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Abstract  1	  

Global transformations extend beyond local habitats; therefore, larger-scale approaches are 2	  

needed to assess community-level responses and resilience to unfolding environmental changes. 3	  

Using long-term data (1996-2011), we evaluated spatial patterns and functional redundancies in 4	  

the littoral invertebrate communities of 85 Swedish lakes, with the objective of assessing their 5	  

potential resilience to environmental change at regional scales (i.e., spatial resilience). 6	  

Multivariate spatial modeling was used to differentiate groups of invertebrate species exhibiting 7	  

spatial patterns in composition and abundance (i.e., deterministic species) from those lacking 8	  

spatial patterns (i.e., stochastic species). We then determined the functional feeding attributes of 9	  

the deterministic and stochastic invertebrate species, in order to infer resilience. Between one and 10	  

three distinct spatial patterns in invertebrate composition and abundance were identified in 11	  

approximately one-third of the species; the remainder were stochastic. We observed substantial 12	  

differences in metrics between deterministic and stochastic species. Functional richness and 13	  

diversity decreased over time in the deterministic group, suggesting a loss of resilience in 14	  

regional invertebrate communities. However, taxon richness and redundancy increased 15	  

monotonically in the stochastic group, indicating the capacity of regional invertebrate 16	  

communities to adapt to change. Our results suggest that a refined picture of spatial resilience 17	  

emerges if patterns of both deterministic and stochastic species are accounted for. Spatially 18	  

extensive monitoring may help increase our mechanistic understanding of community-level 19	  

responses and resilience to regional environmental change, insights that are critical for 20	  

developing management and conservation agendas in this current period of rapid environmental 21	  

transformation.  22	  

 23	  
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Introduction 26	  

Ecologists have a long-standing interest in the temporal stability of communities in aquatic and 27	  

terrestrial ecosystems (Loureau and others 2001; Steiner and others 2005; Tilman and others 28	  

2006; Isbell and others 2009), especially in the current period of rapid environmental change that 29	  

has prompted concern regarding potential negative consequences for biodiversity and ecosystem 30	  

function (Hooper and others 2005; Millennium Ecosystem Assessment 2005). Lakes provide 31	  

important ecosystem services (e.g., commercial fishing, groundwater recharge, and recreation) 32	  

and contribute to local and regional biodiversity. Boreal lakes undergo abiotic and biotic change 33	  

as a result of the combined effects of land use and climate change, hydrological alterations, acid 34	  

deposition (Evans and others 2005; Monteith and others 2007; Angeler and Johnson 2012) and 35	  

biological invasions (Angeler and others 2012).  36	  

Recent studies have documented a loss of functional diversity and homogenization 37	  

of terrestrial and aquatic communities at regional and global scales due to environmental change 38	  

(e.g., Clavel and others 2010; Clavero and Brotons 2010; Pool and Olden 2012). Boreal lake 39	  

benthic and pelagic communities also undergo structural and functional change following 40	  

environmental perturbations (e.g., Stendera and Johnson 2008; Burgmer and others 2007; 41	  

Angeler and others 2011), but it is unclear how environmental change affects communities in 42	  

landscapes, and how these changes affect the resilience of invertebrate communities. We address 43	  

these uncertainties by evaluating spatial patterns of change of functional community attributes in 44	  

response to environmental pressures over large geographic areas.  45	  

The assessment of structural community responses, followed by characterization of 46	  

the functional attributes of taxa that explain structural change can help represent how ecosystem 47	  

processes and services (e.g., matter and energy fluxes, and primary productivity) are affected by 48	  

environmental change (Hooper and Vitousek 1997; Laliberté and others 2010; Mori and others 49	  
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2013). Invertebrates are useful models for assessing functional change because they are 50	  

comprised by species with different feeding modes (e.g., predators, shredders, grazers, gatherer-51	  

collectors, and filterers), and are critical for ecosystem functions in aquatic ecosystems (e.g., 52	  

secondary production, leaf litter decomposition, nutrient and matter cycling and energy fluxes; 53	  

Wallace and Webster 1996). 54	  

Multiscale spatial modeling has been used in a wide array of studies for identifying 55	  

independent spatial patterns in data sets (Andersen and others 2011, Kent and others 2011, 56	  

Boierio and others 2013, Bertolo and others 2012, Vandam and others 2013). More recently, such 57	  

approaches have been extended to the evaluation of functional traits within and across spatial 58	  

patterns to infer resilience of stream invertebrate communities (Göthe and others 2014). Within 59	  

and across-scale functional distributions are important for understanding resilience (sensu 60	  

