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Genetic characterisation of novel resistance alleles to stem rust and stripe 
rust in wheat-alien introgression lines 

Abstract 
Bread wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) is one of the most important 
food crops world-wide, but is attacked by many diseases and pests that cause significant 
yield losses. Globally, stem rust (Sr) (Puccinia graminis f. sp. tritici Erikss & E. Henning), 
stripe rust (Yr) (Puccinia striiformis Westend. f. sp. tritici Eriks) and leaf rust (Lr) (Puccinia 
triticina Eriks) are a great threat to wheat production. The majority of the Sr, Yr and Lr 
resistance genes are already defeated by numerous virulent races, so enhanced genetic 
resistance against these devastating diseases are essential. Wheat-alien introgressions from 
derivatives of Secale cereale L. (2n = 2x = 14, RR), Leymus mollis (2n = 4x = 
28, NsNsXmXm), Leymus racemosus (2n = 4x = 28, NsXm) and Thinopyrum junceiforme 
(2n = 4x = 28; J1J1J2J2) are important genetic resources for new sources of resistance genes. 
To identify new sources of resistance, this thesis evaluated seedling and adult plant 
resistance to a wide array of stem rust and stripe rust races. Three wheat-rye disomic 
substitution lines 2R (2D) were found to carry new resistance gene/s to stem rust races and 
six multiple wheat-rye introgression lines with 5RS·5AL+4R+6R carried new resistance 
gene/s to stripe rust races. At adult plant stage, the wheat-rye translocation line with 
1BL·1RS and 2RL·2BS exhibited low susceptibility to race TTKSK under field conditions.  

The wheat-rye T2DS·2RL Robertsonian translocation line (TA5094) with a new stem 
rust resistance gene was developed through the breakage-fusion mechanism and verified 
using seedling resistance assays and molecular and cytogenetic analyses. Three kompetitive 
allele-specific PCR (KASP) markers located on rye chromosome 2RL were identified as 
being closely associated with the new stem rust resistance gene. Fluorescence in situ 
hybridisation (FISH) analysis confirmed the resistance gene in F3:4 homozygous lines. The 
stem rust resistance gene in TA5094 line on chromosome 2RL arm was designated Sr59.  

Wheat cultivars, advanced lines and landraces from Tajikistan were assessed at seedling 
and adult plant stages against Sr, Yr and Lr races. Based on multipathotype assessment and 
molecular markers, the presence of Sr6, Sr31/Yr9/Lr26, Sr38/Yr17/Lr37, Yr2 and Yr27 and 
pleiotropic resistance genes Sr57/Lr34/Yr18/ and Sr2/Yr30/Lr27 was postulated.  

Overall, this thesis identified novel genetic resistance resources against stem rust, stripe 
rust and leaf rust in Tajik wheat and in wheat-alien introgressions. This resistance gene/s 
will be useful in diversifying the current set of resistance genes deployed to control these 
devastating diseases. 
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1 Introduction 
The primary goal of plant breeding is to improve global food security for human 
civilisation, fulfilling the needs of both producers and consumers (Fedoroff 2015). 
However, growing threats from climate change, including global warming, places 
pressure on breeders to increase the genetic gain and adaptability of new crop 
cultivars (Steenwerth et al. 2014). Furthermore, world-wide demand for food is 
increasing rapidly due to a rising global population and, as a consequence, the 
competition for arable land for food production is also increasing (Ray et al. 2013; 
Zabel et al. 2014). The ability to meet these demands requires the development of 
modern crop cultivars that are adapted to a range of adverse environmental 
conditions, including production in marginal crop production areas. Therefore, 
breeding will play an essential role in developing modern cultivars that are adapted 
to current and future adverse environments.  

Wheat (Triticum aestivum L., 2n = 6x = 42, ~17 Gb, AABBDD genome) is a 
major cereal crop cultivated world-wide and contributes substantially to human 
daily calories and food security (Braun et al. 2010). Wheat was already cultivated 
about ~10 000 years ago and became domesticated in the Fertile Crescent and 
Mediterranean regions (Feldman and Levy 2015). From that time onwards, farmers 
have continually made selections of the best genotypes, starting with emmer and 
einkorn grasses, for favourable traits such as ease of threshing and grain yield 
(Nevo et al. 2002). Since then, wheat has become the world’s largest and most 
important food crop for direct human consumption. A total of 95% of the daily 
breads, cakes and pastries that humans consume come from bread wheat, while the 
remaining 5% come from tetraploid durum wheat (2n = 4x = 28; ~12 Gb, AABB 
genomes) (Dubcovsky and Dvorak 2007). Global production of bread wheat in 
2014 was 725 million tonnes, with an average yield of 3 t/ha (FAO 2015). 

The global human population will be more than 9 billion by 2050 (McKenzie 
and Williams 2015), and agriculture will be required to meet the food security 
needs of this growing population. The demand for wheat is continually increasing, 
with estimates indicating a requirement for a 60% increase in wheat production by 
2050 (Ray et al. 2013). To reach that goal, wheat breeding needs to focus heavily 
on genetic improvements to increase grain yield (Valluru et al. 2014). A 
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tremendous improvement in wheat productivity has been achieved over the past 
decades, a development to which the Green Revolution technologies have 
contributed (Pingali 2012). For future wheat improvement, the focus has turned to 
exploitation of the genetic diversity within Triticeae species, which have the ability 
to contribute resistance to diverse biotic and abiotic stresses (Kole 2011; Mujeeb-
Kazi et al. 2013). The exploitation of wheat diversity resulted in the Green 
Revolution, which was primarily due to widespread use of genetically improved 
cultivars with high yields (Khush 2001). To further enhance the breeding 
efficiency, techniques such as genomic selection, sequencing, phenomics and other 
omics methodologies could make a substantial contribution. Wheat production is 
currently facing several challenges, such as the emergence of novel pathogens and 
pests, as well as abiotic stresses.  

The fungal diseases stem rust (caused by Puccinia graminis f. sp. tritici Erikss 
& E. Henning), stripe rust (caused by Puccinia striiformis Westend. f. sp. tritici 
Eriks) and leaf rust (caused by Puccinia triticina Eriks) result in significant yield 
losses to wheat production world-wide (Kolmer 2005; Hovmøller et al. 2011;  
Szabo et al. 2014). Stem rust can cause up to 100% yield losses, stripe rust up to 
100% losses and leaf rust up to 70% losses in susceptible wheat cultivars (Chen 
2005; Huerta-Espino et al. 2011; Singh et al. 2015). Several epidemics and 
outbreaks of stem, stripe and leaf rust have significantly threatened the food 
security and livelihoods of poor farmers in many wheat growing regions world-
wide (Wellings 2011; Solh et al. 2012). Moreover, the emergence and spread of 
novel stem, stripe and leaf rust races have led to the breakdown of most of the 
widely deployed resistance genes used in wheat production (Huerta-Espino et al. 
2011; Wellings 2011; Singh et al. 2015). However, deployment of host-plant 
genetic resistance is still seen as the most economically and environmentally 
safe approach to reduce losses due to rust diseases in wheat (Burdon et al. 
2014; Singh et al. 2016). Marker-assisted selection (MAS) is seen as a 
promising tool to enhance the efficiency of the wheat breeding process. 

This thesis examined the usefulness of wheat-alien introgression derivatives 
from Secale cereale, Leymus mollis, Leymus racemosus and Thinopyrum 
junceiforme as novel sources of resistance to stem and stripe rust diseases in wheat, 
and then their corresponding resistance genes were revealed with molecular and 
cytogenetics approaches. Furthermore, Tajik wheat breeding lines, landraces and 
cultivars were evaluated for presence of stem, stripe and leaf rust resistances. 
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2  Background 

2.1 Stem rust  
Wheat stem rust (also known as black rust) is caused by the fungus Puccinia 
graminis f. sp. tritici Erikss. & E. Henning, which belongs to the phylum 
Basidiomycota, class Urediniomycetes, order Uredinales and family Pucciniaceae 
(Szabo et al. 2014). This family contains 17 genera and approximately 4121 
species, of which the majority belong to the genus Puccinia (Leonard and Szabo 
2005). Stem rust is one of the most devastating diseases of wheat, oats, barley, rye 
and wild cereal grasses, resulting in 80-100% yield losses (Singh et al. 2011; Szabo 
et al. 2014). Details of wheat stem rust were first reported in 1767 (Fontana 1932; 
Tozzetti 1952). Puccinia graminis f. sp. tritici (Pgt) is a heteroecious fungus and 
the requirement for a complete life cycle is the presence of wheat as a primary host 
and Berberis spp. (barberry) as an alternate host (Jin 2010). The life cycle of Pgt 
mostly consists of asexual, cyclical uredinial generations. As uredinia mature, 
teliospores form in order to produce basidiospores (Szabo et al. 2014). In regions 
with cold winters, Berberis spp. serve as a source of primary inoculum to infect 
wheat via aeciospores in spring (Leonard and Szabo 2005). In warm regions, the 
weather creates ideal conditions for the stem rust cycle, including a green bridge 
that can carry the rust pathogen into the next season (Park et al. 2011). Several 
major wheat stem rust epidemics occurred in the 20th century, resulting in 
significant yield losses (Roelfs 1985; Hodson 2011; Dean et al. 2012; Singh et al. 
2015). Recent epidemics (2013-2014) have also occurred caused by the race 
TKTTF in Ethiopia, on the variety ‘Digalu’ carrying wheat resistance gene SrTmp. 
Such epidemics have led to severe yield reductions, thereby highlighting the 
dynamic challenges for breeders in breeding for stem rust resistance (Olivera et al. 
2015). Stem rust epidemics were one driver behind the breeding programmes that 
initiated the Green Revolution in 1960-1970. Stem rust resistance genes have been 
incorporated successfully into high yielding semi-dwarf wheat cultivars, with 
significant reduction of stem rust incidence globally (Hodson 2011). This has 
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played a great role for the global reduction of stem rust to near insignificant levels 
in the last 20-30 years (Hodson 2011). However, in 1999 a new strain of Puccinia 
graminis f. sp. tritici, Ug99, also called race TTKSK, was reported in central 
Africa, and emergence of this race is suggested to pose a major threat to global 
wheat production (Pretorius et al. 2000; Singh et al. 2011). The subsequent 
emergence of a widely virulent group of stem rust races in the Ug99 lineage, such 
as TTKST, TTTSK, TTKSF+, TKTTF, TTKTK and TTKTT, has rendered the 
Sr9h, Sr24, Sr31, Sr36 and SrTmp resistance genes ineffective (Rouse et al. 2014a; 
Patpour et al. 2015a; Patpour et al. 2015b; Singh et al. 2015). The resistance genes 
Sr13 and Sr1RSAmigo are effective against race TTKSK, but not race TRTTF 
(Olivera et al. 2012). Furthermore, another race, TKTTF (not a member of the 
Ug99 lineage), has recently spread widely in several countries and caused severe 
epidemics (Olivera et al. 2015). All these stem rust pathogen races are currently 
spreading in the major wheat production regions, starting from Africa, through the 
Middle East and are expected to progress farther (Singh et al. 2015).   

