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Abstract 

DNA metabarcoding has been introduced as a revolutionary way to identify organisms and 

monitor ecosystems. However, the potential of this approach for biomonitoring remains partially 

unfulfilled because a significant part of the sampled DNA cannot be affiliated to species due to 

incomplete reference libraries. Thus, biotic indices which are based on the estimated abundances 

of species in a community and their ecological profiles can be inaccurate. We propose to compute 

biotic indices using phylogenetic imputation of OTUs' ecological profiles (OTU-PITI approach). 

Firstly, OTUs sequences are inserted within a reference phylogeny. Secondly, OTUs' ecological 

profiles are estimated on the basis of their phylogenetic relationships with reference species 

whose ecology is known. Based on these ecological profiles, biotic indices can be computed using 

all available OTUs. Using freshwater diatoms as a case study, we show that short DNA barcodes 

can be placed accurately within a phylogeny and their ecological preferences estimated with a 

satisfactory level of precision. In light of these results, we tested the approach with a dataset of 

139 environmental samples of benthic river diatoms for which the same biotic index (IPS) was 

calculated using (i) traditional microscopy, (ii) OTUs with taxonomic assignment approach, (iii) 

OTUs with phylogenetic estimation of ecological profiles (OTU-PITI), and (iv) OTU with 

taxonomic assignment completed by the phylogenetic approach (OTU-PITI) for unclassified 

OTUs. Using traditional microscopy as a reference, we found that the combination of the OTUs' 

taxonomic assignment completed by the phylogenetic method performed satisfactorily and 

substantially better than the other methods tested.  

Keywords: Metabarcoding, Biomonitoring, Environmental DNA, Diatoms, Phylogenetic signal 
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Introduction 

The protection and conservation of ecosystems requires managers to accurately assess the quality of 

the environment over time (Ibáñez, Caiola, Sharpe, & Trobajo, 2010). Ecologists have developed a 

wide set of biotic indices to monitor ecological impacts of human activities, based on the principle 

that anthropic pressures shape biological communities (Chapman, 1996). Hence, a large variety of 

indices are available to estimate environmental quality from the richness, diversity, structure, and 

functioning of biological communities. 

Diatoms are unicellular eukaryotic algae encompassing a large taxonomic diversity (Round, 

Crawford, & Mann, 1990). Because they have a relatively short generation time and their 

communities respond strongly to changes in habitat quality, diatoms are recognized as powerful 

bioindicators of freshwater quality (Rimet, 2012; Stevenson, Yangdong, & Van Dam, 2010). Most of 

the diatom biotic indices are based on species autecology and are usually derived from the equation of 

Zelinka and Marvan (1961). For example, the IPS index (specific sensitivity value; Coste, 1982) 

which is used in this paper as a case study is defined in Equation 1, where ai is the relative abundance 

of species i in the sample, IPSVi its indicator value (tolerance) and IPSSi its pollution sensitivity 

(optimum). 

ܵܲܫ  = ∑ ܽ × ܵܲܫ ܸ × ∑ୀଵܵܵܲܫ ܽ × ܵܲܫ ܸୀଵ  (1) 

The estimation of diatom indices like the IPS index require an accurate taxonomic inventory of the 

community (Besse-Lototskaya, Verdonschot, Coste, & Van de Vijver, 2011). Diatom inventories are 

traditionally based on the morphological identification of several hundred individuals under 

microscope (Prygiel et al., 2002). Given the diversity of diatoms (Mann & Vanormelingen, 2013), this 

step is time-consuming, requires highly-qualified staff, and is prone to errors (Besse-Lototskaya, 

Verdonschot, & Sinkeldam, 2006). However, the development of methods to identify multiple taxa 

simultaneously from an environmental sample with standard genetic markers (DNA metabarcoding), 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

combined with high-throughput sequencing technologies (HTS) have enabled the production of fast 

and cost-effective taxonomical inventories of communities (Taberlet, Coissac, Hajibabaei, & 

Rieseberg, 2012). Therefore, metabarcoding has been promoted as an attractive alternative to 

traditional identification using microscopy for biomonitoring (Baird & Hajibabaei, 2012). Recent 

studies have shown that molecular inventories of diatom communities can be used to calculate various 

biotic indices (Kermarrec et al., 2014; Rivera et al., 2017; Vasselon, Rimet, Tapolczai, & Bouchez, 

2017; Visco et al., 2015). 

