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Abstract

The hypotheses that beta diversity should increase with decreasing latitude and

increase with spatial extent of a region have rarely been tested based on a com-

parative analysis of multiple datasets, and no such study has focused on stream

insects. We first assessed how well variability in beta diversity of stream insect

metacommunities is predicted by insect group, latitude, spatial extent, altitudi-

nal range, and dataset properties across multiple drainage basins throughout the

world. Second, we assessed the relative roles of environmental and spatial fac-

tors in driving variation in assemblage composition within each drainage basin.

Our analyses were based on a dataset of 95 stream insect metacommunities

from 31 drainage basins distributed around the world. We used dissimilarity-

based indices to quantify beta diversity for each metacommunity and,

subsequently, regressed beta diversity on insect group, latitude, spatial extent,

altitudinal range, and dataset properties (e.g., number of sites and percentage of
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presences). Within each metacommunity, we used a combination of spatial ei-

genfunction analyses and partial redundancy analysis to partition variation in

assemblage structure into environmental, shared, spatial, and unexplained frac-

tions. We found that dataset properties were more important predictors of beta

diversity than ecological and geographical factors across multiple drainage

basins. In the within-basin analyses, environmental and spatial variables were

generally poor predictors of variation in assemblage composition. Our results

revealed deviation from general biodiversity patterns because beta diversity did

not show the expected decreasing trend with latitude. Our results also call for

reconsideration of just how predictable stream assemblages are along ecological

gradients, with implications for environmental assessment and conservation

decisions. Our findings may also be applicable to other dynamic systems where

predictability is low.

Introduction

The importance of understanding broad-scale patterns of

biodiversity is becoming ever more urgent as landscapes,

ecosystems, and communities are increasingly trans-

formed by processes such as habitat loss, invasion by exo-

tic species, eutrophication, and climate change (Dudgeon

et al. 2006; V€or€osmarty et al. 2010). Increased under-

standing of broad-scale biodiversity patterns is a prerequi-

site for the advancement of both basic and applied

ecology. From the perspective of basic ecology and for

the sake of generality, more information on biodiversity

patterns of a variety of under-studied taxa is needed

(Leather 2009). From the perspective of applied ecology,

knowledge of patterns in biodiversity is essential to guide

both conservation actions and environmental assessment

(Caro 2010). Accordingly, better understanding of pat-

terns in regional species richness (c-diversity), local spe-
cies richness (a-diversity), and variation in species

composition between sites (b-diversity) at the global, con-

tinental, and regional scales would be valuable (Heino

2013; Bini et al. 2014).

Hypotheses about the processes driving beta diversity

are closely intertwined with recent developments in meta-

community theory (Leibold et al. 2004; Logue et al.

2011). While variation in local community composition is

thought to be typically driven by species sorting along

environmental gradients (Cottenie 2005), spatial processes

(e.g., dispersal between sites) also have the potential to

affect local community composition (Brown and Swan

2010; Altermatt et al. 2013; Heino and Peckarsky 2014;

Heino et al. 2015a). The relative importance of species

sorting versus spatial processes may be contingent on the

lengths of environmental gradients (e.g., range in stream

temperature or nutrient concentrations within a drainage

basin) and the spatial extent of the study (Jackson et al.

2001; Cottenie 2005; Bini et al. 2014; Heino et al. 2015a).

One might expect species sorting to increase with increas-

ing environmental gradient length (Jackson et al. 2001;

Gr€onroos et al. 2013) and spatial factors to gain impor-

tance with increasing spatial extent of the region studied

(Cottenie 2005; Heino 2011). Very few studies have

explicitly tested these hypotheses using multiple datasets,

which is surprising given that environmental heterogene-

ity and spatial scale are two key ideas behind metacom-

munity theory (Leibold et al. 2004). While the

importance of species sorting and spatial factors for meta-

community organization can be addressed in single case

studies, such studies do not allow the identification of

robust patterns and cannot lead to broad generalizations.

Instead, the relative influence of environmental heteroge-

neity (cf. species sorting) and spatial extent (cf. spatial

factors) can only be investigated in a general sense across

multiple metacommunities in different geographic regions

using a comparative approach. Such broad-scale analyses

have seldom involved stream organisms, and the analyses

that have been undertaken have either focused on a small

component of benthic insect assemblages (Boyero et al.

2012) or on specific stream types (Jacobsen and Dangles

2012).

Running waters offer an ideal model system to disen-

tangle the relative influences of species sorting and spatial

processes on metacommunity organization (Brown et al.

2011; Heino et al. 2015b). Stream ecosystems show high

geomorphological heterogeneity (Allan and Castillo 2007),

are structured in dendritic networks (Altermatt 2013),

and harbor exceptional levels of biodiversity relative to

their limited spatial extent (Dudgeon et al. 2006). Aquatic

insects are prominent organisms in streams, playing key

roles in food webs and ecosystem processes (Allan and

Castillo 2007) and showing high diversity in terms of

phylogenetic origins, dispersal traits, species richness, and

endemism (Lancaster and Downes 2013). However, they

are assumed to be strongly impacted by various anthro-

pogenic factors, including pollution (Rosenberg and Resh

1993), habitat modification (Allan and Castillo 2007), and
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climate change (Jacobsen et al. 2012). This sensitivity

potentially makes stream insects valuable as biological

indicators (Rosenberg and Resh 1993) and, hence, under-

standing patterns and scales of variability in their meta-

communities is a priority (Heino 2013).