2.2 Stripe rust 

The basidiomycete fungus Puccinia striiformis Westend f. sp. tritici Eriksson is the 
causal agent of stripe rust (also known as yellow rust) in cereal crops and grasses, 
and is considered to be the most economically important disease of wheat 
production world-wide (Hovmøller et al. 2011). Stripe rust was first documented 
by Gadd and Bjerkander in 1777 and there was an epidemic on rye in 1794 in 
Sweden (Eriksson and Henning 1896). The fungus has previously been 
characterised as Uredo glumarum, Puccinia striaeformis, Puccinia straminis and 
Puccinia glumarum, until it was given its present name, Puccinia striiformis 
(Schmidt 1827; Westendorp 1854; Fuckel 1860; Eriksson and Henning 1894; 
Hylander et al. 1953). Puccinia striiformis f. sp. tritici belongs to the Pucciniaceae 
family, order Uredinales, phylum Basidiomycota and class  Basidiomycetes (Chen 
et al. 2014). Until recently, the alternate host of stripe rust was unknown and 
urediniospores were considered the only source of inoculum. However, in recent 
studies Berberis spp. have been shown to serve as the alternate host for stripe rust 
populations (Jin et al. 2010). The teliospores germinate into aerial basidiospores 
and then infect the alternate Berberis host (Hovmøller et al. 2011;  Rodriguez-
Algaba et al. 2014). It is thought that the centre of origin for the stripe rust 
pathogen is South-East Asia, the Middle East, East Africa, Transcaucasia, 
Himalayan, Mediterranean and Central Asia (Ali et al. 2014). However, stripe rust 
is widespread globally and causes significant yield losses every year (Chen 2005; 
Wellings 2011). Destructive stripe rust epidemics in wheat have often proven 
difficult to control even with fungicide application, and in recent epidemics in 
Central Asia, West Asia and Africa up to 80% yield losses have been reported. One 
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reason is that the pathogen has overcome the major resistance gene/s in widely 
cultivated wheat cultivars (Wellings 2011; Solh et al. 2012; Beddow et al. 2015;  
Jighly et al. 2015). With the emergence of new stripe rust races, several important 
resistance genes, such as Yr2, Yr6, Yr7, Yr8, Yr9, Yr17 and Yr27, are no longer 
effective (Zegeye et al. 2014; Jighly et al. 2015; Maccaferri et al. 2015). Therefore, 
there is a need to utilise different genetic stocks in order to obtain an effective 
disease management strategy and to broaden the genetic base of stripe rust 
resistance in wheat. 

2.3 Leaf rust 

Leaf rust (also known as brown rust), caused by Puccinia triticina Eriks, is a 
serious, widespread and damaging disease in wheat (Kolmer 2005). Puccinia 
triticina also belongs to the Pucciniaceae family, order Uredinales, phylum 
Basidiomycota and class Basidiomycetes (Kolmer 2013). It is an obligate 
biotrophic pathogen that is macrocyclic. Leaf rust also causes large crop losses 
every year (Huerta-Espino et al. 2011). The severity of leaf rust disease varies in 
cultivated wheat depending on environmental conditions, inoculum levels and 
susceptible host cultivars. A highly favourable environment together with a high 
proportion of leaf rust-susceptible or moderately susceptible wheat cultivars grown 
in an area allow severe epidemics (Huerta-Espino et al. 2011). Historical epidemics 
of leaf rust have occurred in many wheat growing regions of the world and have 
caused severe economic losses (Bolton et al. 2008; Huerta-Espino et al. 2011). 
Leaf rust has been controlled by deployment of genetic resistance from bread 
wheat or from gene pools in related species  to wheat (Kolmer 2013). Similarly to 
the other rusts, emergence and evolution of new leaf rust races have contributed to 
breakdown of many resistance genes and these races are threatening wheat 
productions world-wide. The Lr9, Lr14a, Lr16, Lr17a, Lr24, Lr26 and Lr41 
resistance genes for leaf rust have been individually defeated by the new races 
(Huerta-Espino et al. 2011). Therefore, use of novel genetic resistance genes is 
the primary strategy available for preventing yield losses caused by leaf rust 
disease.    
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3 Types of host resistance 
All kinds of host resistance, including those for the three major rusts discussed 
above, can be characterised as qualitative or quantitative resistance. Qualitative 
resistance is often race-specific, monogenic (consists of major genes), 
hypersensitive and expressed at the seedling stage, which usually means that the 
resistance is expressed in all plant stages. Quantitative resistance is often race-
nonspecific, slowing rust progression, polygenic (minor genes), durable and may 
be only expressed at the adult plant stage (adult plant resistance; APR). 

3.1 Seedling resistance 
At present, a total of approximately 70 each of stem rust resistance (Sr), stripe rust 
resistance (Yr) and leaf rust resistance (Lr) seedling genes have been identified in 
wheat (McIntosh et al. 1995b; Huerta-Espino et al. 2011; Maccaferri et al. 2015; 
Singh et al. 2015). In general, the seedling resistance approach is an effective way 
to identify genes contributing effective resistance during the entire stages of plant 
growth. Genetically, the major genes within the rust pathosystems usually display 
gene-for-gene interaction, i.e. an avirulence gene in the pathogen is matched to a 
resistance gene in the host (Flor 1955). The recognition of the pathogen molecule 
by the host is currently described as effector-triggered immunity (ETI) (Jones and 
Dangl 2006). In short, the host resistance genes encode receptors that are only 
capable of recognising specific pathogen effector molecules, and thereafter the 
effector molecules are encoded by a corresponding avirulence gene in the pathogen 
(Bent and Mackey 2007). Seedling resistance genes mostly encode immune 
receptors of the nucleotide binding site-leucine rich repeat (NBS-LRR) 
(Periyannan et al. 2013; Saintenac et al. 2013; Liu et al. 2014), whereas APR genes 
have been found to encode a kinase-START and ABC transporter (Fu et al. 2009; 
Krattinger et al. 2009) and non-ABC transporter (Moore et al. 2015). Cloned 
resistance genes of some Sr, Yr and Lr resistance genes in wheat have been shown 
to encode proteins with NBS-LRR domains. The NBS-LRR proteins from wheat 
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interact functionally and physically to mediate resistance to the rust pathogens and 
accomplish different functions in avirulence recognition (Jones and Dangl 2006; 
Bent and Mackey 2007). Upon detection of pathogen molecule activity, disease 
resistance proteins signal to downstream factors, resulting in induction of the 
defence response (Jones and Dangl 2006). The seedling resistance type often 
confers major-effect defence responses that involve chlorosis or necrosis, in order 
to limit the formation and spread of fungal hyphae and uredinia in the host cell. 
This type of resistance is highly effective and easily manipulated in breeding 
programmes to improve crop resistance. However, the seedling resistance gene 
often leads to a boom and bust cycle, thereby resulting in large-scale epidemics. 

3.2 Adult plant resistance  
Adult plant resistance is only expressed at the adult stage of the plant, i.e. when the 
plant matures into its reproductive phase. The general function of APR is to extend 
the latent period and reduce sporulation. Several genes that confer APR to all three 
rusts have been identified (Rosewarne et al. 2013; Yu et al. 2014; Gao et al. 2016). 
Adult plant resistance can be pleiotropic, as exemplified by the Sr2/Yr30/Lr27, 
Sr55/Yr46/Lr67, Sr57/Yr18/Lr34 and Sr58/Yr29/Lr46 APR genes (McFadden 
1930; Fu et al. 2009; Herrera-Foessel et al. 2010; Yang et al. 2013; Lan et al. 
2014). Moreover, Sr12 and Sr57 have been found to act in concert in conferring 
APR (Rouse et al. 2014b). To fully elucidate the genetic architecture of APR, 
molecular mapping studies are a highly effective approach. Adult plant resistance 
often provides resistance against a wide range of pathogen races (Krattinger et al. 
2009; Herrera-Foessel et al. 2010; Moore et al. 2015). Another feature of the APR 
genes is that they confer a slow-rusting form of resistance that delays disease 
progression. A further type of resistance, to stripe rust in particular, is high-
temperature adult-plant resistance (HTAP), which is often associated with race 
non-specific resistance and only expressed during the adult plant stage at higher 
temperatures (Chen and Line 1995). 

3.3 Durable resistance 
The concept of durable resistance was first introduced and described by Dr. Roy 
Johnson as “resistance that remains effective during its prolonged and widespread 
use in an environment favorable to the disease” (Johnson 1984). However, the 
durable resistance definition does not provide any statement or indication about the 
genetic control of the resistance or its race specificity. Nevertheless, APR genes are 
in general more durable than seedling genes and they can interact in an additive 
and/or epistatic manner when pyramided, leading to very high levels of resistance 
that can remain effective for a long period (Ayliffe et al. 2008; Rouse et al. 2014b; 
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Brown 2015). Classic examples of durable resistance are the Sr2/Yr30/Lr27 and 
Sr57/Yr18/Lr34 pleiotropic genes, which have provided long-lasting and widely-
used durable partial resistance. Furthermore, these genes have been used in 
conjunction with additional major and minor resistance genes in order to obtain 
adequate levels of rust resistance (Singh et al. 2011; Ellis et al. 2014). The Sr31 
major-effect, race-specific gene demonstrated durable resistance and was therefore 
deployed widely and provided stable resistance against stem rust races world-wide 
for over 30 years in commercial wheat cultivars (Singh et al. 2008). However, 
emergence of the  rust race TTKSK (Ug99) led to breakdown of Sr31 in Uganda in 
1998 (Pretorius et al. 2000), although Sr31 still contributes resistance to all other 
stem rust races except the TTKSK race group. Wheat breeding strategies are 
striving to accumulate sources of durable resistance, incorporating both seedling 
and APR genes into breeding lines, to achieve modern wheat cultivars with durable 
resistance to the three major rust diseases. 
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4 Wheat breeding for rust resistance  
Traditional wheat breeding for wheat improvement includes crossing and 
backcrossing between cultivars for transfer of a few genes through recombination 
and selection events. Therefore wheat breeding relies on sources of genetic 
variation in order to adapt wheat to particular environments for effective 
improvement. Through wheat breeding efforts, numerous agronomic traits, bread 
quality and sources of disease resistance have been deployed in wheat cultivars 
world-wide. For example, the 1BL·1RS wheat-rye translocation with multiple 
disease resistance Sr31/Yr9/Lr26/Pm8 and other useful traits has been widely 
distributed by the International Maize and Wheat Improvement Centre (CIMMYT) 
and other breeding programmes world-wide. The use of resistance is still seen as 
the most economically and environmentally friendly strategy for wheat breeding 
against destructive fungal diseases such as stem, stripe and leaf rust (Ellis et al. 
2014). Marker-assisted selection approaches provide tools that help wheat breeding 
to become more efficient and accurate and have made a great contribution to wheat 
improvement and gene pyramiding. Furthermore, genome-wide association 
mapping (GWAS) and genomic selection (GS) promise to advance future wheat 
breeding programmes. Moreover, synthetic wheat has mediated the introgression 
of valuable sources of resistance to diseases and pests, as well as tolerance to 
abiotic stresses (Mondal et al. 2016).    

