns with small radius (Paper I). 

To the best of my knowledge, no previous published study has simulated 
wall flow effects in filters. Simulation of wall flow effects could possibly also 
be viewed as simulation of preferential flow, which could be of interest in 
other applications, such as simulation of a partially clogged filter. 

Wall flow effects for the bark and the charcoal filters (Paper II) were not 
considered. The swelling of the bark chips during loading made the material 
press against the column walls and hence prevented any faster flow from 
happening there. For the charcoal filter, there was only a small amount of 
easily biodegradable organic material in the filter effluent. This indicated that 
the greywater did not bypass the filter to a great extent through wall flow 
effects or similar. In the charcoal filter, the charcoal pellets were most likely 
crushed against the wall during packing and continuous loading, thus 
preventing large pores from appearing next to the wall. 

5.1.4 Verification of the flow models 

For each simulation made, the mass balance was used as a control. If the mass 
balance is shown as close to zero, no water has been created or lost in the 
simulation, indicating that there are no numerical errors. There are also certain 
limits to values that can be enforced within HYDRUS, such as the soluble 
oxygen amount. If such a limit has been enforced and the simulation overrides 
the limit, it is an indication of numerical error. Before analysing simulation 
results, all simulated components were checked for discrepancies, such as 
values reaching infinity, which would be evidence of numerical error. 

Since HYDRUS is a widely used commercial software, it was assumed that 
the developers ensure the code is free from bugs and regularly work on finding 
and solving numerical issues related to the coding. 
When estimating flow parameters, different initial values for the estimated 
parameters were tested in this thesis. For all initial values tested, the inverse 
function converged to the same parameter set, or did not converge at all. This 
indicates that there was uniqueness to the estimated flow parameters. 

5.2 Modelling biomass 

One of the major changes made in model parameter values of HYDRUS 
CW2D was the calibration of lysis rate constant (bH) and maximum aerobic 
growth rate ( H). This was done in order to curb the excessive continuous 
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growth of biomass that occurred in the simulated filters when using default 
values (both Paper I and Paper II).  

XH was set to match potential respiration rate measurements, using the 
same calibration procedure for the sand filter model (Paper I) as for the bark 
and charcoal filter models (Paper II). The method of calibration was according 
to the procedures of Langergraber et al. (2007), who presented formulae to 
estimate the simulated heterotrophic microbial biomass from different 
measurements of microbial activity of subsurface vertical flow constructed 
wetlands treating municipal wastewater. The measurements were taken from 
three different methods to quantify biomass, including substrate induced 
respiration (SIR), ATP measurement and fumigation-extraction (Tietz et al., 
2007). The study demonstrated large differences (up to 1669 g COD g sand-1) 
in calculated biomass COD depending on the method used for the calculation 
(Langergraber et al., 2007). Petitjean et al. (2012) have also used calibration of 
lysis rate constant (bH) as a fitting parameter for simulating biomass in vertical 
flow with coarse sand (0-4 mm) as filter material. 

 As noted by Langergraber et al. (2007), it is difficult to obtain a parameter 
set that produces a long-term simulation where biomass amounts correspond to 
observed values for all depths of the filter. When constant biomass was 
simulated for the lower part of the sand filter (20-60 cm depth), the biomass 
grew excessively in the top layer (Paper I). When parameters were chosen to 
curb the excessive growth in the top layer, the biomass at lower layers died off. 
The same was noted for the bark and charcoal filter (Paper II). The simulated 
die-off in the bottom of the filters, in contrast to the growth demonstrated by 
the measurements, might be explained by the fact that in the experiment, the 
outlet allowed air to enter the filter. This aerated the bottom of the filter and 
possibly promoted microbial growth there. The air flow should perhaps have 
been prevented e.g. by installing an air lock. 

The heterotrophic biomass in the sand filter material comprised amounts 
corresponding to 236 g COD g sand-1, which was small compared with the 
maximum of 5100 g COD g sand-1 observed by Langergraber et al. (2007) 
but closer to the 200-1700 g COD g sand-1 reported by Pell et al. (1990) and 
Campos et al. (2002). Campos et al. (2002) studied slow sand filtration (filter 
sand with 0.1-0.3 mm effective particle size) for treatment of river water. They 
concluded that small populations of microorganisms were sufficient for river 
water purification and observed no major advantages of increased 
concentration of biomass. The simulated growth in Papers I and II, as well as 
the measurements and several other studies, show that biomass is most dense in 
the top layer of the filters (Pell et al. 1990; Campos et al., 2002; Dalahmeh et 
al., 2014a; Tietz et al., 2007).  
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For the sand filter model including wall flow effects, the simulated biomass 
occurred in higher concentrations in the wall layer than in the inner material 
(Paper I). Thus, the model indicated that microbial growth is promoted in the 
wall layer, where the measurements in the experimental filter were actually 
taken. This suggests that measurements taken within the filter would have 
demonstrated smaller values. Taking measurements from the centre of a filter 
material is almost impossible, however, without causing major disturbance to 
the continued operation of the filter.  

The bark filter model overestimated XH in the filter top layer and at 20 cm 
depth (2950 and 1950 g COD g material-1 compared with observed 1495 ± 
465 and 847 ± 236 g COD g material-1) (Paper II). It was not possible to 
manually balance the parameters bH and H so that the model would simulate 
XH corresponding to observed amounts for all depths of the bark filter. Since 
the observations clearly demonstrated large amounts of biomass throughout the 
bark filter depths, the model with overestimated biomass at the top layers but 
viable biomass in the lower filter depth was chosen over having adjusted 
biomass at the top of the filter but close to zero amounts in the lower part of the 
filter. 

It might have been possible to achieve a balance if an add-on for estimating 
the biological parameters had been developed. The HYDRUS wetland module 
could be improved by adding restrictions to biomass growth, e.g. adding 
consideration of limited growth space and actual access to nutrients. 

