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Hybrid Nanoadsorbents for Extraction and Separation of Rare 
Earth Elements in Solution 

Abstract 
 
Rare Earth Elements (REE) are a group of 17 metals (those known as lanthanides plus 
Ytrium and Scandium), which are increasingly important for many emerging modern 
applications. This work is focused on the development of high performance new 
magnetic silica based nanoadsorbents which are surface functionalized for efficient 
uptake and separation of REE in solution. In the first step, three different organic 
reactants (organosilane derivates) were synthesized and grafted onto the surface of 
custom synthesized silica (SiO2) nanoparticles (NPs). The effective grafting was 
checked by 13C and 29Si CP-MAS solid state NMR spectroscopy and FTIR 
spectroscopy. These hybrid nanomaterials were used as models for adsorption of REE 
in solution and  their uptake capacity towards REE (La3+, Dy3+ and Nd3+) was checked 
via complexometric titrations with model solutions. The materials were also 
characterized by SEM-EDS and TEM microscopy.  

In the second part of the work, one of the organic reactants previously synthesized, 
which displayed the best properties, was used to functionalize the surface of custom-
produced core-shell magnetic silica based nanoadsorbents, consisting of a core of        
-Fe2O3 nanoparticles covered by a protective thin layer of SiO2. Magnetic 
nanoadsorbents exhibit many attractive opportunities for industrial purposes due to 
their easy removal and possibility of reusing the material. These magnetic silica based 
nanoadsorbents were also characterized by SEM-EDS and TEM microscopy, FTIR 
spectroscopy and TGA analysis. The uptake efficiency was checked via 
complexometric titration and selectivity with binary mixtures of REE was also studied, 
showing a very noteworthy selectivity towards heavier REE These results were 
confirmed by X-ray single crystal structure studies of the model compounds.  

Lastly, a preliminary overview on the potential application of these hybrid 
nanoadsorbent in real industrial leachate solutions was provided. This last part of the 
work is still being carried out and optimized, being one of the most important and 
challenging future prospects for this PhD project.  
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1 Introduction 

Rare Earth Elements (REE) have lately gained an increasing importance 
for current society. In June 2010, the European Commission published a list of 
14 materials (metals or group of metals) that are critical for many emerging 
technologies. The list included Rare Earth metals group (European 
Commission, 2010). This group of metals might be not so widely known 
because they are used in small quantities, but they are indeed essential for 
hundreds of varied high tech applications ranging from high field strength 
magnets to numerous medical applications that overall, define the basis of our 
modern life to a greater or lesser extent, becoming thus indispensable for the 
development of technology. Therefore, it is not surprising that this has resulted 
in an increased demand for REE as raw materials and hence an increase in their 
ore production (mining) and research interest in the development of efficient 
procedures for their extraction and separation and recycling strategies.  

 
Several methods have been developed and are currently under the attempt 

of being optimized, such as solvent extraction, ionic liquids, ion-exchange 
resins or novel adsorbent materials with high affinity towards REE. This work 
focuses on the last mentioned technique, having the aim of developing new 
hybrid nanoadsorbents highly efficient and selective for the extraction and 
separation of REE in solution. Nanomaterials have become very interesting in 
this area because, compared to bulk material, they provide a larger specific 
surface area and higher surface activity (Yurchenko et al., 2012) which 
facilitates the possibility of surface functionalization with adequate and 
adsorption-efficient organic ligands.   
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1.1 Rare Earth Elements. Why are they so important? 

 
REE have several industrial uses worldwide, primarily within the 

electronics and electrical fields. REE based materials are used in many more 
products than is generally imagined. Their uses and application fields are 
almost too numerous to list, but the major ones include high field strength 
magnets (Zhang et al., 2014) which are used for instance in electric motors or 
wind turbines, sensing (Parker and Bretonniere, 2005), electro optical devices 
(Jin et al., 1997), catalysis (Shibasaki and Yoshikawa, 2002), advanced 
batteries, phosphors for fluorescent lighting and display panels, optical fiber 
communications, unique materials and so on (Bünzli and Piguet, 2002). Figure 
1 shows the major applications of REE and each percentage of use in respect to 
the total REE consumption 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
  

Figure 1. Uses of the Rare Earth Elements (EURARE, 2013) 
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In the field of Ceramics and Glass we can find applications such as 
polishing media, UV resistant glasses, thermal glass, capacitors, sensors, 
colorants, refractories, fuel cells and superconductors among others.  

As for ultra strong magnets, they are applicable in motors and generators, 
HD drives, Microphones and Speakers, Magnetic Resonance Imaging (MRI), 
magnetic refrigeration and so on. Strong magnets are also needed for many 
defence applications, which allows to point out the importance of REE for 
military purposes. REE are essential for missile guidance systems, lasers, smart 
bombs, sonar and underwater mine detection, radar and antimissile defense, jet 
engines, laser range finders and targetings, electronic countermeasures and 
satellite communication systems.  

REE are also essential for catalysts and chemical processes such as 
petroleum refining, automotive catalysts, diesel additives and water treatment.  

Regarding metal alloys, they are used in NimH batteries, superalloys,      
Al-Mg alloys and steel, among others.  

When it comes to Phosphors, REE are needed for LED, LASER, flat panel 
displays, fluorescent lamps, X-ray imaging, optical sensors and fibre optics. 

Other uses of REE include such as fertilizers, pigments, nuclear 
applications and medical tracers (EURARE, 2013) 

 
Taking into consideration all these applications, it seems obvious that the 

worldwide demand of REE has enormously increased and will continue to do 
so. China controls nowadays the majority of REE market and the recent 
establishment of strict export quotas constitutes a risk for Europe for a reliable 
and sufficient supply of REE. Therefore, it has become a priority to develop 
strategies for an economically viable and sustainable self-dependent REE 
industry. 
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1.2 Rare Earth Elements. Abundance and occurrence in nature.  

 
Rare Earth Elements is the collective name for 17 chemically similar 

metallic elements that occur in a wide range of REE bearing minerals and are 
mined collectively. According to the IUPAC definition, “rare earth metals” 
(REMs, or “rare earth elements”, REEs) include the group of 15 elements 
starting from lanthanum (atomic no. 57) to lutetium (atomic no. 71), known as 
the “lanthanides”, and Scandium (atomic no. 21) and Yttrium (atomic no. 39), 
having similar physical and chemical properties are also included in the REE 
family. Based on their location in the periodic table and their atomic weights, 
REE can be classified in  Light Rare Earth Elements (LREE) and Heavy Rare 
Earth Elements (HREE). Lanthanum, Cerium, Praseodymium, Neodymium, 
Promethium, and Samarium (atomic no. 57-62) belong to the first group 
(LREE), while Europium, Gadolinium, Terbium, Dysprosium, Holmium, 
Erbium, Thulium, Ytterbium and Lutetium (atomic no. 63-71) constitute the 
HREE (IUPAC, 2005). This last group of REE are generally used in high tech 
applications. For example, Erbium is used for fiber optics in communications, 
Europium and Terbium are used in phosphors and Gadolinium is used for 
Magnetic Resonance Imaging. All of them occur naturally in Earth, except 
Promethium, which is obtained by synthetic methods.  

Despite their name, REE are indeed quite abundant in the earth crust, 
especially LREE, which are more commonly and easily extracted than HREE. 
The misleading term “rare earth” comes historically from the chemist Carl 
Axel Arrhenius (1757-1824), after he discovered them in 1784 in the dumps of 
Ytterby (Sweden) quarries. They were called “rare” because when they first 
were discovered, he thought that they were present in very small amount, and 
“earths” because, when forming oxides, REEs have an earthy appearance 
(Massari and Ruberti, 2013). But they are actually not rare at all, being most of 
them more abundant in earth crust than silver or gold (Hurst, 2010). For 
example, Cerium (6.6 x 10-3 % by weight in the Earth’s crust) has a similar 
abundance of that of Cu and four times higher than Pb. Even Thulium and 
Lutetium, which are the two least abundant REEs, are 200 times more common 
than gold. REE can be found in almost all massive rock formations.  

REE can be found in many diverse minerals, including silicates, carbonates, 
oxides and phosphates. Around 270 minerals are known to contain the REE as 
an essential part of their crystal structure, but only a small number are ever 
likely to have commercial significance. The majority of historical production 
has come from a small number of minerals, which are mainly bastnäsite, 
monazite, and xenotime. Many REE enrichments are associated with other 
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minerals such as apatite, allanite and eudialyte, and research on the processing 
of these minerals is ongoing.  