4.1 Wheat gene pools as a source of rust resistance in wheat 
Hexaploid wheat carries the AA genome from Triticum urartu, the BB genome 
from Aegilops speltoides and the DD genome from Aegilops tauschii (Faris 2014). 
According to their crossability with hexaploid wheat, the relatives of wheat can be 
divided into three major gene pools (the primary, secondary and tertiary gene 
pools) (Mujeeb-Kazi et al. 2013). Gene pool classification has also been based on 
evolutionary and cytogenetically relationships and on homologous and 
homoeologous chromosome pairing (Chaudhary et al. 2014). The primary gene 
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pool consists of species that can be crossed through direct hybridisation, 
homologous recombination and relatively simple breeding strategies. Genetic 
transfer in the secondary gene pool is also possible through direct crosses and 
backcrosses to utilise the homologous pairing between common genomes, but 
some of the species (Aegilops spp.) in this gene pool require manipulative methods. 
The tertiary gene pool includes the diploid and polyploid Triticeae species that are 
extremely difficult to cross with wheat through direct hybridisation and 
homologous recombination (Molnár-Láng et al. 2014; Molnár-Láng 2015). 
Introgressions into wheat from the tertiary gene pool have most often been 
facilitated by irradiation, tissue culture, use of the ph1b mutant and embryo rescue 
techniques. Several intergeneric hybridisations have been made between wheat and 
Aegilops, Leymus, Haynaldia, Secale, Dasypyrum, Hordeum, Thinopyrum and 
Agropyron species, to produce wheat-alien introgressions for wheat breeding, 
using the wheat-alien species as new sources of genetic diversity (Merker 1984; 
Merker and Rogalska 1984; Merker and Lantai 1997; Kole 2011; Mujeeb-Kazi et 
al. 2013; Schneider et al. 2016). 

Utilisation of wild species is one of the best strategies in wheat breeding in 
order to bring new genetic variation into the hexaploid wheat gene pool. The rust 
resistance genes in the hexaploid wheat gene pool are often broken down through 
the constant evolution and mutation of stem, stripe and leaf rust pathogen races. 
Therefore, relatives of wheat have been used to contribute rust resistance genes, 
while genes conferring numerous other traits have been transferred from these 
species into bread wheat (Kole 2011; Molnár-Láng et al. 2015). Rye (Secale 
cereale L., 2n = 2x = 14, ~8 Gb, RR genome), a temperate cereal crop, is part of 
the valuable gene pool for wheat improvement, especially as a source of broad 
tolerance to biotic and abiotic stresses (Martis et al. 2013; Schlegel 2014). The 
Sr27, Sr31/Yr9/Lr26/Pm8, Sr50, Sr1RSAmigo and SrSatu resistance genes have all 
originated from the 1R and 3R rye chromosomes and these genes have contributed 
to the control of wheat rust and powdery mildew diseases (Marais and Marais 
1994; Friebe et al. 1996; Mago et al. 2002; Singh et al. 2011; Olivera et al. 2013). 
Furthermore, the chromosome 2R from different rye genotypes has been described 
as a source of resistance to various wheat diseases and insects and this 
chromosome has also contributed to various agronomic traits (Hysing et al. 2007; 
Lei et al. 2013). The chromosome arm 2RL is the source of resistance to Hessian 
fly mediated by the resistance gene H21 present in the form of a T2BS·2RL 
Robertsonian translocation (Friebe et al. 1990; Cainong et al. 2010). The 2R 
chromosome is also the source of the leaf rust resistance gene Lr45 that is present 
on a T2AS-2RS·2RL terminal translocation chromosome (McIntosh et al. 1995a). 
Furthermore, the wheat-rye introgressions have been characterised as sources of 
resistance to Russian wheat aphid and cereal aphids (Crespo-Herrera et al. 2013; 
Andersson et al. 2015). Other important resistance genes, such as Sr24, Sr25, Sr26 
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and Sr43, originate from wheat-Thinopyrum ponticum introgressions, while Sr44 
originates from wheat-Thinopyrum intermedium introgression and Sr52 originates 
from wheat-Dasypyrum villosum introgression (Mago et al. 2005a; Liu et al. 2010; 
Niu et al. 2014). These genes have thus been transferred from the tertiary gene pool 
and are now being used in wheat breeding. The leaf rust resistance genes Lr19, 
Lr24, Lr25, Lr29 and Lr38 are also derived from the tertiary gene pool (McIntosh 
et al. 1995b; Dedryver et al. 1996; Zhang et al. 2005; Qi et al. 2011). Moreover, 
Yr5 is derived from Triticum spelta album (Yan et al. 2003) and Yr15, YrH52 and 
Yr36 comes from Triticum turgidum ssp. dicoccoides (Peng et al. 2000; Fu et al. 
2009). Furthermore, Secale cereale, Leymus mollis, Leymus racemosus and 
Thinopyrum junceiforme have all proven to be useful as genetic resources for 
wheat breeding against rust diseases (Merker 1984; Merker and Lantai 1997; 
Ellneskog-Staam and Merker 2002; Kole 2011). Thus, the secondary and tertiary 
gene pools are extremely valuable sources of novel alleles suitable for 
introgression into the hexaploid genome. The majority of the Sr resistance genes 
are derived from the primary and secondary gene pools, but more than 70 
resistance genes are from the tertiary gene pool (McIntosh et al. 1995b; Singh et al. 
2015). The majority of the Yr and Lr genes originate from the primary gene pool, 
although several of the Yr and Lr genes are also derived from the secondary and 
tertiary gene pools (e.g. Aegilops spp., Brachypodium, Secale cereale, Thinopyrum 
spp. etc.) (McIntosh et al. 1995b; McCallum et al. 2012;  Chen et al. 2014; 
Maccaferri et al. 2015; Gao et al. 2016). Moreover, a number of the Sr, Yr and Lr 
APR (quantitative trait locus, QTL) genes have been identified as originating from 
all three gene pools (Rosewarne et al. 2013; Yu et al. 2014; Gao et al. 2016).   

4.2 Functional analysis and gene cloning of rust resistance 
genes 

Plant resistance genes are divided into: nucleotide binding site-leucine rich repeats-
toll  interleukin-1 receptor (NBS-LRR-TIR), nucleotide binding site-leucine rich 
repeats-coiled coil (NBS-LRR-CC), leucine rich repeats-transmembrane domain 
(LRR-TrD), transmembrane domain-coiled coil (TrD-CC), toll interleukin-1 
receptor-nucleotide binding site-leucine rich repeats-nuclear-localization signal-
amino acid domain (TIR-NBS-LRR-NLS-WRKY), leucine rich repeats-
transmembrane domain-proline glycine serine threonine-endocytosis cell signalling 
domain (LRR-TrD-PEST-ECS) and enzymatic R-genes, based on their amino acid 
motif and membrane spanning domains (Gururani et al. 2012). The nucleotide-
binding oligomerisation domain receptors (NLRs) have been identified as an 
important part of the cell death and pathogen immunity pathways in the crop 
(Franchi et al. 2006). Plant disease resistance can also be triggered by plant 
immune receptors encoding nucleotide binding-leucine rich repeats (NB-LRR), 
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which thereby recognise microbial effectors (Jones and Dangl 2006). To better 
understand the functionality of rust resistance genes in wheat, a number of Sr, Yr 
and Lr genes have been cloned. Through this method, the wheat stem rust 
resistance genes Sr33 and Sr35 (Periyannan et al. 2013; Saintenac et al. 2013), the 
stripe rust resistance genes Yr10, Yr18 and Yr36 (Fu et al. 2009; Krattinger et al. 
2009; Liu et al. 2014) and the leaf rust resistance genes Lr1, Lr10, Lr21 and Lr34 
have been found encoding NBS-LRR proteins, a kinase-START and ABC 
transporter proteins (Feuillet et al. 2003; Huang et al. 2003; Cloutier et al. 2007; 
Krattinger et al. 2009). The functional resistance mechanisms of Sr33, Sr35, Yr10, 
Lr1, Lr10 and Lr21 have been found to be connected to the encoding of NBS-LRR 
proteins, whereas the Sr57/Yr18/Lr34 and Yr36 genes have not been found to 
encode such proteins. Recent cloning of the Lr67 resistance gene, which 
contributes partial resistance to all three wheat rusts and to powdery mildew, 
shows that this is explained by encoding of an orthologous hexose transporter. The 
only difference between this hexose transporter and those found in susceptible 
forms of wheat is the presence of two amino acids that have been conserved in the 
orthologous hexose transporter (Moore et al. 2015). The stem rust resistance gene 
Sr50 has been identified as being homologous to the barley Mla gene encoding 
coiled coil-nucleotide binding-leucine rich repeat (CC-NB-LRR) proteins (Mago et 
al. 2015). In a recent study, a new technology called MutRenSeq was able to 
accurately pinpoint the location of different resistance genes. Cloning of the stem 
rust resistance genes Sr22 and Sr45 has been carried out using the MutRenSeq 
technique (Steuernagel et al. 2016).   

4.3 Chromosome rearrangements - aneuploid, substitution and 
translocation lines 

Basic types of chromosome rearrangements are known as segmental chromosome 
interchanges, duplications, deletions, inversions, translocations and substitutions, 
and all of these rearrangements have been successfully reported for rearrangements 
of alien species into the wheat genome. Thus, Aegilops spp., Hordeum spp., 
Leymus spp., Thinopyrum spp. and Secale cereale have been introgressed into the 
wheat genome for improvement of resistance to biotic and abiotic stresses. Sears 
(1954), was the first to report the presence of a complete set of aneuploids in the 
common hexaploid wheat cultivar ‘Chinese Spring’. This set comprises series of 
monosomics, nullisomic, nullisomic-tetrasomics and ditelosomics and has since 
been widely utilised for genetic studies in wheat (Sears 1966). The first 
spontaneous 5R (5A) wheat-rye chromosome substitution was identified by 
Kattermann (1937) and O'Mara (1940). Substitutions of the wheat chromosomes 
1D, 3A, 3B and 3D with the rye chromosome 3R have also been described 
(Driscoll and Anderson 1967), and 1R (1D) and 1R (1A) wheat-rye substitutions 
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have been produced to improve resistance to biotic and abiotic stresses in wheat 
(Koebner and Singn 1984; Müller et al. 1989). Other studies have demonstrated the 
option of applying centric misdivision followed by the breakage-fusion mechanism 
of broken arms, leading to the formation of Robertsonian translocations (Robertson 
1916), which could be of great importance in resistance breeding. Accordingly, 
Robertsonian translocations have been used in a number of studies to develop 
wheat-rye translocations (Merker 1982; Zhang et al. 2001). In nature, spontaneous 
wheat-rye translocation events are routinely found in wheat-rye substitution lines, 
and this fact has been used to develop 1BL·1RS wheat-rye translocations (Mettin 
et al. 1973; Zeller 1973). In this way, the 1BL·1RS wheat-rye translocation, 
containing the resistance genes Sr31/Yr9/Lr26/Pm8 originating from rye cultivar 
‘Petkus’, was developed and spread to wheat breeding programmes world-wide 
through the wheat cultivars ‘Kavkaz’ and ‘Aurora’ (Rajaram et al. 1983). Other 
wheat-rye translocations such as 1AL·1RS (Sr1RSAmigo) from rye cultivar ‘Insave’ 
and 1DL·1RS (Sr50) from rye cultivar ‘Imperial’ have been identified and spread 
as sources of resistance to stem rust (The et al. 1991; Mago et al. 2015). 
Furthermore, the Danish wheat cultivar ‘Viking’ with 4B-5R interchange has been 
found to carry a high content of iron, copper and zinc (Schlegel et al. 1993). 
Wheat-rye introgressions have also been produced with the rye chromosomes 2R, 
3R and 6R incorporated into the wheat genome (Merker 1984; Mujeeb-Kazi et al. 
2013). Homoeologous recombination between chromosomes 2B and 2R has been 
identified (Lukaszewski et al. 2004), as have the wheat-barley 2DS·2DL-1HS, 
3HS·3BL, 6BS·6BL-4HL, 4D-5HS and 7DL·7DS-5HS translocations, which have 
been used for wheat improvement (Nagy et al. 2002). Furthermore, wheat-D. 
villosum 6AL·6VS and 6AL·6AS translocations have been produced and contain 
resistance genes to stem rust (Sr52), stripe rust and powdery mildew (Pm21) (Qi et 
al. 2011; He et al. 2016a). Although a range of different wheat lines with alien 
introgressions have been produced, however translocated lines are preferred for the 
development of commercial disease-resistant cultivars, due to the fact that smaller 
introgressions of alien chromatin lead to less linkage drag and regular meiotic 
behaviour (Friebe et al. 1996; Liu et al. 2011b; Niu et al. 2011; Niu et al. 2014; 
Tiwari et al. 2014). The main conventional techniques used to detect chromosome 
rearrangement events in the wheat genome are genomic in situ hybridisation 
(GISH), fluorescence in situ hybridisation (FISH) and C-banding.  