The charcoal filter model, on the other hand, simulated XH close to 
observed amounts for all depths (525, 400, 260 and 115 g COD g material-1 
compared with observed 478 ± 161, 335 ± 142, 210 ± 161 and 141 ± 139 g 
COD g material-1)  over the five-day time span (Paper II). 

It was demonstrated by simulation that XH increases when the bark and the 
charcoal filters are subjected to higher OLR, which enabled the filters to 
maintain a high COD removal (70-90%) even while subjected to OLR of 28 g 
BOD5 m-2 day (Paper II). This was consistent with measured COD removal 
(68-95%). The bark and charcoal filter models simulated amounts of XH in the 
filters (12-14600 g COD g material-1) quite larger than the 3-5100 g COD g 
sand-1 observed by Tietz et al. (2007) and the 200-1700 g COD g sand-1 
reported by Pell et al. (1990) and Campos et al. (2002). 

5.3 Simulation of organic matter removal 

The measured concentration of effluent BOD5 (108 ± 57 mg COD l-1) 
compared well with the simulated effluent CR by the sand filter model that 
included wall flow effects (139 mg COD l-1) (Paper I). The concentration of 
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effluent total COD was slightly overestimated by that model, which gave 338 
mg COD l-1 compared with the measured 245 ± 106 mg COD l-1 (Table 6). The 
over-estimation of pollutants in the effluent indicated that the simulated wall 
flow effects were exaggerated (Paper I). 

It was demonstrated for the sand filter model that the effect of increased 
heterotrophic biomass (XH) produced a noticeable effect on filter effluent COD 
concentration (300 mg COD l-1 compared with 337 mg COD l-1). This 
indicated that the average biomass measurements might have underestimated 
the actual concentrations and that the model could benefit substantially from 
increased accuracy and precision in determining XH (Paper I). This could be 
true also for the bark and charcoal filter models.  

The simulated bark filter effluent concentration of COD (92 mg l-1) was less 
than the measured value (200 ± 7 mg l-1) (Paper II). The removal of COD in 
Run 1, 2 and 5 was simulated as 90, 88 and 90 % respectively, which was 13-
20 percentage points above observed (75 ± 8, 68 ± 11 and 81 ± 7 % 
respectively). This difference between simulated and observed data could 
partly be explained by release of organic matter from the bark material itself. 
Dalahmeh et al. (2014) observed that a bark filter continuously fed tap water (1 
l day-1), released 95 ± 14 mg COD l-1 (n = 1) at start-up and 55 ± 8 mg COD l-1 
(n = 1) after 85 days. This was similar to the observations by Ribé et al. 
(2009), who studied leaching of contaminants from untreated pine bark and 
noted a dissolved organic carbon concentration in the effluent of 69 mg l-1. 
Genç-Fuhrman et al. (2007), who used bark filters for testing removal of heavy 
metals from stormwater, also noted release of organic material to the effluent 
from the material.  

Subtracting 75 mg COD l-1 from the observed bark filter effluent and 
recalculating the removal would yield 86, 81, 78 and 83 % removal of COD in 
Run 0, 1, 2 and 5 respectively. This gives a closer fit to the observed values (77 
± 4, 75 ± 8, 68 ± 11 and 81 ± 7 %, respectively) than the nonadjusted data (90, 
90, 88 and 90 %, respectively) (Paper II). 

The charcoal filter model simulated effluent COD as 57 mg l-1, which 
compared well to the observed, 48 ± 11 mg l-1. In Run 0 and Run 1, which 
were the most similar loading regimes, the simulated COD removal (94 and 91 
%, respectively) compared well to the observed values (95 ± 2 and 89 ± 11 %, 
respectively). However, simulated COD removal for Run 2 (70 %) and Run 5 
(72 %) was low compared with observed (90 ± 7 and 84 ± 4 %) (Paper II). 

Rizzo et al. (2014) modelled the response of laboratory horizontal flow 
constructed wetlands to unsteady organic loads with the HYDRUS wetland 
module, using the setting “CWM1”. They used concentrated synthetic 
wastewater to represent municipal wastewater, which was diluted before being 
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loaded onto the experimental filters according to a schedule to mimic weekly 
variations. In their simulations, the average overall removal efficiency of 
simulated COD (68%) was close to the value observed in experiments (67%). 
The simulated response to unsteady loads at daily scale had a mean error of 
20% when compared with observations. The fit of simulated to observed 
organic matter removal demonstrated by Rizzo et al. (2014) is comparable to 
the fit achieved here for the bark, charcoal and sand filter models. 

5.3.1 Specifying the COD fractionation of the models 

Different fractionation of model COD was used for the sand filter model 
(Paper I) than for the bark and charcoal filter models (Paper II). For the sand 
filter model, the fractionation was based on an assumption that the 
fractionation of CR, CS and CI could be related to the ratio of influent BOD5 to 
COD. This assumption was justified to some extent by the demonstration of 
good fit of simulated outgoing concentrations of COD to observations. 
However, even though a relationship between CR, CS and CI fractionation to 
the influent BOD5:COD ratio is likely, it should be confirmed through 
statistical measures. This could be done by having a series of filters fed with 
artificial greywater with different BOD5 and COD ratios. The CI fraction could 
be determined as the difference in final COD and BOD, which would be 
correct for the model’s definition of CI as inert material. The fractionation of 
CS and CR should then be fitted to obtain a good match between simulated and 
observed effluent concentration of COD. The relationship between the 
fractions of CS and CR and influent BOD5 and COD ratios could then be 
determined through linear regression. To the best of my knowledge, this has 
not been done in any published study. 

For the bark and charcoal filter models, the same fractionation as was done 
for the sand filter model was tested, but the model fit of simulated to observed 
data was not good. Therefore, another method, repeatedly used in previous 
studies (Dittmer et al., 2005; Henrichs et al., 2007; Langergraber et al., 2007; 
Toscano et al., 2009), was used (Paper II). This method, which assumes a 
relationship between the model’s CR, CS and CI fractions and observed 
effluent COD concentration, is a rule of thumb. There is currently a lack of 
research on more well-founded methods to determine the CR, CS and CI 
fractions in the HYDRUS wetland module. 