Holling 1973) to environmental perturbations (Peterson and others 1998; Allen and others 2005), 61	  

and may therefore provide relevant information about resilience in a spatial context (Bengtsson 62	  

and others 2003; Cumming and others 2010; Cumming 2011). Resilience is theorized to increase 63	  

with greater functional redundancy and trait differentiation within and across scales (Elmqvist 64	  

and others 2003; Allen and others 2005). Landscapes are expected to be more resilient to regional 65	  

environmental change if functional traits are redundant within and across spatial scales. The 66	  

recognition that resilience increases with overlapping functions within scales relates to the 67	  

concepts of functional redundancy, or the ‘‘insurance hypothesis’’ (Yachi and Loreau 1999). 68	  

Furthermore, environmental perturbations may be scale specific; thus, approaches that can 69	  

identify scales in space and time, and the scale-specific effects of perturbations, are critical (Nash 70	  

and others 2014).  71	  

Multiscale spatial modeling can be used to identify species that exhibit stochastic 72	  

dynamics (i.e., species that are not correlated with spatial patterns). Stochastic species can play 73	  
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an important role in determining the “adaptive capacity” of ecosystems by increasing their ability 74	  

to adapt to change without undergoing catastrophic regime shifts (Baho and others 2014). 75	  

Assessing this adaptive capacity therefore provides complementary information to, and thus a 76	  

more refined understanding of, resilience (Gallopin 2006). 77	  

Understanding temporal trends in patterns of functional trait distributions within 78	  

and across spatial scales (i.e. those associated with “deterministic species”), as well as the 79	  

adaptive capacity associated with stochastic species, should increase our mechanistic 80	  

understanding of community dynamics and their implications for the resilience of lake 81	  

invertebrate communities (resilience of what; Carpenter and others 2001) to environmental 82	  

perturbations (resilience to what). Here, we refer to deterministic species as those that show 83	  

spatial patterns, whilst conversely stochastic species are those that are not correlated with either 84	  

spatial or environmental gradients. The spatial patterns detected by modeling may result from 85	  

demographic processes (e.g., dispersal) but also from a correlation with environmental (e.g. water 86	  

quality) variables (Cottenie 2005; Leibold and others 2004). It is therefore important to account for 87	  

covariation from environmental effects in spatial modeling, because the lack of both significant 88	  

unique environmental and spatial variation biases species groupings in favor of stochastic species. 89	  

Variation partitioning analyses can accomplish the detection of unique environmental and spatial 90	  

effects, and in turn validate the classification of deterministic and stochastic species revealed by 91	  

spatial modeling.  92	  

Considering alternative plausible scenarios of spatial and temporal patterns of 93	  

functional trait distribution of lake invertebrates can help accomplish an improved understanding 94	  

of spatial resilience. We present three hypothetical scenarios of how spatial resilience patterns 95	  

may change in response to environmental change (Figure 1), in addition to a null expectation of 96	  

no temporal patterns: (1) functional metrics associated with deterministic and stochastic species 97	  
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fluctuate around a long-term mean (i.e. temporal stability), (2) functional metrics of deterministic 98	  

and stochastic species increase over time, and (3) functional metrics of these species decrease 99	  

over time. These scenarios have very different implications for management and conservation. 100	  

Scenarios 1 and 2 suggest that little management is required because the regional communities 101	  

seem resilient over the time period studied. Scenario 3 is the least desired because it indicates an 102	  

erosion of resilience that might eventually lead to a broad-scale regime shift (Hughes and others 103	  

2013). If a regime shift is unavoidable, management can be designed to cope with alternative 104	  

futures (Folke and others 2001).  105	  

To date, these scenarios and their relevance for conservation have been difficult to 106	  

test due to the limited availability of long-term data series with sufficient spatial and temporal 107	  

sampling resolution. Here, we use 16-year (1996–2011) time series data from 85 lakes in the 108	  

National Swedish Lake Monitoring Program to study spatial patterns of composition and 109	  

abundance in littoral invertebrate communities, followed by an assessment of spatial resilience 110	  

through the evaluation of feeding guilds (here referred to as functional feeding group attributes) 111	  

of species associated with within and cross scale spatial patterns, and in the stochastic species. 112	  

Given the local and regional changes documented in water quality and community composition 113	  

of invertebrates in these lakes during the last twenty years (Angeler and Johnson 2012; Angeler 114	  

2013; Angeler and Drakare 2013), we test the hypothesis that regional patterns of functional 115	  

metrics, and thus regional resilience of invertebrate communities, is changing over time. Using 116	  

spatial modeling and variation partitioning analyses that distinguishes between deterministic and 117	  

stochastic species, we provide a refined view of regional community responses to environmental 118	  

change by evaluating the complementarity of resilience and adaptive capacity when assessing 119	  

these responses. 120	  

 121	  
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Material and Methods 122	  