4.4 Chromosome engineering and molecular cytogenetics 
Induced homologous recombination and irradiation are the most commonly applied 
methods to introgress alien chromosome material into the wheat genome (Niu et al. 
2011; Wang et al. 2012). For example, the leaf rust resistance gene Lr9 from Ae. 
umbellulata (2n = 2x =14, UU genome) was introgressed through ionising 
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irradiation (Sears 1956). In general, regular and homologous pairing of genes from 
the tertiary gene pool with those of hexaploid wheat happens only rarely, due to the 
presence of the Ph1 allele on chromosome 5B hindering this event (Riley and 
Chapman 1958). However, the Ph1 locus can be deleted by the use of X-ray 
radiation in order to allow homoeologous pairing and recombination (Sears 1977). 
Therefore the ph1b mutants, promoting meiotic pairing between homoeologous 
chromosomes, have been used extensively to induce recombination between wheat 
and alien chromosomes (Qi et al. 2007; Niu et al. 2011). The use of the ph1b 
mutant has resulted in translocations harbouring resistance genes such as Sr32 
(Mago et al. 2013), Sr39 (Niu et al. 2011), Sr43 (Niu et al. 2014), Sr47 
(Klindworth et al. 2012), Sr51 (Liu et al. 2011a) and Sr53 (Liu et al. 2011b). 
Moreover, the ph1b mutant has successfully been used to improve the end-use 
quality of wheat containing the 1RS translocation. For this purpose, the Sec-1 
(secalin) allele on 1RS has been replaced by genes encoding wheat storage proteins 
(Lukaszewski 2000). Gametocidal chromosomes are also known to induce 
chromosomal mutation by random breakage, and these chromosomes have 
therefore been introduced into common wheat as a tool of chromosome 
manipulation for genetic improvement (Endo and Gill 1996; Endo 2007). 
Furthermore, the PhI (inhibitor) gene has been transferred from Aegilops speltoides 
to the ‘Chinese Spring’ cultivar, in order to induce homoeologous recombination 
between wheat and alien species (Chen et al. 1994). The breakage-fusion 
mechanism contributes to the production of wheat-alien Robertsonian 
translocations (Friebe et al. 2005). Thus, wheat lines containing Robertsonian 
translocations with disease resistance genes originating from Dasypyrum villosum 
and Thinopyrum intermedium have been produced applying the breakage-fusion 
mechanism (Qi et al. 2011; Zhan et al. 2015). Wheat-rye translocation lines have 
also been obtained by applying crossing and backcrossing with triticale for both 
winter and spring wheat and here also the breakage-fusion mechanism may have 
played a role (Merker 1984; Forsström and Merker 2001). Desirable genes have 
also been introgressed into wheat from wild species through distant hybridisation 
aided by tissue culture-based embryo rescue techniques (Wędzony et al. 2014), e.g. 
Leymus mollis, Leymus racemosus and Thinopyrum junceiforme hybrids were 
developed by the embryo culture technique. The hybrids from these crosses were 
thereafter backcrossed once with the Hpph 5RL·5BS wheat-rye translocation line 
and Triticum turgidum var. carthlicum, which have the ability to form unreduced 
gametes in the hybrids (Merker and Lantai 1997). The first techniques used to 
identify alien chromosomes in the wheat genome were C-banding and N-banding 
(Gill and Kimber 1974; Gerlach 1977). The GISH and FISH approaches are two 
more recent microscopy-based techniques that can be used to detect the 
translocation breakpoint and these methods thereby effectively complement 
classical diagnostic and selection tools for more efficient and precise detection and 
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characterisation of the alien chromosome segment. Thus, GISH and FISH have 
been widely used to determine the chromosomal constitution of the wheat-alien 
introgressions in the mitotic metaphase cell stage (Zhang et al. 2001; Danilova et 
al. 2014). Furthermore, the GISH and FISH methods can be complemented with 
exome-captured sequence methods (Winfield et al. 2012). Chromosome 
engineering methodologies based on the manipulation of pairing control 
mechanisms and of induced introgressions from different wild species have thus 
been employed to transfer specific genes conferring biotic and abiotic stress 
resistance and wheat material containing these genes has been deployed for the 
benefit of farmers world-wide (Gill et al. 2006). The ultimate contribution of the 
above-mentioned methods is to enhance the diversity of alien alleles in wheat 
breeding and improvement. Wheat-alien introgression lines have a proven track 
record and great potential to enhance resistance to stem, stripe and leaf rust. All 
these methods have also been utilised to reduce the size of the alien chromatin in 
the wheat genome, in order to avoid linkage drag.    

4.5 Marker-assisted selection 
The use of molecular markers is a powerful technique to identify genetic diversity, 
allow complex trait dissection, map qualitative and quantitative traits and link these 
genetic traits to phenotypic variation (Hayward et al. 2015). Marker-assisted 
selection has been used successfully in diverse crop species to reveal genome wide 
polymorphisms at scales ranging from a single base pair up to duplications and 
translocations of entire chromosomal regions. The first and second molecular 
marker generations, restriction fragment length polymorphisms (RFLPs), randomly 
amplified polymorphic DNAs (RAPDs), amplified fragment length polymorphisms 
(AFLPs) and simple sequence repeats (SSR), have progressively been used to 
determine the genetic relationship between individuals in plant breeding. The SSR 
molecular markers have been widely used to tag and map resistance genes in 
wheat, rye and other wild relatives due to their high level of polymorphism 
compared with other markers (Röder et al. 1998; Saal and Wricke 1999; 
Khlestkina et al. 2004; Somers et al. 2004; Rey et al. 2015). Thus, a range of 
diagnostic molecular markers for the Sr, Yr and Lr resistance genes are available, 
e.g. for Sr2, Sr6, Sr13, Sr21, Sr22, Sr31, Sr32, Sr33, Sr35, Sr38, Sr39, Sr45, Sr46, 
Sr47, Sr49, Sr52, Sr55, Sr56, Yr5, Yr9, Yr17, Yr36, Yr45, Yr48, Yr51, Yr59, Yr60, 
Lr9, Lr18, Lr25, Lr26, Lr34, Lr37, Lr38, Lr39, Lr47, Lr50, Lr51 and Lr68, and 
these have been used for MAS in wheat breeding (Goutam et al. 2015; Chhuneja et 
al. 2016; MASWheat 2016). Later generations of molecular markers such as single 
nucleotide polymorphisms (SNP), genotype-by-sequencing (GBS), diversity array 
technology (DArT) and kompetitive allele-specific PCR (KASP) markers, 
specifically used for high density genetic mapping, have revolutionised the options 
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for marker work. These markers are used in order to precisely locate the 
monogenic (single gene) or polygenic traits (conferred by more than one gene) of 
relevance in wheat breeding. High density genetic maps have robustly improved 
the precision and efficiency of QTL mapping in wheat breeding (Tian et al. 2015a; 
Tian et al. 2015b). Genome-wide association mapping (GWAS) is an approach that 
uses phenotyping and genotyping to identify chromosomal regions having a 
significant association with traits in wheat (Bajgain et al. 2015; Maccaferri et al. 
2015; Gao et al. 2016). In addition, the implementation of genomic selection (GS) 
in wheat breeding is a promising approach to accelerate selection gain and improve 
complex traits (Daetwyler et al. 2014; He et al. 2016b). Thus, SNP, GBS and 
DArT markers are currently being widely used for GWAS and GS applications in 
wheat breeding. High-throughput sequencing technologies including chips of 9,000 
SNPs (9K SNP chip genotyping) and 90,000 SNPs (90K SNP chip genotyping), 
DArT-seq and GBS (~41,000 SNPs) have been developed for use in wheat (Allen 
et al. 2011; Poland et al. 2012; Wang et al. 2014; Li et al. 2015). Furthermore, 
reduced-representation sequencing, restriction site-associated DNA sequencing 
(RAD-seq) and low coverage genotyping approaches, including multiplexed 
shotgun genotyping, have been made available (Davey et al. 2011). The RAD-seq 
approach for high-density mapping has contributed to mapping of stem rust 
resistance on chromosome 7AL of wheat (Pujol et al. 2015), while GBS- and 
array-derived SNP markers have been used to map the stem rust resistance gene 
Sr42 on chromosome arm 6DS, with the GBS- and array-derived SNP markers 
then converted to KASP assays (Gao et al. 2015). The KASP assay is a robust 
molecular marker tool for detection of short introgressed segments in the wheat 
genome, thereby facilitating MAS applications (Semagn et al. 2014; Tiwari et al. 
2014; Bernardo et al. 2015). A resistance gene effective against the Ug99 race 
group has been mapped on chromosome 7A in wheat and thereafter recombinant 
inbred lines have been screened with the KASP assay. Moreover, similar mapping 
results have been obtained while using the GBS and 9,000 SNP chip genotyping 
technologies to compare their mapping utilities in wheat (Bajgain et al. 2016). The 
GWAS approach has also been used to map the major and minor resistance genes 
of stem, stripe and leaf rust, by applying DArT and SNP markers closely linked to 
the resistance genes (Bajgain et al. 2015; Jighly et al. 2015; Maccaferri et al. 2015; 
Gao et al. 2016). The GS method has been found to be particularly important for 
the improvement of quantitative traits by the use of genome-wide marker coverage 
(like GBS and SNP markers) in order to predict breeding values (Rutkoski et al. 
2010; Ornella et al. 2012; Daetwyler et al. 2014; Rutkoski et al. 2014). To produce 
small alien transfers without linkage drag in wheat, high-density molecular 
markers such as SNP and GBS should be used in order to detect the smallest 
translocation/introgression breakpoints possible in the wheat relatives. 
Bioinformatic pipelines for the SNP and GBS datasets are also useful instruments 
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that make it possible to analyse and interpret the GWAS and GS implementations. 
Prediction models have been used in wheat breeding to understand the accuracy of 
various resistance genes and options for using these genes without too much 
linkage drag (Ornella et al. 2012; Daetwyler et al. 2014; Rutkoski et al. 2014; He et 
al. 2016b). In such studies, wheat lines containing the Yr40/Lr57 resistance genes 
and showing reduced linkage drag have been obtained (Tiwari et al. 2014). 
However, the resistance genes Sr27, Sr39, Sr40 Sr43, Sr44 etc. have not been 
widely used due to concerns about linkage drag (Singh et al. 2015). 