Current knowledge on stream insect metacommunities

mainly relies on case studies conducted in individual

regions (e.g., Thompson and Townsend 2006; Heino and

Mykr€a 2008; Brown and Swan 2010; Landeiro et al. 2012;

Siqueira et al. 2012; Al-Shami et al. 2013a). Most studies

have shown that species sorting is prevalent in shaping

these metacommunities, although the strength of dispersal

limitation may increase with increasing spatial scale (Hei-

no and Peckarsky 2014). The mechanisms structuring

metacommunities may also be contingent on system-spe-

cific factors (e.g., high dispersal rates may be important

in mainstem rivers; Brown and Swan 2010) or be related

to dispersal traits (e.g., the importance of dispersal limita-

tion increases with decreasing dispersal ability; Thompson

and Townsend 2006; Heino et al. 2015b). These and other

hypotheses associated with broad-scale patterns are diffi-

cult to test with a single or a few datasets, and more gen-

eral perspectives may be obtained through a comparative

analysis of multiple datasets. Using a large number of

stream insect datasets from different parts of the world,

we attempted to reveal the main factors structuring

stream insect metacommunities by answering the follow-

ing questions: (Q1) How well can variability in beta

diversity across multiple stream insect metacommunities

(i.e., spatial level 1; Appendix S1) be accounted for by

insect group, latitude, altitudinal range, and spatial

extent? (Q2) What are the relative roles of species sorting

and spatial processes in predicting assemblage composi-

tion within stream insect metacommunities (i.e., spatial

level 2; Appendix S2)?

We assembled a comprehensive dataset comprising 95

stream insect metacommunities from different regions,

ranging from tropical to Arctic latitudes and lowland to

montane habitats. First, we analyzed spatial variation in

beta diversity, with the expectation of higher beta diver-

sity in tropical regions than nearer the poles (Soininen

et al. 2007; but see Boyero et al. 2011). Second, we tested

whether the importance of environmental factors in

accounting for variation in assemblage composition

tended to be greater within drainage basins that had

higher environmental variability (Heino 2011; Gr€onroos

et al. 2013), and whether spatial factors increased in

importance with increasing regional extent (Cottenie

2005; Bini et al. 2014). We showed that beta diversity

patterns may be poorly predictable in highly dynamic

stream systems, which calls for reconsideration of the pre-

dictability of ecological communities.

Methods

Study areas and datasets

We assembled data for five major stream insect taxa: may-

flies (Ephemeroptera), stoneflies (Plecoptera), caddisflies

(Trichoptera), nonbiting midges (Diptera: Chironomidae),

and dragonflies (Odonata) from 31 drainage basins dis-

tributed around the world, but predominantly from the

Americas and Europe (Fig. 1). These five insect groups

often dominate in stream invertebrate communities

Figure 1. Geographical locations of the 31 drainage basins in this study. Analyses were carried out for each insect taxon separately. Thereby, 95

datasets were available for analyses of biological data only and 61 datasets for analyses using environmental predictors. In some cases, symbols

have been shifted slightly to avoid overlap. The inset histograms show the frequency distribution of number of species (upper histogram) and

number of sites per metacommunity (lower histogram).
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(Lancaster and Downes 2013; Heino and Peckarsky 2014),

and the family Chironomidae may alone account for a

very large share of species in a dataset (e.g., Raunio et al.

2011). However, given the lack of data for other impor-

tant taxa, such as beetles (Coleoptera), our results are only

applicable to the five taxonomic groups analyzed. Both

insect and environmental data were available for 23

basins, while insect data only were available for the

remaining eight basins. We initially intended to use data-

sets consisting of at least 15 stream sites per basin, but

included a few basins with a lower number of sites to

increase geographic coverage for across-basins beta diver-

sity analyses (see below). The average number of sites per

drainage basin was 24.5 (range: 4 to 213), and most drain-

age basins included data for at least three insect taxo-

nomic groups (see below) (Fig. 1). Each insect dataset was

also checked to ensure that surveys were conducted within

a single year and that sampling did not span multiple sea-

sons (i.e., samples within a drainage basin were taken

within a short period of time). This was performed to

guarantee that we were studying sets of potentially inter-

acting species (see Leibold et al. 2004). In addition, each

insect dataset was based on standardized sampling meth-

ods (e.g., kick-netting or Surber samplers), and between-

site differences in species composition were thus compara-

ble within each dataset. We focused on datasets from

streams subject to little anthropogenic impact, although in

a few basins, some streams were affected by adjacent

human land use (e.g., some streams drained managed

forests).

Insect data for each drainage basin were separated by

taxonomic group for analyses, yielding a total of 95 data-

sets, of which 75 included both insect and environmental

data. However, in the within-basin analyses described

below, we used only 61 datasets that included at least 15

sites. We used this approach because each taxonomic

group may show distinct latitudinal patterns in diversity

(Vinson and Hawkins 2003; Pearson and Boyero 2009),

exhibit different dispersal abilities (Bonada et al. 2012),

or respond differently to environmental factors (Heino

and Mykr€a 2008). Furthermore, different taxonomic

groups may exhibit different patterns of metacommunity

organization (Heino and Mykr€a 2008; Altermatt et al.

2013).