As it can be now understood, the problem with REE relies, not in their 
concentration, but in the difficulty to find economically exploitable deposits, 
and the fact that, due to their chemical similarities and their joint occurrence in 
nature, their separation becomes a very challenging and high-tech demanding 
process. 

It is in this point where solid inorganic adsorbent materials gain importance. 
A special focus has been set to the development of silica (SiO2) based 
nanoparticles as high performance sorbent materials (Yurchenko et al., 2012, 
Melnyk et al., 2012, Dudarko et al., 2008).  Silica (SiO2) is a basic raw material 
that is widely used in several fields such as electronics, ceramics and polymer 
material industries. Due to its small-diameter particles, ultrafine nanoscale 
silica offers many advantages for adsorption applications (Liou, 2004). In 
comparison with bulk material, SiO2 NPs exhibits a much higher surface area, 
which facilitates the adsorption process, and furthermore they offer the 
possibility of being surface-functionalized with organic ligands. All these 
properties, on whole, provide great applicability for high binding capacity 
towards REE.  

However, in order to make this process industrially viable and efficient, 
having easily removable adsorbent materials becomes an attractive asset. This, 
together with the magnetic nature of REE, gives rise to the idea that magnetic 
hybrid nanoadsorbents are a potentially suitable and effective alternative.  The 
development of novel highly stable nanoadsorbents consisting of a magnetic 
core and a surface covering layer of SiO2 seems to be an ideal solution, since 
the magnetic core would provide the easy removal and the interesting magnetic 
properties, and the SiO2 layer would provide the already mentioned suitable 
characteristics for adsorption, such as the high surface area and the possibility 
of surface functionalization.  

 
 
.  
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1.3 Magnetic Iron Oxide Nanoparticles  

 
Magnetic nanoparticles (MNPs) possess many interesting properties 

which are advantageous for diverse applications in very various fields, such as 
catalysis (Cornell and Schwertmann, 2003, Azhar Uddin et al., 2008, Li et al., 
2008, Shi et al., 2007, Zhang et al., 2007, Wang and Willey, 1998, Al-Sayari et 
al., 2007, Wang and Davis, 1999, Bautista et al., 2007), biomedical 
applications including development of immunoassays, magnetic resonance 
imaging contrast agents, targeted drug delivery vehicles and magnetic 
hyperthermia among others (Tartaj et al., 2003, Jurgons et al., 2006, Qiang et 
al., 2006, Xu et al., 2006, Lübbe et al., 1999, Zheng et al., 2006, Ai et al., 2005, 
Gonzales and Krishnan, 2005, Lee et al., 2005, Sadeghiani et al., 2005), 
technological applications like data storage (Reiss and Hutten, 2005) or 
environmental protection applications like wastewater treatment               
(Jiang et al., 2011, Nassar, 2010).  

 

1.3.1 Iron oxides 

 
Iron oxides exist in diverse forms in nature, being magnetite (Fe3O4), 

maghemite (-Fe2O3) and hematite (-Fe2O3) the most common ones    
(Cornell and Schwertmann, 2003). 

Hematite does not exhibit magnetic properties and therefore is not 
interesting for our purposes, while magnetite possesses the strongest 
magnetism of any transition metal oxide (Cornell and Schwertmann, 2003, 
Majewski and Thierry, 2007). As for maghemite, its crystal structure is closely 
similar to that of magnetite and it forms continuous solid solutions with 
magnetite (Majewski, 2008). 

 

1.3.2 Magnetic behaviour of iron oxides and MNPs 

 
Magnetic iron oxides contain Fe (III) ions in a spinel structure occupying 

octahedral spaces between densely packed oxide anions. Both magnetite and 
maghemite follow this crystal structure and therefore both display magnetic 
behaviour, being magnetite the one with a stronger magnetism, as previously 
mentioned. These two iron oxides can be transformed one into another via 
redox reactions.  

In a bulk ferromagnetic material, the magnetization vector M is the sum of 
all the magnetic moments of the atoms in the material per unit volume of the 
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material. The bulk material is constituted by domains, having each domain its 
own magnetization vector. The magnetization moments of all the domains in 
the material might not be aligned and this can result in a decrease in the overall 
magnetic properties of the material. But when the length scale becomes small, 
the number of domains decreases until the size of the material is below some 
critical size dC, in which case there is one single domain (Teja and Koh, 2009).  

A single magnetic domain has no hysteresis loop in its magnetization curve 
and is said to be superparamagnetic. Iron oxide nanoparticles bellow 20 nm 
often have superparamagnetic behaviour at room temperature                
(Cornell and Schwertmann, 2003).  

Magnetite nanoparticles exhibit the most interesting magnetic properties, 
but they are easily transformed to maghemite by means of oxidation or 
temperature increases. This transformation into maghemite can result in a loss 
of magnetic properties, but working in nanoscale allows to still have a 
magnetic enough material for the required purposes.  

 

1.3.3 MNPs as novel nanoadsorbents 

 
In what concerns to the main focus of this work, nanoparticles feature 

unique characteristics providing them appropriate adsorption surfaces      
(Faraji et al., 2010, Xu et al., 2012). The main advantages of magnetic iron 
oxide nanoparticles for REE adsorption arise from their magnetism, being this 
a very attractive property for an adsorbent material since it allows a facile 
further separation from the liquid solution via application of an external 
magnetic field. (Shen et al., 2009).  Iron oxide MNPs constitute the basis of 
novel nanoadsorbent materials which provide profitable characteristics such as 
requiring simple equipment, facile operation, high efficiency and high potential 
for restoration and reusability (Shahriari et al., 2014). Furthermore, they are 
economical for industrial upscaling and they have good stability and very low 
toxicity when compared with another counterpart ions                            
(Soenen et al., 2012, Wilkinson et al., 2012). In comparison with bulk material, 
MNPs open more possibilities for adsorption due to the higher surface area and 
the potential for appropriate surface decoration depending on the desired 
purpose.  

Despite the instability of MNP under harsh conditions such as strong acidic 
media, it is possible to stabilize them against leaching via deposition of a 
protecting layer. Synthesis of core-shell MNPs seems to be a good solution for 
this situation. Some sophisticated approaches involving the creation of a shell 
consisting of a noble metal have been made (Thanh, 2012) but they are mostly 
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applicable in medicine due to cost reasons. Among the diverse types of coating 
materials, which include noble metals, metal oxides and polymer materials, 
silica coating has been extensively studied and has several advantages arising 
from the stability under aqueous solutions, protection of the magnetic core and 
therefore prevention of direct contact with external agents and the 
enhancement of their biocompatibility, hydrophilicity and dielectric properties 
(Stjerndahl et al., 2008, Im et al., 2005, Lu et al., 2007a). Moreover, silica 
coating facilitates further surface modification of the NPs due to the silanol     
(-SiOH) groups on the surface. This silanol groups can be functionalized with 
amino, thiol and carboxyl groups among others, resulting in optimal 
functionalized nanomaterials for bio-labeling, drug delivery and targeting 
applications (Gupta and Gupta, 2005, Lu et al., 2007b). 

A previous study showed that the encapsulation of the iron oxide MNPs 
leads to oxidation from magnetite to maghemite and consequently some loss in 
the magnetic characteristics, but the material remains magnetic enough for the 
required purposes, with a magnetic susceptibility at a level of ca. 6 emu/g, 
which is in good agreement with the industrial requirements for magnetic 
separation (Pogorilyi et al., 2014). The larger the amount of silica to be added, 
the longer the process will be and therefore the higher the oxidation of the 
original magnetite phase will be, but on the other hand, the layer of silica 
around the MNPs core helps to protect them for further oxidation                
(and therefore further transformation to maghemite phase with the consequent 
progressive loss of magnetic properties), so there shall be an optimization of 
the encapsulation process leading to a layer which is protective enough for the 
MNPs core but doesn’t hinder their unique properties.  

There are few methods known to produce core-shell silica coated MNPs, 
and among them, microemulsion and alkaline hydrolysis of tetraethyl 
ortosilicate (TEOS) have been pointed out as the major methods for core-shell 
NPs (Santra et al., 2001, Stöber et al., 1968). The last method, well-known as 
the Stöber method has proved to be a facile and effective process to synthesize 
uniform spherical colloidal nanoparticles. Furthermore, the reaction parameters 
can be adjusted and optimized, giving the possibility to tune the resulting 
nanoparticles for the desired purpose. 

