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Regeneration and early management of birch and Norway spruce 
mixtures in southern Sweden 

Abstract 

Regeneration involving birch and Norway spruce is the most common mixture on 

clearcuts in southern Sweden. Sometimes the mixture is unintentional, and the naturally 

regenerated birch is often regarded as a weed-species in planted Norway spruce 

monocultures. In other cases, the additional seedlings from spontaneous natural 

regeneration are, perhaps, not planned for, but are still used, as a convenient way to 

create mixed forests with management for production and other services. The 

objectives of the research described in this thesis all refer to the establishment and early 

management of mixtures with planted Norway spruce and naturally regenerated birch. 

Hypotheses were tested in field experiments in the counties of Kronoberg and Halland. 

A better knowledge of seed supply, by estimating seed sources and seed dispersal, 

could be used when planning future stands and in the choice of management. The effect 

of soil scarification on seed emergence and seedling survival was tested in field 

experiments and modeled together with distance to seed supply. The combination of 

spatial information about standing volume and specific site variables produced birch 

regeneration estimates that could be useful for practical management and planning. 

Once the seedling population was established, after three to five years, the density, 

height structure and species composition were tested as variables for further selections 

in precommercial thinnings. The retained stems, 1000-3000 trees ha
-1

, responded 

positively to a reduction in competition even when stand heights were as low as 1-2 

meters. The size of neighbors was more important than the species for the individual 

growth of both birch and Norway spruce. The competition release in the early stand is 

important if the target is to retain a mixed forest throughout the full stand rotation, 

otherwise the retained birches will have difficulty competing with the planted Norway 

spruce in later stages of the rotation. Other common broadleaved species and pine 

regenerate on the same clearcuts but the current browsing pressure from ungulates 

reduces the possibility to allow these species to be present in the future stand. 

Keywords: seed dispersal, natural regeneration, soil scarification, precommercial 

thinning, mixed forest 
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Vi gick stigen. En massa barr hade fallit under natten eller tidigare, det var 
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Diversity is the rule and monotony the exception. 

John L. Harper. Population biology of plants, p 237.  
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1 Introduction 

1.1 The objectives of mixed forest 

The effective use of forest products and appropriate management of land 

resources are both important for human welfare. Recently, forest policy and 

research have incorporated the concept of managing land use sustainable, 

including trade-offs between human needs and reducing the impact on other 

ecosystem services (Johansson & Keskitalo, 2014; Nordberg et al., 2013; Foley 

et al., 2005; Hooper et al., 2005). Such changes in perspective have had an 

impact on management (Elbakidze et al., 2013; Nordberg et al., 2013). One 

example is the conversion from monoculture to mixed stands in management 

praxis in Europe (Bravo-Oviedo et al., 2014b). Clearcut management systems, 

with high investment in regeneration measures, are often primarily about 

optimizing crop yield in monocultures. However, monocultures are unusual 

even in managed ecosystems (Harper, 1977), although weeding, tending, pre-

commercial thinning (PCT) and plant improvement are costly attempts to take 

control over cultivation. 

Clearcut operations have a negative impact on species biodiversity in boreal 

forests when compared to forests that were not subjected to past intensive 

forest management (Li et al., 2009). Disturbance changes the field vegetation 

and severe disturbances can cause the extinction of shade-tolerant species 

adapted to mature forests (Aikens et al., 2007), some of them with slow 

colonization rates (Brunet et al., 2012). Replacing forests with no history of 

clearcutting with plantations result in reduced plant species richness (Bremer & 

Farley, 2010). Compensatory measures are invented and implemented to 

minimize the biodiversity losses, e.g. retention of living trees and dead 

standing trees and coarse woody debris, including retention of broadleaves in 

conifer stands (Fedrowitz et al., 2014; Kruys et al., 2013; Gustafsson et al., 

2012; Lindenmayer et al., 2012; Abrahamsson et al., 2009; Hazell & 

Gustafsson, 1999). 
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In addition to considerations at final felling, the inclusion of even-aged 

admixtures of broadleaves in coniferous plantations is also used as a strategy to 

increase ecosystem value (Bravo-Oviedo et al., 2014b; Man & Greenway, 

2013; Knoke et al., 2008; Carnus et al., 2006; Agestam et al., 2005). There are 

some proven benefits, such as improved soil quality and increased biodiversity 

for specific taxa (Chauvat et al., 2011; Felton et al., 2011; Hansson et al., 

2011; Felton et al., 2010; Ammer et al., 2006). Forest stands where there are 

objectives other than wood production, such as erosion control or land 

rehabilitation, might be more effective as polycultures (Richards et al., 2010). 

Coniferous stands with admixtures of broadleaves are more highly rated in 

studies of recreation and aesthetics than monocultures in Fennoscandia 

(Gundersen & Frivold, 2008). Diversity of forest products other than wood is 

enhanced by a greater tree species diversity in the boreal forests, including 

bilberries and mushrooms, the abundance of which could be correlated to tree 

species or specific habitats (Hedwall et al., 2013; Pilz & Molina, 2002). One of 

the most discussed services associated with mixed forest is a general risk 

reduction (Bravo-Oviedo et al., 2014a; Griess & Knoke, 2011; Jactel et al., 

2009), where the functional features of tree species exhibit different resilience 

with respect to disturbance agents, both abiotic, such as wind damage 

(Valinger & Fridman, 2011) and biotic (Li et al., 2012; Jactel et al., 2009). A 

reduction in the impact of pest and pathogen outbreaks in more diverse stands 

is achieved if dilution limits access to the targeted species (Conner et al., 2014; 

Setiawan et al., 2014) or when the more diverse biotope hosts natural enemies 

of the damaging agent (Jactel et al., 2005). The obvious exception is when the 

pathogen needs alternating hosts (Mattila, 2005). In this case a specific mixture 

could be devastating. 

1.2 Growth and yield 

The ecological effect of mixed forests has been widely debated, sometimes 

resulting in contradictory conclusions. In many cases the confusion stems from 

researchers addressing different issues, and as a result adopting different spatial 

and temporal perspectives; e.g. evaluating ecosystem productivity versus stand 

growth and yield. This thesis addresses the latter issue, focusing on stand 

establishment and the early management of mixed forest. 

Growth and yield of a crop could be regarded as a function of resource 

supply, acquisition and resource-use efficiency, and understanding mixtures 

requires a knowledge of how interspecies relationships affect these variables 

(Richards et al., 2010). Density stress issues are fundamental when evaluating 

the plasticity of individuals, both with respect to productivity and sustainability 
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e.g. planting densities or PCT treatments in Norway spruce (Picea abies 

Karst), or monocultures that explore the reciprocal law of yield and density 

(Nilsson, 1994; Pettersson, 1993). In monocultures, the weaker individuals 

grow less when exposed to competition and the dominant individuals maintain 

or even increase their advantage (Harper, 1977). In general, the same principle 

is applicable for mixtures and interspecies relationships; if one species is a 

weak competitor, it will be suppressed by the other species, and an additional 

supply of resources often enhances the advantage of the dominant species 

(Harper, 1977). However, sometimes an increase in a limited resource can 

change competition premises (Pretzsch, 2005), e.g. the higher stem volume 

growth of Scots pine (Pinus sylvestris) on poor soils compared to Norway 

spruce (Jonsson, 2001) that does not necessarily occur on fertile sites (Lindén 

& Agestam, 2003). 