The classical approach to compute ecological indices with metabarcoding data comprises of clustering 

DNA reads into operational taxonomic units (OTUs) and then assigning them a taxonomic name 

using a reference library (Kermarrec et al., 2014; Zimmermann, Glöckner, Jahn, Enke, & 

Gemeinholzer, 2015). Once the list of OTUs is converted into a taxonomic list, one can compute 

traditional bioassessment indices based on the ecological preferences of the species (IPSS and IPSV 

values in the case of IPS). However, this approach has some notable drawbacks, the most significant 

being that an important proportion of OTUs cannot be adequately classified into species because 

reference libraries are incomplete. Hence, a large part of the biological diversity unraveled by DNA 

methods is discarded and cannot be used for bioassessment purposes. 

To circumvent this problem, it has been suggested to skip the conversion from DNA reads to 

taxonomic entities and work directly on molecular data (Keck, Vasselon, Tapolczai, Rimet, & 

Bouchez, 2017). In this respect, different strategies have been considered, including OTU-based 

indices (Apothéloz-Perret-Gentil et al., 2017) or the use of supervised machine-learning algorithms to 

process genetic inventories (Cordier et al., 2017). Alternatively, Keck et al. (2016; 2017) have 

suggested an approach based on the relationships existing between the phylogenetic position of 

species and their ecology (i.e., the phylogenetic signal, Blomberg, Garland, & Ives, 2003). The central 

idea is to combine an algorithm placing OTUs within a reference phylogeny and an algorithm to 

phylogenetically impute OTUs' ecological profiles (i.e., autecological values, here IPSS and IPSV) 

based on information available from neighbor species. This type of workflow has been introduced and 

successfully used by Kembel et al. (2012) to estimate 16S gene copy number and improve estimates 
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of organismal abundance in microbial communities. However, implementing this approach for 

ecological assessment with metabarcoding requires to assess if DNA reads produced by HTS are long 

and informative enough to be accurately placed in a reference phylogeny, and once inserted, if then 

the phylogenetic signal is strong enough to estimate precisely their ecological profiles. 

In this paper, we aim to implement and test the phylogenetic approach (termed OTU-PITI; i.e., OTU 

Phylogenetic Insertion and Trait Imputation) for ecological assessment with metabarcoding data. We 

first compared the placement accuracy of short rbcL DNA reads (312 bp) as produced by HTS 

technologies with full length sequences of the rbcL gene. Second, we tested for the phylogenetic 

signal and performed a cross-validation procedure to assess whether phylogenetic imputation of 

species ecological profiles can be estimated from their phylogenetic positions. Finally, we tested the 

method with a dataset of 139 environmental river samples for which diatoms communities were 

analyzed using both microscopy and DNA metabarcoding. IPS indices based on the OTU-PITI 

approach and on taxonomically assigned OTUs were then compared to IPS indices based on classical 

microscopy. 

Material and Methods 

Reference phylogenetic tree reconstruction 

The reference phylogenetic tree was reconstructed from the chloroplast rbcL gene coding for the 

RuBisCO enzyme. This gene is recognized for its good performances to differentiate diatoms species 

and is a popular marker both for phylogenetic and metabarcoding studies. However, rbcL may have a 

limited ability to recover deep phylogenetic relationships within diatom clades (Theriot, Ruck, 

Ashworth, Nakov, & Jansen, 2011). Therefore, we used the phylogeny of diatoms published by 