4.6 Phenomics and omics in wheat breeding 
Plant breeding is a major driving force for improving and providing enough food 
and nutrition for the increasing human population world-wide. The use of 
conventional methods for genetic improvement in wheat through phenotypic 
selection at the breeding level is challenging and sometimes impractical due to 
complexity in phenotyping traits (Furbank and Tester 2011). However, prediction 
of phenotypes from genotypes is generally also challenging due to the large 
number of genes that contribute to most phenotypes. Therefore, recent advances in 
modern methods, such as next-generation sequencing, phenomics and omics 
technologies, are facilitating current plant breeding strategies. For example, many 
genetic dissections of complex traits and discovery of associated genes and their 
deployment have been facilitated through phenomics and omics technologies (Barh 
et al. 2015; Fritsche-Neto and Borém 2015). In the context of phenomics, 
identification of a candidate genotype that carries genes for targeted traits is only 
possible when a precise and accurate phenotyping profile of the genotype is 
available (Comar et al. 2012; Kumar et al. 2015). The bottlenecks with field 
phenotyping have resulted in intense interest in the development of new high-
throughput phenotyping tools and techniques such as spectroscopy, imaging and 
image analysis and robotics, as well as high-performance computing (Singh and 
Singh 2015). In wheat, high-throughput phenotyping technologies have revealed 
variations in shoot relative growth rate, salinity tolerance, biomass, transpiration, 
water use efficiency and leaf area (Munns et al. 2010; White et al. 2012; Parent et 
al. 2015; Takahashi et al. 2015). The “Field Phenomics” project 
(http://www.fieldphenomics.org/research/vehicles) has developed several 
technologies within a current field-based high-throughput phenotyping platform for 
wheat. In general, phenomics approaches have the potential to provide insights into 
the physiological mechanisms underlying disease symptoms, and these can be 
useful for the development of methods for rust disease phenotyping in wheat 
(Giglioti et al. 2015; Mutka and Bart 2015). 

The rise and continuous improvement of high-throughput genome-scale 
genotyping platforms has allowed scientists to focus on omics technologies, e.g. 
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whole-genome re-sequencing, genomics, proteomics, transcriptomics and 
metabolomics, in order to provide greater opportunities to dissect the molecular 
basis of the responses of plants and the discovery of key genes in developing ideal 
genotypes in the changing climate scenario. Genetics and omics tools have 
revolutionised plant breeding; more than 40 crop species have been sequenced and 
the sequencing results have been made publicly available (Barabaschi et al. 2011; 
Michael and Jackson 2013). Moreover, whole-genome shotgun sequencing and a 
chromosome-based draft sequence of hexaploid wheat have been reported 
(Brenchley et al. 2012; Consortium 2014).  
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5 Objectives of the research 
The overall aims of the work described in this thesis were to: 1) identify novel 
sources of resistance to stem and stripe rust in different wheat-alien introgression 
lines; 2) identify presence of resistance genes  towards stem, stripe and leaf rust in 
Tajik wheat; 3) characterise the genetic basis of the resistance from these sources; 
and 4) incorporate specific alien genes conferring resistance to stem rust into wheat 
cultivars adapted to the environment of interest, in order to lead to greater 
sustainability of wheat production.  
 
The specific objectives of the studies described in Papers I-V were to:  
Ø Evaluate the wheat-alien introgression derivatives from Secale cereale, 

Leymus mollis, Leymus racemosus and Thinopyrum junceiforme against a 
wide array of stem and stripe rust pathogen races for the purpose of 
identifying new sources of resistance. 
 

Ø Evaluate Tajik wheat cultivars, breeding lines and landraces for presence 
of specific stem, stripe and leaf rust resistances by the use of an array of 
rust pathogen races. 
 

Ø Identify seedling and adult plant Sr and Yr resistance genes present in the 
wheat-alien introgression lines. 
 

Ø Develop a new wheat-rye Robertsonian translocation containing a new 
resistance gene.  
  

Ø Perform molecular and cytogenetic validation of wheat-alien introgression 
lines. 
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6 Materials and methods 

6.1 Plant materials  
The Swedish winter triticale lines SV856003, SV876012 and SV876032 and a 
AD99 wheat-Leymus hybrid were crossed with winter hexaploid wheat cultivars 
(‘Goerzen’, ‘Holme’ and ‘Kraka’) adapted to Swedish conditions to develop a 
large number of winter wheat-alien introgression lines (Forsström and Merker 
2001). The Mexican spring hexaploid triticale cultivars ‘Beagle’ and ‘Drira’ were 
crossed with the popular Swedish spring hexaploid wheat cultivars ‘Drabant’, 
‘Prins’, ‘Sonett’ and line SV77328, and from these crosses a number of spring 
wheat-rye introgression lines were developed (Merker 1984). Moreover, wheat-
Leymus mollis, wheat-Leymus racemosus and wheat-Thinoporym junceiforme 
introgression hybrids were developed by embryo culture techniques and the 
hybrids were then backcrossed once with a Hpph 5RL·5BS wheat-rye translocation 
line and Triticum turgidum var. carthlicum (Merker and Lantai 1997). The lines 
derived from these crosses contain rye chromosomes 1R, 2R, 3R, 4R, 5R and 6R in 
the form of a single disomic substitution. Lines with wheat-rye translocations such 
as 1DL·1RS, 1BL·1RS, 2RL·2BS, 3DL·3RS and 5AL·5RS, and lines with 
multiple combinations of rye chromosome substitutions such as 1R+2R, 1R+3R, 
1R+6R, 5R+4R+7R and 1R+6R+4R+7R were also present (Merker 1979; Merker 
and Rogalska 1984). The materials also included wheat lines with introgressed 
chromatin from Leymus mollis, Leymus racemosus and Thinopyrum junceiforme 
(Ellneskog-Staam and Merker 2001, 2002). All of these lines were used in stem 
rust and stripe rust seedling and adult plant resistance tests (Papers I and IV). 

The spring wheat line ‘SLU238’, containing Sr59 resistance gene on the 2R 
(2D) wheat-rye disomic substitution, has its origin from the hexaploid triticale line 
VT828041. Thereafter, ‘SLU238’ was crossed with the ‘Chinese Spring’ ph1b 
mutant in order to induce meiotic recombination between 2R and 2D 
homoeologous regions (Paper II).  
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The line KR99-139 (double wheat-rye translocation line with 1BL·1RS and 
2RL·2BS) and bread wheat variety ‘Topper’ were crossed. The F1s from this cross 
were then backcrossed to both parents to produce BC1F1 populations. Thereafter, 
the selfed BC1F3 and BC1F4 populations were evaluated for stem rust seedling and 
adult plant resistance (Paper III).  

Widely cultivated wheat cultivars, landraces and advanced breeding lines of 
hexaploid wheat from Tajikistan were evaluated for their seedling reaction to stem, 
stripe and leaf rust and also their adult plant reaction to stem and stripe rust (Paper 
V). In addition, for all seedling resistance assays the differential genotypes with 
known Sr, Yr and Lr resistance genes were included. 

6.2 Seedling resistance tests to stem rust, stripe rust and leaf 
rust 

The stem rust seedling resistance tests were conducted at the United States 
Department of Agriculture Agricultural Research Service Cereal Disease 
Laboratory (USDA-ARS-CDL) and the Biosafety Level-3 containment facility at 
the University of Minnesota (UM) in St. Paul, USA. Stem rust seedling resistance 
tests were also conducted at the Regional Cereal Rust Research Center (RCRRC), 
located at the Aegean Agricultural Research Institute, International Center for 
Agricultural Research in Dry Areas (ICARDA) in Izmir, Turkey, and the 
University of the Free State, Bloemfontein, South Africa. The African and North 
American races TTKSK (Ug99), TTKST, TTTSK, TRTTF, TPMKC, TTTTF, 
QTHJC, MCCFC, RHQQC and BCCBC were used at USDA-ARS-CDL and UM, 
according to Rouse et al. (2011). Stem rust seedling resistance tests at the 
University of the Free State (BPGSC, BPGSC+SrKiewiet and BPGSC+SrSatu 
races) and RCRRC, Izmir (TKTTF race) were carried out following similar 
protocols to that used at USDA-ARS-CDL and UM. To characterise seedling 
infection of Puccinia graminis, a scale of 0 to 4 was used, with scoring performed 
14 days after inoculation as described by Stakman et al. (1962) (Papers I, II, III and 
V). 

Stripe rust seedling resistance tests were conducted at the Global Rust 
Reference Center (GRRC), Aarhus University, Flakkebjerg, Denmark, and 
RCRRC. All wheat genotypes were evaluated with 12 stripe rust races from six 
different countries. The seedling assays at GRRC were carried out according to 
Sørensen et al. (2016) and those at RCRRC according to Jighly et al. (2015). 
Infection of Puccinia striiformis on wheat seedlings was scored on a scale of 0 to 
9, with scoring performed 16 days after inoculation as described by McNeal et al. 
(1971) (Papers IV and V).  

Seedling evaluation assays for leaf rust in wheat cultivars, landraces and 
advanced lines from Tajikistan were conducted at USDA-ARS-CDL. The leaf rust 



32 

seedling assays were according to Oelke and Kolmer (2004), and a 0 to 4 scale was 
used for scoring (Long and Kolmer 1989) (Paper V). 

6.3 Assessment of adult plant resistance to stem rust and stripe 
rust 

Stem rust APR was evaluated at the Kenyan Agricultural and Livestock Research 
Organization (KALRO) in Njoro, RCRRC and UM. Wheat genotypes with winter 
habitat were vernalised for six weeks at +4°C and then transplanted to the field in 
KALRO. To establish uniform disease development within plants and plots, a mix 
of susceptible wheat cultivars was planted as spreader rows surrounding nurseries 
in all locations. Initially, the spreader rows were needle-injected at the booting and 
heading stages, with races TTKSK+TTKST at KALRO and race MCCFC at UM. 
Direct foliar inoculation was also carried out with urediniospore/oil suspension on 
the spreader plants. At RCRRC, the race TKTTF was inoculated by dusting with a 
mixture of fresh urediniospores and talcum powder. Due to the dry environment at 
the KALRO and RCRRC nurseries, mist-irrigated conditions were applied (Papers 
I, III and V). 