The perceived reduction in density stress in mixtures, is usually explained 

by complementarity between species, where one species facilitates the growth 

of other species, or as a sampling effect (Fridley, 2001). The exploitation of 

resources could be complementary in heterogeneous stands, i.e. the species 

occupy different strata of the resources available and generate an increased 

yield (Richards et al., 2010). When interspecific competition is lower than 

intraspecific competition is therefore called a complementary effect (Kelty, 

2006; Kelty & Cameron, 1995; Hamilton, 1994). A positive response to a 

species mixture could be that one species facilitates the conditions for the 

other, often an increase in resources in the ground (Laganière et al., 2015; 

Schmidt et al., 2015), e.g. by nitrogen fixation (Rothe & Binkley, 2001). 

However, though facilitation has sometimes been proven for specific 

combinations of tree species, there is no empirical proven general effect simply 

associated with increasing species diversity (Fridley, 2001; Rothe & Binkley, 

2001).  

Complementarity implies a diversification of the utilization gradient of 

nutrients, water and light. This could be the case spatially (Radosevich et al., 

2006), if the tree species in a stand exploit different soil depths for rooting, or 

temporally, in mixes of evergreens and deciduous trees using different 

resources across the seasons (Kelty, 1992). A decreasing stand yield in a 

mixture compared to the best monoculture sometimes occurs in boreal and 

temperate forests (Dirnberger & Sterba, 2014; Hynynen et al., 2011; Jacob et 

al., 2010; Knoke et al., 2008). One explanation for this could be a rather low 

rate of differentiation between functional groups in these woody ecosystems 

due to species reduction during ice ages (Pretzsch, 2009). However, a 

complementary effect has sometimes been detected even for species with 
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similar growth patterns and ecological traits (Collet et al., 2014; Lindén & 

Agestam, 2003). 

 

In many cases, a mixture is evaluated based on how the merchantable crop is 

affected by weeds and unwanted competitors. This is especially true for 

agricultural studies. When evaluating weed impact, an additive design is often 

chosen. The species have the same density in mixture treatments as in 

monoculture treatments so the design compares not only the effect of species 

characteristics but also an effect of increased density and density stress. A 

substitutive design (also called a replacement design) in an experiment is 

preferable when the stratification effect on resource utilization is of interest. 

The density is kept constant in the treatments, only species mixture and 

composition is varied (Harper, 1977). 

Relative yield of a species is defined as the ratio of the yield in a particular 

mixture and the yield in a pure stand. The relative yield total (RYT) is the sum 

of the two species’ relative yield (Harper, 1977). This is based on the 

reciprocal law of total yield being a response to plant density and individual 

plant growth (Shinozaki & Kira, 1956). If RYT in the mixture becomes higher 

than the expected sum of the yield of either one of the monocultures it is 

defined as overyielding; the opposite situation is known as underyielding. 

When the mixture produces more compared to both species this is known as 

transgressive overyielding (Pretzsch, 2009). In both additive and substitutive 

designs RYT can be tested, but RYT should be used as an indicator of mixture 

effects, not as a quantifier (Hamilton, 1994). Figure 1 shows an example of 

plotting the RYT for one of the simulations in paper III. Total volume 

production of the experimental plots after simulated PCT in three alternatives - 

Norway spruce monoculture, birch monoculture and a mixture of 80 % 

Norway spruce and 20% birch in the final stand -, provides a visual 

representation of the concept of evaluating RYT. In this case, the Mixed PCT 

alternative had an estimated production that was close to the theoretical 

production without any mixing effect (neither under- nor over- yielding). 
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Figure 1. Total volume production (m

3
 ha

-1
)of the two species in monocultures and mixture of 

20% birch, 80 % Norway spruce. Species proportions on the x-axis, from left to right Norway 

spruce:100, 20 and 0 % and birch 0, 20 and 100 %. Also included in the figure, the Total 

production of both species and the Theoretical line representing no mixture effect. 

Substitutive designs can answer the question of biological complementarity, 

whether the species might use different strategies when subjected to density 

stress. One example is how shade-tolerant and pioneer species could utilize 

different levels of the canopy when they need to increase leaf area (Man & 

Greenway, 2013). Sometimes overyielding has been demonstrated in this type 

of experiment (Bielak et al., 2014; Pretzsch, 2009). However, the question of 

overyielding becomes out of context if not all species are mutually relevant as 

crop trees. Additive designs answer more specifically the question of whether 

the yield of one species is the same regardless of the presence of other species 

(Hamilton, 1994). In a conversion from a monoculture of one crop species to a 

mixed forest this approach is more relevant when testing yield against, or 

together with, other ecosystem services. 

 

In even-aged monocultures, the use of light and soil resources will be similar 

for all trees (Kelty, 1992), compared to mixtures, where the variation will be 

greater (Morin et al., 2011; Larson, 1992). In experiments, comparisons are 

made for the total stand/population or the individuals within the stand, 

examining how they are affected by their neighbors (Dirnberger & Sterba, 

2014; Porte & Bartelink, 2002). An alternative to expensive stand experiments 
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is individual tree-analysis (Kelty, 2006). Studying how the plasticity of plants 

responds to interactions between density and resource limitation provides 

information when comparing inter- and intraspecific relationships. Important 

factors to consider are the number of neighbors and plant size, both within a 

given timescale and in relation to other neighbors. In mixtures, the species 

and/or functional groups of species are added to the variables of importance. 

Yield experiments involving mixtures are usually based on different grid 

designs, with species frequency and proportions as treatments. The density 

needs to be at a sufficiently high level to ensure competition. It is possible to 

combine the population and plant evaluations if the spatial pattern of the 

planted trees is appropriate for both (Kelty & Cameron, 1995).  

Understanding productivity differences between monocultures and mixtures 

of species is the main purpose of many experiments. Traditionally, experiments 

have been restricted to less than one rotation period and the outcome is the 

total value from this period. Within this timeframe, the stand structure varies in 

density and proportions, but usually does not involve more than two species. In 

addition, the comparison between monocultures and mixed stands may not 

produce the same result for total yield during a whole rotation as for yield in 

the middle of a rotation (Fahlvik et al., 2011). 

Experiments examining species interactions are expensive to perform on a 

stand scale and/or over the long term (Kelty, 2006). To extrapolate from small 

scale experiments, the results are often combined with modeling of growth. 

With models, it is also possible to combine survey data from national forest 

inventories (NFI) containing data from a large area, with data from 

experiments with controlled treatments. The NFI data could also serve to 

validate models. Recent studies on NFI material correlated productivity, in 

terms of tree biomass production, with tree species diversity (Gamfeldt et al., 

2013; Vila et al., 2007). However, using survey data to state causal effect of 

one variable of the other(s) is not possible; the data can simply test 

correlations. On the stand scale level, when the objective is to evaluate 

production capacity in relation to species richness, tests must be conducted 

within a controlled range of specific abiotic conditions for which there may be 

interactions (Man & Greenway, 2013; Hooper et al., 2005). The natural 

variation in the abiotic conditions that affect density stress, resource deficiency 

and thus species’ functional differences in productivity have to be considered 

in such comparisons, e.g. soil fertility (Mielikäinen, 1994). This variation in 

resources, combined with a range of species mixtures, is difficult to find in 

natural systems (Hooper et al., 2005). Furthermore, species identity and 

species composition explain more than a general variable of species richness 

(Laganière et al., 2015; Nadrowski et al., 2010). Using survey data at such a 
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large scale, as NFI data, highlights a third possible effect of growth and yield 

in mixtures, referred to as the sampling effect (Fridley, 2001). By increasing 

the number of species, the likelihood to of adding high yielding species also 

increases, as well as combinations of species which have complementary or 

facilitative effects (Morin et al., 2011). The sampling effect is one of the 

elements which affects species’ composition in ecosystems. On a regional or 

global scale, the biodiversity and large species pool are the fundamental 

premises for potential high production (Hooper et al., 2005; Fridley, 2001).  