Taxonomic resolution varied among the insect datasets

due to differences in taxonomic knowledge among

regions; however, all datasets involved identification to at

least the level of genus. We also controlled for regional

differences in taxonomic knowledge by including the

variable “proportion of taxa identified to species level” in

analyses comparing variability in beta diversity across

metacommunities. We had to rely on incidence (i.e.,

presence–absence) data because we did not have strictly

comparable abundance data from all drainage basins.

Although numerical resolution may affect patterns in beta

diversity (Anderson et al. 2011; Heino et al. 2015a), pre-

vious studies on stream invertebrates have shown that the

main patterns can be reproduced using either presence–
absence or abundance data (Al-Shami et al. 2013b; Heino

et al. 2013; Bini et al. 2014).

Environmental variables

The physical and chemical variables that were measured

in each drainage basin varied greatly (Appendix S3). We

removed some categorical variables from drainage basin

datasets where there were fewer sites than explanatory

variables. We also pooled fine and coarse estimates of

benthic organic matter when both were present in the

same dataset. Similarly, for datasets that included propor-

tional coverage of substrate size classes, the finer catego-

ries (i.e., silt, sand, gravel, and pebble) were pooled. We

also removed variables that provide similar information

(e.g., we retained only total nitrogen when several forms

of nitrogen were reported), as well as variables only mea-

sured at a few sites within a drainage basin and some

variables related to riparian vegetation (e.g., width of the

riparian vegetation) that affect stream insects indirectly.

After this initial data screening, we finalized environ-

mental datasets for each insect group in each drainage

basin. This involved deletion of sites from which a partic-

ular insect group was absent and deletion of variables for

which observations were only available for a few sites.

Finally, we removed entire datasets including <15 sites.

The 61 final environmental datasets were derived from 20

basins and included 4–21 variables, and a total of 67 vari-

ables were used. Conductivity, total phosphorus, and

depth were the most common variables, available for 54,

41, and 40 datasets, respectively (Appendix S3).

Beta diversity analyses

Multiple approaches are necessary to adequately describe

patterns in beta diversity, because each approach may

provide distinct information about this facet of biodiver-

sity (Anderson et al. 2011). We used three approaches to

estimate beta diversity for each of the 95 metacommuni-

ties. The first was the average of pairwise dissimilarities

between sites within a drainage basin. The second was the

multiple-site version of the same metric (Diserud and

Ødegaard 2007), which is a generalization of the 2-sam-

ples formula to handle more than two samples. The third

was the average biological distance of sites within a single

metacommunity to the metacommunity centroid (Ander-

son et al. 2006). Each of these three approaches was based

on three different dissimilarity coefficients: (i) Sørensen
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coefficient (i.e., a measure of overall beta diversity), (ii)

Simpson coefficient (i.e., a measure of turnover immune

to nestedness resulting from species richness differences),

and (iii) a coefficient measuring nestedness resulting from

species richness differences (Baselga 2010).

Comparative analyses of beta diversity

We regressed dissimilarity-based beta diversities obtained

for each drainage basin (n = 95) against (i) taxonomic

group (as a dummy variable), (ii) latitude (absolute val-

ues), (iii) range in altitude, and (iv) spatial extent of a

drainage basin. We also included (v) an interaction

term between range in altitude and latitude (i.e., the

product of range in altitude and latitude) because the

effects of range in altitude may depend on latitude

(Hawkins and Diniz-Filho 2006). In addition to these

factors, estimates of beta diversity may be influenced by

the properties of the datasets (Podani and Schmera

2011). Thus, we also included in the regression models

the following predictor variables: (vi) number of sites in

the dataset, (vii) number of species, (viii) matrix fill

(percentage of presences), and (ix) percentage of taxa

identified to species level. Three datasets included many

more stream sites than others (Fig. 1), so we log-trans-

formed this variable to improve the distribution of

residuals. See Figure 2 for the main steps of our statisti-

cal approach.

We hypothesized that beta diversity should be associ-

ated with environmental heterogeneity (Anderson et al.

2006; Heino et al. 2013). However, a variable directly

related to environmental heterogeneity could not be
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Figure 2. Flow chart of the statistical analyses

used. Different analyses were employed at (1)

the across-basins level and (2) the within-basin

level. See main manuscript text for details. DB,

Drainage basin; E, Ephemeroptera; P,

Plecoptera; T, Trichoptera; C, Chironomidae;

O, Odonata; Bio, biological data, Env,

environmental data; Geo, geographic

coordinates. s, sites; n, number of sites; y,

averages of pairwise dissimilarities (from the

first to the 95th dataset); x1-9, explanatory

variables for the across-basins analysis; p,

number of taxa in a given biological data

matrix; q, q-, and q–, number of environmental

variables (E) before, after using VIF and after

using forward selection, respectively; r and r-,

number of eigenvectors variables (V) before

and after using forward selection.
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estimated for all datasets because only biological data

were available for some of them. Also, the number and

type of environmental variables measured in each basin

varied. We therefore assessed whether range in altitude

could serve as a proxy for environmental variation among

stream sites within a drainage basin. We obtained altitu-

dinal range for each dataset from the Shuttle Radar

Topography Mission (Jarvis et al. 2008). We then calcu-

lated the average coefficient of variation for stream envi-

ronmental variables within each dataset and correlated it

with altitudinal range, revealing a positive correlation

(r = 0.55). We thus opted to use altitudinal range as a

surrogate variable for environmental variability or hetero-

geneity because this metric allowed us to include all 95

datasets in the comparative analyses rather than only the

75 (i.e., also including datasets with <15 sites) for which

environmental data were available. Altitudinal range is

likely to be related to variation in multiple environmental

factors affecting the distribution of stream organisms,

including temperature, oxygen concentration, and differ-

ences in habitat conditions between lowland and moun-

tain streams (Ward 1998; Jacobsen and Dangles 2012).