Adsorption of pollutants by iron oxide MNPs, more specifically heavy 
metals, has been extensively studied, including, among many others, 
investigations in oil refinery wastewater treatment (Rasheed et al., 2011), paper 
mill wastewater treatment (Zhang et al., 2011), color removal from water 
(Absalan et al., 2011, Iram et al., 2010), methylene blue removal from aquatic 
environment (Rakhshaee and Panahandeh, 2011), reduction of polybrominated 
diphenyl ethers  (Fang et al., 2011a), adsorption of cadmium from aquatic 
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environments (Chen et al., 2011, Tu et al., 2012), copper and chromium (VI) 
adsorption from aquatic environment (Shen et al., 2012), chromium (VI) 
removal from electroplating wastewater (Fang et al., 2011b), removal of 
nickel, cadmium and lead ions from water (Badruddoza et al., 2013), 
decontamination of medical samples (Melnyk and Zub, 2012, Mel’nik et al., 
2012) and removal of chromium (III) (Shahriari et al., 2014).  

However, very little has been studied about the adsorption of REE by 
magnetic silica adsorbents. Dudarko and co-workers have studied the 
adsorption of Dy3+ and Nd3+ by silica modified with phosphonic acid 
derivatives (Dudarko et al., 2008). This work, together with the work carried 
out in this thesis, show the advantages that silica based adsorbents, and more 
specifically magnetic silica adsorbents offer in the field of adsorption of REE, 
opening new possibilities for the development of novel hybrid high-efficient 
and selective nanoadsorbents.  
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2 Research objectives 

This licentiate thesis constitutes a part of the PhD project which is being 
carried out under the frame of the European Project EURARE. EURARE aims 
to set the basis of an economically viable and sustainable industry of REE 
within Europe. Many research institutions and mining companies are involved 
in this project, dealing with and trying to solve many different problems and 
issues related with REE production.  

This work is focused on the development of new hybrid magnetic 
nanoadsorbents, based on magnetic silica nanoparticles decorated on the 
surface by appropriate organic ligands with high affinity and selectivity 
towards REE.  

In order to make it more understandable, this work can be divided in two 
parts: 

 
 The first part is dedicated to the synthesis and characterization of three 

different suitable organic ligands for REE adsorption, their attachment 
into the surface of SiO2 nanoparticles and the study of their REE uptake 
efficiency in the view of using them as nanoadsorbent models for the 
second part.  

 
 The second part of the work focuses on the development of hybrid 

magnetic nanoadsorbent materials based on iron oxide MNPs and 
covered by a protective layer of SiO2, decorating the surface of these 
NPs with the iminodiacetic acid (IDA) derived organic ligand         
(which was synthesized and tested in the first part of the work). In this 
second part, not only REE uptake efficiency was tested but also 
selectivity towards different types of REE (LREE or HREE) and an 
effort has been also put in explaining the observed selectivity at a 
molecular level. The developed approach has been tested on both model 
solutions and real industrial leachates from REE ores.  
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3 Experimental 

3.1 Synthesis of organic ligands (Paper I) 

Three different organosilane derivates, denoted as L1, L2 and L3 were 
synthesized (Tarn et al., 2013, Puri et al., 2011, Claramunt et al., 2005).Ligand 
1 bears an iminodiacetic acid (IDA) attached to a siloxane fragment via an 
urea-based group. The IDA fragment offers interesting coordination potential 
with REE through the carboxylic groups. On the other hand, the pyridine ring, 
present in the structure of L2, offers good stability towards radioactivity. This 
is an issue to take into considerable account when dealing with REE, since they 
are commonly found together with radioactive elements such as Thorium. As 
for L3, it is also an IDA derivate ligand, but via a more chemically stable alkyl 
group attachment to the imino function of IDA. Figure 2 shows the structures 
of the three synthesized organic reactants used for grafting of the NPs.  

 
Figure 2. Chemical structures of the synthesized organosilane derivates 
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L1 was synthesized from the reaction between                           
3-isocyanatopropyltriethoxysilane (ICPTES) and dimethyl iminodiacetate in 
chloroform at 80°C, under reflux and N2 atmosphere. L2 and L3 were 
synthesized following procedures previously described in literature (Claramunt 
et al., 2005, Franville et al., 1998). L2 was synthesized from 3-
iodopropyltryethoxysilane (IPTES) and dimethyl iminodiacetate in the 
presence of N,N-diisopropylethylamine (DIPEA) as catalyst, in toluene and 
under reflux and N2 atmosphere. L3 was synthesized from 3-
aminopropyltriethoxysilane (APTES) and 2,6-pyridinedicarbonyl dichloride in 
the presence of trimethylamine (TEA) as catalyst in dichloromethane (DCM), 
at room temperature and under N2 atmosphere.  

 

3.1.1 Synthesis of Dimethyl Iminodiacetate (starting material for L1) 

 
IDA (1g, 7.51 mmol) was suspended in 50 mL of anhydrous methanol. 

Thyonil chloride (SOCl2) (1.79g, 15.03 mmol) was added dropwise to the 
reaction flask and the mixture was refluxed under N2 atmosphere for 4 hours. 
The mixture was then cooled to room temperature and the solvent was 
evaporated in a rotary evaporator, yielding a white powder which was 
dissolved in 5 mL of distilled water, neutralized with a solution of Na2CO3. 
Finally, extractions with ethyl acetate were carried out three times (35 mL of 
ethyl acetate each time) and the combined organic phases were dried over 
Na2SO4, then filtered and evaporated in the rotary evaporator, yielding a 
slightly yellow liquid.  
 

3.1.2 Synthesis of L1 

 
Dimethyl iminodiacetate (0.1 mL, 0.62 mmol) and dry chloroform (1 mL) 

was added to an oven dried round bottom flask. Then, ICPTES                   
(0.15 mL, 0.62 mmol) was added dropwise to the reaction. The reaction 
mixture was refluxed under N2 atmosphere for 5 hours. After this time, the 
solvent was evaporated in the rotary evaporator, and the obtained liquid was 
purified by flash column chromatography using a mixture of hexane/ethyl 
acetate 3:1 as eluent.  
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3.1.3 Synthesis of pyridine-2,6-dicarbonyl dichloride (starting material for L2) 

 
2,6-pyridine dicarboxylic acid (500 mg, 2.99 mmol) was suspended in 30 

mL of dry toluene. SOCl2 (4.3 mL, 59.8 mmol) was added dropwise to this 
suspension in an ice bath. The reaction was then refluxed under N2 atmosphere 
for 3 hours. After the reaction, the solvent was evaporated under reduced 
temperature in the rotary evaporator, yielding a white powder.  
 

3.1.4 Synthesis of L2 

 
Pyridine-2,6-dicarbonyl dichloride  (304.5 mg, 1.49 mmol) was dissolved in 

10 mL of dry DCM and added to a 50 mL three-necked round bottom flask. 
With the help of a pressure equalising addition funnel, DCM (5 mL), APTES 
(0.73 mL, 3.13 mmol), and TEA (1.1 mL, 8.22 mmol) were slowly added to 
the reaction mixture under N2 atmosphere. The reaction mixture was stirred 
overnight at room temperature and afterwards the reaction solvent was 
evaporated under reduced temperature in a rotary evaporator and the reaction 
product was purified by flash column chromatography using a mixture of 
hexane/ethyl acetate/MeOH (1:1):10% as eluent.  
 

3.1.5 Synthesis of L3 

 
Dimethyl iminodiacetate (1 mL, 6 mmol) and IPTES (1 mL, 5 mmol) were 

dissolved in 5 mL of dry toluene under N2 atmosphere. DIPEA (5 mmol) was 
added to the reaction mixture and refluxed overnight under N2 atmosphere. The 
mixture was then cooled to room temperature and an extraction with a mixture 
of brine water/toluene 1:1 was carried out three times. The combined organic 
part was dried over Na2SO4 and then evaporated under reduced pressure in the 
rotary vapour, yielding a yellow liquid.  