The HYDRUS wetland module is based on the Activated Sludge Model 
(ASM) (Henze et al. 2000), which also uses a fractionation of dissolved COD 
in terms of readily biodegradable substrate (SF), fermentation products (SA) and 
inert, non-biodegradable organics (SI). The ASM further incorporates two 
fractions of particulate COD; inert non-biodegradable organics (XI) and slowly 
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biodegradable substrate (XS). Henze et al. (2000) suggest values of these 
components for simulating activated sludge treatment of typical wastewater 
(primary effluent, total COD concentration of 260 g COD m-3, total nitrogen 
concentration of 25 g m-3 and total phosphorus concentration of 6 g m-3). 
However, the same fractionation is not suitable for use for the HYDRUS 
wetland module’s CW2D setting, since the particulate components of organic 
matter (XI and XS) are not included. Furthermore, even though the HYDRUS 
wetland module is based on the ASM, inherently different treatment systems 
are considered (constructed wetlands versus the activated sludge process of 
municipal treatment plants). 

In conclusion, two different methods were explored to determine the CR, 
CS and CI fractions. The method used for the sand filter model points towards 
the possibility that the model CR, CS and CI fractions can be related to 
observed influent BOD5 and COD concentrations (Paper I), while the method 
used for the bark and charcoal filter models (Paper II) applies a well-known 
rule of thumb to the new context of bark and charcoal filter media. As 
described above, it might be possible to further develop the method used for 
the sand filter (Paper I). 

5.4 Discussion of the sensitivity analysis 

Langergraber (2001) performed a sensitivity analysis (SA) of CW2D that 
included 53 parameters, with default values for parameters set as start values. 
In this SA, each parameter was increased or decreased by 10% while all other 
parameters were kept constant and the results were then compared with the 
start run with all parameters set to default values. The simulation time span 
was set to five days and only results from day 5 were used.  

Langergraber (2001) concluded that all material parameters, except the 
residual water content ( r), are among the parameters with the strongest 
influence on effluent concentrations. It is therefore essential to calibrate the 
hydraulic parameters in order to get a representative model. The results from 
the NRSA performed in this thesis agree with this conclusion, with the 
exception that the residual water content parameter demonstrated a notable 
influence on effluent COD concentrations for all filter models. The filter 
models could possibly have benefited if the residual water content of the filter 
materials had been determined experimentally and provided the model with 
other values than the default value used. 

Other parameters with a strong influence on effluent concentrations 
according to Langergraber (2001) were the oxygen re-aeration rate (kaer,O2), the 
heterotrophic yield coefficient (YH), the heterotrophic lysis rate (bH) and the 
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parameters for hydrolysis (Kh and KX). This was also demonstrated to some 
extent in the SA in this thesis, with the exception that none of the filter models 
tested here was sensitive to the oxygen re-aeration rate. Furthermore, only the 
bark and charcoal filter models were sensitive to Kh and only the charcoal filter 
model was sensitive to KX. 

The charcoal filter model displayed the overall largest change in effluent 
COD concentrations (+1121% for 1.5 times the heterotrophic yield coefficient) 
compared with the bark model (+122% for 0.5 times ) and the sand model (-
61% for 0.5 times  of the wall material). The parameter value of the 
heterotrophic yield coefficient, causing an unrealistic change in the charcoal 
model effluent COD concentration but not in the bark or sand models, had the 
same base scenario value in each filter model. This result demonstrates that the 
heterotrophic yield coefficient is a highly non-linear parameter. On decreasing 
the porosity ( s) to 0.5 times the base scenario value, another somewhat 
unrealistic response in the charcoal model effluent COD appeared (+ 484%). 
The charcoal filter model had a porosity of 0.14 in the base scenario, which is 
quite low already, so it is therefore not very surprising that halving this value 
would cause model discrepancy.  

For the sand filter model, the NRSA demonstrated that the material 
parameters of the wall layer ( , s, n and Ks) had large impacts on the effluent 
COD concentration. This suggests that heterogeneity within the filter filling 
will influence the effluent concentration of COD. 

The parameters were varied as 0.5, 0.8, 0.9, 1.1, 1.2 and 1.5 times the base 
scenario value, as in the study by Ketema and Langergraber (2015), who used 
parameter perturbation of ± 5, ± 10, ± 15 and  ± 20 % from the base value to 
study CLARA, a simplified modelling tool for estimating the life cycle cost of 
water supply systems. Ketema and Langergraber (2015) also used a derivative-
based method for their SA, which consisted of using a sensitivity coefficient 
calculated from the percentage change in output divided by the percentage 
change in the parameter. This was different from the positive (or negative) 
percentage change compared with the base scenario effluent COD as suggested 
by Frey & Patil (2002), which was applied in this thesis.  

The reason why each model showed sensitivity of varying degrees to 
different parameters is most likely because the HYDRUS wetland module is 
non-linear. Nominal sensitivity analysis is best suited for linear models and 
Frey and Patil (2002) suggest that for a non-linear model, the sensitivity of the 
output may depend strongly on interactions between several parameters. The 
sensitivity analysis could therefore be extended to include the Response 
Surface Method (RSM) to evaluate the relationship between the model output 
of interest and one or more explanatory parameters. For this method, it is an 
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advantage to use the results from the nominal sensitivity analysis to limit the 
number of parameters to include only the most important. A Monte Carlo 
simulation strategy can then be employed to generate a large number of various 
combinations of parameter sets, which are simulated for recording the output. 
A statistical method is then applied to the results, for example analysis of 
variance (ANOVA), which will give a ‘model of the model’ but with the 
advantage of being simpler than the original model.  