Study area 123	  

In the late 1980s, Sweden initiated a long-term monitoring program of its lakes aimed at 124	  

determining responses of multiple habitats and communities to global change. This monitoring 125	  

program is overseen by the Swedish Agency for Marine and Water Management 126	  

(https://www.havochvatten.se/en). Information about the monitoring program is available online: 127	  

http://www.slu.se/en/faculties/nl/about-the-faculty/departments/department-of-aquatic-sciences-128	  

and-assessment/data-host/. For this study, environmental and littoral invertebrate assemblage data 129	  

from 85 lakes between 1996 and 2011 was used to cover broad spatial and temporal extents 130	  

(Figure 2; Electronic Appendix 1). 131	  

 132	  

Sampling 133	  

Standard sampling and analyses protocols for abiotic variables and invertebrates, certified and 134	  

quality controlled through the Swedish Board for Accreditation and Conformity Assessment 135	  

(SWEDAC; http://www.swedac.se/en/), were employed during data collection. Water quality 136	  

data were obtained from surface water samples, which were obtained at 0.5 m depth four to eight 137	  

times each year at a mid-lake station in each lake. Samples were collected with a Ruttner sampler 138	  

and kept cool during transport to the laboratory, where they were analyzed for temperature, 139	  

acidity (pH, alkalinity, SO4
2- concentration), nutrients (total P, total N, total organic C), and water 140	  

clarity (Secchi disc depth, water color). All physicochemical analyses were conducted at the 141	  

Department of Aquatic Sciences and Assessment (Swedish University of Agricultural Sciences) 142	  

following international (ISO) or European (EN) standards (Wilander and others 2003). 143	  

Measurement intervals and analytical precision for each variable are available online at: 144	  

http://www.slu.se/en/faculties/nl/about-the-faculty/departments/department-of-aquatic-sciences-145	  
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and-assessment/laboratories/geochemical-laboratory/water-chemical-analyses. 146	  

Sampling of benthic invertebrates followed Swedish standards (SS-EN 27828) throughout 147	  

the study period. Invertebrates were usually collected from each lake in one wind-exposed, 148	  

vegetation-free littoral habitat during late autumn (end of October– early November) each year. 149	  

Many boreal lakes lack clear macrophyte beds, and habitat-specific sampling is therefore 150	  

expected to increase the detection of trends within a lake and also among lakes. In the most 151	  

northern lakes, sampling was conducted at the end of September, so that similar seasonal 152	  

conditions were covered during surveys.  Five replicate samples were taken, using standardized 153	  

kick sampling with a hand net (0.5 mm mesh size). For each sample, the bottom substratum was 154	  

disturbed for 20 seconds along a 1 m stretch of the littoral zone at a depth of c. 0.5 m. 155	  

Invertebrate samples were preserved in 70% ethanol in the field and processed in the laboratory, 156	  

where they were sorted against a white background with 10x magnification, identified to the 157	  

finest taxonomic unit possible, and counted using dissecting and light microscopes. All 158	  

processing was conducted by one individual, a trained taxonomist, in order to reduce bias in 159	  

sample evaluation.  160	  

 161	  

Statistical analyses 162	  

Detecting spatial patterns in invertebrate communities - To reveal spatial structure in the 163	  

invertebrate communities for each year of the 16-year study period, we used a common spatial 164	  

modeling technique capable of identifying spatial structure at multiple scales (Borcard and 165	  

Legendre 2002, Borcard and others 2004). This method is based on Redundancy Analysis 166	  

(RDA), which uses distance-based Moran Eigenvector Maps (dbMEM) to model space (Dray and 167	  

others 2006). Essentially, the dbMEM analysis produces a set of orthogonal spatial variables 168	  

derived from the geographic XY coordinates of each lake, which in turn are used as explanatory 169	  
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variables in models of spatial relationships in community data. This process yielded a total of 26 170	  

dbMEM variables for the 85 study lakes, each of which corresponds to a specific spatial structure 171	  

and pattern ranging from fine- to broad-scale in the community data. Next, a parsimonious spatial 172	  

model for each year of study (1996-2011) was produced by running a forward selection process 173	  

on these dbMEM variables.  174	  

In the RDA analysis, significant dbMEM variables are retained and then linearly 175	  

combined, so that spatial patterns may be extracted from Hellinger-transformed species x space 176	  

matrices (Legendre and Gallagher 2001). That is, species or groups of species with similar spatial 177	  

patterns are identified and collapsed onto independent RDA axes. The identified spatial patterns 178	  

associated with each RDA axis are rigorously tested using permutations, so that the patterns 179	  

identified are independent from each other. The resulting patterns can, but must not necessarily 180	  

reflect hierarchical structures (i.e. broad-scale vs fine-scale variation) in the landscape. That is, 181	  

the technique is sensitive enough to identify even subtle differences in community structure at 182	  

any spatial scale discernable given data resolution and extent, allowing for identification of 183	  

independent patterns of functional redundancies in the landscape.  For simplicity, these 184	  

independent patterns have been referred to as different scales being present in ecosystems 185	  