Hence, the larger the altitudinal range in a drainage basin,

the larger the variation in stream environmental condi-

tions organisms have to cope with.

Two metrics of spatial extent were obtained initially.

The first was the area of a minimum convex polygon

including all sites in the drainage basin. Although

straightforward, this metric is expected to be biased in

cases where a few sites are located far from most of the

others. Accordingly, we also obtained the average distance

of sites to the geographic centroid of all sites within a

drainage basin. These two metrics were strongly corre-

lated (r = 0.84), and we opted to use the average distance

of sites to the geographic centroid.

Model evaluations

We calculated the second-order Akaike’s information cri-

terion (AIC) to rank the best approximating models

explaining variation in our measures of beta diversity

(Fig. 2). AIC differences (AICi �AICmin, where AICmin is

the AIC for the best model in the set, given the data)

were also calculated. AIC differences were then used to

estimate the Akaike weight of each model (wi), which

“may be interpreted as the probability that model i is the

actual expected Kullback–Leibler distance best model for

the sampling situation considered” (Burnham and Ander-

son 2002). The sum of Akaike weights over all models

that included an explanatory variable (w+(j)) was calcu-

lated to estimate the relative importance of explanatory

variables. We present the results for all models with AIC

differences <2.0.

Explaining variation in the biological
datasets within each drainage basin

In each drainage basin, spatial variables were generated

from the Euclidean distance matrix through Moran eigen-

vector maps (MEM), formerly called principal coordinates

of neighbor matrices (Borcard and Legendre 2002). The

spatial variables (eigenvectors) derived from MEM repre-

sent orthogonal patterns of relationships among sampling

sites and are used as spatial predictor variables (Fig. 2).

Eigenvectors with high eigenvalues represent broad-scale

patterns, whereas those associated with low eigenvalues

represent fine-scale patterns. MEM thus produces multi-

ple spatial variables that are efficient in capturing com-

plex spatial patterns in the response data. As watercourse

distances between sites were available in only a few data-

sets, we had to rely on using overland distances in MEM.

This is likely to be appropriate because all of our taxa

have flying adult stages. Although some studies have sug-

gested that watercourse distances are more meaningful for

stream organisms than overland distances (Altermatt

et al. 2013), others have found that these two measures of

distance are often strongly correlated, providing virtually

the same information about the spatial structuring of a

metacommunity (Thompson and Townsend 2006; Lande-

iro et al. 2012; Gr€onroos et al. 2013).

We used redundancy analysis (RDA; Legendre &

Legendre, 2012) to examine the relative contributions of

environmental and spatial variables (from MEM) to vari-

ation in assemblage composition (using abundance data

when available) among sites. Partial RDA (pRDA) was

employed to estimate fractions of the total variation of

site-by-taxon matrices explained by environmental and

spatial variables. The insect matrices were subjected to the

Hellinger transformation that is suitable for both pres-

ence–absence and abundance data (Legendre et al. 2005),

making assemblage data analyzable by linear ordination

methods (Peres-Neto et al. 2006). We excluded environ-

mental variables with variance inflation factors higher

than 10 (Kutner et al. 2004). Then, we ran two global

RDA models, one using all spatial predictors (i.e., eigen-

vectors) and the second using all remaining environmen-

tal predictors. If no global model was significant, the

analysis was terminated, and the environmental and

spatial fractions were assumed to be zero. When there

was a significant global model, we ran a forward

selection procedure to retain only the most important

variables (Blanchet et al. 2008). In the forward selection,

each variable retained should be significant at an alpha

level of 0.05 and the adjusted R2 of the final RDA model

should not be greater than its respective global model.

When both spatial and environmental global models

were significant, we ran a pRDA using the selected
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spatial and environmental variables to evaluate how

much of the total biological variance each set of explana-

tory variables could explain. The variance partitioning

relative to this pRDA was based on the adjusted R2

(Peres-Neto et al. 2006).

All analyses were undertaken in R (The R Core Team

2012). Dissimilarities and RDAs were obtained using

functions from the vegan (Oksanen et al. 2012) and bet-

apart (Baselga et al. 2013) packages. Candidate models

were compared and model averaging performed using

functions of the MuMIn package (Barto�n, 2014).

Results

Explaining dissimilarity-based beta diversity
across drainage basins

Based on the Sørensen coefficient, beta diversity values

showed high variation across the 95 datasets, ranging

from 0.06 to 0.94 for the average of pairwise dissimilari-

ties and from 0.14 to 0.99 for its multiple-sites version.

Beta diversity quantified as the average of pairwise dis-

similarities was strongly correlated to the average of dis-

tances to the metacommunity centroid (r = 0.99). The

average of pairwise dissimilarities was also correlated to

the multiple-sites version, although to a lesser degree

(r = 0.75).