Theriot, Ashworth, Nakov, Ruck, & Jansen (2015) and based on seven genes (SSU, atpB, psaA, psaB, 

psbA, psbC and rbcL) as a fixed guide in the reconstruction process. We extracted 1380 rbcL 

sequences from the curated library R-Syst::diatom (Rimet et al., 2016). The sequences were aligned 

using MUSCLE (Edgar, 2004) and consensus sequences were computed using per-base majority rule 
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for 550 species. The new set of 550 sequences was then merged and re-aligned against the 208 

sequences alignment of Theriot et al. (2015). Duplicated species were dropped, giving a final 

reference alignment of 604 species. The phylogeny was then reconstructed with RAxML 8.2.11 

(Stamatakis, 2014) using the phylogenetic tree of Theriot et al. (2015) as a topological constraint, a 

substitution model GTR+G+I, 200 runs and 1000 bootstraps (Fig S1, Supporting Information). The 

tree was dated in relative time using PATHd8 (Britton, Anderson, Jacquet, Lundqvist, & Bremer, 

2007). 

Testing for short sequences placement 

To test if a 312 bp rbcL barcode is sufficient to recover the phylogenetic position of the species, we 

sequentially dropped species from the reference phylogenetic tree and placed them using their 

reference barcode of 312 bp. The phylogenetic placement was performed using the Evolutionary 

Placement Algorithm (EPA; Berger, Krompass, & Stamatakis, 2011) implemented in RAxML. To 

assess the quality of the barcode placement, we measured the distance between the insertion point of 

the full-length reference sequence (~1500 bp) edge and the insertion point of the placed barcode 

sequence (312 bp). This distance is expressed as the number of nodes located on the path which 

connects the two insertion points. Ideally, the barcode sequence is placed at the same location as the 

full-length sequence and the node distance is zero. 

Testing for phylogenetic estimation of autecological values 

We tested the phylogenetic signal for pollution sensitivity values (IPSS) and the indicator values 

(IPSV) of the species using Pagel’s λ (Pagel, 1999) computed with the R package phylosignal (Keck, 

Rimet, Bouchez, & Franc, 2016). We used a leave-one-out cross-validation (LOOCV) procedure to 

test whether the IPSS and IPSV values can be estimated accurately from their phylogenetic position. 

The analysis was performed on a subset of 237 species which were found both in the reference 

phylogenetic tree and the IPS database. We sequentially estimated the IPSS and IPSV values of each 

species, given its phylogenetic position (as estimated using the barcode sequence; see above), and the 

known autecological values of the other species in the tree. The prediction was done using the 
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framework introduced by Bruggeman, Heringa, and Brandt (2009) which estimates the phylogenetic 

covariance matrix parameters under a given evolution model and use it to impute the missing data as 

the best linear unbiased predictions (Ho, Si, & Ané, 2014). We used the implementation available in 

the R package rphylopars (Goolsby, Bruggeman, & Ané, 2017) to test 6 different phylogenetic 

models: Brownian motion (BM), Ornstein-Uhlenbeck (OU), Early-Burst (EB), lambda, delta and 

kappa (see Goolsby et al., 2017 for details on the tested models). Additionally we used an ad-hoc non-

phylogenetic model (star) which assumes that the best estimate for a missing value is given by the 

mean of all observations. The performances of the different models were assessed using the LOOCV 

mean squared error (MSE) and compared using pairwise Wilcoxon signed-rank test on squared error 

distributions with Bonferroni correction for multiple comparisons. The absolute error (i.e., the 

absolute value of the difference between the estimated and the true trait value) was used to investigate 

model prediction errors in detail. 

Sample collection 

A total of 139 benthic diatom samples were collected from rivers as part of the 2016 French 

monitoring campaign for water quality assessment (Fig. S2, Supporting information). Benthic diatoms 

communities were collected by scraping biofilms from at least 5 submerged stones using a toothbrush, 

as recommended by the European standard (European Committee for Standardization, 2016). 

Immediately after collection, each sampled biofilm was homogenized and divided into 2 subsamples 

to perform the molecular and morphological approaches. Each subsample was transferred into 50 mL 

Falcon tubes and preserved with a final concentration of at least 70 % of ethanol. 