The synthetic routes carried out are schematized in Figure 3.  
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Figure 3. Synthetic pathway for the three organosilane derivates 

3.2 Synthesis of SiO2 nanoparticles (SNPs) (Paper I) 

 
The synthesis of SNPs was carried out following an optimized Stöber 

procedure (Effati and Pourabbas, 2012). Among the different synthesis 
methods for SNPs, Stöber synthesis (Stöber et al., 1968) has been regarded as 
one of the simplest and most effective methods, leading to spherical and 
narrow dispersed silica nanoparticles. The method allows tuning of the reaction 
parameters. In a typical Stöber procedure, a solution of 9.5M H2O and 0.9M 
NH4OH (25%) was prepared in 200 mL of ethanol and heated at 65°C under 
N2 atmosphere. Tetraethyl ortosilicate (TEOS) (11.16 mL) was added dropwise 
under vigorous stirring. The reaction was stirred for 1 hour and afterwards the 
mixture was centrifuged at 10000 rpm for 10 minutes and washed 3 times with 
20 mL of distilled H2O and 2 times with 20 mL of ethanol. As a final step, the 
nanoparticles were dried under N2 atmosphere at room temperature with the 
help of a Schlenk line.  
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3.3 Synthesis of Fe3O4 MNPs (Paper II) 

 
There are several methods regarded in literature for the synthesis of 

magnetic nanoparticles, such as microemulsion (Chin and Yaacob, 2007),    
sol-gel synthesis (Albornoz and Jacobo, 2006), sonochemical reactions             
(Hee Kim et al., 2005), hydrothermal reactions (Wan et al., 2005), hydrolysis 
and thermolysis of precursors (Kimata et al., 2003), flow injection         
(Salazar-Alvarez et al., 2006), electrospray synthesis (Basak et al., 2007) and 
obtaining as by-product in the synthesis of alkali iodides (Pogorilyi et al., 
2014) . However, the most common method for preparation of magnetite 
MNPs is probably the chemical coprecipitation of iron salts (Martínez-Mera et 
al., 2007, Qiu et al., 2005). This technique is probably the simplest and most 
efficient chemical pathway to obtain MNPs.  Iron oxides are generally 
prepared by addition of a strong base to a stoichiometric mixture of ferrous and 
ferric salts in aqueous medium.  

In this work, MNPs were prepared by co-precipitation from a stoichiometric 
solution of iron (II) and iron (III) chlorides with ammonia in N2 atmosphere.  

 

3.4 Synthesis of SiO2 coated -Fe2O3 core-shell MNPs (Paper II) 

 
A modified Stöber procedure previously reported in literature         

(Abbas et al., 2014) was followed in this case for the encapsulation of        
Fe3O4 MNPs into a protective layer of SiO2, creating  highly stable core-shell 
NPs. For this, 100mg of the previously synthesized Fe3O4 MNPs were 
dispersed in 32 mL of miliQ water and sonicated for 20 minutes. Then, this 
dispersed solution was mixed with 160mL of ethanol while slowly adding 4 
mL of NH4OH 25%. After this, 1.6 mL of TEOS were added dropwise, 
achieving a SiO2:FeOx molar ratio of 6:1. This mixture was stirred for 20 hours 
and after that, the core-shell -Fe2O3@SiO2 NPs were separated from the 
solution via magnet. They were washed three times with 25 mL of distilled 
H2O and twice with 25 mL of ethanol and dried under N2 atmosphere.  
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3.5 Synthesis of organic ligand grafted SiO2 NPs and organic 
ligand grafted core-shell -Fe2O3@SiO2 MNPs (Paper I & II). 

 
100 mg of SiO2 NPs were dispersed in 10 mL of dry toluene.                

To this dispersion, the organic reagents L1, L2 and L3 were added             
(0.06 mmol). The reaction mixture was refluxed overnight under N2 
atmosphere. The resulting hybrid NPs were centrifuged at 10000 rpm for 10 
minutes and washed 3 times with 20 mL of toluene and twice with 20 mL of 
ethanol. Finally, the NPs were dried under N2 atmosphere in the Schlenk line.  

For the core-shell -Fe2O3@SiO2 NPs a similar procedure was followed, but 
only with L3 as it showed to be the most efficient for REE uptake according 
the investigations carried out in Paper I. In this case, 1.2 g of -Fe2O3@SiO2 
were dispersed in 20 mL of anhydrous toluene. To this dispersion,                  
L3 (100 mg, 0.62 mmol) was added. The reaction mixture was refluxed 
overnight under N2 atmosphere. After the reaction, the ligand grafted -
Fe2O3@SiO2 NPs were washed for 3 times with 25 mL of toluene and twice 
with 25 mL of ethanol. As a last step, the NPs were dried under N2 atmosphere 
in the Schlenk line.  
 

3.6 Leaching test over acidic media of -Fe2O3@SiO2 NPs 

 
It is very important for industrial purposes that the synthesized core-shell 

iron oxide MNPs are resistant under acidic conditions for the repetition of the 
RE separation. The release of RE is usually carried out in acidic media, so it is 
necessary to achieve highly stable particles. Therefore, leaching tests for         
-Fe2O3@SiO2 NPs were carried out with a solution of 0.1M HNO3 containing 
0.5% of KSCN. When Fe3+ is released to the solution in acid media, it would 
form a complex with thiocyanate and therefore give a red coloration to the 
solution which would be proof of Fe3+ leaching from the particles       
(equations 1 and 2). 

 

ଶܱଷ݁ܨ ൅ ଷܱାܪ6 → ଷା݁ܨ2 ൅  ሺ1ሻ							ଶܱܪ9

ଷା݁ܨ 	൅	ܵିܰܥ 	→  ሺ2ሻ				ሻ݀݁ݎ݋݈݋ܿ	݀݁ݎሺ	ሻଶାܰܥሺܵ݁ܨ	
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3.7 Synthesis of molecular model compounds (IDA-RE3+) 
(Paper II) 

 
100 mg of IDA (0.75 mmol) were dissolved in 5 mL of distilled H2O.  

To this solution, 0.75 mmol of RE(NO3)3 were added and stirred overnight. 
The resulting solution was left for crystallization in open air for a week.       
The concentration of solutions by evaporation produced syrup-like media from 
which some clashes of needle-shaped crystals were slowly formed on further 
drying. 
 

3.8 REE uptake and release studies on ligand grafted SiO2 and 
Fe2O3@SiO2 NPs (Paper I & II) 

 
3.8.1 Static adsorption studies  

 
As stock solutions, 0.025M RE(NO3)3 solutions were prepared                

(RE = Dy, Nd for SiO2 NPs; RE = Dy, Nd, La, for -Fe2O3@SiO2 NPs).        
To 50 mg of organic ligand NPs (either SiO2 NPs or -Fe2O3@SiO2 NPs),        
a calculated amount of Ln(NO3)3 (corresponding to twice the quantity of matter 
of the ligand grafted to the surface of the NPs –according to TGA results-) was 
added. NaNO3 1M was added up to a final concentration of 0.1M in a total 
volume of 20 mL, which was completed with miliQ water. The mixtures were 
then sonicated for a couple of minutes in order to disperse the NPs in the 
solution and they were left in static conditions for different times (2, 8, 24 and 
48 hours). After the corresponding time, the mixtures were centrifuged at 
10000 rpm for 10 minutes in the case of SiO2 NPs. In the case of                     
-Fe2O3@SiO2 NPs, the NPs were separated from the solution via magnet.    
The NPs were washed once with 20 mL of distilled water and both the first and 
the washing solutions were collected in an Erlenmeyer and the solid sorbent 
was dried under N2 atmosphere at room temperature.  

 
In the case of -Fe2O3@SiO2 MNPs, also binary mixtures of REE           

(La-Dy and Nd-Dy) in a molar ratio of 1:1 were tested for selectivity studies.  
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3.8.2 Dynamic adsorption studies 

 
The same procedure as explained in 3.6.1 was followed, with the only 

difference that the mixtures containing the NPs and the REE salts were mixed 
in an orbital shaker at 130 rpm for different times (2, 8, 24 and 48 hours).  

 

3.8.3 Desorption studies 

 
30 mg of NPs bearing trivalent RE cations adsorbed according the 

procedure above explained, were put in contact with 5 mL of HCl 1M and      
15 mL of miliQ water, resulting in a mixture with a pH=1. This mixture was 
shaken on the orbital shaker at 130 rpm for 24 hours, and the particles were 
separated from the solution via centrifugation (10000 rpm during 10 min) or 
via magnet depending on whether we were working with magnetic or non-
magnetic NPs. The collected solutions needed to be neutralized in order to be 
able to perform complexometric titrations on them, so evaporation and 
redilution with distilled water was carried out until pH= 6.  