Stripe rust field experiments were conducted at Lönnstorp Field Station, 
Lomma, Sweden, and at RCRRC. The lines were exposed to natural epidemics 
during the growing season in 2012 at Lönnstorp Station. In the RCRRC field, the 
highly susceptible ‘Morocco’ cultivar and an additional mixture of susceptible 
wheat cultivars were used as spreader rows in all pathways perpendicularly 
between the tests plots along the main wind direction. On several occasions (at 
least 4-5, e.g. at tillering, booting, heading and flowering stages), the spreader rows 
at Izmir were artificially inoculated using talcum powder, while the nurseries at 
RCRRC were mist-irrigated. The APR to stripe rust of the wheat genotypes from 
Tajikistan was evaluated based on natural epidemics during the growing season in 
2010 in Tajikistan. Stripe rust-infected leaves were collected from Sweden and 
Tajikistan and sent to GRRC for race analysis. The recovered races (SE205/12 
from Sweden and Taj01a/10 from Tajikistan) were used for seedling resistance 
tests at GRRC (Papers IV and V). 

In all locations, the adult plant response to stem rust and stripe rust was 
assessed between growth stages 50-90 based on the Zadoks scale (Zadoks et al. 
1974). Disease severity assessments (0-100%) were scored visually based on the 
modified Cobb scale (Peterson et al. 1948) and the host response according to 
Roelfs et al. (1992).  
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6.4 Molecular marker validations of the Sr, Yr and Lr resistance 
genes 

In addition to gene postulation, some known Sr, Yr and Lr diagnostic markers, such 
XcsSr2 and Xgwm533 for Sr2/Yr30/Lr27 (Mago et al. 2011), Xcfd43 for Sr6 
(Tsilo et al. 2009), Xscm9 and Xiag95 for Sr31/Yr9/Lr26 (Saal and Wricke 1999;  
Mago et al. 2002), Xstm773 for Sr36 (Tsilo et al. 2008), VENTRIUP-LN2 for 
Sr38/Yr17/Lr37 (Helguera et al. 2003), Xwmc364 for Yr2 (Lin et al. 2005), csLV34 
for Sr57/Yr18/Lr34 (Lagudah et al. 2006) and Xwmc198 for Yr32 (Eriksen et al. 
2004) were assayed. The KASP markers for Sr2/Yr30/Lr27 (wMAS000005) 
(http://maswheat.ucdavis.edu/protocols/Sr2/index.htm), Sr36 (wMAS000015) 
(http://maswheat.ucdavis.edu/protocols/Sr36/index.htm) and Sr57/Yr18/Lr34 
(wMAS000003) (http://maswheat.ucdavis.edu/protocols/Lr34/index.htm) were also 
applied (Papers I, IV and V). 

6.5 Developing T2DS·2RL wheat-rye Robertsonian translocation 
The line ‘SLU238’ was crossed with the ‘CS’ ph1b mutant to induce meiotic 
recombination between the 2R and 2D homoeologous regions. The F2 population 
obtained (selfed from F1 plants) was phenotyped at the seedling stage with the 
TTKSK and TTTTF races. Resistant F2 plants were evaluated with the PSR128, 
PSR574 and AWJL3 touchdown molecular markers to select plants 
homozygous for the ph1b allele (Roberts et al. 1999; Niu et al. 2011). Resistant 
F2 plants homozygous for the ph1b allele were selected for production of F3 
populations. The F3:4 populations were phenotyped with race TTTTF, and 
were then genotyped with molecular markers for the presence of 2R and 2D 
chromosomes. Seven F4 population recombinants with reduced rye chromatin 
were identified, and then tested at the seedling stage with additional stem rust 
races (Paper II). 
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6.6 Development of kompetitive allele-specific PCR markers 
The Rye5K Illumina iSelect high-throughput SNP array containing 5234 
markers, developed by Haseneyer et al. (2011), has been used for high-
throughput genotyping in four individual rye mapping populations (Martis et 
al. 2013). Next, 34 KASP primers with two allele-specific forward primers 
with FAM: 5´GAAGGTGACCAAGTTCATGCT3´ and VIC: 
5´GAAGGTCGGAGTCAACGGATT3´ compatible tails and one common 
reverse primer were developed for chromosome 2R. All the KASP markers 
were used to screen for polymorphisms between two parents, the SLU238 line 
and the CS ph1b mutant, and thereafter the KASP markers were used to 
analyse the F4-resistant plants (Paper II). 

6.7 Genomic in situ hybridisation (GISH) and fluorescence in 
situ hybridisation (FISH) 

The GISH and FISH approaches are valuable and powerful methods for studying 
genomic composition and interactions in interspecific and intergeneric hybrids of 
Triticeae species. To characterise the wheat-alien introgression chromosome 
constitutions, GISH was performed on metaphase cells fixed onto a glass slide. 
Genomic DNA from Secale cereale, Leymus mollis and Leymus racemosus was 
used as a probe, labelled with fluorescein 12-dUTP green or Texas Red 12-dUTP 
by nick translation (Paper I).  

To visualise wheat-rye Robertsonian translocation, the parents and resistant F4 

lines were analysed by FISH with probes specific to rye and wheat repetitive DNA 
sequences. The probes used were a UCM600 (González-García et al. 2011) 
synthesised by SGI DNA, La Jolla, CA, centromere-specific pAWRC.1 (Francki 
2001) and subtelomeric repeat pSc74 (Bedbrook et al. 1980; Lapitan et al. 1986), 
all labelled with fluorescein-12-dUTP (PerkinElmer, cat. no. NEL413001EA). 
Wheat chromosomes were identified using Cy5-(GAA)9 and TEX615-pAs1-2 
oligonucleotide probes (Danilova et al. 2012) synthesised by IDT, Coralville, IA 
(Paper II). 
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7 Results and discussion 

7.1 Evaluation of seedling resistance to stem, stripe and leaf 
rust 

7.1.1 Stem rust 
Stem rust seedling tests showed presence of resistance in a number of the wheat-
alien introgression lines evaluated to a range of the stem rust races considered 
(TTKSK, TTKST, TTTSK, TRTTF, TTTTF, TPMKC, QTHJC, RKQQC, TKTTF, 
MCCFC, BPGSC, BPGSC+SrKiewiet and BPGSC+SrSatu) (Paper I). A number of 
the lines considered being resistant, the infection types 0 to 2+ were observed. 
However, a relatively high proportion of the lines were scored as susceptible with 
infection types 3 to 4 for each of the stem rust races evaluated (Paper I). 
Postulation of presence of various stem rust resistance genes was carried out based 
on the virulence profile of the different races of stem rust. Thus, some of the 
wheat-alien introgression lines were postulated to carry Sr7b, Sr8a, Sr9d, Sr10, 
Sr31, Sr36 and SrSatu resistance genes. Exploitation of genetic variability, 
especially for stem rust resistance genes, is essential for the development of new 
wheat cultivars. Thus, the seedling resistance tests revealed important sources of 
novel stem rust resistance gene/s in the wheat-alien introgression lines. Three 
wheat-rye substitution lines (originating from the triticale line VT828041 and the 
cultivar ‘Beagle’) exhibited high level of resistance to all stem rust races tested. In 
these lines (SLU210, SLU238 and SLU239), the 2R chromosome of Secale cereale 
was substituted to chromosome 2D in wheat (Paper I). Thus, the results 
demonstrate higher effectiveness of the chromosome 2R compared with the 
chromosome 1R (1D), 3R (3D) and 3DL·3RS introgressions from the same 
triticale line (Tables 1 and 2). The SLU210, SLU238 and SLU239 lines were 
demonstrated to be a new source of stem rust resistance that is cytogenetically 
stable and would be useful in wheat improvement (Paper I). Several effective 
resistance genes to stem rust have been transferred from the secondary and tertiary 
gene pools and are now being used in wheat breeding (Singh et al. 2015). The most 
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well-known and widely used rye chromosome, 1R, is translocated as 1AL·1RS, 
1BL·1RS and 1DL·1RS, and these variants are all known as sources of stem rust 
resistance genes and other improvements in tolerance to biotic and abiotic stresses 
(Friebe et al. 1996; Yediay et al. 2010). Globally, Sr31 from 1R is the most widely 
deployed resistance gene and this gene has provided a high level of resistance to all 
known stem rust races except the Ug99 race group (Pretorius et al. 2000; Singh et 
al. 2008).   

The wheat-rye translocation lines with 1BL·1RS and 2RL·2BS, also including 
their parents (Topper and KR99-139), were found to be susceptible to all stem rust 
races at the seedling stage, but some lines exhibited resistance at the adult plant 
stage in the Njoro stem rust nursery in Kenya (Paper III). Thus, based on the 
seedling resistance tests, no highly effective stem rust resistance genes were 
present. Therefore, the basis for resistance in these lines must be due to some 
minor genes located on chromosomes 1RS, 2RL and 2BL, and possibly also to 
additional genes on other chromosomes not identified in this thesis. This result is in 
agreement with previous findings by Zhang et al. (2016) of seedling susceptibility, 
but resistance at the adult plant stage. Similar performance has been reported for 
the Sr2 gene, a race-specific APR gene often displaying seedling susceptibility but 
effective at the adult plant stage (Mago et al. 2011; Singh et al. 2015).       