(Borcard and others 2004; Blanchet and others 2011).  186	  

 Linear combination (lc) score plots are used to visually represent the modeled spatial 187	  

patterns in species groups associated with each RDA axis (Electronic Appendix 2). The number 188	  

of modeled spatial patterns of species groups is deduced from the number of significant RDA 189	  

axes, and the ecological relevance of the spatial patterns is quantified with the adjusted R2 values 190	  

of the RDA axes. Finally, the overall spatial structure of a community is inferred from the 191	  

number of significant axes in the RDA models.  192	  
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dbMEM analysis is powerful for detecting spatial patterns, but the method is inefficient in 193	  

handling linear trends; therefore, the detrending of raw data is required prior to analysis (Borcard 194	  

and others 2004; Dray and others 2006). Although methods exist that account for linear trends 195	  

(i.e. asymmetric eigenvector maps; Blanchet and others 2008), linearity is modeled according to 196	  

explicit connectivity patterns among sites (for instance, upstream and downstream sites in a 197	  

stream network) (Göthe and others 2013). Because the lakes in our study have clear insular 198	  

metacommunity structure and no specific connectivity patterns (i.e. hydrological connections or 199	  

dispersal routes of invertebrates) at the scale of our study, we believe the dbMEM approach is 200	  

suitable for identifying spatial relationships in our data. Notwithstanding, we also conducted 201	  

dbMEM models without detrending for gaining insight into the potential relevance of a linear 202	  

trend in our data. All relevant analysis steps were carried out in R 2.15.1 (R Development Core 203	  

Team 2012) with the packages PCNM (dbMEM variables), AEM (Moran’s I spatial 204	  

autocorrelation), vegan (Hellinger transformations, RDA) and packfor (forward selection). 205	  

 206	  

Variation partitioning — We used variation partitioning analysis (varpart function) in the R 207	  

package vegan to differentiate between the relative effects of environmental and spatial factors on 208	  

the structure of invertebrate communities. The analysis uses partial redundancy analysis (pRDA) 209	  

to calculate how much of the variation in community structure can be explained uniquely by each 210	  

explanatory matrix (here environmental and spatial), as well as the shared variance explained by 211	  

the explanatory matrices (Peres-Neto and others 2006). In essence, this approach helped to 212	  

differentiate between patterns that are more likely due to dispersal-related factors and those due 213	  

to variability in the abiotic lake environment. Variation partitioning also assisted with the 214	  

identification of significant unique spatial and environmental fractions, which provided 215	  
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confirmation that the patterns detected in the previously-described spatial modeling analyses 216	  

were not confounded by environmental gradients. We are therefore confident that the 217	  

classification of taxa into deterministic and stochastic species based on our spatial models is 218	  

accurate. Prior to pRDA analyses for each year of study, significant environmental (water 219	  

quality) predictor variables were selected using the ordistep function and compiled into the 220	  

environmental matrices used for the variance partitioning analyses. Significant spatial (dbMEM) 221	  

variables were obtained from the previously-described spatial modeling. The significance of each 222	  

testable fraction (pRDA) in the variance partitioning analysis was obtained by using function rda 223	  

(R package vegan).  224	  

 225	  

Correlation of invertebrate taxa with modeled spatial patterns — We used Spearman rank 226	  

correlations to relate the raw abundances of individual invertebrate taxa with the modeled spatial 227	  

patterns (i.e., to identify deterministic species). We also separated deterministic from stochastic 228	  

species (i.e., those not associated with any significant canonical axis) by subtracting the number 229	  

of species correlated with significant canonical axes from the total number of species used for 230	  

spatial modeling.  231	  

In all analyses, we used taxa that had been identified to species and morphotypes, and that 232	  

could be classified into functional feeding guilds for additional analysis. Taxa classified with 233	  

lower taxonomic resolution (i.e., family and above) were omitted to avoid unduly influencing 234	  

results with ambiguous feeding group assignments. Taxa that correlated with modeled spatial 235	  

patterns and stochastic species were classified as filterers, gatherers, grazers, shredders or 236	  

predators, using a 1 to 10 grading scale where 10 indicates highest feeding preference, according 237	  

to the online data base: www.freshwaterecology.info (Schmidt-Kloiber and Hering 2012). 238	  
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Generalists were defined as taxa with omnivorous feeding modes, i.e. those taxa that scored 239	  

identically among at least two feeding groups (e.g., gatherers and grazers).  240	  