Morphological approach 

Sample preparation, species identification and counting were performed by offices responsible for the 

ecological assessment of French rivers in the context of the Water Framework Directive. Benthic 

samples were treated using 40 % H2O2 and HCl according to the European standard (European 

Committee for Standardization, 2014). Resulting diatom samples were mounted in Naphrax and used 
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to obtain permanent slides for analysis by microscopy. A minimum of 400 diatoms valves were 

determined using standard European floras (European Committee for Standardization, 2014). 

Molecular laboratory methods 

The preserved biofilm samples were centrifuged at 17,000 g during 30 minutes and the supernatant 

containing ethanol discarded. Total genomic DNA was extracted from the pellet using a non-

commercial method based on Sigma-Aldrich GenEluteTM-LPA DNA precipitation, as described and 

recommended previously for diatom metabarcoding (Chonova et al., 2016; Vasselon, Domaizon, 

Rimet, Kahlert, & Bouchez, 2017). In order to have technical replicates, two subsamples of each 

DNA extracts were used for subsequent PCR amplification and HTS, for a total of 278 DNA samples 

(139 x 2) sequenced. To enable the sequencing of all samples in a single Illumina run, 2 successive 

PCR were performed to prepare HTS libraries. (i) PCR1: DNA extracts were amplified in triplicate 

using the equimolar mixes of Diat_rbcL_708F_1, 708F_2, 708F_3 and R3_1, R3_2 as forward and 

reverse primers respectively (Vasselon, Rimet, et al., 2017), allowing to focus a short fragment of the 

rbcL plastid gene (312 bp). Half of the P5 (CTTTCCCTACACGACGCTCTTCCGATCT) and P7 

(GGAGTTCAGACGTGTGCTCTTCCGATCT) Illumina adapters were included to the 5’ part of the 

rbcL forward and reverse primers respectively. PCR1 amplifications were performed in a final 

volume of 25µL following mix and reaction conditions used in Vasselon et al. (2017), except the 

number of amplification cycles which was set to 33. (ii) PCR2: the 3 PCR1 replicates prepared for 

each DNA sample were pooled and sent to the “GenoToul Genomics and Transcriptomics” facility 

(GeT-PlaGe, Auzeville, France) where subsequent laboratory preparations were performed. PCR1 

amplicons were purified and used as templates in the PCR2 which used Illumina-tailed primers 

targeting the half of P5 and P7 sequences. Finally, all generated 278 PCR2 amplicons were dual 

indexed and pooled into a single tube. Final pool was sequenced on an Illumina Miseq platform using 

the V3 paired-end sequencing kit (250 bp × 2). 
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HTS data analyses 

Demultiplexed and overlapped Miseq data were delivered by the GeT-PlaGe sequencing platform 

(paired sequences overlap > 140 bp and mismatches < 0.1 %), resulting in 278 fastq files. A quality 

filtering was performed using Mothur software (Schloss et al., 2009) to remove DNA reads with: 

Phred quality score < 23 over a moving window = 25 bp, primer sequence mismatch > 1, 

homopolymer > 8 bp, ambiguous base > 0. Chimeras were removed using the Uchime algorithm 

(Edgar, Haas, Clemente, Quince, & Knight, 2011) available in Mothur. Then, all the fastq files were 

combined and de-replicated in order to keep only unique sequences with DNA read abundance > 2. 

Using the R-Syst::diatom library (Rimet et al., 2016) and the naïve Bayesian method (Wang, Garrity, 

Tiedje, & Cole, 2007), taxonomy was assigned to each DNA read with a confidence threshold > 85 %. 

DNA reads assigned to the Bacillariophyta phylum were clustered into OTUs using a distance 

similarity threshold of 95 % as described in Vasselon, Domaizon, et al. (2017). For each sample, the 2 

replicates were merged and only the OTUs shared by both replicates were conserved in order to 

remove unrepresentative and spurious OTUs. The taxonomy of OTUs were defined as the consensus 

taxonomy of DNA reads (threshold > 80). A DNA representative sequence was determined for each 

OTU using the Get.oturep command in Mothur. 