To examine the presence of stem rust resistance genes in Tajik genotypes, a 
seedling resistance test was conducted in widely cultivated Tajik wheat cultivars, 
landraces and advanced lines. The seedling resistance test successfully detected 
three known resistance genes (Sr6, Sr31 and Sr38). However, some genes were 
also classified as uncharacterised, indicating that some genotypes might possess 
novel sources of stem rust resistance gene/s (Paper V). Virulence to the Sr31 gene 
was first detected in Africa (Pretorius et al. 2000), and this virulence type has 
spread to new wheat production areas. Moreover, new races of stem rust with 
additional virulence to important resistance genes have been detected and are 
spreading across eastern, southern and northern Africa and the Middle East 
(Olivera et al. 2015; Patpour et al. 2015a; Patpour et al. 2015b; Singh et al. 2015). 
Approximately 90% of the wheat cultivars grown world-wide are susceptible to 
Ug99 and related races, which poses a severe threat to world food security (Singh 
et al. 2016). Therefore, discovery of new resistance genes effective in the seedling 
and adult plant stages of wheat is important to prevent major stem rust epidemics.    
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Table 1. Seedling infection type and comparison of resistance level in 1R (1D) and 2R (2D) wheat-rye substitution lines from triticale cultivar ‘Beagle’ and line VT828041 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2. Infection type responses and postulated SrSatu resistance gene in 3R (3D) wheat-rye substitution lines
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7.1.2 Stripe rust 
All wheat-alien introgression lines and their parental lines were postulated for 
possible presence or absence of the commonly found stripe rust seedling resistance 
genes Yr1, Yr2, Yr9 and Yr32. Presence of additional unknown resistance gene/s in 
the material was also postulated. The majority of the wheat-alien introgression 
lines were postulated to have similar stripe rust resistance genes as their parental 
lines, i.e. in total Yr1,+ in 18 (7%) of the lines, Yr2,+ in 50 (20%) of the lines, 
Yr9,+ in 31 (12%) of the lines, Yr1,Yr32,+ in six (2%) of the lines, Yr2,Yr9,+ in 14 
(5%) of the lines and Yr1,Yr2,Yr32,+ in 28 (11%) of the lines were postulated. 
However, the postulation also resulted in 98 (37%) of the lines being classified as 
possessing unknown resistance genes and in nine (4%) lines being classified as 
having no resistance genes at all. Furthermore, six (2%) of the lines were classified 
as uncharacterised, meaning that they were resistant to all stripe rust races at the 
seedling stage (Paper IV). Presence of seedling stripe rust resistance genes in these 
wheat-alien introgression lines was postulated based on comparison of the seedling 
infection types of each line with differential genotypes carrying known resistance 
gene/s. Six lines with 5RS·5AL+4R+6R wheat-rye introgressions exhibited a high 
level of resistance to all stripe rust races used in this study and most likely 
represent a new source of resistance to stripe rust. However, in previous studies the 
wheat-Secale cereanum addition lines with chromosome 6R have been suggested 
to carry a novel resistance gene/s to stripe rust (Schneider et al. 2016). In this 
thesis, most of the wheat-alien introgression lines with chromosome 1R were found 
to carry the Yr9 resistance gene alone with additional unknown resistance gene/s. 
As an example, a combination of Yr9/Sr31 resistance genes was postulated in the 
SLU168 and SLU173 lines with 1BL·1RS wheat-rye translocation, but not in the 
1RS·1DL, 1R (1D), 1R+6R and 1R+4R+6R substitution and translocation lines 
(Papers I and IV). Genetically, Yr9/Sr31/Lr26/Pm8 located on the 1BL·1RS wheat-
rye translocation was associated with the rye cultivar ‘Petkus’ (Friebe et al. 1996). 
The Yr9 resistance gene, found only in triticale, has not been genetically associated 
with the Yr9/Sr31/Lr26/Pm8 resistance genes (Zhang et al. 2010).   

According to the results in this thesis, four known Yr genes (Yr2, Yr9, Yr17 and 
Yr27) and some unidentified resistance genes are present in Tajik wheat genotypes 
(Paper V). The Yr9 (Sr31/Lr26/Pm8) gene in varieties ‘Alex’, ‘Sadokat’ and 
‘Ziroat-70’ is probably derived from the widely used rye cultivar ‘Petkus’ for 
wheat improvement, suggested to originate from a 1BL·1RS wheat-rye 
translocation. However, several new varieties (‘Sarvar’, ‘Yusufi’, ‘Alex’, ‘Oryon’ 
etc.) that are widely cultivated in Tajikistan were highly resistant during the 
epidemic years of 2010 and 2016. The evolution and spread of new virulent races 
has had a significant effect for epidemics of stripe rust world-wide (Wellings 2011; 
Ali et al. 2014; Hovmøller et al. 2015). In Tajikistan, several stripe rust epidemics 
have threatened food security and farmers’ livelihoods (Eshonova et al. 2005; 
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Rahmatov et al. 2011; Rahmatov et al. 2012). Therefore, there is an urgent need for 
identification of new stripe rust resistance genes that can be utilised in the national 
wheat breeding programme as a low-cost and environment-friendly strategy (Paper 
V).    

7.1.3 Leaf rust 
Widely cultivated wheat cultivars, landraces and advanced lines from Tajikistan 
were assessed with nine races of leaf rust at the seedling stage, and only Lr26 was 
postulated to be present. Lr26 is a widely deployed resistance gene, located on the 
1BL·1RS translocation (Friebe et al. 1996; Mago et al. 2002). In terms of seedling 
resistance, more than 20% of the genotypes tested were highly resistant to the leaf 
rust races used in this study. This suggests the presence of new leaf rust resistance 
genes in Tajik genotypes. However, to fully elucidate the number of genes carried 
in each genotype, genetic analyses must be performed (Paper V). 

7.2 Field responses to stem and stripe rust  

7.2.1 Stem rust  
Field experiments to evaluate the presence of stem rust APR were carried out at 
KALRO, RCRRC and UM and showed high disease severity (~90%) in susceptible 
controls. The resistance identified with the seedling tests in the wheat-alien 
introgression lines remained highly effective during field evaluations (Figure 1). 
However, additional lines possessed a high level of resistance in the field 
compared with the number of lines that were resistant at the seedling stage (Paper 
I). Lines determined as containing stem rust APR gene/s showed severity ranging 
from 0 to 30 RMR, 5 to 40 MR-MS and 5 to 30 MS-MSS (Paper I). The genetic 
basis of the APR in this material has still not been evaluated. A number of 
1BL·1RS and 2RL·2BS double wheat-rye translocation lines were revealed as 
showing APR to the rust race TTKSK. This APR was most likely due to the 
presence of multiple minor genes on at least three chromosomes leading to APR 
resistance (Paper III). Several previous studies of APR to stem rust in wheat have 
revealed that the high level of resistance in the adult plant is due to the presence of 
four or five minor genes (Singh et al. 2014). However to date, only the Sr2, Sr55, 
Sr56, Sr57 and Sr58 pleiotropic APR genes have been characterised and these 
genes are conferring slow rusting resistance (Knott 1968; Lagudah et al. 2006; 
Herrera-Foessel et al. 2010; Bansal et al. 2014). Therefore, pyramiding of major 
and minor gene combinations could be an effective strategy contributing to durable 
stem rust resistance in wheat (Singh et al. 2011; Singh et al. 2015). To fully 
elucidate the genetic architecture of APR, molecular mapping studies are a highly 
effective approach (Yu et al. 2014).   
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Figure 1. Correlation between seedling and APR genes to stem rust in wheat-alien introgression 
lines.  
 

The APR of Tajik genotypes to stem rust was evaluated at three locations 
(KALRO, RCRRC and UM). In the field, three, nine and ten of the lines tested 
showed APR to TTKSK, MCCFC and TKTTF respectively, with reduced stem rust 
severity (5RMR to 60MR), although all genotypes were susceptible at the seedling 
stage (Paper V) (Figure 2A-F). The pseudo black chaff (PBC) phenotype, which is 
known to be linked with Sr2/Yr30/Lr27 genes under field conditions (Juliana et al. 
2015), was found in several genotypes. The APR genes Sr2/Yr30/Lr27 have been 
widely and effectively used in conjunction with other R and APR genes and have 
provided durable resistance against all virulent races of stem rust (Li et al. 2015). 
Again, a combination of major and minor resistance genes is the most promising 
solution to provide durable resistance in wheat cultivars (Paper V). Recently, 
several QTLs for APR to stem rust have been mapped in different wheat 
chromosomes and this may contribute to APR (Yu et al. 2014).     

7.2.2 Stripe rust 
High levels of stripe rust disease severity were found for susceptible controls at 
Lönnstorp (80%) and RCRRC (100%) during APR tests. All lines identified as 
resistant to stripe rust at the seedling stage also remained resistant at the adult plant 
stage under field conditions. A large number of genes, including Yr16, Yr18, Yr29, 
Yr30, Yr31, Yr36, Yr39, Yr46, Yr48 and Yr52, have been characterised as stripe rust 
APR genes (Herrera-Foessel et al. 2010; Rosewarne et al. 2012; Chen 2013). The 
majority of the APR effect noted at Lönnstorp could be due to the presence of 
resistance in the lines to rust race SE2015/12 (Paper IV). The stripe rust race 
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TK34/11 was the dominant race used and present at RCRRC. Resistance towards 
this race is based on a seedling resistance effect and many of the wheat-alien 
introgression lines showed seedling resistance to race TK34/11 (Paper IV). The 
genetic basis of APR in the lines is still unknown.  

Five and two of the Tajik genotypes were susceptible at the seedling stage to 
the stripe rust races TK34/11 and Taj01a/10, respectively, although showing APR 
at the adult plant stage (Paper V). The slow rusting resistance genes Yr18 
(Sr57/Lr34), Yr29 (Sr58/Lr46), Yr30 (Sr2/Lr27) and Yr46 (Sr55/Lr67) and the 
high-temperature APR genes Yr36, Yr39 and Yr52 have been shown to be major 
sources of durable resistance to stripe rust (Chen 2013; Singh et al. 2014). 
However, the leaf tip necrosis (LTN) phenotype, known to be associated with the 
Yr18/Lr34/Sr57 APR genes under field conditions, was found in several of the 
genotypes (Paper V). Thus, it was concluded that the majority of the genotypes 
displayed a high level of stripe rust resistance in the field, most likely due to the 
presence of seedling resistance genes in the genotypes (Figure 2G-L).   

 
Figure 2. Stem rust seedling infection types in wheat cultivars, A) ‘Sarvar’; B) ‘Alex’; and C) 
‘Navruz’ and adult plant stem rust responses in wheat cultivars D) ‘Sarvar’; E) ‘Alex’; and F) 
‘Navruz’ to race TKTTF. Stripe rust seedling infection types in wheat cultivars, G) ‘Sarvar’; H) 
‘Ormon’; and I) ‘Ziroat-70’ and adult plant stripe rust responses in wheat cultivars J) ‘Sarvar’; K) 
‘Ormon’; and L) ‘Ziroat-70’ to race Taj01a/10.  

7.3 Molecular marker validation 
In addition to seedling and adult plant resistance tests, CAPS, KASP, SSR and STS 
molecular markers were used to verify presence/absence of stem, stripe and leaf 
rust resistance genes. Lines suspected to carry the Sr31 gene were assessed with 
the Xscm9 and Xiag95 markers, while those suspected to carry the Sr36 gene were 
assessed with markers wMAS0000015 and Xstm773. These markers were able to 
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verify the presence of the suspected genes for stem rust in the lines investigated 
(Paper I). The molecular markers for the stripe rust resistance genes, Yr2, Yr9 and 
Yr32, were also able to verify presence of these genes (Paper IV). However, the 
resistance spectra of some wheat-alien introgression lines phenotypically indicated 
the presence of the Sr36 and Sr38 stem rust resistance genes, although the 
molecular markers (wMAS0000015, Xstm773 and VENTRIUP/LN2) were not able 
to identify the presence of these genes (Paper I). Molecular markers were 
complemented with GISH analysis to verify presence of rye and Leymus 
racemosus chromatin in the wheat background (Paper I). The results showed that 
molecular markers can be used to identify the resistance genes rapidly and 
accurately. Wheat stem rust and stripe rust resistance genes Sr31, Sr36, Yr2, Yr9 
and Yr32 have been mapped on the wheat chromosomes and perfect markers are 
available to detect the presence of these genes (Eriksen et al. 2004; Lin et al. 2005; 
Mago et al. 2005b; Tsilo et al. 2008; MASWheat 2016). The efficacy of the Sr, Yr 
and Lr gene postulation and molecular marker validation has been demonstrated in 
recent studies in Nordic wheat genotypes (Randhawa et al. 2016). Cytological 
methods, such as GISH and FISH, have been used extensively to identify 
introgression lines in wheat, but these approaches are not suitable for small 
chromosome segments (Tiwari et al. 2014). Thus, usage of molecular markers can 
detect small alien chromosome segments in the wheat genome.      