 

3.8.4 Complexometric titrations of RE (Dy3+, Nd3+, La3+)  in mother liquor over 
organic ligand-grafted NPs 

 
The collected solutions in the adsorption studies were titrated with EDTA 

tetrasodium salt 5 mM using xylenol orange as indicator. EDTA complexates 
with RE trivalent cations in a 1:1 ratio, therefore the amount of RE cations 
adsorbed to the surface of the NPs can be calculated by substraction, since the 
initial amount put in contact with the NPs was a known amount, and the 
remaining amount in solution is what is determined by titration.             
Xylenol orange is an organic reagent, frequently used as a tetrasodium salt as 
an indicator for metal titrations. It appears red in the titrand and yellow once 
the titration reaches its endpoint. Its optimum working pH is around 5.5.  
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3.9 Materials characterization  

 
Several techniques have been used in order to check the purity of the 

synthesized organic ligands, their effective grafting onto the surface of the 
NPs, the morphology of the adsorbents and their uptake and release capacity 
towards REE.  

 

3.9.1 Solution 1H-NMR and 13C-NMR for the organic reactants (Paper I) 

 
Solution 1H-NMR and 13C-NMR spectra of the organic reactants and the 

intermediates were recorded on a Bruker Avance spectrometer, operating at 
600 MHz in the case of 1H-NMR and 150 MHz in the case of 13C-NMR. 
CDCl3 was used as solvent and tetramethylsilane (TMS) as internal standard. 
The spectra were recorded at 25°C, coupling constants (J values) are given in 
Hz and chemical shifts are given in parts per million (ppm).  

 

3.9.2 Solid state 29Si and 13C NMR for the ligand grafted SiO2 NPs (Paper I) 

 
Solid state NMR analysis was performed in order to confirm the grafting of 

the organic ligand onto the surface of the NPs. For technical reasons, the 
analysis was carried out only on non-magnetic SiO2 NPs and the obtained 
results were taken as models for the studies carried out in paper II.            
These analyses were carried out at the Aveiro Institute of Materials, CICECO, 
at the University of Aveiro (Portugal). The solid state 29Si{1H} magic-angle 
spinning (MAS) cross-polarization (CP) NMR and the 13C{H} CP/MAS NMR 
spectra were recorded on a Bruker Avance III 400 (9.4 T) spectrometer at 
79.49 and 100.62 MHz respectively. 29Si{1H} MAS NMR spectra were 
recorded with 2.8s 1H 90° pulses, a contact time of 8 ms and a recycle delay 
of 5 s. The spinning rate was 9.0 kHz and high-power 1H decoupling was 
applied during acquisition. The details of the followed method for this work 
were previously reported in the literature (Pines et al., 1973). Chemical shifts 
are given in ppm from tetramethylsilane (TMS).  
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3.9.3 Nitrogen sorption for Specific Surface Area (SSA) analysis (Paper I) 

 
Specific surface area of the synthesized SiO2 NPs was measured using 

nitrogen sorption at 77 K on a Quantachrome Autosorb I apparatus at the 
ENSCCF, Institute de Chimie in Clermont University, Clermont-Ferrand, 
France. The linear portion (P/P0= 0.05-0.3) of the Brunauer-Emmet-Teller 
(BET) model (Brunauer et al., 1938) was used for the calculation of SSA. 
Microporous surface area was estimated by the t-plot method.  

 

3.9.4 Thermal analysis (Paper I & II) 

 
Thermogravimetric analysis (TGA) was used in order to determine the 

amount of organic ligand chemically grafted onto the surface of the NPs.      
The analysis was carried out using a Perkin-Elmer Pyris 1 Instrument under 
oxygen atmosphere at a heating rate of 5°C/min in the interval of 25-600 °C.  
 

3.9.5 Particle size distribution and surface charge analysis (Paper I) 

 
The particle size distribution in solution was determined by nanoparticle 

tracking analysis, which is based on the Brownian motion of SiO2 and ligand 
grafted SiO2 NPs in solution. The measurements were carried out in a 
NanoSight 300 instrument.  

Surface charge of SiO2 and ligand grafted SiO2 NPs was evaluated by         
-potential measurements, performed in a Malvern ZetaSizer instrument at 
pH= 6.5.  
 

3.9.6 Photoluminescence studies of ligand grafted SiO2 NPs bearing RE 
trivalent cations (Paper I) 

 
Photoluminescence (PL) of the nanoadsorbents after adsorption of RE 

constitutes a proof of adsorption, and therefore PL was studied on the organic 
ligand grafted SiO2 NPs after adsorption of RE in solution. The measurements 
were carried out at the National Institute for Laser, Plasma and Radiation 
Physics in Bucharest, Romania, using a Fluoromax 4 spectrofluorimeter 
(Horiba) operating in both fluorescence and phosphorescence modes.           
The repetition rate of the xenon flash lamp was 25 Hz and the integration 
window varied between 0.1 and 0.5 s. The slits were varied from 5 to 29 nm 
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for excitation and from 1 to 5 nm for emission measurements. Time Resolved 
Emission Spectra (TRES) were recorded at 300 K using a tunable wavelength 
(from 210 to 2300 nm). The excitation light source was a NT340 Series 
EKSPLA OPO (Optical Parametric Oscillator) operated at 10 Hz and the 
detection system consisted on an intensified CCD (iCCD) camera           
(Andor Technology) coupled to a spectrograph (Shamrock 303i, Andor).  
TRES were collected using the car box technique. The gain of the            
micro-channel plate (MCP) varied from 30 to 100, depending on the intensity 
of the luminescence. PL was detected in the spectral range of                         
400 nm < em < 900 nm with a spectral resolution varying from 0.05 to 0.88 
nm. The delay after the pulse varied from 1 to 500 s, and 100 to 300 
accumulations per laser pulse were used depending on the signal to noise ratio. 
The near-infrarred emission experiments had a setup consisting on a Jarell-Ash 
monochromator, S1 photomultipliers, Ge photodiodes and a Lock-in amplifier 
on line with a computer and excited with an OPO Rainbow-VIR/S laser at 592 
nm.  
 

3.9.7 IR spectroscopy (Paper I & II)   

 
The surface of the nanoadsorbents was studied by Fourier-transform 

infrared (FTIR) spectroscopy, which provides information about the chemical 
bonds in the surface of the material and therefore, together with solid state 
NMR , is a  powerful technique for confirming the efficient grafting of the 
organic ligands onto the surface of the NPs. The spectra were recorded as KBr 
pellets on a Perkin-Elmer Spectrum 100 instrument. 
 

3.9.8 SEM and TEM microscopy (Paper I & II) 

 
Surface morphology of the produced nanomaterials was studied by 

Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy 
(TEM). For the nanoadsorbents after adsorption of RE, the surface composition 
was analysed by Energy Dispersive Spectroscopy (EDS) coupled to the SEM 
instrument.  

TEM analyses were performed with a JEOL brand JEM 2100F model 
transmission electron microscope operating at 200 kV. The samples (about 
1mg/mL) were prepared in an ethanol solution, dropped onto a carbon-copper 
grid and dried at room temperature.  
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SEM-EDS studies were carried out in a Hitachi TM-1000--DEX scanning 
electron microscope. For each sample, 9 different points were measured by 
EDS in area mode, at x500, x5000 and x10000 magnification, from which the 
average value was calculated and reported as relative content of elements.  
 

3.9.9 X-ray diffraction (Paper I & II)  

  
X-ray powder diffraction (XRD) experiments were carried out with a 

multipurpose Bruker SMART Apex II-Instrument. The background 
substraction and the identification of the patterns were made using Bruker 
EVA-12 program.  

 
Data collection for single crystal of the molecular model compounds (IDA-

RE3+) was carried out at room temperature using  MoKradiation                    
( = 0.71073 Å) with a Bruker SMART Apex-II CCD Difractometer.           
The structures were solved by direct methods. The positions of metal atoms 
were identified from the initial solution and all other non-hydrogen atoms were 
located in difference Fourier syntheses. All non-hydrogen atoms were refined 
first in isotropic and then in anisotropic approximation. Positions of the 
hydrogen atoms were calculated geometrically for the NH2

+ groups and        
CH2- fragments, while the hydrogen atoms and the oxygen atoms of the water 
molecules were found in difference Fourier syntheses.  
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4 Results and Discussion 

4.1 Solution 1H-NMR and 13C-NMR for the organic ligands and 
the intermediates (Paper I) 

 
One of the main objectives of Paper I was to successfully synthesize hybrid 

nanoadsorbents consisting on SiO2 NPs grafted with three different 
organosilane derivates. These non-magnetic hybrid nanoadsorbents would be 
used as models for adsorption for the studies carried out in Paper II with 
magnetic nanoadsorbents. 