Biotic indices 

We computed four biotic indices for 139 sites, all based on the IPS index (Coste, 1982). The first 

index IPS-MICROTAXO was computed from the relative abundances of the species estimated using 

traditional microscopy. The second, IPS-DNATAXO was computed from the relative abundance of 

the OTUs after they were classified into species using Mothur. Since the IPSS and IPSV values are 

inherited from the taxonomical affiliation, the fraction of unclassified OTUs cannot be used for this 

index. The third index, IPS-DNAPHYLO takes into account all the OTUs. For this index the IPSS and 

IPSV values are phylogenetically imputed. OTUs were placed within the reference phylogenetic tree 

using their representative sequence (most abundant sequence) and the EPA algorithm. The IPSS and 

IPSV values of each OTU were estimated using rphylopars with the best evolution model selected at 
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the cross-validation step (see above). Finally, the fourth index, IPS-DNAHYBRID is a combination of 

IPS-DNATAXO and IPS-DNAPHYLO: species IPSS and IPSV are used for OTUs which can be 

classified into species using Mothur, while the unclassified fraction of OTUs is used with 

phylogenetically imputed IPSS and IPSV values. DNA-based indices were compared to IPS-

MICROTAXO using the mean squared error (MSE) and pairwise Wilcoxon signed-rank test on 

squared error. 

Results 

Quality of read placements 

Overall, barcode sequences allowed to place species accurately within the reference phylogeny (Fig. 

1, Table S1, Supporting information). About 45% (272) of the species were placed exactly at the same 

location as the full-length sequence. Most of the species (508; 84%) were placed at a short distance, ≤ 

3 nodes from the reference target. Only a few species were not placed correctly within the reference 

phylogeny (35 species; 5.8% at ≥ 10 nodes from the reference targets). 

Quality of autecological values estimation 

We found a significant phylogenetic signal for IPSS (λ = 0.67; p-value < 0.001) and for IPSV (λ = 

0.52; p-value < 0.001). For IPSS, five phylogenetic models (lambda, delta, kappa, BM and EB) 

produced better predictions (lower MSE, p-values < 0.001) than the non-phylogenetic star model 

(Fig. 2; Table S2, Supporting information). The best model with the lowest MSE was the lambda 

model which exhibited a 30% decrease of MSE compared to the star model. For IPSV, five 

phylogenetic models produced lower MSE than the star model but differences were not significant (p-

values > 0.05). 

The estimated IPSS values for each species are mapped onto the reference phylogenetic tree in Fig. 3 

and can be compared with the true IPSS values. For 150 (63%) of the species represented in green in 

Fig. 3, the absolute error was found to be low (≤ 1), indicating a good prediction. The absolute error 
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was ranging from 1 to 2 for 79 (33%) of the species (represented in orange), indicating a poor 

prediction quality. Finally, for a few species (8; 3%) the prediction quality was found to be very poor 

(absolute error > 2). 

Morphological analysis 

A total of 534 species were determined using microscopy. The dominant species were Achnanthidium 

minutissimum (14% of the valves determined), Achnanthidium pyrenaicum (6%), Amphora pediculus 

(5%), Achnanthidium delmontii (5%) and Eolimna minima (4%). For these 5 dominant taxa a 

reference barcode is present in the R-Syst::diatom library, except for Achnanthidium delmontii. 

Among the 100 most frequently determined species, 38 have a barcode in R-Syst::diatom and among 

the 534 species, only 114 species have a DNA barcode. 

HTS analysis 

The Illumina Miseq sequencing produced a total of 11,249,428 x 2 DNA reads. After all the 

bioinformatics processes, the OTU list obtained for the 139 samples included 682 OTUs composed by 

3,033,967 DNA reads. After the taxonomic assignment, 362 OTUs were identified at the genus level 

(77 % of DNA reads) and 205 at the species level (58 % of DNA reads). Final molecular taxonomic 

list contained 28 families, 53 genera and 102 diatom species. The final list of OTUs with their 

taxonomic assignment and DNA representative sequence is available in the Supporting information 

(Table S3). 