1.3 Definitions and descriptions 

The relatively small number of existing European forest experiments involving 

mixed stands (Agestam et al., 2005) could justify the use of robust models and 

informatics constructed for the species in monocultures. Testing model 

predictions in long-term experiments (Hynynen et al., 2011; Mielikäinen, 

1985) showed no bias based on the birch admixture percentage, even though 

the model may slightly underestimate the total volume (Hynynen pers.com 

2015). Two important examples of outputs of Swedish forest research are the 

national spatial coverage of forest data on species and standing volume, k-NN 

Sweden, and the stand and landscape simulator Heureka, both partly based on 

NFI data. 

The sampling design of the Swedish NFI was chosen to provide accurate 

values of total standing volume at a regional level, on a resolution of 25000 ha. 

This is sufficient for the original purpose of the survey, to monitor status and 

changes on a regional scale. The data are designed to facilitate the calculation 

of five-year estimates for the forests in all the counties in Sweden. Combining 

satellite raster data with the field-measured sample plots with interpolation 

increases the resolution and decreases the residual mean square error (RSME). 

The interpolation method chosen for Sweden is a probability-based k-nearest 

neighbor technique (k-NN Sweden) (Reese et al., 2003; Reese et al., 2002) and 

it is often used when multiple continuous attributes need to be estimated 

(Brosofske et al., 2014; Gilichinsky et al., 2012; Tomppo et al., 2008). k-NN 

Sweden is available for three time periods, based on the 5 year interval of the 

NFI data: 2000, 2005 and 2010.  

The stand and landscape simulator Heureka is a framework of models for 

all stages in the forest management cycle. The models are based both on 

individual trees and whole stands (Fahlvik et al., 2014; Wikström et al., 2011; 

Elfving, 2010). Within Heureka, it is possible to combine species-specific 

growth functions and species’ responses to management, such as PCT and 

thinning. The functions are mostly derived from NFI data, but other data 
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sources are also represented such as long term experiments, measurements of 

felled sample trees and permanent sample plots (Elfving, 2010; Söderberg, 

1986; Agestam, 1985).  

 

Guidance in forest management is often provided only for monocultures and 

this lack of general knowledge could perhaps be one reason for the reluctance 

to shift to mixed forests in practice (Bravo-Oviedo et al., 2014a). In 

Fennoscandia, species-specific growth models have been tested for species in 

mixtures with good results (Agestam, 1985). However, resilient forest 

management, to provide robust protection of the ecological system (Kerkhoff 

& Enquist, 2007), may require other research hypothesis than comparing the 

least comparable units between poly and monocultures. It may be difficult to 

manage a mixed forest sustainably over time when only one or two of the tree 

species account for the timber value (Kelty et al., 2011). For example, the 

thinning guides used in Swedish forestry are based on basal area (density), 

height and site fertility (resource availability) and aim to optimize harvestable 

yield for the target species. Adding another species implies the addition of 

several other variables. Not only the new species density stress as a function of 

resources, but also the proportion of the two species and eventual facilitation or 

complementary use of resources needs to be incorporated. As an example, for 

birch the recommended stem density in mature stands is much lower than for 

Norway spruce (Hynynen et al., 2010). However, the multiple objectives that 

may be behind choosing mixed stands motivates also different thinning 

regimes, stand rotation lengths and intensity so that optimization will differ 

from that based on pure productivity goals. 

 

There are many definitions of what a mixed species forest really means. The 

term often needs to be accompanied by some declaration of purpose and a 

description of the relevant context (Bravo-Oviedo et al., 2014b) but this 

definition is sometimes used and could be valuable (Olsthoorn, 1999): 

“…stands composed of different tree species, mixed on a small scale, leading 

to competition between trees of different species as a main factor influencing 

growth and management‘. This very broad definition may be superior to more 

restricted ones that apply to specific situations but needs to be further limited 

for relevant understanding and use. Such specific definitions may include a 

variety of aspects. First, number of species and their proportions, described in 

terms of stem density, basal area, volume etc. Secondly, the vertical structure 

of the forest, age or height differences or numbers of layers in the canopy. 
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Third, the spatial structure of the mixture, indicating whether the tree species 

are in clusters or rows or if the trees are individually mixed. In addition, the 

temporal aspect of stand development needs to be considered. Often the mixed 

species structure in a forest is temporary. It could be the result of the transition 

from a stand dominated by pioneers to the establishment of shade tolerant 

species as the forest matures, or a shelterwood of one species protecting 

another planted species (Prevost & Dumais, 2014; Man et al., 2010).  

The definition of mixed forests used in national statistics varies between 

countries. In Sweden a mature forest containing conifer and broadleaved 

species is defined as being ‘mixed’ when a maximum of 65% of the basal area 

consists of one the dominant species (Skogsdata, 2014). In Norway the same 

limit is 80% of the basal area of the species (Johansson, 2003) and in Finland 

75 % (Finnish statistical yearbook of forestry, 2014). Often even-aged 

mixtures are established by planting the preferred commercial species and 

allowing spontaneous natural regeneration of other species present at the 

location. In most cases, the planted species will be a conifer, for example the 

native Norway spruce or Scots pine, but sometimes exotics as lodgepole pine 

(Pinus contorta) or hybrid larch (Larix x eurolepis). In southern Sweden, 

planting mixtures is rather unusual but does occur, especially on former 

agricultural land. (Johansson, 2003). 

1.4 Mixed forest of birch and Norway spruce 

Managing coniferous forests in Fennoscandia has traditionally involved 

dealing with the spontaneous regeneration of other tree species by means of 

both preventive and reactive measures (Johansson, 2008; Björse & Bradshaw, 

1998). This was mainly because, historically, the broadleaved tree species’ 

were of limited economic value and most species also produced biomass more 

slowly than the native conifers. Herbicide treatments to reduce competition 

from woody species have been prohibited on forest land since the early 1980s. 

Since then PCT has been the standard way to remove trees that compete with 

the crop trees. The most abundant naturally regenerated broadleaved tree 

species on clearcuts in southern Sweden are the two native birch species: silver 

birch (Betula pendula Roth) and downy birch (Betula pubescens Ehrh) 

(Götmark et al., 2005). In this thesis, these two species are both referred to as 

birch and are not differentiated unless specified. Other frequent naturally 

regenerated broadleaves are aspen (Populus tremula L), rowan (Sorbus 

aucuparia L), goat willow (Salix caprea L), black alder (Alnus glutinosa L 

Gaertner) and oak (Quercus robur L). 
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Birch is the most important broadleaved tree species in northern Europe 

(Hynynen et al., 2010) and mechanized techniques for harvesting small-

dimension wood have been developed (Ulvcrona et al., 2013; Bergström et al., 

2012; Bergström et al., 2010). The demand for hardwoods as bioenergy and 

cellulose product are perhaps, the main markets for birch in these dimensions. 