Therefore, one of the most important first steps was the synthesis of the 
organic reactants for grafting of the ligands and for that, 1H-NMR and         
13C-NMR of the obtained products constituted a powerful technique in order to 
confirm the efficiency and purity of the synthesis. These analyses were carried 
out for the final products but also for the synthesized intermediates, in order to 
make sure that the final reaction was performed under the best possible 
conditions. Figures 4 to 8 show the 1H-NMR and 13C-NMR spectra of the 
synthesized compounds. The corresponding molecule structure is plotted in 
each spectrum, with the characteristic chemical shift of each proton/carbon.  

 

Figure 4. 1H-NMR of Dimethyl iminodiacetate (600 MHz, CDCl3) 
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Figure 5. 1H-NMR (A) and 13C-NMR (B) of Ligand1 (600 MHz, CDCl3) 
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Figure 6. 1H-NMR of pyridine-2,6-dicarbonyl dichloride (600 MHz, CDCl3) 
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Figure 7. 1H-NMR (A) and 13C-NMR (B) of Ligand 2 (600 MHz, CDCl3) 
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Figure 8. 1H-NMR (A) and 13C-NMR (B) of Ligand 3 (600 MHz, CDCl3) 
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4.2 Confirmation of ligand grafting onto the surface of the NPs 

4.2.1 Solid state 29Si and 13C NMR for ligand grafted SiO2 NPs (Paper I) 

 
The functionalization of SiO2 NPs has been confirmed by solid-state        

13C and 29Si cross-polarization magic-angle spinning (CP-MAS) NMR (Fig.9).  
Regarding 13C-NMR spectra, for the NPs functionalized with L1, there are 

two characteristic signals attributed to carbonyl (C=O) groups. The first one, at 
170.9 ppm (marked as d in Fig 9) corresponds to the urea group, and the 
second one, found at 159.2 ppm (f) is assigned to the ester group. All of the 
other remaining peaks ranging from 50.8 to 8.3 ppm are attributed to aliphatic 
carbons. It is important to note that the ester methyl groups from L1 and L3 
were apparently removed in the process of functionalization, leaving the 
iminodiacetic acid functions unprotected and able to bind to the RE3+ cations. 

The NPs functionalized with L2 possess a characteristic carbonyl group 
which resonates at 164.3 ppm (d) and the rest of the obtained peaks correspond 
to the alkyl chain carbons.  

  For L3 grafted SiO2 NPs, the characteristic carbonyl peak can be observed 
at 171.9 ppm (e).  

It can be observed in all spectra that despite the thorough washing of the 
NPs, there is still quite a lot of ethanol remaining, but the results are in good 
agreement with the expected effective grafting of the NPs surface.  

 
Regarding the 29Si CP-MAS NMR spectra, the three studied materials 

present several peaks which can be assigned to Qn and Tn local environments, 
respectively, Si(OH)(4-n), (OSi)n and RSi(OH)(3-n)(OSi)n (Fig 10)                
(Peng et al., 2005, Sharma and Sharma, 2014)  

The peaks at -102 and -110 ppm are assigned to the silica network (Q3 and 
Q4 respectively). A weak shoulder at ca. -92 ppm which indicates the presence 
of some Q2 environmentes can be observed. For the NPs functionalized with 
L2, resonances at ca. -68 and 56 ppm can be also observed, the latter one 
exhibiting a shoulder at ca. -49 ppm, which are assigned to T3, T2 and T1 sites 
respectively. The NPs functionalized with L3 present some weaker T3 and T2 
peaks, while for the L1 grafted SiO2 NPs, only some raised background can be 
observed in the T3 region.  

 
These results provide strong proof of the effective chemical bonding of the 

synthesized organic ligand with the surface of the SiO2 NPs.   
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Figure 9. 13C CP-MAS NMR and 29Si CP-MAS NMR spectra of the functionalized SiO2 NPs. 

 
 

Figure 10. Qn type (Q4, Q3, Q2) and Tn type (T3, T2,T1) Si local environments 
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4.2.2 FTIR spectroscopy (Paper I & II) 

 
FTIR spectroscopy was also used as a powerful tool to confirm the grafting  

of the organic ligands to the surface of the NPs, since FTIR provides 
information about the chemical bonds in the surface.  
 

Ligand grafted SiO2 NPs (Paper I) 

The FTIR spectra (Fig. 11) of the pure SiO2 NPs show several characteristic 
peaks. The peak found at 1100 cm-1 (which is saturated in order to permit 
better resolution) corresponds to asymmetric stretching vibration of Si-O-Si. 
The peaks observed at 956, 800 and 464 cm-1 belong to stretching vibration of 
Si-OH, symmetric stretching vibration of Si-O-Si and bending vibration of Si-
O-Si, respectively. The peaks at 3300 and 1635 cm-1 are attributed, 
respectively, to the stretching and bending absorption by water and hydroxyl 
groups (Silverstein RM, 1981).  

Agreeing with the expectations, when organic ligands were grafted onto the 
surface of SiO2 NPs, new peaks could be observed in the spectra.                  
For instance, in the spectrum A1, two stretching vibrations of the carbonyl 
group appeared at 1702 and 1635 cm-1. The peak at 1448 cm-1 is attributed to 
bending vibrations of the NH group present in the molecule of Ligand 1. When 
lanthanides are complexed with this nanoadsorbent (blue and pink lines), it can 
be observed that the two carbonyl stretching frequencies are shifted to lower 
wavenumbers, at 1697 and 1629 cm-1.  

In B1 spectrum, the characteristic peaks of the molecule of Ligand 2 can be 
identified. The peaks found at 1664, 1546 and 1448 cm-1 correspond to 
vibrations of (C=O), (C=C) bonds in the pyridine ring and (C-N-H) group, 
respectively. After complexation with lanthanides (spectrum B2), again it can 
be observed that the frequency of C=O stretching was shifted to lower 
frequencies.  

In C1 spectrum, we can observe the stretching frequency of the carbonyl 
fragment of the ester group, characteristic of the ligand 3 molecule, at           
1748 cm-1, whereas when complexation with lanthanides occurs, this vibration 
is shifted to lower frequencies.  
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Figure 11. FTIR spectra of the synthesized ligand grafted nanoparticles. Comparison between 
pure SiO2 NPs and ligand-grafted NPs (left) and comparison between ligand-grafted NPs with and 
without adsorbed lanthanides (right).  
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Ligand grafted magnetic -Fe2O3@SiO2 MNPs (Paper II) 

 
The surface of magnetic -Fe2O3@SiO2 NPs was functionalized with 

organic ligand 3 (IDA-derivate ligand) and FTIR was used to confirm the 
efficient grafting (Fig. 12). A strong absorption band at 578 cm-1 which 
belongs to a characteristic band of Fe-O stretching vibrations in FeOx NPs can 
be observed. The bands observed at 3400 and 1635 cm-1 can be attributed to 
the stretching and bending vibrations of the O-H bond coming from the 
residual water in the sample. After covering the NPs with a protective layer of 
silica, some characteristic bands, such as asymmetric stretching vibration of Si-
O-Si, stretching vibration of Si-OH, symmetric stretching vibration of Si-O-Si 
and bending vibration of Si-O-Si appeared at 1096, 956, 800 and 464 cm-1 
respectively.  

Fe-O stretching vibration band is shifted to lower frequencies (562 cm-1) 
after surface functionalization with ligand 3, and new bands appeared at     
1733 cm-1, which belongs to the C=O fragment of the carboxylic group, 
proving the covalent bond between the organic ligand and the surface of the 
NPs.  

 

 

 
 

 

 

 

 

 

 

Figure 12.FTIR spectra of the Fe3O4, -Fe2O3-SiO2, -Fe2O3-SiO2-IDA (above) and -Fe2O3-SiO2-
RE3+ in comparison with -Fe2O3-SiO2-IDA NPs (below) 
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4.2.3 Thermo-gravimetric analysis (TGA) (Paper I & II) 

 

Ligand grafted SiO2 NPs 

 
Thermo-gravimetric analysis was performed on all the synthesized 

nanoadsorbent as another confirming technique of the surface functionalization 
but as well as a quantitative technique in order to determine the amount of 
organic ligand grafted onto the surface. The analyses were performed in the 
range from 25 to 600 °C. Thermal curves for L1, L2 and L3 grafted SiO2 NPs 
are shown in Figure 13. The presence of water and alcohol molecules adsorbed 
is visible in all three samples, which leads to a loss of around 5.2 to 6% in the 
range of 20 to 200 °C. Between 200 and 600 °C, the molecules of L1, L2 and 
L3 were decomposed (with a maximal decomposition speed at around 400 °C 
for all of them). The weight loss in this range was 6.41, 9.16 and 6.78% for L1, 
L2 and L3 respectively.  