 241	  

Definition of functional metrics – Upon our classification of invertebrate taxa into feeding guilds, 242	  

we calculated the following functional measures for each identified spatial pattern and the group 243	  

of species that exhibited stochastic dynamics: 1) functional richness (the number of feeding 244	  

groups present); 2) functional diversity based on the exponentiated Shannon-Wiener index (exp 245	  

H’) (Jost 2007; Tuomisto 2010); 3) functional evenness (calculated as the quotient between 246	  

functional diversity and functional richness; Tuomisto 2012); 4) functional redundancy (the 247	  

average number of species within each functional group at each spatial scale and the group of 248	  

stochastic species; Allen and others 2005); and 5) cross-scale redundancy (the average number of 249	  

spatial scales at which each function is represented; Allen and others 2005). In addition to these 250	  

functional measures, we calculated taxonomic richness (a structural community metric) for each 251	  

spatial scale and the stochastic species identified.  252	  

Because our spatial modeling was based on taxonomy, we were able to test how structural 253	  

diversity components of invertebrate communities partition between deterministic and stochastic 254	  

species, how these patterns change over time, and how these changes affect patterns of change in 255	  

functional feeding guilds within the lake landscape. Using functional diversity, functional 256	  

richness, and functional evenness metrics calculated on the basis of taxonomic information 257	  

allowed for direct comparisons with functional redundancy metrics, which have been critical in 258	  

resilience assessment studies (Peterson and others 1998; Allen and others 2005; Angeler et al. 259	  

2013a). 260	  

 261	  
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Evaluation of temporal trends — We used Kendall´s tau rank correlations (Kendall 1938)—a 262	  

nonparametric test of concordance—to assess whether water quality variables and the calculated 263	  

community functional metrics and taxonomic richness change monotonically between the years 264	  

1996 and 2011. Given our interest in change in the regional lake landscape rather than in 265	  

individual lakes, we used regionally averaged data for our analyses. Significant monotonic 266	  

change in environmental variables and metrics allowed us to test the hypothesis that invertebrate 267	  

communities display changing spatial resilience patterns under changing environmental 268	  

conditions. 269	  

 270	  

Results 271	  

Temporal patterns and trends in regional environmental variables 272	  

The average water temperature, nutrients (total N, total P) and pH from the 85 lakes fluctuated 273	  

over the study period (Fig. 3a-d). Sulfate concentrations and Secchi depth decreased, while 274	  

alkalinity, water color, and total organic C increased significantly between 1996 and 2011 (Fig. 275	  

3e-i). 276	  

 277	  

Spatial patterns in invertebrate communities 278	  

Spatial modeling of invertebrate communities in Swedish lakes revealed significant spatial 279	  

structure for all years except 1999 and 2009. These spatial structures explained between 3.1% 280	  

and 6.7% of the adjusted variance in the constrained RDA models (Fig. 4a; Electronic Appendix 281	  

2). The spatial signal remained significant after accounting for environmental effects in the 282	  

variance partitioning analysis; that is, the fraction of variation explained uniquely by space 283	  

(space|env) was highly significant (p < 0.005) for most study years, and close to significant at p = 284	  

0.05 for the years 1998 (p = 0.065), 2002 ( p = 0.055), and 2006 (p = 0.075) (Electronic 285	  
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Appendix 3).  Also the variation uniquely explained by environmental factors (env|space) was 286	  

significant (p = 0.005) throughout the study (Electronic Appendix 3). Models that were not 287	  

detrended generally explained a higher amount of adjusted variance (8.8 -15.3%), suggesting that 288	  

a linear trend was present in the data (Electronic Appendix 2). The number of significant spatial 289	  

patterns associated with the canonical axes of the detrended models varied during the study; that 290	  

is, we found between 1 and 3 significant spatial patterns that were associated with the canonical 291	  

axes 1-3 in the RDA models (Fig. 4b). The relatively low number of spatial patterns identified 292	  

indicates the influence of invertebrate species at a limited number of spatial scales. Despite the 293	  

low amount of variance explained, all of the identified spatial patterns reflected community 294	  

structure at broad spatial scales (Electronic Appendix 2).  295	  

 296	  

Taxonomic and functional structure and redundancy patterns in invertebrates 297	  

Because of the low number of spatial patterns identified, only about one third of the 298	  

invertebrate species exhibited within- and cross-scale patterns (i.e., were classified as 299	  

deterministic species); the rest (c. two thirds) comprised stochastic species (Fig. 4c). Consistent 300	  

with the patterns of taxonomic richness, functional richness, functional diversity and functional 301	  

redundancy (Figs. 4d, e, f), but not functional evenness (Fig. 4f), tended to be higher for 302	  

stochastic than deterministic species. Functional richness and diversity decreased in the 303	  

deterministic species group (Fig. 4d, e), while taxon richness and redundancy increased 304	  

monotonically in the stochastic group (Fig. 4c, g). 305	  

Predators and gatherers were the dominant feeding types, with high functional 306	  

redundancies in both the deterministic and stochastic species groups (Figs. 5a, b). By contrast, 307	  

shredders and filterers were the least dominant groups with the lowest redundancies (Figs. 5e, f). 308	  