In addition, the practice of using birch as a shelter for improving survival and 

quality in young plantations of Norway spruce has become more accepted, as 

has managing young conifer stands as mixtures in general.  

As mentioned previously, a species mixture with two species that 

complement each other with respect to different functional traits probably has 

additional positive effects on biodiversity (Korner, 2005). The combination of 

Norway spruce and birch is a good example of species with many contrasting 

functional traits, e.g. evergreen conifer versus deciduous broadleaf (Felton et 

al., 2015 In press; Johansson, 2003). Birch, in contrast to Norway spruce, is a 

pioneer tree species, which implies fast establishment on disturbed soils and 

rapid initial growth (Franceschini & Schneider, 2014). 

Another incentive to increase the area of mixed forest is certification. Forest 

owners can quantify and certify their forest as being sustainably managed by 

achieving standards from for example, FSC (Swedish FSC Standard for Forest 

Certification including SLIMF indicators, 2010). Almost 50 % of the 

productive forest in Sweden was certified in 2012 (Johansson & Keskitalo, 

2014) although the accountability associated with the Swedish standards has 

been questioned somewhat by non-governmental organizations (Johansson, 

2012). In current Swedish certifications, including broadleaved species in 

coniferous mature stands is one of the requirements (§6.3.8 FSC standard; 10 

% of the standing volume in southern and 5 % in northern Sweden).  

Despite the objectives and demands for the mixed forests of Norway spruce 

and birch that are often cited, the management in the clearcut phase is not 

explicitly adapted to deliver this final goal for the stand. The question is 

whether operations undertaken during a traditional clearcut of a Norway spruce 

stand are sufficient for the establishment of a mixed forest. The combination of 

planting Norway spruce and allowing birch to regenerate naturally might, if 

successful, be no more costly than the monoculture. In fact it can be less 

expensive in many cases. Furthermore, if spontaneous regeneration of 

additional species occurs, even though in small proportions, there is an 

opportunity for the forest owner to increase biodiversity value as well as 

achieving economic goals. 
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1.5 Birch management in Norway spruce plantations 

The regeneration ecology of the two native birch species is relatively well 

studied and described in forest literature (Hynynen et al., 2010; Karlsson, 

2001; Perala & Alm, 1990a; Perala & Alm, 1990b; Sarvas, 1948; Lappi 

Seppälä, 1947). The species are similar in their phenology and traits 

(Eerikäinen et al., 2007) and seldom separated in Swedish forestry practice or 

in the Swedish national forest inventory (NFI). Downy birch has a larger 

spatial distribution in altitude (Holm, 1994) and is more abundant in the 

northern part of Sweden, it also flowers later in spring and produces a slightly 

lower proportion of viable seeds (Sarvas, 1952). In southern Sweden silver 

birch seedlings seems to be more frequently found on clearcuts, as to the 

opposite in northern parts of the country. This is however, difficult to find 

scientifically stated, especially since the Swedish NFI does not separate the 

two species. The shift of abundancy between the species along the latitudinal 

gradient has been detected also in Finland (Sarvas, 1948). The growth and 

vitality of silver birch tend to respond more to differences in soil properties and 

it could be sensitive to flooding, compacted soils and infertile sites (Hynynen 

et al., 2010). 

To control or predict how a species reproduces and disperses includes the 

knowledge of several variables associated with seed supply and seedling 

emergence (Agestam et al., 2005; Karlsson, 2001). In this context, some 

variables serve as mean differences between species, such as the seed weight of 

silver birch and downy birch (Sarvas, 1948), others represent tipping points, 

such as the wind strength required for seed abscission (Schippers & Jongejans, 

2005) whilst, others can be considered oscillating functions, such as the 

proportion of viable seeds affected by annual climate (Sarvas, 1952). Birch has 

a high dispersal potential and exhibits some of the common features for such 

tree species: short juvenile period, low seed mass and short intervals between 

years with high seed production (Rejmanek & Richardson, 1996). Potentially, 

birch can start to reproduce at 10-15 years (Perala & Alm, 1990b). The size of 

the individual crown is the strongest trait affecting seed production (Fenner, 

2005; Sarvas, 1948) and consequently a solitary tree produces more seeds than 

a tree subjected to competition in a forest stand. Instead of crown size, basal 

area or standing volume are correlated traits used as stand estimates of 

potential seed production (Greene & Johnson, 1994). The wind-spread seed 

can be described with short or long distance dispersal distributions (SDD and 

LDD), depending on purpose of the model (Bullock et al., 2006; Nathan & 

Muller-Landau, 2000). The vast majority of birch seeds fall to the ground 

within 100 m from the source (Karlsson, 2001; Fries, 1984). SDD modeling is 

mainly used when considering the dispersal from a single specific source to a 
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specific site with a targeted density of the new stand in mind. However, the 

LDD has been reevaluated and upgraded in dispersal theory, since it explains 

migration of species in general, adaptation to habitat changes and also the 

landscape probability or presence of a seed supply (Fenner, 2005; Nathan & 

Muller-Landau, 2000).  

To secure sufficient seed supply, the distance to the seed source is, of 

course, of major importance. The size of the clearcut and its distance to 

adjacent stands or the retention of vital seed trees are the two possible variables 

to consider to ensure seed supply (Fries, 1984). Removal of slash residues for 

bioenergy purposes also facilitates seed germination by increasing the chance 

that seeds will land directly on the forest soil (Karlsson et al., 2002). 

Several variables are important at the microsite where the seeds land. 

Seedling emergence and survival are dependent on for example the right soil 

moisture content (Oleskog et al., 2000; Frivold, 1986), site fertility type 

(Lehtosalo et al., 2010) and shelter wood (Karlsson & Nilsson, 2005). 

Microsite conditions can be manipulated by soil scarification techniques, 

already used in traditional clearcut management. Soil scarification is beneficial 

for natural regeneration in general (Clark et al., 2007; Newmaster et al., 2007; 

Karlsson & Nilsson, 2005), and for birch specifically (Nilsson et al., 2002). 

Seedlings that emerge on bare mineral soil have a greater chance of survival 

due to the favorable microclimate and reduced competition. Soil scarification 

combined with conifer planting is the most common regeneration method, on 

more than 80 % of Swedish clearcut areas (Swedish statistical yearbook of 

forestry, 2014). Important purposes of soil scarification are to prevent pine 

weevil damage on the planted conifer (Wallertz & Petersson, 2011; Petersson 

et al., 2005) and to reduce competition from ground vegetation (Löf et al., 

2012). Soil scarification has both a short-term positive effect on survival of the 

planted material (Johansson et al., 2013b) and a long-term effect on growth 

and stand production (Johansson et al., 2013a).  

 

A few years after regeneration, the density of naturally regenerated seedlings 

on a clearcut in southern Sweden could be higher than the planted seedlings. 