The correlation structure among the three beta diversity

metrics based on the Simpson coefficient and among the

three nestedness-resultant beta diversity metrics was simi-

lar to that found for the Sørensen coefficient. The average

of pairwise dissimilarities of the Simpson coefficient was

strongly correlated with the average of distances to the

metacommunity centroid (r = 0.95) and to a lesser extent

to the multiple-sites version (r = 0.76). For the nestedness-

resultant beta diversity metrics, the average of pairwise

dissimilarities was strongly correlated with the average of

distances to the metacommunity centroid (r = 0.89) and

to a lesser extent with the multiple-sites version (r = 0.67).

As all three dissimilarity-based beta diversity

approaches were strongly correlated, regression results are

shown for the average of pairwise dissimilarities only. The

best models for the Sørensen-based beta diversity did not

provide support for the hypothesized relationships with

altitudinal range, insect group, or latitude (Appendix S4).

The best models explained around 68% (adjusted R2) of

the variance and included variables related to matrix

properties, namely matrix fill, number of sites, and num-

ber of taxa (Tables 1 and 2). In decreasing order, the six

most important variables were matrix fill, number of sites,

number of taxa, altitudinal range, latitude, and spatial

extent (Table 2). Similar results were found for the Simp-

son-based beta diversity, except for the inclusion of altitu-

dinal range and proportion of taxa identified to species in

some of the best models (Tables 1 and 2). Regression

results for nestedness-resultant beta diversity differed

from those for Sørensen and Simpson indices (Tables 1

and 2). A smaller set of models showed AICc differences

>2.0, and they usually tended to fit the data poorly

(adjusted R2 < 0.18).

Regardless of the measure of beta diversity used, the

most important explanatory variables were more strongly

related to matrix dimensions (number of sites and num-

ber of species) and dataset characteristics (especially

matrix fill) than to biological, ecological, or geographical

factors (Table 2). There was also substantial uncertainty

regarding the best models, as indicated by their Akaike

weights and the evidence ratio between the best models

(Table 1). However, the weighted average of the estimates

based on model uncertainty also suggested a greater

importance of data properties as compared to the other

explanatory variables (Table 2).

Explaining metacommunity variation within
drainage basins: variance partitioning

RDAs indicated that about half of the insect datasets were

associated with environmental or spatial predictors. Glo-

bal RDA models for environmental predictors were signif-

icant (P < 0.05) for 28 of the 61 metacommunities. For

spatial predictors, global RDA models were significant for

13 metacommunities.

In only nine cases was metacommunity structure

related to both environmental and spatial predictors

(Fig. 3). Among these, pRDA models obtained by forward

selection indicated that the percentages of variation

explained by the environmental variables (fraction [a])

and spatial variables (fraction [c]) were on average

(mean � SD) 13.0 � 6.8% and 6.1 � 3.1%, respectively.

The average amount of variance shared by environmental

and spatial variables [b] was 10.6 � 6.2%. Total

explained variance ([a] + [b] + [c]) by the forward-

selected pRDA models was 29.7 � 11.5% (Fig. 3).

The structures of 19 metacommunities (28–9 = 19)

were associated exclusively with environmental predictors,

and four datasets (13–9 = 4) exclusively with spatial pre-

dictors (Fig. 3). Among the former, environment

explained on average 22.6 � 10.0%. For the four datasets

exclusively related to spatial predictors, variation

explained was 16.7 � 7.9%.

After exclusion of environmental variables with vari-

ance inflation factors >10, the numbers of variables per

dataset used in the RDA analyses were reduced to an

average of 10.9 � 3.0 (range: 4–16) with a total of 61

variables. The final environmental RDA models included

2.6 � 0.9 predictor variables per dataset and a total of 30
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variables. Site elevation and stream width were usually

important in explaining variation within metacommuni-

ties. However, some variables available in many datasets

were never (e.g., SO4 and dead wood material) or seldom

selected in the models (e.g., total phosphorus and con-

ductivity; Appendix S5). On the other hand, multivariate

models selected a few variables more often than would

have been expected from their proportional availability

(e.g., bank modification, clogging, and stream order).

These variables, however, were available for few datasets

(<4), making it difficult to determine their general impor-

tance in structuring the metacommunities.

Discussion

Our findings showed that variation in the beta diversity

of stream insects across the 95 metacommunities (i.e.,

spatial level 1) was not well explained by ecological pre-

dictors, such as insect group, spatial extent, latitude, and

altitudinal range. In addition, environmental, and spatial

variables were poor predictors of assemblage composition

within most metacommunities (i.e., spatial level 2),

although environmental variables tended to be better pre-

dictors than spatial ones. Because our findings were con-

sistent across a large number of datasets from around the

world, we believe that they represent worldwide patterns

in stream insect metacommunities. Below, we will discuss

our finding in the context of spatial extent, environmental

heterogeneity, latitude, and predictability.

Beta diversity is expected to increase with increasing

spatial extent for four reasons (Bini et al. 2014; Heino

et al. 2015b). First, larger areas encompass higher envi-

ronmental heterogeneity than small areas. Therefore, an

increase in environmental heterogeneity is hypothesized

to be positively related to the strength of species sorting

processes, although evidence for such a relationship is

scant (Landeiro et al. 2012; Gr€onroos et al. 2013). Sec-

ond, the effect of dispersal limitation, promoting differ-

ences in species composition among sites, is expected to

increase with spatial extent (Cottenie 2005; Heino 2011).