Performances of biotic indices 

The distribution of IPS-MICROTAXO scores was left skewed with a majority of high rated sites. 

DNA-based indices scores exhibited unimodal distribution with a restricted variability (few sites low 

rated and high rated). This was particularly true for IPS-DNAPHYLO which showed a variance of 

0.12, much lower than the variance of IPS-MICROTAXO (s2 = 0.5). The indices were significantly 

correlated with each other (Fig. 4; all correlations > 0.49 and all p-values < 0.001). When comparing 

DNA-based indices with IPS-MICROTAXO, IPS-DNAHYBRID appeared to be the best index with 
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the highest correlation (r = 0.74) and the lowest MSE (0.33). IPS-DNATAXO and IPS-DNAPHYLO 

exhibited similar correlation with IPS-MICROTAXO (r = 0.69 and r = 0.70, respectively) and similar 

MSE (0.45 and 0.43). Wilcoxon tests detected no difference between the squared error distribution of 

IPS-DNATAXO and IPS-DNAPHYLO (p-value = 1) but both methods were significantly 

outperformed by IPS-DNAHYBRID (p-values < 0.05). 

Discussion 

DNA metabarcoding appears to be a promising alternative to the traditional methods of characterizing 

biodiversity and assessing environmental quality. However, the massive quantities of genetic data 

produced by HTS challenge ecologists to think differently about the way biotic indices are computed 

(Keck et al., 2017). In this paper, we have introduced a new method based on phylogeny to compute 

biotic indices from DNA reads generated by metabarcoding workflows. The phylogenetic method is 

in line with the recent developments in taxonomy-free approaches for bioassessment which aim to 

bypass taxonomic reference libraries in order to maximize the genetic information taken into account 

(e.g., Apothéloz-Perret-Gentil et al., 2017; Cordier et al., 2017). The phylogenetic OTU-PITI 

approach has sound theoretical grounds, because, the imputation of missing values is based on the 

phylogenetic signal (i.e., the non-independence among species trait values because of their 

phylogenetic relatedness) which is a direct consequence of Darwin’s principle of descent with 

modification (Felsenstein, 1985). 

The OTU-PITI approach is based on two main steps: first, the placement of DNA reads within the 

phylogeny and second, the estimation of their ecological values. We found that short rbcL marker 

(312 bp) gives satisfactory results with most of the species barcodes placed exactly or very close to 

their reference position. This is consistent with the benchmark results obtained by Berger et al. (2011) 

on short sequences (200 ± 60 bp) in the original publication of the Evolutionary Placement Algorithm. 

However, some species could not be placed correctly by the EPA (Fig. 1; see Table S1, Supporting 

information for the detailed list). The performances of the EPA for a given sequence may depend on 
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many factors like the choice of genetic marker, the length of the sequence, and the presence of 

closely-related taxa in the reference tree. In our case, it seems that wrong placements often involve 

species isolated in the phylogeny. Thus, increasing the phylogenetic coverage of underrepresented 

taxa may help to improve the placement of these species. Obviously, longer DNA reads capture more 

historical signal. Hence, the quality of reads insertion is also expected to improve as read lengths 

produced by HTS will increase (Tedersoo, Tooming-Klunderud, & Anslan, 2017). Finally, it should 

be noted that most of the species which were wrongly placed are marine (e.g., Guinardia striata, 

Stephanopyxis turris) and therefore will not impede the computation of freshwater biotic indices like 

the IPS Index. 

Diatoms pollution sensitivity (IPSS) exhibited a significant phylogenetic signal and was much better 

predicted using a phylogenetic model (lambda) than using the ad-hoc non-phylogenetic star model. 