(Nilsson et al., 2002). PCT is almost entirely motivated by the desire to reduce 

competition affecting the preferred conifer crop trees and to select future crop 

trees (Weiskittel et al., 2011; Wagner, 2008; Pettersson, 1993). However, 

many forest owners also intend to create a mixed stand in the present 

regeneration (Fällman, 2005). PCT is performed manually with brush saws 

when the saplings reach between 3 and 5 m. Cut stems are retained on the site 

because income from small dimension birch is normally lower than the costs of 
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harvesting. Both birch species respond by sprouting when cut as a seedling or a 

sapling (Kauppi et al., 1991; Andersson, 1985). Sprouting from birch stumps is 

often considered to negatively impact the crop trees (Hynynen et al., 2010; 

Johansson, 2008; Walfridsson, 1976) and is one reason why the timing of PCT 

is often discussed. A delayed PCT may reduce the effect from sprouting 

stumps. On the other hand, an early PCT enables early selection of future crop 

trees and thereby stand composition and is less expensive. Possible alternative 

methods for same purposes, used in countries with similar forest management 

systems, could be an early tending when crop seedlings reach about 1 m height 

and thereafter PCT at 3-5 m height, common in Finland, or herbicide 

treatments or combinations of herbicides and PCT (Bataineh et al., 2013) 

The well-known strategy of using birch shelter to protect Norway spruce 

saplings is a good example of a stratified mixture employing different 

horizontal levels of the canopy for each species (Kelty, 2006). However, the 

stratified structure changes when the Norway spruce overgrows the birch and 

often the stand will be thinned and managed as a Norway spruce monoculture 

after canopy closure (Lindén, 2003).  

1.6 Experiments with birch and Norway spruce 

Even though experiments with native species are most common as 

monocultures, the early management of birch and Norway spruce mixtures is 

one of the most studied polycultures in Fennoscandian field research. In such 

experimental work, two main objectives are often found, not unusually in 

combination: to estimate the production capacity of the species, and to test the 

resilience of the mixture through time and as the stand develops. Experiments 

or field surveys are often evaluated based on measures of periodic annual 

increment (PAI) of both species or individual species, for the total stand or 

only for main stems/crop trees. Another option is to use mean annual increment 

(MAI) over time and during stand development. The growth patterns of the two 

species are rather different, so the comparable unit of different stand 

compositions benefits from optimization of the stand rotation length based on 

timing of maximum MAI. 

Often the structure or composition in the mixture is the relevant difference 

between studies. The relationships between species competition and height 

differences in young stands have major importance for conclusions about both 

vitality and yield (Fahlvik et al., 2005). In single-storied experimental plots, 

mixtures have lower total production than pure Norway spruce plots with same 

total density (Fahlvik et al., 2011). When both species are naturally 

regenerated, the stand is often two-storied in the early years. The birch grows 
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as a shelter over the Norway spruce seedlings and several studies have 

demonstrated an equivalent or increased yield in mixtures as in Norway spruce 

monocultures (Lundqvist et al., 2014; Fahlvik et al., 2011; Agestam et al., 

2005; Bergqvist, 1999; Mard, 1996; Tham, 1994). One long-term experiment 

showed that the positive effect of the mixture declined as the stand grew older 

(Frivold & Frank, 2002). However, the study also emphasized that the birch 

shelter probably had a low competitive impact on Norway spruce since 

mortality in the experiments was low. Other studies have focused on the 

facilitation effect of the birch shelter on planted seedlings (Langvall & 

Ottosson Löfvenius, 2002; Klang & Eko, 1999) and have explained the effect 

as resulting from the reduced risk of frost damage. It is possible to manage the 

birch shelter for increased profitability even though management of the two 

layered stand is probably more labor intensive (Valkonen & Valsta, 2001).  

Besides the yield estimates, other management implications of growing 

mixtures are of interest. The risk of whipping damage to Norway spruce from 

birch has been studied and the conclusion is that there is probably little effect 

on the final crop (Fahlvik et al., 2011; Lindén, 2003). The well-known 

sprouting behavior of birch when the saplings are cut (Kauppi et al., 1991) has 

also been the subject of management studies (Hynynen et al., 2010; Andersson, 

1985). During the first years after PCT, the sprouts will grow faster than other 

birch saplings (Kauppi et al., 1988) and the sprouting response after PCT may 

be rather apparent (Johansson, 2008; Andersson & Björkdahl, 1984).  

1.7 Browsing impact 

Damage to seedlings and saplings from ungulate browsing is a well-known 

complication in Swedish forestry (Bergqvist et al., 2014; Valinger et al., 2014; 

Bergqvist et al., 2001). For some broadleaves, there are government subsidies 

for fencing but this is not the case for birch or conifer regeneration. The 

ungulate populations and their preferences for different species (van Beest et 

al., 2010) have an impact on future stand composition (Speed et al., 2013; Elie 

et al., 2009; Casabon & Pothier, 2007). Aspen, pine and birch are more 

attractive to moose (Alces alces) than Norway spruce (Jalkanen, 2001; 

Kullberg & Bergstrom, 2001). In mixed stands, where attractive species are 

included, browsing damage could be more severe (Milligan & Koricheva, 

2013; Vehviläinen & Koricheva, 2006). However, not only the stand but also 

the species composition in the surrounding landscape will have an impact on 

the browsing pressure on individual seedlings (Herfindal et al., 2015; Bergman 

et al., 2005; Edenius et al., 2002; Hornberg, 2001). With an increased forested 

area of a less preferred species, such as Norway spruce, the browsing pressure 
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will increase on stands with preferred species, such as pine or mixtures 

containing broadleaves (Kalen, 2005). 
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2 Objectives 

The overall objectives of this thesis all refer to the establishment and early 

growth of managed forest stands with planted Norway spruce and naturally 

regenerated birch. More specifically the objectives were: 

 

To test whether spatial information about the location and standing volume of 

birch trees in the landscape can be used to estimate seed sources to allow 

improvements in site-specific predictions of natural regeneration of birch on 

clearcuts (Papers I and II). 

 

To evaluate whether traditional regeneration treatments in Norway spruce 

plantations in southern Sweden are sufficient to establish mixed forests, 

including planted Norway spruce and natural regeneration of birch and other 

less frequent tree species (Papers II and III). 

 

To evaluate whether mixtures are sustainable over the whole rotation with 

current planting densities or if a substitutive design with a reduced density of 

planted Norway spruce is necessary to keep the birch viable when competition 

increases in the older stand (Papers III and IV). 

 

To evaluate how pre-commercial thinning in dense regenerations may enhance 

survival and growth of both species, considering timing and intensity, species 

composition and height differences between species (Papers III and IV). 
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3 Methods and modeling 

Two regeneration experiments were used as the basis for the analysis in papers 

I, II and III, and one PCT experiment was the basis for the analysis in paper IV. 

The experiments were replicated in blocks which were in total distributed in 

five areas, according to Figure 2. All the experiments had objectives associated 

with managing mixed Norway spruce and birch stands. Almost all blocks were 

established on sites that were harvested in conjunction with storm Gudrun in 

2005, which affected southern Sweden in the region of Kronoberg county in 

Småland and Halland. 

 
Figure 2. Map of Southern Sweden with numbered areas associated with the field experiments 

included in the thesis.  

1: papers I,II,IV, 2: paper IV, 3: papers I-III, 4: papers I-III, 5: paper IV.  
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Both regeneration experiments were randomized block designs located on six 

different sites in three areas. They were designed to be future long-term 

experiments with treatments relevant to managing mixed species forest over 

the full stand rotation. All sites were on mesic, till soils and the previous stands 

were dominated by Norway spruce. Site fertility was medium to high for the 

region. One of the experiments used two techniques of soil scarification for the 

soil disturbance treatments, separately or combined, disc trenching and inverse 

scarification (see example in Figure 3). The other experiments had two levels 

of soil disturbance, disc trenching or no active soil scarification. However, 

since all sites originated from severe storm damage clearcuts, even the sites 

with no active soil treatment were disturbed, after the uprooting caused by the 

storm and then the disturbance caused by logging machinery. In addition, 

treatments with different planting intensities were implemented, with levels of 

0, 1500 and 2800 Norway spruce seedlings ha
-1

 in the first, and 0 and 2800 

seedlings ha
-1

 in the second experiment. 