Proceeding with RSM to further study the interactions of the HYDRUS 
wetland module parameters is unlikely to be useful, however. Having a 
deterministic model is often preferable over a statistical model because of the 
stronger connection of a deterministic model to reality. Parameters of a 
deterministic model can be directly measured, whereas parameters of a 
statistical model typically need to be estimated from large datasets. 
Furthermore, the nominal sensitivity analysis suffices to give an overview of 
the most relevant parameters for model calibration. 

The NRSA in this thesis showed that six parameters, fraction of CI 
generated in biomass lysis, yield coefficient for XH, hydrolysis rate constant, 
saturation/inhibition coefficient for hydrolysis, maximum aerobic growth rate 
and the N content of biomass influenced the effluent COD concentration. 
Further studies are needed to test whether the default values for these 
parameters are representative for all vertical flow filters, in particular when 
alternative filter media to sand are used. It is possible that the models can be 
made more representative of reality by tuning these parameters to other, 
experimentally determined values. 
  



60 
 

 
 

 



61 
 

6 Outlook 
6.1.1 Effluent nitrogen and phosphorus concentrations 

Although nitrogen and phosphorus compounds were not targeted within the 
aims of this thesis, they still had to be specified in the simulated influent in 
order for the models to run properly. With the availability of observed nitrogen 
and phosphorus concentrations, simulated results for nitrogen and phosphorous 
were checked so that no major discrepancies went un noticed. In order to limit 
the scope of the thesis, the filter models were not calibrated to perform with 
great accuracy for nitrogen and phosphorus simulation. However, the results 
are briefly described here as the basis for potential continued research on 
simulating these compounds. 

Nitrogen is simulated in the HYDRUS wetland module as nitrate (NO3N), 
nitrite (NO2N) and ammonium (NH4N) and total nitrogen is calculated as 
NO3N + NO2N + NH4N + nitrogen content of outgoing COD. Nitrite is not 
shown here, however, because it was close to zero in both observed and 
simulated results. Phosphorus is simulated as inorganic phosphorus (IP) and 
total phosphorus (TP), which is calculated as IP + phosphorus content of 
outgoing COD. 

Run 0 of the bark, charcoal and sand models all simulated nitrogen to be 
present in the filter effluent (mean TN effluent concentration of 70, 35 and 48 
mg l-1 respectively) whereas measured mean TN effluent concentrations were 
64 ± 7, 1 ± 0 and 72 ± 10 mg l-1 respectively (Table 8).  

The models also simulated phosphorus to be present in the filter effluents 
for Run 0 (mean TP effluent concentration of 2.7, 1.8 and 3.2, respectively) 
whereas measured mean TP effluent concentrations were close to zero for the 
bark and charcoal filters and 0.9 ± 0.2 mg l-1 for the sand filter (Table 8). 
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Table 8. Measured mean filter influent and effluent concentrations of pollutants (Dalahmeh et al. 
2012) and the corresponding simulated values. For abbreviations see text 

Parameter Sim. infl. 
conc. (mg l-1) 

Obs. filter effl. conc. (mg l-1 ) n Sim. filter effl. conc. 
(mg l-1) 

Bark Charcoal Sand Bark Char. Sand 

NO3N 1 51 ± 7 0 ± 0 57 ± 7 10 60 29 10 
NH4N 0.5 0 ± 0 0 ± 0 4.8 ± 0.4 10 5 0 8 
TN 76 64 ± 7 1 ± 0 72 ± 10 4 70 35 48 
IP 2.1 0 ± 0 0 ± 0 0.4 ± 0.1 10 2.5 1.7 2.4 
TP 4.2 0.1 ± 0 0.3 ± 0.1 0.9 ± 0.2 4 2.7 1.8 3.2 

The simulated TN removal compared well with the observed for the bark 
model in loading regimes Run 0 and Run 1 and for the charcoal model in Run 
1 and Run 2. Simulated TP removal compared well with the observed value 
only in Run 5 for both bark and charcoal filter models (Figure 16). 

 
Figure 16. Simulated and observed (*) removal of chemical oxygen demand (COD), total 
nitrogen (TN) and total phosphorous (TP) at different loading regimes: Run 0: HLR = 32 l m-2 

day-1, OLR = 14 g BOD5 m-2 day-1; Run 1: HLR = 32 l m-2 day-1, OLR = 13-16 g BOD5 m-2 day-1; 
Run 2: HLR = 64 l m-2 day-1, OLR = 14 g BOD5 m-2 day-1; Run 5: HLR = 32 l m-2 day-1; OLR = 28 
g BOD5 m-2 day-1 using (a) the bark filter model and (b) the charcoal filter model. 

These results indicate that the simulation of nitrogen, especially with the 
charcoal filter model but to some extent also with the sand filter model, was 
incomplete and the filter functions were not completely represented by the 
models. Being able to model nitrogen release from these types of filters is 
important in different aspects. Dalahmeh et al. (2012) commented on the 
suitability of using treated greywater for irrigation and pointed out that 
nitrogen remaining in the water after treatment is an asset. Modelling nitrogen 
transport in the filters could therefore be used to develop a filter design with 
the goal of preserving the nitrogen while treating organic matter. Dalahmeh et 
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al. (2012) also suggested drip-irrigation to minimise the risk of nitrogen-rich 
irrigation water polluting the ground water.  

The issue of nitrogen-rich effluents from onsite wastewater treatment 
systems affecting local water quality makes modelling nitrogen dynamics 
interesting from another perspective. Kirkley et al. (2007) raised the 
problematic situation of the urban front-range corridor of Colorado, where the 
increasing use of onsite wastewater treatment systems is possibly posing a 
threat to the local aquifers used for drinking water. Kirkley et al. (2007) used 
HYDRUS 1D to simulate nitrate concentrations released from onsite 
wastewater treatment systems reaching groundwater. They identified the 
denitrification rate coefficient as the most important input parameter, because 
reasonable values for this parameter range over three orders of magnitude and 
at the same time the model is highly sensitive to its value. Their conclusion 
was that for reasonable rates at the lower end of the reported range, the 
simulations showed that nitrate reached the groundwater in concentrations 
above the regulatory limits. 