Grazers and omnivores occupied intermediate positions (Figs. 5c, d). All feeding groups, except 309	  
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filterers, increased significantly over time in the stochastic, but not in the deterministic, species 310	  

group (Fig. 5). Cross-scale redundancy results were similar to those of functional redundancy 311	  

within spatial patterns for deterministic species and within the stochastic species group, with the 312	  

highest levels for grazers and the lowest for shredders (Fig. 6). Finally, when multiple patterns 313	  

were detected, all functions were present at more than the half of all spatial patterns identified, on 314	  

average (Fig. 6). 315	  

 316	  

Discussion 317	  

There is evidence that changes in the abiotic environment of Scandinavian lakes is a result of 318	  

complex interactions of climate, land use, hydrological change, and recovery from acidification 319	  

(Evans and others 2005). Even in our relatively short study of 16 years, quantitative changes in 320	  

monotonically changing water quality variables (i.e., variables related to water clarity and 321	  

acidity) were apparent. These findings are similar to those of a previous, longer-term study 322	  

conducted on a smaller number of lakes (Angeler and Johnson 2012), and more generally, 323	  

support the conjecture that abiotic, long-term shifts occur in the aquatic environments of Sweden 324	  

and elsewhere (Evans and others 2005, Van Kleef and others 2010).  325	  

Several studies have documented changes in biotic communities in response to changing 326	  

abiotic conditions, including altered patterns of community structure and biodiversity (Stendera 327	  

and Johnson 2008; Burgmer and others 2007; Angeler 2013), and species invasions (Angeler and 328	  

others 2012). However, the magnitude of community change in individual lakes was often 329	  

dependent on observational scale. That is, time series analysis found that only subsets of species 330	  

composing phytoplankton and invertebrate communities tracked the slow (i.e., decadal) changes 331	  

in water clarity and recovery from acidification, whilst other subsets of species showed faster 332	  

fluctuation dynamics at interannual scales that were unrelated to measured environmental 333	  
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variables (Angeler and others 2011; Angeler and Johnson 2012). These results support the notion 334	  

that ecosystems are hierarchically structured, with dynamics unfolding across distinct spatial and 335	  

temporal scales (Allen and others 2014), and they also show the footprints of environmental 336	  

change to be scale-specific (Nash and others 2014).  337	  

It has long been recognized that patterns and processes resulting from the distribution of 338	  

functional community attributes within and across scales have important implications for 339	  

resilience of ecosystems (Peterson and others 1998; Allen and others 2005) and landscapes 340	  

(Cumming and others 2010; Cumming 2011). Understanding and quantifying resilience is 341	  

important for scientists and managers facing unprecedented rates of environmental change that 342	  

can decrease the capacity of ecosystems to withstand disturbances and eventually lead to 343	  

catastrophic regime shifts, with negative consequences for biodiversity and ecosystem service 344	  

provisioning (Hughes and others 2013). Recent research has quantified resilience attributes in 345	  

Scandinavian lakes and found that communities are surprisingly resilient to environmental 346	  

change (Angeler and others 2013a); however, it is unclear how the resilience patterns of 347	  

individual lakes affect the resilience of the entire lake landscape. This study is the first to employ 348	  

a spatially explicit approach—with a relatively high spatial resolution and the representation of 349	  

various lake types—to the evaluation of patterns in the spatial redundancies in functional traits of 350	  

invertebrate communities across boreal lakes, and to assess how these resilience patterns change 351	  

over time as a function of environmental change patterns. 352	  

The spatial modeling tool used has been applied to assessments of multiscale spatial 353	  

patterns in various studies (Borcard and Legendre 2002; Vandam and others 2013; Göthe and 354	  

others 2014). Here we used it to identify scaling patterns and stochastic species in a landscape of 355	  

boreal lakes, and extended its utility to the quantification of spatial functional redundancy and 356	  

diversity by determining how functional feeding group attributes of invertebrates are distributed 357	  
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within and across spatial scales and in stochastic species. This allowed for an assessment of 358	  

spatial resilience based on the cross-scale resilience model of Peterson and others (1998), which 359	  

considers the distribution of functional traits within and across scales, and also allowed for 360	  

inference regarding the role of stochastic species—which often have been ignored in resilience 361	  

assessments—in conferring groups of lakes with spatial resilience. The spatial modeling was 362	  

complemented with a variation partitioning analysis to assess the contribution of unique fractions 363	  

of environment and space to invertebrate community structure. This analysis revealed that the 364	  