 
Figure 3. Example of design and distribution of treatments, Block 1. site Oxafällan, area 4. 

Five years after harvest, the regeneration of seedlings (<1.3 m) and saplings 

(>1.3 m) of all tree species and height classes were measured in sample plots. 

The circular sample plots, radius 1 m, were distributed in a quadratic grid over 

all blocks and treatments with grid size either 5*5 m or 10*10 m depending on 

treatment plot size (0.1 ha or 1.0 ha). In total, 2061 sample plots were 
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examined over 20 ha of experimental plots. The inventory data from these 

experiments were used as validation data in paper I, for model testing in paper 

II and as starting values for simulations in paper III. Treatments in detail are 

presented in papers II and III. 

Modeling the dispersal of seeds from source to a clearcut can be approached 

in different ways. Theoretical modeling of wind turbulence and seed transport 

and empirical measurements of seed fall could be used in combination or 

separately (Canham & Uriarte, 2006; Karlsson, 2001; Greene & Johnson, 

1996; Greene & Johnson, 1989; Fries, 1984). Papers I and II include models of 

how seedling establishment depends on seed dispersal and clearcut 

management. In paper I, the prediction itself for a specific chosen site, 

represents the core of the study, while paper II aims for a more general 

exploration of how the treatments and biotic covariates interact. 

 

Paper I was based on a framework model, combining possible seed supply 

with seed emergence and survival based on GIS data and information from 

earlier experiments (Figure 4). The spatial distribution of seeds available in the 

landscape, called seed shadows, was calculated for the clearcut and 

surroundings in the form of raster data sets. The seed shadows were determined 

by combining the spatial data pertaining to standing volume in forests (k-NN 

Sweden 2000, 2005 and 2010), empirical knowledge of birch seed production 

in mature trees (Sarvas, 1952; Sarvas, 1948) and birch seed dispersal 

distributions. Two different ways to estimate dispersal were compared, one 

based on knowledge of wind turbulence and seed dispersal on a clearcut 

(Greene & Johnson, 1996) and the other based on an experiment with seed 

traps (Waelder et al., 2009; Karlsson, 2001; Stoyan & Wagner, 2001). Of the 

possible seeds landing on the clearcut, the probability of germination and 

survival as a seedling was modeled in relation to soil moisture conditions and 

soil scarification. The empirical basis for the latter part was earlier experiments 

conducted in southern Sweden. 

 
Figure 4. Flowchart summarizing the model of birch seed supply and seedling regeneration. 
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In papers III and IV, growth responses of young established stands were 

investigated, using stand density, species proportions and height variation of 

saplings. In both papers, management by PCT was initiated for setting 

treatment levels and to induce the growth response.  

Paper III described simulated PCT treatments for the sapling data from one 

of the experiments used in paper II. The simulations aimed at mimicking the 

scenario of manual selection of retention stems in a PCT. The selections were 

made by prioritizing differently in five simulations including three mixtures of 

Norway spruce and birch and the two species in monocultures. The simulations 

were conducted based on two initial planting density treatments and all 

simulations had the same goal for stand density after PCT, 2000 stems ha
-1

. 

Remained density but different approaches of birch retention, made it suitable 

to evaluate the possibility of influencing stand development with PCT 

selections. The modeled stands were further developed over 100 years using 

the Heureka modeling system. The study evaluated both the mean annual 

increment (MAI) and the likelihood of success in retaining the two species 

mixture during a full stand rotation. The predictions for several decades ahead 

were constructed using the empirical data of establishment success, PCT 

objectives in simulations and the known stand behaviors of Norway spruce and 

birch. In addition, one simulation was run with the aim of maximizing the total 

number of species of all regenerated seedlings in the stand, a multiple species 

approach. This was conducted to evaluate the potential for adding more tree 

species to the mixture. 

In paper IV, empirical data was used to test the effect of PCT on growth 

response for retained Norway spruce and birch trees. The treatments included 

were designed with both additive and substitutive levels of birch and Norway 

spruce competition. The PCT experiment involving mixed regeneration of 

Norway spruce and birch was established on 11 sites in three areas around 

latitude 56-57 N, (figure 2). The sites were selected for their homogenous 

mixtures and relative heights of the species. The sites varied in initial heights 

of the Norway spruce, between 1 and 5 m. The initial heights were classified in 

three stages of the timing for PCT treatment. Main stems were selected and 

measured for height, dbh (diameter at breast height 1.3 m) and damage at the 

time of the PCT treatment and three and five years after PCT. The treatments 

were retention of 1000 or 2000 stems ha
-1

 of Norway spruce, with no birch or 

birch at 1000 stems ha
-1

. Treatments were replicated with and without annual 

removal of birch stump sprouts. The periodic annual increment (PAI) over five 

years was calculated for total stand volume and individual trees, both mean 

values of all retained stems and the initial dominant trees. Further details of the 

experimental setup can be found in paper IV.  
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4 Main results and discussion 

4.1 Regeneration 

It is possible to predict birch seedling densities on a fresh clearcut (paper I). A 

series of functions for seed production, seed dispersal, seed germination and 

seedling survival was combined in a framework model (Figure 4). The model 

predicts, with accuracy, whether the regeneration is sparse (0-1000 seedlings 

ha
-1

), dense (>30000 seedlings ha
-1

) or intermediate. Birch trees in the adjacent 

forest stands are the main suppliers of seeds to the clearcut and it is possible to 

model how the seed dispersal out of these stands behaves. Modeling seed 

dispersal with the theoretical equations for wind dispersed seeds or based on 

seed trap data gave similar levels of seeds when compared over a landscape. 

Using the estimated seed supply based on k-NN Sweden provided a better 

explanation of the birch seedling density compared to local mean (~80 ha) or 

county means (Halland or Kronoberg) of standing volume. The residual mean 

for estimated site density against measured data was smaller (-0.19) than the 

two general estimates, local mean (-0.31) and county mean (-0.37). The mean 

residual error of the model at the sample plot level was even smaller: 0.003. 

However, the variance was still large and many other variables could be 

implemented in the model framework to increase predictive certainty in the 

future.  

Whereas in paper I the seed distribution was modeled for both short and 

long distance dispersal, only the short distance was considered in paper II. 

Here, the distance to seed source was an important variable to explain the 

abundance of birch seedlings but the two experiments was primary undertaken 

to test the effect of soil scarification treatments. The distance to seed source 

was used as a covariate to model the eventual seed limitations.  
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Soil scarification improved natural regeneration and the effect increased with 

the intensity of the soil disturbance. Birch was the most frequent tree species 

regardless of scarification type. On average 60 % (paper II) was birch, of 

which 15 % was downy birch. Birch densities varied between 500 and 17 000 

seedlings ha
-1

 between blocks and treatments. In total, 11 native tree species 

were found naturally regenerated in the experiments but only Norway spruce, 

goat willow and aspen were found in all blocks, and none of them constituted 

more than 50% of the density in any block.  