Table 1. Summary of best models to explain variation in beta diversity quantified as average pairwise dissimilarities for each metacommunity.

Models were obtained for Sørensen dissimilarity (total beta diversity), Simpson dissimilarity (beta diversity due to turnover), and nestedness dissimi-

larity resulting from richness differences. Full models included ecological variables hypothesized to have effects on dissimilarities, including (i) taxo-

nomic group (group), (ii) latitude (absolute values), (iii) range in altitude (alt.rng), and (iv) spatial extent (spt.ext). We included (v) an interaction

term because effects of range in altitude may depend on latitude. In addition to ecological factors, we included covariates related to matrix prop-

erties (vi) number of sites (log-transformed) (n.sites), (vii) number of species (n.spp), (viii) matrix fill (percentage of presences; fill), and (ix) percent-

age of taxa identified to species. Best models were selected according to the AICc statistics.

AICc df Delta Weight Adj. R2

Sørensen

f’ill+n.sites �178.8 4 0.00 0.373 0.684

fill+n.sites+n.spp �177.8 5 1.01 0.225 0.685

fill+n.sites+spt.ext �176.9 5 1.93 0.142 0.682

Simpson

fill+n.sites+n.spp �138.1 5 0.00 0.430 0.635

fill+n.sites+n.spp+prop.sp �136.9 6 1.24 0.231 0.635

fill+n.sites+n.spp+alt.rng �136.5 6 1.62 0.191 0.634

Richness-resultant

n.sites+n.spp+prop.sp �258.7 5 0.00 0.110 0.159

n.sites+n.spp �258.7 4 0.04 0.108 0.148

n.sites+n.spp+alt.rng+spt.ext �258.5 6 0.26 0.097 0.168

n.sites+n.spp+alt.rng+spt.ext+prop.sp �258.1 7 0.63 0.081 0.176

n.sites+n.spp+spt.ext+prop.sp �258.0 6 0.71 0.077 0.164

n.sites+n.spp+spt.ext �257.7 5 1.05 0.065 0.150

n.sites+n.spp+alt.rng �257.6 5 1.16 0.062 0.149

n.sites+n.spp+alt.rng+spt.ext+lat �257.6 7 1.20 0.061 0.159

n.sites+n.spp+prop.sp+fill �257.3 6 1.40 0.055 0.158

n.sites+n.spp+fill �257.3 5 1.43 0.054 0.147

n.sites+n.spp+alt.rng+spt.ext+fill �257.2 7 1.55 0.051 0.168

n.sites+n.spp+alt.rng+prop.sp �257.1 6 1.60 0.050 0.156

n.sites+n.spp+spt.ext+prop.sp+fill �257.0 7 1.70 0.047 0.166

n.sites+n.spp+alt.rng+spt.ext+prop.sp+fill �256.9 8 1.88 0.043 0.176

df, degrees of freedom; Delta, AIC difference regarding the best model; Weight, Akaike weight; adj R2, ordinary adjusted coefficient of determi-

nation.
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Third, a positive relationship between beta diversity and

spatial extent may arise from sampling different regional

species pools (Heino et al. 2015a). Fourth, the relation-

ship between beta diversity and spatial extent is also

expected due to a negative relationship between pairwise

similarity in assemblage composition and geographic dis-

tance (i.e., the distance decay of similarity; Nekola and

White 1999). However, our findings did not support any

of these mechanisms underlying variability in beta diver-

sity, despite the relatively large variation in spatial extent

among the metacommunities studied (measured as

average distance to group geographical centroid:

min = 0.39 km, max = 125.06 km). Similarly, altitudinal

range, an important predictor of biodiversity patterns

(Bini et al. 2004; Melo et al. 2009), was a poor predictor

of beta diversity in our study. This was surprising because

the drainage basins we studied ranged from lowland to

montane areas (range of altitudinal range: min = 11 m

a.s.l., max = 2136 m a.s.l.), potentially involving consider-

able variation in environmental factors that affect stream

insect distributions between streams located at low and

high altitudes (e.g., temperature, flow, and substratum;

see Ward 1998; Jacobsen and Dangles 2012).

According to Rapoport’s rule, species ranges tend to be

larger at high latitudes (Stevens 1989), and this phenome-

non may give rise to a latitudinal gradient in beta diver-

sity (Soininen et al. 2007). However, latitude was a poor

predictor of beta diversity across the metacommunities. It

seems that patterns in alpha, beta, and gamma diversity

of aquatic insects do not necessarily match those of mam-

mals, birds, or vascular plants (Boyero et al. 2011; Heino

2011). While many terrestrial taxa show pronounced lati-

tudinal gradients (Stevens 1989), gamma diversities of

mayflies and stoneflies both peak at mid- to high lati-

tudes, that of caddisflies show no significant relationship

with latitude, and that of dragonflies show a latitudinal

cline typical of those observed in most terrestrial taxa

(Pearson and Boyero 2009). Furthermore, alpha diversi-

ties of mayflies, stoneflies, and caddisflies do not follow

typical latitudinal clines (Vinson and Hawkins 2003).

Although knowledge of global variation in beta diversity

of stream insects is limited, information about their

gamma and alpha diversities suggests that they are unli-

kely to exhibit clear latitudinal gradients in beta diversity

(Pearson and Boyero 2009; Boyero et al. 2011). Moreover,

even when alpha and gamma diversity show a latitudinal

cline, such a cline may not necessarily be expected in beta

diversity, because different diversity components may vary

independent of each other spatially and temporally (Ang-

eler and Drakare 2013).