 

Figure 13. TGA curves of SiO2-L1 (a), SiO2-L2 (b), and SiO2-L3 (c) NPs 
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Ligand grafted magnetic -Fe2O3@SiO2 MNPs (Paper II) 
 

TGA curve (Fig 14) shows that the mass loss occurs in three major steps: A 
first step probably related to the evaporation of surface adsorbed solvents   
(water, ethanol and toluene) can be observed in the range from 25 to 150 °C and 
leads to a loss of 5.2%. The second decomposition step occurs in the interval 
from 220 °C to 400 °C after a plateau where the material is thermally stable. 
This second step produces a weigh loss of 4.4% and it’s associated with the 
thermal destruction of the ligand. The weight loss continues slowly after this 
second step with an additional release of a 1.2%, which most likely corresponds 
to the cracking of the residual surface alkyl siloxane species                    
(Gonzaga et al., 2009) 

 
Figure 14. TGA curve for-Fe2O3-SiO2-L3 NPs 
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4.3 Surface morphology and composition (SEM and TEM 
microscopy) (Paper I & II) 

4.3.1  SiO2 NPs and ligand grafted SiO2 NPs (Paper I) 

 
Stöber method, which was used in this work to synthesize spherical        

SiO2 NPs, allows tuning the reaction parameters in order to vary the final 
particle size. For our purposes, it was important to have small particles, since 
they lead to a material with a higher surface area and therefore possibility to 
bind a higher amount of organic ligand onto the surface. Several attempts with 
different solution concentrations and different temperatures were made in order 
to control the size of the final material. The aim was to obtain particles below 
100 nm but not smaller than 60 nm since a smaller size would make 
luminescence detection more difficult.  

Table 1 shows the different synthesis conditions performed and the average 
particle size of the final material. As it can be seen, method II leads to         
SiO2 NPs with an average diameter of 75 nm, which is perfectly suitable for 
our purposes. 

Table 1. Different experimental conditions for the synthesis of SiO2 NPs and final average size 

 
Fig 15. shows the SEM image (x10000 magnification) of the SiO2 particles 

synthesized by Method I, while in  Fig. 16, the HR-TEM images of SiO2 NPs 
prepared via the method II can be observed in A,C, E and F. The histograms in 
B and D show the size distribution of SiO2 NPs calculated from the images     
A and C. Both histograms are coherent and show that the obtained particles are 
monodisperse and with an average diameter of 75 nm (± 15 nm).  
  

No H2O EtOH [NH4OH] [TEOS] Temp. Hour Part.Size 

I - 40mL 6.75 M 0.29 M 25°C 2 600 nm 

II 9.5M 200mL 0.5 M 0.25 M 65°C 1 75 nm 
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Figure 16. HR-TEM images of SiO2 NPs (A, C, E and F) and particle size distribution histograms 
(B and D) 

Figure 15. SEM image (magnification x10000) of 
SiO2 particles synthesized via Method I 
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After adsorption of RE3+ cations by ligand grafted SiO2 NPs, the 
morphology of the materials was studied by SEM (Figure 17), showing that 
they conserve their uniformity even on the micrometer scale.  

  

Figure 17. SEM images of a)SiO2-L1-Dy3+ b) SiO2-L2-Dy3+, c) SiO2-L3-Dy3+, d) SiO2-L1-Nd3+ 
e) SiO2-L2-Nd3+ f) SiO2-L3-Nd3+ 
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4.3.2 Ligand grafted magnetic -Fe2O3@SiO2 MNPs (Paper II) 

 
In this case, as in the synthesis of SiO2 NPs, two different reaction 

conditions were tested in order to achieve core-shell NPs with an optimal size 
for adsorption purposes. These two experimental conditions are shown in   
Table 2. 

 
 

No Fe3O4 
(mmol) 

H2O 
(mL) 

Ethanol 
(mL) 

NH4OH 
(mmol) 

TEOS 
(mmol) 

Hours 
(h.) 

Particle 
Size (nm) 

I 0.4 - 40 270 11.8 2 800 
II 0.4 32  160 53.4 7.0 20 100 

Table 2. Reaction parameters for the synthesis of -Fe2O3-SiO2 NPs and the obtained average 
final size 

Figure 18A shows the HR-TEM images of the NPs synthesized under 
method II conditions, showing particles with an average diameter of 100 nm 
(±15 nm). These images also show the uniform coating achieved with Stöber 
method, with the formation of a silica layer of approximately 25 nm            
(Fig. 18B). The fringes can easily be seen at higher resolution (Fig. 18C) and 
indicate a crystalline form of iron oxide with cubic spinel structure. Fig 18D 
shows the mapping of Fe (green) and Si (red) elements, revealing that the silica 
layer emerges around aggregates of iron oxide nanoparticles.  

 
Figure 18.HR-TEM images of -Fe2O3-SiO2 NPs (scale bar: 100, 20 and 5 nm for A, B and C 

respectively). Image D shows the EF-TEM mapping 
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4.4 Stability of -Fe2O3-SiO2 NPs. Leaching test (Paper II) 

 
In order to confirm the stability of the synthesized core-shell NPs under 

acidic conditions, a simple leaching test with a solution of HNO3 0.1M 
containing a 0.5% of KSCN was carried out as explained in Section 3.6.  

The long-term high stability of the core-shell MNPs synthesized via   
Method II is quite noteworthy and can be observed in Fig. 19B.                      
For comparison, another batch of core-shell MNPs which were synthesized by 
different reaction parameters and were not stable under acidic conditions is 
shown in the same image. When Fe3+ releases from the core of the NPs and 
forms a complex with thiocyanate, it gives rise to a dark red coloration of the 
solution, indicating the leaching of iron.  

Fig. 19 also shows that after the encapsulation of Fe3O4 MNPs with SiO2, 
the material turned brownish and became dark beige after the surface 
functionalization with the IDA-derivate ligand. A previous study showed that 
the SiO2 encapsulation of Fe3O4 MNPs leads to a quantitative oxidation of 
Fe3O4 to -Fe2O3 without significant loss in magnetic properties          
(Pogorilyi et al., 2014) 

 
Figure 19. A: Difference in colours of the MNPs after different chemical treatment; B: Leaching 

test of the synthesized -Fe2O3-SiO2 NPs; C: Magnetic removal of -Fe2O3-SiO2 NPs 
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4.5 RE3+ Adsorption kinetic curves 

4.5.1 Ligand grafted SiO2 NPs (Paper I) 

The kinetic curves obtained by complexometric titration as explained in 
section 3.8 show a quick achievement of the lanthanide adsorption equilibria, 
reaching over a 75% of the total capacity in less than 1h (Fig. 20).                   
A quicker and higher uptake capacity can be observed for SiO2 NPs 
functionalized with ligand 3, showing an uptake of 0.19 mmol Dy3+/g and   
0.12 mmol Nd3+/g in 2 hours. The uptake capacity is, in this case, very 
reasonable for a static sorption process, resulting in an efficient material 
comparable to ion-exchange resins (El-Sofany,2008, Texier et al.,1999).       
For industrial purposes, usually an uptake capacity of 30mg/g or higher is 
required. In this work, this limit has been reached and surpassed, at least for 
Dy3+ with a capacity of 0.19 mmol Dy3+/g, equivalent to 30.9 mg Dy3+/g.  

 
Figure 20.Kinetic adsorption curves for Dy3+ and Nd3+ on ligand grafted SiO2 NPs. 
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4.5.2 Ligand grafted -Fe2O3-SiO2 MNPs 

The kinetic curves for these nanoadsorbents show as well a quick 
achievement of the adsorption equilibria (Fig. 21), reaching in the three 
investigated cases (Dy3+, Nd3+ and La3+) more than 65% of the maximum 
uptake in 2 hours.  