Simulated phosphorus effluent concentrations were much higher than 
observed values for all filter types tested in this thesis, especially the bark and 
charcoal filters. The mechanism of an infiltration-type wastewater treatment 
system for removing phosphorus is very limited. Phosphorus, unlike nitrogen 
or organic matter, cannot exit the system through entering the gas phase and 
only a minimal amount of phosphorus is embedded in the biomass as a 
macronutrient for micoorganisms.  

However, it is possible for phosphorus to adsorb to the filter material. 
Xiuwen et al. (2014) studied the adsorption properties of 10 potential 
constructed wetland filter materials: gravel, volcanic gravel, crushed stone, 
broken bricks, bio-ceramic, anthracite, blast furnace slag, activated carbon, 
sand and zeolite. They found that both Freundlich and Langmuir isotherms 
could adequately predict the adsorption process. They ranked activated carbon 
as having higher maximum adsorption capacity than sand or gravel, but in their 
conclusions they recommend bio-ceramics or anthracite as materials for 
phosphorus removal. 

The bark filter also demonstrated low concentrations of total phosphorus in 
the effluent (0.1 mg l-1) compared with the influent (4.2 mg l-1), indicating 
efficient phosphorus removal. Tshabalala et al. (2004) studied cationized 
milled pine bark as an adsorbent for orthophosphate anions and concluded 
from batch adsorption experiments that this material has a maximum 
adsorption capacity of approximately 12.65 mg phosphate g-1. This is 
comparable with that of other well-known phosphorus sorbents, e.g. Cucarella 
and Renman (2009) reports the phosphorus adsorption capacity of gravel (3-10 
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mm diameter), sand (0-5 mm diameter) and Filtralite (0-2 mm diameter) to be 
0.03-0.05, 0.13-0.29 and 1.39-2.21 mg phosphate g-1 respectively. Those 
authors found the highest phosphorus adsorption capacity for blast furnace 
slag, fly ash and red mud (44.25, 63.22 and 113.87 mg phosphate g-1, 
respectively). However, there appears to be a lack of research on the adsorption 
of phosphorus to raw bark material. There is thus a need for further studies to 
conclude whether adsorption of phosphorus is the reason for the low 
phosphorus concentrations observed in the bark filter effluent in this thesis. 
This aspect could then be incorporated into the bark filter model with the use 
of experimental data to determine relevant adsorption parameters. 

Furthermore, there is a possible need to determine how long the bark filter 
can operate until depletion of adsorption sites is reached. If adsorption of 
phosphorus to the bark filter material is unwanted because the filter effluent is 
to be used for irrigation, Cucarella and Renman (2009) mention several 
parameters affecting adsorption systems, such as pH, contact time and 
temperature, which could be adjusted to achieve optimal filter performance. 
Computer modelling of the filter could be used as a guiding tool to determine 
these parameters. 

6.1.2 Possible filter design developments 

There are many possibilities to use the computer modelling results in this thesis 
for improving filter design, e.g.: 

 Length of filter columns. A series of simulations testing filter column 
length could identify the optimum length in a number of case studies. 
Suitable case studies could be to develop adequate treatment 
performance for lowest possible cost (e.g. using a minimum of space 
and filter material), best treatment performance possible for high 
protection of certain areas or ability to withstand shock loads. 

 Different loading operations. The performance of the filters if the 
loadings were distributed in smaller portions over the day or operated 
with continuous drip. This could be combined with testing shock loads 
to see if the filter better withstands shock loads using certain loading 
operations. 

 Particle size. How different particle sizes influence treatment 
performance and whether different particle sizes are suitable depending 
on material. 

 Filter clogging. To evaluate the clogging process using the model, one 
could run a series of simulations where the porosity was reduced step-
wise. This could help predict the reduction in pore size at which the 
filter material needs to be cleaned/exchanged. This could be tested in 
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relation to length of filter column and/or particle size of filter media to 
demonstrate the sensitivity of these filter characteristics to clogging. 

 Using layers of different materials in the same filter column or having a 
series of filter columns (e.g. a charcoal filter column as a polishing step 
for the bark filter effluent) and examining whether different filter 
materials contribute meaningfully to the treatment effect when 
combined in layers. 
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7 Conclusions 
 Estimation of two soil hydraulic parameters, the inverse air entry value and 

the pore connectivity parameter, for the sand filter model greatly improved 
the fit of simulated compared with observed cumulative effluent data. The 
fit was further improved by increasing the number of estimated parameters 
to seven by adding a wall layer to the transport domain of the model with 
all parameters estimated, which is believed to correspond to wall flow 
effects. 

 Measured substrate-induced respiration rate can be used to estimate the 
amount of biomass in bark, charcoal and sand vertical flow filters. Using 
these data, the filter model biomass can be calibrated to correspond to 
estimated mean amounts of biomass and this will lead to a more 
representative model than using standard parameters alone. 

 More measurements are needed to determine long-term trends in the 
biomass in bark, charcoal and sand vertical flow filters. The HYDRUS 
wetland module could also be improved by allowing limitation of microbial 
growth and adding the possibility to simulate clogging. 

 Organic matter degradation in vertical flow bark, charcoal and sand filters 
can be simulated using filter models developed in the HYDRUS wetland 
module. When simulating regimes with higher hydraulic and organic 
loading rates with the bark and charcoal filter models, the simulated results 
demonstrated a larger deviation from experimental observations but were in 
an acceptable range of 1-20 percentage points with regard to filter COD 
removal (%). 

 Possible uses of the filter models to develop filter design include simulating 
and evaluating filter column length, particle size, loading operation and 
layering of different materials in the same filter. 
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Appendix A 
Appendix A contains an excerpt from the HYDRUS wetland module manual, 
p. 9-13, reproduced here with permission of the authors. The excerpt displays 
all equations and parameters of CW2D (the sub-setting of the HYDRUS 
wetland module).  
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3.4 CW2D biokinetic model 

3.4.1 Stoichiometric matrix and reaction rates 
Table 3.5 and Table 3.6 show stoichiometric coefficients for ammonium nitrogen and 
inorganic phosphorus, respectively. Table 3.7 shows the stoichiometric matrix of reactions 
in CW2D, whereas Table 3.8 shows the reaction rates. 