Even though the soil disturbance treatment produced significant effects, the 

variance within the same scarification type was rather high (paper II). Some of 

this variance was explained by the modeling of the seed supply (paper I). Both 

papers show the possibility for making predictions of potential birch 

regeneration, and the opportunity to influence future regeneration by choice of 

soil scarification. However, site fertility and soil moisture content are 

important site variables that could be further tested in order to expand the value 

and usability of the model. The sites chosen for these experiments were on 

medium- to high fertility, mesic soils in order to reduce potential interactions 

with seed-specific variables or management. At the randomly selected sites 

(paper I), the soil moisture class varied and therefore this variable was included 

in the model. 

Using the mean stand density as a comparative unit for treatments or as a 

descriptive measure for regeneration success may be insufficient in natural 

regeneration. The variable abundance of seedlings, often in clusters 

(Eerikäinen et al., 2007), is different from the even distribution of planted 

seedlings. Therefore, the treatment effect in the gridded sample plots was 

tested with a distribution describing the clustering behavior of seeds and 

seedlings and overdispersion of zero plots (paper II). About 50 % of the sample 

plots were without any birch seedlings, (actual zero plot or occupied by planted 

Norway spruce or naturally regenerated tree species other than birch). One 

reason for the high number of zero plots was the sampling design, with a tight 

grid of small sample plots. The design was chosen to capture the clustering 

behavior of the natural regeneration and the variability in treatment effect at 

the stand level. The treatment was a stand level operation, testing the 

scarification techniques and soil disturbance rates used in practical forestry, 

continuing the research on microclimate and soil bed substrates. The variables 

associated with vegetation cover and occupation served as complementary 

variables describing the effect of scarification techniques, where for example, 

disc trenching tends to pile up slash residues and thereby creates spots that are 

less suitable for seed germination, resulting in zero plots. The model showed 
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the significant regeneration improvement with disc trenching but also its 

potential to give the appearance of regeneration into rows, if desired. 

In some cases, the presence of zero plots was also because of limited seed 

supply. Using the distance to seed source as a covariate was also an important 

variable to consider in relation to the dispersal behavior of wind dispersed 

seeds. The effects of scarification were weak at distances greater than 60 m 

from the nearest potential seed source, indicating a change in the limiting 

variable affecting seedling recruitment (paper II). The seed supply was 

estimated solely from the minimum distance to a possible seed source, either a 

retention tree or a forest edge. 

One conclusion from the findings presented in papers I and II is that 

studying short distance dispersal is primarily important on a stand level. 

However, long distance dispersal should not be neglected for the understanding 

of birch regeneration on a landscape level and may explain variation between 

sites. This conclusion and the results of the papers support data presented in 

earlier studies of both birch dispersal specifically (Karlsson, 2001; Fries, 1984) 

and theories of seed ecology in general (Stoyan & Wagner, 2001; Greene & 

Johnson, 1996; Greene & Johnson, 1995; Greene & Johnson, 1989).  

The traditional management of a Norway spruce clearcut that was used in 

the experiments described in paper II included soil scarification, slash removal, 

occasional birch retention trees and clearcut sizes between 2 and 6 ha. At 

almost all experimental sites, no additional regeneration measures were needed 

to achieve stand level regeneration of birch. This indicates that the 

conventional methods used in planted conifer monocultures are, in general, 

suitable for the establishment of mixed forest comprising planted conifer and 

naturally regenerated birch. 

4.2 Early management 

Maintaining an even aged mixed stand through the full rotation is possible if 

the stand density and height development of the different species is considered 

during early management. The structure of the mixture was tested by selections 

during PCT, either by changes in the relative height of the species (paper III) or 

by varying the density (paper IV) or species composition (papers III and IV). 

In the PCT simulations (paper III) with variation in birch heights (keeping the 

tallest, keeping the best quality or keeping those with the same dimensions as 

the Norway spruce) the selections had little impact on MAI of the stands over a 

full rotation period. This could be partly explained by the competition from 

Norway spruce that affected all three alternatives. Most importantly, the 

simulation was based on measured data, and did not provide three different 
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ranges of heights. Like a real PCT, the range of alternatives was limited to the 

seedlings on the site and in many cases the same seedling had to be retained for 

two or all three of the simulations. In the choice of sites for the experiment in 

paper IV, the height and diameter differences between the species were 

important. All sites had similar, single storied characteristics and eventual 

dominant birches were not chosen to be future main stems. The experiment 

was intended to test the density differences in single storied stands and in order 

to reduce other covariates, variation in height differences was minimized.  

High and low densities of planted Norway spruce produced a different 

forest structure in the simulated mature forest. Only 10 % of the saplings after 

PCT simulations were birch in treatments with high density plantings (which is 

the recommended planting density in southern Sweden on sites with these 

fertility classes). At the end of the rotation period, the birch proportion of 

standing volume was 2-5 %, which is far below the current FSC standard 

requirement of a minimum of 10%.  

In the low planting density treatments, the mean birch proportion was 30% 

of the saplings after simulated PCT and 18-21% of the standing volume at end 

of the rotation period. Of the five simulations, all remained as intended of the 

PCT, with two monocultures and three mixtures. The simulated maximum 

MAI was reduced by 1 m
3
 ha

-1
 for the low planting density treatments 

compared to the high density. The total volume production and stand rotation 

length was lower in the mixtures compared to the Norway spruce monoculture 

for the low planting density treatments, but maximum MAI was very similar. 

In the PCT experiment (paper IV), the total growth was higher for control 

plots compared to treatments if all seedlings regardless of tree species were 

accounted for. The mean seedling density before PCT was 10 000 seedlings 

ha
-1

 but on some sites the density was much higher, at most 48 000 seedlings 

ha
-1

. All PCT treatments with annual removal of sprouts had a positive effect 

on growth of the main stems for both species compared to control plots. For the 

dominant individuals of Norway spruce, (the largest individuals before 

treatment, 1000 trees ha
-1

) the mean MAI was small and in most cases non-

significant between the treatments (Figure 5). There was no interaction 

between treatment and height classes for timing of PCT. No measured negative 

effect of birch competition was found on Norway spruce, but birch showed 

reduced growth with increased competition from Norway spruce. These 

findings were consistent with earlier findings, that density and neighbor size 

are more important than species identity (Barbeito et al., 2014; Collet et al., 

2014; Li et al., 2013; Lintunen & Kaitaniemi, 2010; Fahlvik et al., 2005).  
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Figure 5. Mean MAI (dm

3
 year

-1
) for dominant stems of Norway spruce(NS) in PCT treatments, 

mean values for the blocks in height classes. Treatments in the figure: Circles: NS monoculture, 

1000 & 2000 trees ha
-1

 Triangles: Mixtures, 1000 NS +1000 birch trees ha
-1

 & 2000 NS+1000 

birch trees ha
-1. 

In addition, early PCT, with mean initial heights of 1 m, resulted in a positive 

response to treatment and no significant interaction between initial heights and 

treatments was detected. However, the PCT effect was not as pronounced in 

treatments with uncontrolled birch stump sprouting, and in the treatments with 

densities of 2000 stems ha
-1

 there was no significant difference from the 

control. When the sprouts were removed annually the mean annual increment 

of dominant Norway spruce stems was, on average, 21 % higher compared to 

the same treatment with uncontrolled sprouting. 