Table 2. Relative importance of predictor variables for pairwise

Sørensen, Simpson and richness-resultant dissimilarities and standard-

ized (beta) coefficients obtained from model averaging over all combi-

nations of model terms. The insect taxon was a categorical variable

with five levels coded as a dummy variable. The coefficient for Chiro-

nomidae was set to zero.

Sørensen Simpson

Richness-

resultant

Matrix fill 1.00 1.00 0.32

Relative importance of predictor variables

Number of sites 0.99 0.99 0.99

Number of taxa 0.38 0.93 0.99

Altitudinal range 0.27 0.36 0.49

Latitude 0.26 0.32 0.34

Spatial extent 0.26 0.27 0.52

Proportion identified species 0.24 0.33 0.47

Insect group 0.05 0.17 0.11

Altitudinal range 9 Latitude 0.02 0.07 0.07

Model averaging

Matrix fill �0.927 �0.826 0.112

Number of sites �0.268 �0.390 0.416

Number of taxa 0.081 0.219 �0.430

Altitudinal range 0.017 0.029 �0.131

Latitude 0.007 0.018 �0.042

Spatial extent 0.028 �0.039 0.175

Proportion identified species 0.008 0.068 �0.154

Insect taxon: Ephemeroptera 0.078 0.122 �0.050

Odonata 0.144 0.233 �0.229

Plecoptera 0.041 0.127 �0.149

Trichoptera 0.062 0.162 �0.223

Altitudinal range 9 Latitude 0.095 0.199 �0.234
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Figure 3. Variation partitioning of the 32 metacommunities for

which environmental or spatial predictors were important. In the

remaining 29 metacommunities, neither environmental nor spatial

predictors significantly explained observed variation. Fractions [a], [b],

[c], and [d] correspond to those due to environment, shared

environment-space, space, and unexplained variation, respectively.

Environmental and spatial predictors were both important for nine

metacommunities and all four fractions obtained from partial

redundancy analysis (pRDA) models are presented. Environmental or

spatial predictors were important for 19 and 4 metacommunities,

respectively, and their explained fractions obtained from RDA models.

In all cases, a forward selection procedure was used to select

predictor variables.
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A salient finding was that dataset characteristics were

the main predictors of variation in beta diversity across

the 95 metacommunities. Although it seems obvious that

matrix fill should be negatively related to beta diversity,

our results clearly demonstrate the importance of taking

this data property into account when attempting to find

correlates of beta diversity. This issue has rarely been con-

sidered and we suggest that taking dataset characteristics

into account as covariables, before conjecturing about

ecological explanations, should be standard practice in

future comparative studies.

A combination of low matrix fill (i.e., numerous

absences in the site-by-species matrix) and large numbers

of rare species typically results in high beta diversity val-

ues (Podani and Schmera 2011). Rare species are a typical

property of stream insect datasets (Malmqvist et al. 1999;

Heino 2005). This may be a result of the high variability

in stream hydrology. Such variability makes the distribu-

tions of individual rare species more difficult to model

than the distributions of individual common species (So-

ininen et al. 2013) and, hence, variation in species com-

position may likewise be highly challenging to model at

the assemblage level.

Streams are dynamic systems due to recurrent high or

low flows (Resh et al. 1988; Townsend 1989; McGarvey

2014), and this variability in flow affects habitat condi-

tions. Such disturbance may temporarily eliminate species

from a site, leading to unexpected absences at sites that

are otherwise environmentally suitable (Heino and Pec-

karsky 2014). If such disturbances are frequent, one is

likely to find a large number of rare species in a meta-

community at a given point in time. Streams are also

highly heterogeneous at various spatial scales (Leung and

Dudgeon 2011; Heino et al. 2013), promoting ecological

specialization and leading to a high number of rare spe-

cies in stream insect metacommunities (Heino 2005; Allan

and Castillo 2007). Thus, high frequencies of rare species

in stream insect metacommunities may not only stem

from high variability in stream hydrology but also be

enhanced by high environmental heterogeneity. Although

the relationships between flow variability and different

response variables (e.g., abundance and diversity) have

been extensively studied (see review in Poff and Zimmer-

man 2010), we are not aware of any studies that have

examined the effects of flow variability on beta diversity.

We believe that testing the relationship between beta

diversity and flow variability would be a fruitful idea for

future research.

Even in cases where predictor variables accounted for

statistically significant amounts of variation in assemblage

composition within metacommunities, the proportions of

variation they explained were rather low. A low propor-

tion of explained variation has been a typical finding in

recent studies of stream and other metacommunities

using modern analytical methods comparable to those

used in our study (Beisner et al. 2006; Nabout et al. 2009;

Landeiro et al. 2012; Alahuhta and Heino 2013; G€othe

et al. 2013; Gr€onroos et al. 2013). The robustness of this

finding across the world suggests that the structure of

stream insect metacommunities shows low predictability.

At the very least, the environmental variables that

researchers typically measure in ecological studies may

not always account for a large proportion of variation in

the assemblage composition of stream insects. The low

explanatory power of environmental predictors may stem

from the possibility that single snapshot sampling of bio-

logical assemblages and environmental variables fails to

reveal strong assemblage–environment relationships (Beis-

ner et al. 2006; Er}os et al. 2012). If assemblage–environ-
ment relationships generally vary in time (Heino and

Mykr€a 2008; Er}os et al. 2012), then this may have major

consequences for applied ecology.