These results are consistent with the presence of phylogenetic signal for ecological optima and 

pollution sensitivity (Keck et al., 2016). Nonetheless, some species were very poorly predicted (e.g., 

Nitzschia soratensis, Terpsinoë musica). Incorrect estimation can be the result of a wrong placement 

of the species within the phylogeny. For example, the high absolute error found for Lemnicola 

hungarica (2.55) could be explained by a rough phylogenetic placement of this species (node distance 

= 11). It is also clear that trait imputation is less effective when closely related species exhibit very 

contrasted trait values and therefore strongly depart from the underlying model of evolution 

(overdispersion). For example, Halamphora oligotraphenta and Halamphora veneta are two closely 

related species with very different ecological preferences, the former living in oligotrophic freshwater, 

while the latter is found in eutrophic habitats (Levkov, 2009). As a result, the pollution sensitivity 

values of these two species are incorrectly predicted (Fig. 3). Overdispersion can be the consequence 

of recent evolutionary events and selection under active constraints like convergent evolution or 

character displacement. Unlike IPSS, the species tolerance value IPSV was poorly predicted by the 

phylogenetic models. The fact that the ad-hoc model (star) performed as good as the best 

phylogenetic model (lambda) reflects a low, yet significant phylogenetic signal, or a signal which 

cannot be appropriately modelled with the tested phylogenetic methods. A weak signal can be the 
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result of trait instability and lability over time (Blomberg et al., 2003). With IPSV being an 

approximate and partial measure of diatoms realized niche volume, its variability may be more related 

to interspecific interactions and non-genetic effects. 

The two IPS-derived indices implementing the OTU-PITI approach (IPS-DNAPHYLO and IPS-

DNAHYBRID) were strongly correlated to the index estimated from microscopy. However, IPS-

DNAPHYLO had a restricted range of values, with a tendency to overestimate the score of bad 

quality sites and underestimate the score of good quality sites. This tendency is likely to be caused by 

the phylogenetic imputation algorithm which has been shown to be a form of kriging (Cressie, 1993) 

in a phylogenetic context (Ho et al., 2014). As an inverse distance weighting method, kriging is 

subject to a smoothing effect and does not reproduce the histogram of the sample data (Isaaks & 

Srivastava, 1989). One solution could be to estimate the strength of smoothing from the LOOCV data 

and apply a correction factor to the OTUs estimated ecological values. With the true ecological values 

being more reliable than the phylogenetically imputed ones, we advocate for the use of the 

DNAHYBRID which benefits from the ecological values of the assigned species if available while 

using 100% of the OTUs via the OTU-PITI approach. In our study, the IPS-DNAHYBRID is the 

molecular index correlating the best with the index based on microscopy. Despite a deviation of the 

residuals around the 1:1 line, this method has the lowest error rate (MSE = 0.32). 

The OTU-PITI approach solves two important problems that scientists and environmental managers 

recurrently face when using metabarcoding data to compute biotic indices. The first problem is the 

incompleteness of reference libraries connecting DNA barcode sequences to taxonomic names. An 

incomplete library strongly limits the proportion of OTUs which can be taxonomically assigned and 

used for indices calculation. In this study, the reference library covered 21% of the species detected 

using microscopy. As a consequence, the proportion of OTUs assigned at species level was only 30%, 

similar to the proportions obtained in previous diatom studies (e.g., Apothéloz-Perret-Gentil et al. 

2017; Rivera et al. 2017; Vasselon et al. 2017b respectively 35%, 23% and 35.7%). Additionally, the 

OTU-PITI approach offers a convenient solution to the incompleteness of ecological libraries 

connecting taxa and ecological values. Some species, detected either by microscopy or DNA, do not 
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have IPSS and IPSV values. Therefore, they cannot be used to compute the IPS index. For example, 

in this study, 9 OTUs were assigned to species which were not found in the IPS library. This is often 

the result of taxonomic names discrepancies among libraries (synonyms, misspellings), but in some 

cases autecological information can simply be missing. The OTU-PITI allowed to estimate IPSS and 

IPSV values for these OTUs and include them in the calculation of IPS. This feature is particularly 

interesting for the implementation of biotic indices including a restricted number of taxa, or to extend 

the use of well-established indices to new habitats and new regions with endemic taxa. However, 

practitioners must keep in mind that the phylogenetic estimation of ecological profile is error prone 

and associated with uncertainty. For example, the case of closely related species with different 

ecological profiles can be problematic as an unexpected cryptic diversity has been recently described 

within many diatom species complexes (Mann & Evans, 2007) and we are still in the beginning of 

understanding their autecology (Vanelslander et al., 2009). Nonetheless, with a large number of 

samples and OTUs, our results suggest that the phylogenetic signal is strong enough to improve water 

quality assessment on average. 