Table 3.5: Stoichiometric coefficients for ammonium nitrogen. 

1,N = iN,CS - (1- fHyd,CI) . iN,CR - fHyd,CI . iN,CI

2,N = 1/YH . iN,CR - iN,BM

3,N = 1/YH . iN,CR - iN,BM

4,N = 1/YH . iN,CR - iN,BM

5,N = iN,BM - (1 - fBM,CR - fBM,CI) . iN,CS - fBM,CR . iN,CR - fBM,CI . iN,CI

6,N = - 1/YANs - iN,BM

7,N = iN,BM - (1 - fBM,CR - fBM,CI) . iN,CS - fBM,CR . iN,CR - fBM,CI . iN,CI

8,N = - iN,BM

9,N = iN,BM - (1 - fBM,CR - fBM,CI) . iN,CS - fBM,CR . iN,CR - fBM,CI . iN,CI

See Table 3.10 for definitions of the composition and stoichiometric parameters. 

Table 3.6: Stoichiometric coefficients for inorganic phosphorus. 

1,P = iP,CS - (1- fHyd,CI) . iP,CR - fHyd,CI . iP,CI

2,P = 1/YH . iP,CR - iP,BM

3,P = 1/YH . iP,CR - iP,BM

4,P = 1/YH . iP,CR - iP,BM

5,P = iP,BM - (1 - fBM,CR - fBM,CI) . iP,CS - fBM,CR . iP,CR - fBM,CI . iP,CI

6,P = - iP,BM

7,P = iP,BM - (1 - fBM,CR - fBM,CI) . iP,CS - fBM,CR . iP,CR - fBM,CI . iP,CI

8,P = - iP,BM

9,P = iP,BM - (1 - fBM,CR - fBM,CI) . iP,CS - fBM,CR . iP,CR - fBM,CI . iP,CI

See Table 3.10 for definitions of the composition and stoichiometric parameters. 
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Table 3.7: Stoichiometric matrix of reactions in CW2D (Langergraber and Šim nek, 2005; see 
Table 3.10 for definitions of the stoichiometric coefficients). 
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Table 3.8: Reaction rates in CW2D (Langergraber and Šim nek, 2005). 

R Process / Reaction rate rcj

Heterotrophic organisms 
1 Hydrolysis 

XH
XHCSX

XHCS
h c

ccK
cc

K

2 Aerobic growth of heterotrophs on readily biodegradable COD  

XHHetN
CRCRHet

CR

OOHet

O
H cf

cK
c

cK
c

,
,22,

2

3 NO3-growth of heterotrophs on readily biodegradable COD  

XHDNN
CRCRDN

CR

NONODN

NODN

NONODN

NO

OODN

ODN
DN cf

cK
c

cK
K

cK
c

cK
K

,
,22,

2,

33,

3

22,

2,

4 NO2-growth of heterotrophs on readily biodegradable COD  

XHDNN
CRCRDN

CR

NONODN

NO

OODN

ODN
DN cf

cK
c

cK
c

cK
K

,
,22,

2

22,

2,

5 Lysis of heterotrophs  

XHH cb
Autotrophic organisms 1 – Nitrosomonas
6 Aerobic growth of Nitrosomonas on NH4  

XANs
IPIPANs

IP

NHNHANs

NH

OOANs

O
ANs c

cK
c

cK
c

cK
c

,44,

4

22,

2

7 Lysis of Nitrosomonas

XANsHANs cb
Autotrophic organisms 2 – Nitrobacter
8 Aerobic growth of Nitrobacter on NO2  

XANbANbN
NONOANb

NO

OOANb

O
ANb cf

cK
c

cK
c

,
22,

2

22,

2

9 Lysis of Nitrobacter

XANbHANb cb
Conversion of solid and liquid phase concentrations 

ANbANsHYsc XYXY ,,where,

Factor for nutrients  

ANbDNHetx
cK

c
cK

cf
IPIPx

IP

NHNHx

NH
xN ,,where,

,44,

4
,

See Table 3.9 for definitions of rate coefficients. 
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3.4.2 Model parameters 
Table 3.9 shows the kinetic parameters, and Table 3.10 the temperature dependences, 
stoichiometric parameters, composition parameters and parameters describing oxygen 
transfer for the CW2D biokinetic model as described in Langergraber and Šim nek (2005). 

Table 3.9: Kinetic parameters in the CW2D biokinetic model (Langergraber and Šim nek, 2005). 
 Description [unit] Value 
Hydrolysis for 20°C (10°C) 
Kh hydrolysis rate constant [1/d] 3 (2) 
KX saturation/inhibition coefficient for hydrolysis [g CODCS/g CODBM] 0.1 (0.22) * 
Heterotrophic bacteria (aerobic growth)  

H maximum aerobic growth rate on CR [1/d] 6 (3) 
bH rate constant for lysis [1/d] 0.4 (0.2) 
Khet,O2 saturation/inhibition coefficient for SO [mg O2/L] 0.2 
Khet,CR saturation/inhibition coefficient for substrate [mg CODCR/L] 2 
Khet,NH4N saturation/inhibition coefficient for NH4 (nutrient) [mg N/L] 0.05 
Khet,IP saturation/inhibition coefficient for P [mg N/L] 0.01 
Heterotrophic bacteria (denitrification)  

DN maximum aerobic growth rate on CR [1/d] 4.8 (2.4) 
KDN,O2 saturation/inhibition coefficient for SO [mg O2/L] 0.2 
KDN,NO3N saturation/inhibition coefficient for NO3 [mg N/L] 0.5 
KDN,NO2N saturation/inhibition coefficient for NO2 [mg N/L] 0.5 
KDN,CR saturation/inhibition coefficient for substrate [mg CODCR/L] 4 
KDN,NH4N saturation/inhibition coefficient for NH4 (nutrient) [mg N/L] 0.05 
KDN,IP saturation/inhibition coefficient for P [mg N/L] 0.01 
Ammonia oxidising bacteria (Nitrosomonas spp.)  