 

Both papers indicate the same result: that with a planting density of >2000 

seedlings ha
-1

 the birch admixture will not survive the competition and the 

stands will develop into Norway spruce monocultures. However, in the PCT 

treatment with 1000 seedlings ha
-1

 of birch and Norway spruce, respectively 

(paper IV) and in the PCT simulations with low density planting treatments 

(paper III), the stands remained mixed. 
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The most severe obstacle to the vitality of the seedlings of tree species other 

than Norway spruce in the regeneration experiments was ungulate browsing 

five years after clearcut. The overall mean of damaged seedlings of the 

additional tree species was 77% and of these over 80 % were severely 

damaged. Only Norway spruce and birch had mean heights over 1 m and top 

heights of 3 and 4 meters. In current forestry, the spontaneous regeneration of 

broadleaved tree species is the only source of recruitment for these 

uncommercial tree species in forests. The high damage ratio due to ungulate 

browsing combined with the successful cultivation of Norway spruce will 

probably lead to mortality for most of the seedlings (papers II and III).  

The simulations (paper III) were able to model visually the probable effect 

of browsing in the selections during PCT when comparing the traditional 

approach with selections of Norway spruce and birch (NSB) and the selection 

for multiple species at the stand level (mix). Figure 6 show the percentage of 

the tree species composition in every block and treatment (N=28), summarized 

for the experiments distributed over 20 ha, for two of the PCT alternatives. The 

spatial distribution of seedlings was considered in both, but only the NSB-

alternative also have heights and planting investments in the selection criteria. 

The comparison of number of species in figure 6 is only to visualize the 

eventual effect that the selections in PCT could have at the landscape level.  

 
Figure 6. Visualization of the species % of stem number in two PCT simulations, aiming for 

multiple species (mix) and for production of Norway spruce and other species in gaps (NSB). 

Norway spruce includes both planted and naturally regenerated seedlings. The group “others” 

include all other species, not specified in legend , together amounting to < 2% of the total. 
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However, due to the browsing pressure and thereby suppressed heights of the 

seedlings for all the additional species, the mix-alternative is highly imaginary. 

The damaged seedlings, even if vital, will have difficulty keeping pace with the 

height increments of both birch and Norway spruce. Furthermore, if the 

browsing pressure remains, these seedlings will probably be repeatedly 

browsed during subsequent years. The findings from this regeneration 

experiments indicate that game management has a huge impact on future 

forests and the potential to establish mixed stands with more than one or two 

species. This finding is consistent with other studies in Fennoscandia 

(Herfindal et al., 2015; Bergquist et al., 2009; Edenius & Ericsson, 2007; 

Jalkanen, 2001; Kullberg & Bergstrom, 2001; Björse & Bradshaw, 1998) and 

the Forest Agency monitoring (Bergquist et al., 2011) and in other managed 

forest ecosystems globally (Speed et al., 2013; Elie et al., 2009; Casabon & 

Pothier, 2007).  
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5 Conclusions 

5.1 Practical implementation 

Forest management is, first of all, influenced by a multitude of both incentives 

and limitations that sometimes are so hegemonic that they are mistaken for 

being deterministic. Soil scarification before planting of insecticide treated 

Norway spruce seedlings is legal and is the preferred method in current 

Swedish clearcut management. Not even the big storm Gudrun in 2005, which 

primary affected mature coniferous stands, made any difference to the choice 

of regeneration method (Valinger et al., 2014). Clearcut management is 

determined by owner objectives, within which legislation and incentives from 

authoritie’s and stakeholders affect the limits of what is accepted or possible 

(Johansson, 2014; Johansson & Keskitalo, 2014; Kindstrand et al., 2008). 

Hopefully the results from this study and others, could promote 

management recommendations that are more diversified and tailored for a 

multitude of types of stand development (Gustafsson et al., 2015; Agestam et 

al., 2005). A similar approach, combining seed ecology and seedling survival 

with management (Dassot & Collet, 2015; Manso et al., 2014; Eerikäinen et 

al., 2007), resulted in the same conclusion as with the model framework 

presented in paper I: that with rather simplistic and general equations it is 

possible to build a complex model of the whole process. Hopefully these types 

of predictions about future stands will be useful to implement within forest 

modeling frameworks such as Heureka in Sweden and MOTTI in Finland 

(Salminen et al., 2005), which are examples of complex forest simulation 

systems that are used both in research and in forest management.  

With more precise predictions of birch seed supply, the soil disturbance rate 

could be chosen to meet the aims of the owner (Figure 7). When the supply is 

plentiful, it is possible to increase the birch seedling density and plant less 

Norway spruce if a mixture is desired. And the opposite; it could be difficult to 
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establish a mixed forest based on natural regeneration in large clearcuts on 

mesic sites, especially in areas with low abundance of mature birch in the 

surroundings. When a Norway spruce monoculture is the main goal, no or very 

careful, soil scarification should be performed on such sites. However, the 

benefits of soil scarification for the planted seedlings are many and probably 

performed on these sites despite the increased competition from naturally 

regenerated species. 

Precommercial thinning of young stands could be undertaken in various 

ways, there is a wide range of opinions regarding PCT intensity, timing of 

season and timing with respect to stand age, birch percentage and spatial 

distribution of saplings. Most importantly, the reduction in density, from more 

than 10 000 to 3000 stems ha
-1

 or less, is the major factor affecting the growth 

and yield of future crop trees. The largest saplings before PCT will remain 

dominant regardless of treatment and the size of a neighbor has a greater effect 

than the species. If the goal of establishment is a mixed stand throughout the 

rotation, the density has to be regulated during PCT to ensure the presence of 

unsuppressed birches. Density reduction has an effect on the seedlings already 

1-1.5 m tall, but the competition from birch stump sprouting could be 

significant, at least in the first years after PCT.  

 
Figure 7. Flowchart covering the variables that affect and interact in the establishment of a new 

forest stand. 

5.2 Future research 

More precision should be possible when making the predictions of birch 

regeneration on a clearcut. The annual variation in seed production could be 
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important, especially on sites with high fertility and fast ingrowth of competing 

vegetation on scarified surfaces. The masting behavior of birch is perhaps not 

of the same magnitude as for tree species with larger seed masses, but is still 

related to annual variations in climate. Future research into the annual variation 

of seed supply, for birch and for other broadleaves, could also be important 

from the perspective of climate change and for plant breeding. 

Soil scarification is positive with respect to forest establishment, both for 

the survival and growth of planted conifers and for the facilitation of natural 

regeneration. However, the environmental consequences of large scale soil 

disturbance on field vegetation and soil microhabitats could be further 

investigated.  

The stands developed during recent decades, with retention trees and 

broadleaved admixtures, will soon grow into closed canopy stands and further 

management of these forests may raise new questions regarding thinning 

regimes and operational guide lines. Management based on one dominant crop 

species may not suit the sustainability of multispecies forest. Recent research 

with efforts focused on producing guidelines for development and maintenance 

of mixed forests (Ducey & Knapp, 2010) in other ecosystems opens the way 

for similar discussions in a Swedish context. The management of mixed forest 

to deliver several objectives could possibly lead to new perspectives with 

respect to both planning and measuring forest growth.  

When the heterogeneity of the tree population increases and old empirical 

data from controlled homogenous stands loses validity, then other variables 

could be considered instead, such as abiotic drivers of production, soil 

characteristics and climate variables. Improvements in large scale informatics, 

such as laser scanned elevation data, satellite-data based forest volume 

estimates and regional raster data for solar radiation, also suggest further 

developments in models of forest variables that combine empirical 

management, ecological theory and plant physiological relationships. In the 

future, a greater understanding of the growth and yield of mixed forests in 

Sweden will benefit from combining new data with process-based theories or 

hybrid models. 
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