Two other taxonomy-free approaches to compute molecular indices have been recently introduced in 

the literature. Firstly, Apothéloz-Perret-Gentil et al. (2017) proposed to assign ecological values 

directly to OTUs. Secondly, Cordier et al. (2017) investigated the use of supervised machine-learning 

regression to infer indices values from lists of OTUs. The main advantage of the OTU-PITI over these 

two approaches is that it does not require the collection of chemical and physical measurements to 

train or calibrate the model which makes it a ready-to-use tool, not restricted to the geographical area 

of the training data. Conversely, a well-trained machine learning classifier used within its 

geographical scope will probably outperform the OTU-PITI approach. As advocated by Keck et al. 

(2017), OTU-PITI, OTU-based indices and machine learning are complementary tools which should 

make it possible to make better use of genetic data in the future. 

Our knowledge of biodiversity is very uneven. Microscopic organisms, which include diatoms, are 

extremely diversified and largely unknown. Thus, OTU-PITI may be a very useful way to address this 

paucity of biodiversity knowledge, pending the availability of comprehensive taxonomic and 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

ecological libraries. Here we have shown that this approach can be successfully applied to use the 

unclassified DNA material which is normally discarded from biotic indices computation. The range of 

applications of the OTU-PITI is large: the method can be applied to any biotic index and any group of 

biological indicator, provided that an accurate phylogeny is available. Moreover, traits values can be 

modeled and estimated within phylogenetic multivariate frameworks (Clavel, Escarguel, & Merceron, 

2015; Goolsby et al., 2017). Multiple biological traits and functional groups come with several 

advantages compared to biotic autecological indices (Bonada, Prat, Resh, & Statzner, 2006; 

Tapolczai, Bouchez, Stenger-Kovács, Padisák, & Rimet, 2016). Thus, the OTU-PITI approach could 

be a way to integrate the immense diversity revealed by metabarcoding and move closer towards 

functional biomonitoring of the environment. 
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Figures 

Fig. 1 Histogram showing the placement accuracy of the 604 species from the reference tree using 
312 bp rbcL barcode sequences and the EPA algorithm. 

Fig. 2 Barplots showing the LOOCV mean squared error of each model for IPSS and IPSV 
estimation. 

Fig. 3 Phylogenetic tree representing 236 diatoms species for which both phylogenetic position and 
IPSS value were available. For each species, true IPSS value is represented as a point, while its 
estimated IPSS value is represented as a dash. Low absolute errors (≤ 1) are represented in green, 
medium absolute errors (> 1 and ≤ 2) in orange and high absolute errors (> 2) in red. 

Fig. 4 Distributions and relationships between the 4 indices computed for 139 environmental samples. 
Diagonal: Histograms of the distribution of each index expressed as frequencies. Lower triangle: 
Scatterplots showing the relationships between the indices. The dashed lines represent the full 
equivalence between the indices. Upper triangle: correlation (cor) and mean squared error (MSE) 
between the indices. 

Supporting Information 

Fig. S1 Phylogenetic tree with bootstrap support values. The topological constraint used for the 
reconstruction is highlighted in red. 

Fig. S2 Map of sampling sites. 
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Table S1 Node distances between references and barcode placements, detailed per species. 

Table S2 Leave one out cross-validation results for IPSS and IPSV phylogenetic imputation (best 
model), detailed per species. 

Table S3 List of OTUs, number of copies, taxonomic affiliations and DNA representative sequences.  
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