Although our predictor variables were important in

about half of the datasets and the proportion of variation

explained in all cases was low (<50%), environmental

variables tended to have a more important influence on

stream insect metacommunity structure than spatial vari-

ables. This result agrees with previous studies restricted to

a single or a few drainage basins (Landeiro et al. 2012;

Al-Shami et al. 2013a; G€othe et al. 2013; Gr€onroos et al.

2013). Furthermore, among the many environmental vari-

ables included in our study, we found that some easily

obtainable variables had particular explanatory power,

including stream elevation and stream width. On the

other hand, some frequently measured variables (Appen-

dix S3 and S5) were never selected in the models and

thus only seem relevant in very specific regional contexts.

Environmental assessment and biodiversity conserva-

tion are often based on indicator taxon groups (Caro

2010). In running waters, mayflies, stoneflies, and caddis-

flies have typically been considered as sensitive indicators

of environmental degradation (Rosenberg and Resh

1993), whereas dragonflies have been proposed as a can-

didate indicator group of overall biodiversity, especially in

the tropics (Simaika and Samways 2011). To be efficient

in either task, different taxa should be indicators of

changes in environmental conditions and variation in

their biodiversity should show congruence with other

groups (Caro 2010). Although we did not aim to directly

examine cross-taxon congruence in biodiversity patterns,

it is worth noting that patterns exhibited by single taxo-

nomic groups of the five studied did not necessarily

match those of other taxa, which may limit their use as

biodiversity indicators at broad spatial scales.

There are three limitations in our current study. First,

although our insect data were resolved to the lowest
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possible level of identification in each drainage basin,

taxonomic resolution varied to some extent among the

metacommunities sampled. We controlled for this by a

variable describing the percentage of taxa identified to the

species level in the comparative analysis, but this variable

did not show a significant relationship with variation in

beta diversity across the metacommunities. Second, we

cannot rule out the possibility that unmeasured ecological

variables are the main drivers of variation in species com-

position within each metacommunity. Potentially impor-

tant variables include fish predation, primary production,

and proxies of stream-bed disturbance, which have been

shown to be important drivers in single case studies (e.g.,

Townsend et al. 2000). Obtaining such site-level variables

that are strictly comparable across datasets, however, was

impossible given our broad-scale approach. Third, we

were limited by data availability to considering only five

taxonomic groups, all of which shared some characteris-

tics (e.g., all had flying adult stages). We cannot predict

how patterns of beta diversity may play out for groups

that are restricted to in-stream dispersal (e.g., fish,

mollusks, crayfish, and shrimps).

An important consideration related to the second and

third limitations of our study is that spatial variables

derived from watercourse and overland distances might

have different predictive power in explaining variation in

species composition within each drainage basin (Jacobson

and Peres-Neto 2010; Altermatt 2013; Altermatt et al.

2013). Stream insects disperse from one stream to

another by following watercourses or crossing land

between headwater streams (Malmqvist 2002; Lancaster

and Downes 2013). Thus, it is not clear which dispersal

route is more strongly associated with variation in insect

species composition among streams. Previous studies

have suggested that there is little difference between the

predictive power of spatial variables derived from water-

course or overland distances if one uses robust spatial

analysis methods, such as Moran eigenvector maps

(Landeiro et al. 2012; G€othe et al. 2013; Gr€onroos et al.

2013). We believe that the Moran’s eigenvector map

approach used would have modeled spatial structuring of

stream insect assemblage composition adequately if,

indeed, such structuring existed. Furthermore, using mul-

tiple potentially efficient spatial variables did not lead to

additional predictive power in our analyses within drain-

age basins.

In general, the low explanatory power we found in

analyses of beta diversity is in line with the comprehen-

sive study of Low-D�ecarie et al. (2014). They evaluated 18

000 ecological articles and found a temporal decline in

the coefficient of determination in research studies. We

favor one of the three hypothesis proposed by Low-D�eca-

rie et al. (2014) to explain this trend: “The low hanging

fruit hypothesis proposes that simple discoveries are made

early in the development of a discipline and what remains

to be explained, at the margins, is increasingly compli-

cated and difficult to reach. In ecology, there appears to

be a trend away from single species studies toward more

complex community studies, as well as less emphasis on

topics that are more observational and arguably less

dependent on statistics, such as behavior and physiology,

with concurrent increases in statistically complex topics

such a biodiversity.” Alternatively, the low explanatory

power in our analyses may indicate that we should

increase our effort in measuring more difficult, albeit

potentially more relevant, predictor variables during field

surveys.

Our main finding is that variation in the beta diversity

of stream insects is difficult to predict across metacommu-

nities and within each metacommunity. This finding may

be related to frequent disturbances in stream systems,

resulting in large numbers of rare species in local com-

munities. The weak relationships between beta diversity

and latitude, altitudinal range and spatial extent also sug-

gest that stream insects do not follow the geographical

patterns observed in alpha, beta, and gamma diversity of

various terrestrial taxa. Our comparative analysis of

stream insect metacommunities thus (i) reveals a deviance

from the general distribution of biodiversity across the

world and (ii) calls for reconsideration of the predictabil-

ity of the responses of stream insect assemblages to eco-

logical gradients.
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