invertebrate communities were structured by both environmental and spatial factors, which 365	  

allowed differentiation between patterns that are due to dispersal-related factors from those due to 366	  

variability in the abiotic lake environment. Assessing the relative contribution of these factors 367	  

structuring communities is necessary for understanding spatial resilience (Cumming 2011; Göthe 368	  

and others 2014). The analysis approaches used in this study provide a quantitative framework 369	  

for assessing these factors. 370	  

Although our models explained a low amount of variance, we acknowledge that weak 371	  

patterns and high variability are a common problem in studies based on survey data. These can 372	  

often have a high residual variation due to the accumulation of noise related to sampling, 373	  

ecosystem history and intrinsic variability (e.g., Leibold and others 2010). Specifically, the 374	  

detection of smaller scale spatial patterns in our approach depends on the spatial resolution of 375	  

sampling. Our analysis was based on a coarser sample resolution in the north, which potentially 376	  

limited the detection of some of the small-scale spatial structure present in the southern area that 377	  

cannot be extracted with the sampling design. Furthermore, recent research has shown that spatial 378	  

signals can be weak when the effects of dispersal limitation in communities are weak (Fernandes 379	  

and others 2014). However, dispersal limitation has been shown to persistently influence 380	  

invertebrate communities over time at the broad spatial extent of our study (Angeler and others 381	  
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2013b), leading to community structures that reflect different ecozones in the Swedish landscape 382	  

(Johnson and others 2004). This interpretation is also supported by the results from our variation 383	  

partitioning analysis, showing that invertebrates were structured by unique effects of space. The 384	  

low amount of variance explained can also be explained by taking an appropriate approach based 385	  

on the correction of R2-values by the number of explanatory variables (Peres-Neto and others 386	  

2006). We also used the results of detrended spatial models because the dbMEM approach is 387	  

inefficient in handling linear trends in data (Borcard and others 2004).  388	  

The hypothesis that invertebrate communities across lakes change in response to 389	  

environmental change was supported, but it is unclear how the observed changes affect the 390	  

resilience of invertebrate communities in landscapes to changing environmental conditions. This 391	  

is partly due to the lack of similar studies conducted at the same scale which did not allow any 392	  

comparison with other studies. Our results also suggest that an evaluation of resilience according 393	  

to our scenarios is too simplistic because deterministic and stochastic species can show opposite 394	  

trends and temporal patterns of individual functional metrics can be idiosyncratic. That is, 395	  

complex patterns of change of functional and structural metrics were observed. Functional 396	  

evenness fluctuated around its long-term mean. Functional richness and diversity decreased in the 397	  

deterministic species group which implies a loss of resilience. However, taxon richness and 398	  

redundancy increased monotonically in the stochastic group, indicating the capacity of regional 399	  

invertebrate communities to adapt to change. Our results suggest that a refined picture of spatial 400	  

resilience emerges if patterns of both deterministic and stochastic species are accounted for. 401	  

The correlative nature of our study does not allow us to attribute causal factors to the 402	  

observed changes in deterministic and stochastic species, but recent long-term studies of 403	  

invertebrates do promote speculation concerning how biodiversity patterns might have influenced 404	  

study results. Angeler and Drakare (2013) found that alpha (i.e., local) and gamma (i.e., regional) 405	  
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diversity increased monotonically over an 18-year study period. This increase in local and 406	  

regional diversity was correlated with an increase of total invertebrate abundance over time, 407	  

which has been attributed to the ‘‘more individuals’’ effect (i.e., greater detection of species with 408	  

increasing sampling effort; Scheiner and others 2011). Our results also suggest this effect in the 409	  

increasing richness and redundancy of stochastic species of all functional feeding groups, except 410	  

filterers, but not in the deterministic species that explained the modeled scaling patterns. Because 411	  

our modeling identified stochastic species presumably due to regional rarity and/or low local 412	  

abundances, results suggest that more species are becoming rare and isolated. This supports 413	  

results of another recent study, which found that lakes contain more unique sets of invertebrate 414	  

species (i.e. a higher spatial turnover) over time (Angeler 2013). These findings further 415	  

underscore the importance of evaluating resilience based on multiple lines of evidence; that is, 416	  

both through an assessment of within- and cross scale patterns, and the adaptive capacity related 417	  

to stochastic species. 418	  

In addition to the different contributions of deterministic and stochastic species to 419	  

functional structure across lakes, we found different contributions of functional feeding groups to 420	  

deterministic and stochastic patterns that are important for understanding the overall resilience of 421	  

the studied system. Johnson and others (2004) found that filterers had the lowest, and predators 422	  

and gatherers the highest, representation in invertebrate communities. Consistent with these 423	  

findings, filterers had the lowest within-scale redundancy, followed by shredders, grazers and 424	  