ANs maximum aerobic growth rate on SNH [1/d] 0.9 (0.3) 
bANs rate constant for lysis [1/d] 0.15 (0.05) 
KANs,O2 saturation/inhibition coefficient for SO [mg O2/L] 1 
KANs,NH4N saturation/inhibition coefficient for NH4 [mg N/L] 0.5 
KANs,IP saturation/inhibition coefficient for P [mg N/L] 0.01 
Nitrite oxidising bacteria (Nitrobacter spp.)  

ANb maximum aerobic growth rate on SNH [1/d] 1 (0.35) 
bANb rate constant for lysis [1/d] 0.15 (0.05) * 
KANb,O2 saturation/inhibition coefficient for SO [mg O2/L] 0.1 
KANb,NO2N saturation/inhibition coefficient for NO2 [mg N/L] 0.1 
KANb,NH4N saturation/inhibition coefficient for NH4 (nutrient) [mg N/L] 0.05 
KANb,IP saturation/inhibition coefficient for P [mg N/L] 0.01 

* Langergraber (2007) 
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Table 3.10: Temperature dependences, stoichiometric parameters, composition parameters and 
parameters describing oxygen transfer in the CW2D biokinetic model (Langergraber and Šim nek, 
2005). 
Parameter Description [unit] Value 
Temperature dependences (activation energy [J/mol] for Arrhenius equation)
Tdep_het Activation energy for processes caused by XH [J/mol] 47800 
Tdep_aut Activation energy for processes caused by XA [J/mol] 69000 
Tdep_Kh Activation energy Hydrolyses [J/mol] 28000 
Tdep_KX Activation energy factor KX for hydrolyses [J/mol] -53000 * 
Tdep_KNHA Activation energy for factor KNHA for nitrification [J/mol] -160000 * 
Stoichiometric parameters  
fHyd,CI production of CI in hydrolysis  0.0 
fBM,CR fraction of CR generated in biomass lysis  0.1 
fBM,CI fraction of CI generated in biomass lysis  0.02 
YHet yield coefficient for XH 0.63 
YANs yield coefficient for XANs 0.24 
YANb  yield coefficient for XANb 0.24 
Composition parameters  
iN,CR N content of CR [g N/g CODCR] 0.03 
iN,CS N content of CS [g N/g CODCS] 0.04 
iN,CI N content of CI [g N/g CODCI] 0.01 
iN,BM N content of biomass [g N/g CODBM] 0.07 
iP,CR P content of CR [g P/g CODCR] 0.01 
iP,CS P content of CS [g P/g CODCS] 0.01 
iP,CI P content of CI [g P/g CODCI] 0.01 
iP,BM P content of biomass [g P/g CODBM] 0.02 
Oxygen 
cO2_sat_20 saturation concentration of oxygen [g/m³] 9.18 
Tdep_cO2_sat activation energy for saturation concentration of oxygen [J/mol] -15000 
rate_O2 re-aeration rate [1/d] 240 
* Langergraber (2007) 
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Table B1. Bark filter model sensitivity analysis. For abbreviations, see Appendix A 

 Effluent COD % change 

Factor times the base-scenario 
parameter value 

0.5 0.8 0.9 1.1 1.2 1.5 

 122 -1 -1 0 1 3 
KAnb,IP 0 0 0 0 0 0 
KAnb,NH4N 0 0 0 0 0 0 
KAnb,NO2N 0 0 0 0 0 0 
KAnb,O2 0 0 0 0 0 0 
KAns,IP 0 0 0 0 0 0 
KAns,NH4N 0 0 0 0 0 0 
KANs,O2 0 0 0 0 0 0 
KDN,CR 0 0 0 0 0 0 
KDN,IP 0 0 0 0 0 0 
KDN,NH4N 0 0 0 0 0 0 
KDN,NO2N 0 0 0 0 0 0 
KDN,NO3N 0 0 0 0 0 0 
KDN,O2 0 0 0 0 0 0 
Khet,CR 3 1 0 0 -1 -2 
Khet,IP 1 0 0 0 0 -1 
Khet,NH4N 0 0 0 0 0 0 
Khet,O2 2 0 0 0 0 -1 
KX -4 -2 -1 1 2 4 
Kh 23 3 1 -1 -2 -3 
Ks 1 2 0 1 0 -1 
Tdep_KNHA 0 0 0 0 0 0 
Tdep_KX 0 0 0 0 0 0 
Tdep_Kh 0 0 0 0 0 0 
Tdep_aut 0 0 0 0 0 0 
Tdep_het 0 0 0 0 0 0 
YANb 0 0 0 0 0 0 
YANs 0 0 0 0 0 0 
YHet -3 -3 -1 2 4 24 
bANb 0 0 0 0 0 0 
bANs 0 0 0 0 0 0 
bH -23 -9 -4 4 8 20 
fBM,CI -20 -8 -4 4 8 20 
fBM,CR 1 0 0 0 0 -1 
fHyd,CI 0 0 0 0 0 0 
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iN,BM 0 0 0 0 0 0 
iN,CI 0 0 0 0 0 0 
iN,CR 0 0 0 0 0 0 
iN,CS 0 0 0 0 0 0 
iP,BM 0 0 0 0 0 1 
iP,CI 0 0 0 0 0 0 
iP,CR 0 0 0 0 0 0 
iP,CS 0 0 0 0 0 0 
l -1 0 0 0 0 0 

ANb 0 0 0 0 0 0 

ANs 0 0 0 0 0 0 

DN 0 0 0 0 0 0 

H -5 -2 -1 1 2 3 
n 5 2 4 -1 -12 - 

r -7 -3 0 0 3 4 

s 24 1 1 0 0 -1 
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Table B2. Charcoal filter model sensitivity analysis. For abbreviations, see Appendix A 