The presence of seedling resistance genes such as Yr2, Sr6, Sr31/Yr9/Lr26 and 
Sr38/Yr17/Lr37 in the Tajik genotypes was assessed with available molecular 
markers. Presence of APR genes Sr2/Yr30/Lr27 and Sr57/Yr18/Lr34 was also 
assessed with molecular markers (Paper V). However, due to phenotyping 
challenges in the seedling and adult plant stages, the available molecular markers 
were used for accurate gene postulation. These molecular markers were suitable for 
identifying lines with multiple resistance genes. Several lines showed resistance to 
all three rusts due to the presence of multiple resistance genes (Paper V). The 
presence of pleiotropic APR genes Sr2/Yr30/Lr27 and Sr57/Yr18/Lr34 in 
combination with other seedling resistance genes has been demonstrated to provide 
adequate rust resistance (Singh et al. 2014; Singh et al. 2015; Singh et al. 2016). 

7.4 GISH analysis 
A GISH analysis was performed to detect Secale cereale, Leymus racemosus and 
Leymus mollis chromosomes in the wheat genome (Paper I). In most of the lines, 
42 wheat chromosomes were counted, but in some lines the presence of one, two 
and five alien chromosome pairs was detected. In the wheat-rye translocations and 
substitutions, the 1B, 1D, 2B, 2D and 3D wheat chromosomes were replaced with 
the 1R, 2R and 3R chromosomes. Thus, it was possible to identify wheat-alien 
substitution and translocation lines based on the GISH analyses of these lines 
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(Paper I) (Figure 3). Cytogenetic analysis is widely used and has become an 
efficient tool for identifying the presence of alien chromosomes in the wheat 
genome (Danilova et al. 2014; Kielsmeier-Cook et al. 2015). In previous studies, 
the alien chromosome introgressions were found primarily in the B and D 
chromosomes of wheat (Merker 1975, 1979, 1984). 

 
Figure 3. Genomic in situ hybridisation (GISH) patterns of wheat-rye, wheat-L. racemosus and 
wheat-L. mollis substitutions and translocation lines. A) SLU190, 1R (1D) 2n = 40+2; B) 
SLU238, 2R (2D) 2n = 40+2; C) SLU219, 3R (3D) 2n = 40+2; D) SLU235, wheat-L. racemosus 
2n = 40+2; E) SLU237, wheat-L. racemosus 2n = 42; and F) SLU176, wheat-L. mollis 2n = 
32+10. 
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7.5 Development and characterisation of a new T2DS·2RL 
wheat-rye Robertsonian translocation with Sr59 resistance 
to stem rust 

Wheat-alien introgressions provide rich genetic resources for wheat improvement 
(Mujeeb-Kazi et al. 2013). Seedling and adult plant resistance screenings showed 
that lines with the 2R (2D) wheat-rye disomic substitution exhibited a highly 
resistant response to all diverse African and North American stem rust races tested 
(Paper I). Homologous chromosome pairing in wheat is strictly controlled by the 
Ph1 gene, which prevents meiotic pairing and recombination between 
homoeologous chromosomes (Riley and Chapman 1958). Therefore, the ‘Chinese 
Spring’ ph1b mutant was crossed with the 2R (2D) wheat-rye substitution line 
(SLU238) (Paper II). To identify the induced homoeologous recombinants, stem 
rust seedling resistance tests and molecular markers were applied at multiple 
generations. The stem rust resistance present in ‘SLU238’ was confirmed as being 
the result of gene/s detected from the rye chromosome arm 2RL (Papers I and II). 
A homozygous T2DS·2RL wheat-rye Robertsonian translocation line was obtained 
through a breakage-fusion mechanism (Paper II). Presence of the resistance gene at 
the distal part of 2RL was verified and the gene was designated Sr59 (Paper II). 
The introgression on a part of a chromosome arm of an alien species in wheat has 
also in previous studies been developed through breakage-fusion, resulting in a 
Robertsonian translocations (Friebe et al. 2005). For example, the production of 
wheat-rye, wheat-Dasypyrum villosum (Sr44), wheat-Thinopyrum intermedium 
(Sr52) and wheat-Agropyron cristatum Robertsonian translocations have occurred 
through the breakage-fusion mechanism (Zhang et al. 2001; Qi et al. 2011; Liu et 
al. 2013; Li et al. 2016). The FISH investigation showed that the line contained a 
pair of Secale cereale as 2n = 41 and 2n = 42 T2DS·2RL wheat-rye Robertsonian 
translocations (Paper II) (Figure 4). 

The T2DS·2RL wheat-rye Robertsonian translocation lines were highly 
resistant to the races TTTTF and TTKSK (Figure 5). This T2DS·2RL wheat-rye 
Robertsonian translocation source of Sr59 resistance gene will provide valuable 
resources for stem rust resistance breeding. Stem rust resistance in wheat has 
greatly relied on the tertiary gene pool for new resistance sources. Among the stem 
rust resistance genes, Sr27, Sr31, Sr50, Sr1RSAmigo and SrSatu were introduced 
from Secale cereale (Olivera et al. 2013; Singh et al. 2015). Rye chromosome 2R 
can also be used as a source of other biotic and abiotic stresses with improved 
agronomic performance (Paper II). This thesis revealed the presence of a new 
resistance gene Sr59 that is effective against a wide array of stem rust races. 
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Figure 4. Fluorescence in situ hybridisation visualisation of A) SLU238 2R (2D), 2n = 42; B) #99 
T2DS·2RL, 2n = 41; C) #100 T2DS·2RL, 2n = 41; and D) #101 (TA5094) T2DS·2RL, 2n = 42.  
 

 
Figure 5. Infection types of A) CS ph1b mutant; B) SLU238; C) #99; D) #100; and E) #101 
(TA5094) to race TTTTF, and of F) CS ph1b mutant; G) SLU238; H) #99; I) #100; and J) #101 
(TA5094) to race TTKSK.  
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7.6 Development of kompetitive-allele specific PCR markers to 
stem rust resistance gene Sr59 

The KASP assays were designed using the SNP sequences from the rye 5K iSelect 
(Haseneyer et al. 2011; Martis et al. 2013). The KASP assays were initially 
validated in ‘SLU238’ and ‘Chinese Spring’ ph1b mutant. Of the 34 markers used 
in KASP assays, three were able to clearly distinguish the ‘Chinese Spring’ ph1b 
mutant from ‘SLU238’ (Paper II). Thereafter, resistant F4 plants were validated by 
the three KASP markers, and the ‘Chinese Spring’ ph1b mutant and susceptible 
plants were not detected. The putatively distal segment of 2RL chromosome was 
detected by three KASP markers in #284 and #409 families, but not by the SSR 
and PLUG markers (Paper II). Thus, a KASP marker is thereby available for MAS 
in wheat breeding applying the Sr59 resistance gene. Several KASP markers are 
reported to be associated with Sr, Yr and Lr resistance genes (MASWheat 2016). 
The KASP markers associated with Sr11 (Jayaveeramuthu et al. 2016), Sr12 
(Hiebert et al. 2016), Sr42 (Gao et al. 2015) and Sr49 (Bansal et al. 2015) 
resistance genes have been developed and are now available for MAS in wheat 
breeding. KASP markers have been observed to be most accurate and robust assay 
for locating disease resistance genes in wheat (Allen et al. 2011; Neelam et al. 
2013; Babiker et al. 2015; Thapa et al. 2016).   
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8 Conclusions  
This thesis clearly identified new sources of stem rust and stripe rust resistance in 
wheat-alien introgression derivatives from Secale cereale, Leymus mollis, Leymus 
racemosus and Thinopyrum junceiforme. These findings show that the wheat-alien 
introgressions are a potentially useful genetic resource for wheat improvement. 
Identification of novel sources of stem rust and stripe rust resistance for use in 
wheat breeding is essential because of the rapid evolution of the pathogens.  
 
The following conclusions were made: 
Ø The 2R (2D) disomic wheat-rye substitution lines SLU210, SLU238 and 

SLU239 possess a novel stem rust resistance gene/s introgressed from 
Secale cereale.  

Ø Stem rust seedling screening demonstrated the presence of Sr7b, Sr8a, 
Sr9d, Sr10, Sr31, Sr36 and SrSatu resistance genes in various wheat-alien 
introgression lines.  

Ø A new T2DS·2RL wheat-rye Robertsonian translocation was developed 
through the breakage-fusion mechanism and seems promising for wheat 
improvement.  

Ø The T2DS·2RL wheat-rye Robertsonian translocation carries a new stem 
rust resistance gene Sr59 that confers a high level of resistance against 
stem rust races.  

Ø A robust KASP marker assay was developed for marker-assisted selection 
for the Sr59 gene.  

Ø The combination of cytogenetic and molecular analysis used in this thesis 
was effective in characterising wheat-alien chromatin introgressed into 
wheat.  

Ø The presence of adult plant resistance to race TTKSK in the 1BL·1RS and 
2RL·2BS double rye translocation lines is most likely due to presence of 
several minor genes.   
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Ø Six of the lines with 5RS·5AL+4R+6R rye chromosomes demonstrated 
high resistance to all stripe rust races. This suggests that lines with 
5RS·5AL+4R+6R introgressions are a potential source of new stripe rust 
resistance gene/s.   

Ø The stripe rust resistance genes Yr1, Yr2, Yr9 and Yr32 and additional 
unknown resistance genes/s were postulated in different lines of the 
wheat-alien introgression.  

Ø Using available molecular markers combined with gene postulation 
provided reliable results in validating seedling and adult plant resistance 
genes of stem, stripe and leaf rust.  

Ø To fully elucidate the genetic architecture of unknown stem rust and stripe 
rust seedling and adult plant resistance in wheat-alien introgressions, 
molecular mapping studies are a highly effective approach. 

Ø Screening of Tajik wheat for presence of stem, stripe and leaf rust 
resistance genes, resulted in a broad knowledge as to which known and 
possible novel genes are present in this material. 

Ø Knowledge of available genes in the Tajik wheat can be combined with 
introductions of novel genes from the evaluated introgression lines to 
secure resistant wheat to be grown in Tajikistan for future generations. 
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9 Future perspectives 
Ø Further chromosome engineering of 5RS·5AL+4R+6R wheat-rye 

introgression lines is needed to understand the background for the new 
source of stripe rust resistance gene.   

Ø The Sr59 resistance gene needs to be transferred into adapted wheat 
cultivars, and the agronomic performance assessed.   

Ø The line with the T2DS·2RL wheat-rye Robertsonian translocation should 
be tested against other diseases and pests, as well as drought tolerance. 

Ø The wheat-alien introgression lines should be tested against leaf rust, 
fusarium head blight, powdery mildew and tan spot disease. 

Ø The MutRenSeq method should be used for cloning of R gene in these 
wheat-alien introgression lines.  

Ø Wheat-alien introgression lines as potential donors of genes for high 
micronutrient (zinc and iron) content should be evaluated. 

Ø The novel resistance genes should be pyramided into the Tajik wheat for 
durable and long-term resistance. 
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