Uptake capacity is, for the three RE cations very reasonable and effective. 
The best uptake capacity is displayed towards Dy3+ cations, with a maximum 
uptake of 0.25 mmol Dy3+/g (equivalent to 40 mg Dy3+/g), whereas the 
maximum uptake for Nd3+ is 0.23 mmol Nd3+/g (equivalent to 33.6 mg Nd3+/g) 
and 0.20 mmol La3+/g (equivalent to 27.8 mg La3+/g) in the case of La3+.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21.Kinetic curves of  Dy3+, Nd3+ and La3+ static sorption process on -Fe2O3-SiO2-L3 NPs 
(mmol RE3+/g in black and mg RE3+/g in blue) 
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4.6 Desorption and selectivity studies (Paper I & II) 

 
Desorption efficiency under acidic conditions (HNO3 1M) of the 

nanoadsorbent materials bearing RE3+ was tested. Table 3 shows the achieved 
percentage desorbed into solution, showing a high efficiency in the process, 
with more than 80% desorbed in all cases and in most of them well over 90%.  

Table 3. Desorption efficiency for different materials bearing RE3+ cations 

Sample Percentage desorbed (%) 

SiO2-L3-Dy3+ 83 

SiO2-L3-Nd3+ 93.1 

-Fe2O3-SiO2-L3-Dy3+ 91.3 

-Fe2O3-SiO2-L3-Nd3+ 98.4 

-Fe2O3-SiO2-L3-La3+ 93.9 

 

In the case of -Fe2O3-SiO2-L3 MNPs, the amount of RE ions adsorbed was 
comparable but distinctly different, with a higher capacity towards heavier 
REE with smaller ionic radius. This indicated the possibility of selective 
adsorption in complex solutions. In order to investigate this, experiments of 
adsorption with binary mixtures (La-Dy and Dy-Nd) were performed.          
The particles saturated with RE cations were afterwards subjected to 
desorption processes at pH= 3.0 and pH= 1.0. The different metal ratios 
obtained under these two desorption conditions are summarized in Table 4.  

Table 4. Capacity and selectivity in adsorption and desorption of RE cations 

 Dy:Nd ratio Dy:La ratio 

Particles obtained after 
adsorption at neutral pH 

3.9 : 1 4.2 : 1 

Particles obtained after 
desorption at pH=3 

5.9 : 1 81 : 1 

Particles obtained after 
desorption at pH=1 

1.3 : 1 1.8 : 1 

Total uptake capacity (mmol 
RE3+/g) 

0.242 0.275 
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These results provide proof of a quite appreciable selectivity towards Dy3+, 
especially in the case of desorption at pH=3.0 from La-Dy binary mixture.    
The enrichment factor in adsorption for both Dy-Nd and Dy-La binary 
mixtures are quite close to that observed for La-Dy binary mixture reported in 
parallel with us by Binnemans and co-workers (Dupont et al., 2014).  
 

4.6.1 Molecular insights into the observed selectivity (Paper II) 

 
The molecular models, synthesized as explained in section 3.7 were studied 

by single crystal X-Ray diffraction. The composition of the surface complexes 
is M : L = 1 : 1. The analysis showed a flat layer coordination but with a 
remarked different coordination number depending on the REE studied      
(Fig. 22) 

 
Figure 22. Structures of 2D coordination polymers as models for binding the REE in the surface 

layers with covalently grafted IDA molecules 

The distances between the N-atoms attached to the siloxane centers vary 
depending on the REE, being 4.9Å for La, 5.7Å for Nd and 6.4 Å for Dy.        
In the view that, as reported in a previous study (Seisenbaeva et al., 2015), the 
distance between the Si-centers is at least 8.68Å, the reasons for the observed 
selectivity towards Dy3+ in Dy-La case are apparent.  
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4.7 Testing on real solutions. Industrial Leachate from Fen 
Minerals.  

 
The final aim of these magnetic silica based nanoadsorbents is to be able to 

apply them in a real industrial process of extraction and separation of REE. 
The work showed so far dealt with prepared model solutions, but the study of 
its applicability to real situations is one of the main targets of the project. 
Therefore, there is a collaborative network between research institutions and 
mining companies within the project, and some testing of the magnetic silica 
based nanoadsorbents on industrial leachate solutions has already started and is 
ongoing.  

A leachate solution from the existing ore in Rødberg (Norway) was 
provided by Fen minerals. The leachate contained approximately a 70% of Ca 
and a 9% of Fe. The REE content was around 2%, assuming that Lanthanum 
and Cerium constitute 70% of the total REE amount.  

The high content in calcium and iron constitutes a great challenge for 
selective and effective uptake of REE, which is why a chemical pre-treatment 
of the solution was carried out. This pre-treatment is summarized in Fig. 23 
and includes a first step of precipitation of Calcium with ammonium sulfate 
and a further neutralization of the solution.  
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Figure 23. Scheme of the chemical pretreatment performed on the industrial leachate 

 
Preliminary results showed that the pretreatment was well effective, 

obtaining a solution enriched in REE and eliminating most of the elements that 
may hinder the adsorption by magnetic silica nanoparticles. Uptake efficiency 
was also tested and showed to be preliminary reasonable. More detailed results 
can unfortunately not be provided yet due to confidentiality issues and the 
necessity of further work in this area.  
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5 Conclusions  

 
In agreement with the main objectives of this thesis, novel hybrid magnetic 

silica based nanoadsorbents have been synthesized and surface decorated with 
three different organosilane derivates, resulting in a material highly efficient 
for adsorption of REE in solution.  

It has been demonstrated that hybrid SiO2 NPs could be produced in 
reproducible way via surface grafting approach. These hybrid SiO2 NPs were 
used as models for adsorption of REE for the later developed magnetic silica 
based nanoadsorbents. The obtained kinetic curves showed a quick and 
efficient uptake, especially for SiO2-L3 NPs (where L3 was one of the IDA 
derivate ligand) towards Dy3+, in which case the adsorption efficiency was 
comparable to that obtained by ion exchange resins. Furthermore, 
luminescence studies of the hybrid SiO2 NPs bearing RE3+ cations revealed the 
possibility of using them as a luminescent probe to detect Dy3+ and Nd3+ in 
solution.  

The second part of this work demonstrated the advantages of using 
magnetic silica based nanoadsorbents, which awards a much easier removal. 
The organic reactant that proved to be the most suitable and efficient for REE 
adsorption in the first part of the work (Ligand 3) was used in this part to graft 
the surface of core-shell magnetic highly stable -Fe2O3-SiO2 NPs.    
Adsorption efficiency towards RE3+ cations in solution was proved, revealing a 
very reasonable capacity. In this case, desorption efficiency under acidic          
(HNO3 1M) conditions was also tested, achieving more than 95% of desorption 
in most of the tested cases. Selectivity studies with binary RE mixtures were 
performed and showed that the magnetic silica nanoadsorbent exhibits a 
noteworthy selectivity towards Dy3+, especially in the case of Dy-La mixtures 
when they are desorbed at slightly mild conditions (pH=3), with a ratio Dy:La 
of 81:1. This enhanced selectivity was explained from a molecular point of 
view by the aid of single crystal X-ray crystallography. The binding at neutral 
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or weakly acidic conditions occurs apparently not via chelation but via 
concerted action of the negatively charged carboxylate atoms of the anions, 
which opens possibilities for a selective binding and release. It is also worth to 
point out that the obtained magnetic silica based nanoparticles were stable for 
more than a year under acidic conditions, which is very important for industrial 
purposes.  

Lastly, a quick overview of the ongoing work with real industrial solutions 
was presented. Extraction and separation of REE in ore leachates becomes 
challenging since there are many hindering elements together with the REE. 
That is the reason why a chemical pre-treatment of the solution was carried 
out, in order to obtain an enriched solution in REE with which it would be 
easier to perform adsorption by the produced new hybrid nanoadsorbents. 
Preliminary results showed very promising perspectives for the further work 
that will be carried out in this PhD project.  
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6 Future prospects 

 
As it has been proved with this work, magnetic silica based nanoadsorbents 

are very promising for efficient and selective extraction and separation of REE. 
These materials open a wide spectrum of applications and possibilities.        
The future work which will be carried out during the rest of this PhD project 
will be most likely directed to:  

 
 Broadening the organic reactants library, hopefully achieving more 

efficient and selective hybrid nanoadsorbents. 
 

 Optimizing desorption procedures, perhaps trying milder conditions for 
a whole environmentally friendlier process.  

 
 Further and deep work with real industrial leachates, in order to achieve 

a viable selective and efficient extraction from them.  
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