 Effluent COD % change 

Factor times the base-scenario 
parameter value 

0.5 0.8 0.9 1.1 1.2 1.5 

 -3 -1 -1 0 1 2 
KAnb,IP 0 0 0 0 0 0 
KAnb,NH4N 0 0 0 0 0 0 
KAnb,NO2N 0 0 0 0 0 0 
KAnb,O2 0 0 0 0 0 0 
KAns,IP 0 0 0 0 0 0 
KAns,NH4N 0 0 0 0 0 0 
KANs,O2 0 0 0 0 0 0 
KDN,CR 0 0 0 0 0 0 
KDN,IP 0 0 0 0 0 0 
KDN,NH4N 0 0 0 0 0 0 
KDN,NO2N 0 0 0 0 0 0 
KDN,NO3N 0 0 0 0 0 0 
KDN,O2 0 0 0 0 0 0 
Khet,CR 0 0 0 0 0 1 
Khet,IP -2 -1 0 0 0 1 
Khet,NH4N 0 0 0 0 0 0 
Khet,O2 -1 -1 0 0 0 1 
KX -9 -4 -2 2 4 11 
Kh 71 8 3 -2 -4 -7 
Ks - 0 0 0 0 0 
Tdep_KNHA 0 0 0 0 0 0 
Tdep_KX 0 0 0 0 0 0 
Tdep_Kh 0 0 0 0 0 0 
Tdep_aut 0 0 0 0 0 0 
Tdep_het 0 0 0 0 0 0 
YANb 0 0 0 0 0 0 
YANs 0 0 0 0 0 0 
YHet -36 -19 -11 12 104 1121 
bANb 0 0 0 0 0 0 
bANs 0 0 0 0 0 0 
bH -22 -8 -4 3 6 13 
fBM,CI -20 -8 -4 4 8 20 
fBM,CR 1 1 0 0 -1 -1 
fHyd,CI 0 0 0 0 0 0 
iN,BM 15 0 0 0 0 0 
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iN,CI 0 0 0 0 0 0 
iN,CR 0 0 0 0 0 8 
iN,CS 0 0 0 0 0 0 
iP,BM -4 -1 0 0 1 0 
iP,CI 0 0 0 0 0 0 
iP,CR 0 0 0 0 0 0 
iP,CS 0 0 0 0 0 0 
l 0 0 0 0 0 0 

ANb 0 0 0 0 0 0 

ANs 0 0 0 0 0 0 

DN 0 0 0 0 0 0 

H 4 1 1 -1 -1 -2 
n - - -3 3 6 13 

r 8 2 1 -1 -2 11 

s 484 8 3 -3 -6 -9 
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Table B3. Sand filter model sensitivity analysis. For abbreviations, see Appendix A 

 Effluent COD % change 

Factor times the base-scenario 
parameter value 

0.5 0.8 0.9 1.1 1.2 1.5 

 inner -58 -17 -9 1 5 9 
 wall layer -61 -16 -8 -3 -7 -33 

KAnb,IP 0 0 0 0 0 0 
KAnb,NH4N -1 0 0 0 0 0 
KAnb,NO2N -2 -1 0 0 0 0 
KAnb,O2 0 0 0 0 0 0 
KAns,IP -1 0 0 0 0 0 
KAns,NH4N 0 0 0 0 0 0 
KANs,O2 0 0 0 0 0 0 
KDN,CR 1 0 0 0 0 -1 
KDN,IP 0 0 0 0 0 0 
KDN,NH4N 0 0 0 0 0 0 
KDN,NO2N 0 0 0 0 0 0 
KDN,NO3N 0 0 0 0 0 0 
KDN,O2 -1 -1 0 0 0 0 
Khet,CR 2 -1 0 0 0 1 
Khet,IP -1 0 0 0 0 0 
Khet,NH4N 0 -1 0 0 0 1 
Khet,O2 -6 -2 -1 1 2 4 
KX -3 -2 -1 1 1 3 
Kh 9 2 1 -1 -2 -3 
Ks inner -3 0 -2 -2 -1 -2 
Ks wall layer -15 -5 -3 -2 0 4 
Tdep_KNHA 0 0 0 0 0 0 
Tdep_KX 0 0 0 0 0 0 
Tdep_Kh 0 0 0 0 0 0 
Tdep_aut 0 0 0 0 0 0 
Tdep_het 0 0 0 0 0 0 
YANb -5 -1 0 0 0 0 
YANs -1 -1 0 0 0 0 
YHet -12 0 0 0 4 48 
bANb 0 0 0 0 0 0 
bANs 0 0 0 0 0 0 
bH -6 -3 -2 1 3 9 
fBM,CI -2 -1 -1 0 0 1 
fBM,CR 0 0 0 0 0 -1 
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fHyd,CI 0 0 0 0 0 0 
iN,BM 23 0 0 0 0 3 
iN,CI -1 0 0 0 0 0 
iN,CR 4 1 0 -1 -1 4 
iN,CS 5 2 1 -1 -2 -4 
iP,BM -2 -1 -1 0 0 1 
iP,CI 0 0 0 0 0 0 
iP,CR 0 0 0 0 -1 -1 
iP,CS 0 0 0 0 0 -1 
l inner 3 0 -2 -1 -3 -6 
l wall layer 0 1 -1 -4 -4 -8 

ANb 1 0 0 -1 -1 -2 

ANs 2 0 0 0 0 -1 

DN 5 2 1 -1 -2 -5 

H 13 3 1 -2 -3 -3 
n inner  -35 -15 -9 2 5 7 
n wall layer -44 -6 -5 -11 -8 - 

r inner 6 1 -1 -4 -8 -11 

r wall layer -1 0 0 -1 -2 -1 

s inner 34 13 3 -8 -17 -31 

s wall layer 14 9 6 -12 -20 -47 

 
 