omnivores in this study. The highest within-scale redundancy was observed for gatherers and 425	  

predators. While the patterns of within-scale redundancy fluctuated around a long term mean for 426	  

the deterministic species in most feeding groups, monotonic increases occurred for the stochastic 427	  

species in these groups, with the exception of filterers. Cross-scale reinforcement was highest for 428	  

grazers, followed by gatherers and predators, and lowest for shredders.  429	  
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The loss of functional group representation at one or more scales, and reduced adaptive 430	  

capacity resulting from species with stochastic dynamics, would have a greater impact on 431	  

resilience than the loss of species from functional groups with high redundancy. Our results show 432	  

that filterers and shredders are the functional groups most vulnerable to loss from lakes. While 433	  

this suggests that these groups should be most carefully monitored, we acknowledge that these 434	  

groups usually are much more abundant in streams (Johnson et al. 2004) and that their 435	  

contribution to matter flux in lakes is low (Bohman and Tranvik 2001). 436	  

Gatherers and predators had the highest redundancy across lakes; and therefore, the loss of 437	  

one or a few species from these functional groups would have relatively minor impact on 438	  

resilience. Most studies inferring the resilience of ecosystems on the basis of the distribution of 439	  

functions have not studied the contributions of individual functions explicitly. Discriminating 440	  

between functional groups can help refine the resilience assessment of the overall system and 441	  

also of contributing individual functions.  442	  

The implications of our results relate to the maintenance of biodiversity, species, and key 443	  

functions in ecosystems, protected areas and landscapes, which often necessitate costly management 444	  

interventions. Natural disturbance regimes are altered by human activities (Bengtsson and others 445	  

2003), changing the niche dimensions and distribution of species in ways that make the persistence 446	  

of current sets of species in ecosystems or managed species, or the prediction and management of 447	  

future sets of species, highly uncertain (Polasky and others 2011). Our results make clear that 448	  

spatially extensive monitoring efforts can help increase our mechanistic understanding of 449	  

landscape-level changes in communities and their resilience in response to environmental change. 450	  

This could prove crucial in the development of management and conservation agendas in this 451	  

present period of rapid environmental and social change.  452	  
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Figure legends 637	  

Figure 1: Three possible responses of spatial resilience components (within- and cross scale 638	  

redundancies of functional traits associated with “deterministic” species [dotted lines]) and 639	  

adaptive capacity associated with “stochastic” species (full lines). Also shown is a null 640	  

expectation of no temporal patterns. Scenario1: functional metrics fluctuate around a long-term 641	  

mean for both deterministic and stochastic species. Scenario 2: functional metrics of 642	  

deterministic and stochastic species both increase over time. Scenario 3: functional metrics of 643	  

deterministic and stochastic species both decrease over time. Note: differences in intercepts 644	  

between deterministic and stochastic species are for demonstration purposes of these scenarios 645	  

only and therefore not ecologically relevant. 646	  

Figure 2: Map of Sweden showing locations of the 85 lakes studied. For lake names and their 647	  

geographical coordinates see Electronic Appendix 1. 648	  

Figure 3: Temporal patterns of environmental variables across Swedish lakes. Shown are the 649	  

means ± 1 standard deviations of the 85 lakes studied, as well as trend lines, Kendall tau 650	  

correlation coefficients, and P values for variables that exhibited significant monotonic change 651	  

over time. 652	  

Figure 4: Temporal patterns in the number of spatial scales (a), adjusted variance explained of 653	  

spatial models (b), structural (taxonomic richness; c) and functional (d-f) metrics, and average 654	  

redundancy across feeding guilds (g) for littoral invertebrate communities in Swedish lakes. 655	  

Shown are means ± standard deviations of 85 lakes and trend lines, Kendall tau correlation 656	  

coefficients and P values for variables with significant monotonic change over time. Note that no 657	  

spatial structure was detected for the years 1999 and 2009; therefore, no data points are displayed 658	  

for deterministic species in these years.  659	  
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Figure 5: Temporal patterns of redundancy for predators (a), gatherers (b), grazers (c), omnivores 660	  

(d), shredders (e), and filterers (f) for Swedish lakes (full lines, stochastic species; dotted lines, 661	  

deterministic species). Shown are trend lines, Kendall tau correlation coefficients and P values 662	  

for feeding groups with significant monotonic change over time. Note that no spatial structure 663	  

was detected in the years 1999 and 2009; therefore, no data points are displayed for deterministic 664	  

species in these years. 665	  

Figure 6: Time-averaged cross-scale redundancies for averaged functions and individual feeding 666	  

groups. Shown are means from all study years +/- 1 standard deviations. Label abbreviation: # 667	  

scales pres. funct., number of scales where a function was present. 668	  
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