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Abstract 22 

The project aim was to estimate N uptake (Nup), dry matter yield (DMY) and crude protein 23 

concentration (CP) of forage crops both during typical harvest times and at a very early 24 

developmental stage. Canopy spectral reflectance of legume and grass mixtures was 25 

measured in Sweden using a commercialized radiometer (400 – 1000 nm range). In total, 377 26 

plant samples were tested in-situ in different grass and legume mixtures (6 grass species and 27 

2 clover species) across two years, two locations and five N rates. Two mathematical 28 

methods, namely partial least squares (PLS) and support vector machine (SVM) were used to 29 

build prediction models between Nup, DMY and CP, and canopy spectral reflectance. Of the 30 

total 377 samples, 251 were randomly selected and used for calibration, and the remaining 31 

126 samples were used as an independent dataset for validation. Results showed that the 32 

performance of SVM was better than PLS (based on mean absolute error (MAE) for both 33 

calibration and validation datasets) for the estimation of all investigated variables. Results for 34 

the validation set showed that the MAEs of PLS and SVM for Nup estimation were 17 and 9.2 35 

kg/ha, respectively. The MAEs of PLS and SVM for DMY estimation were 587 and 283 36 

kg/ha, respectively. The MAEs of PLS and SVM for CP estimation were 2.8 and 1.8 %, 37 

respectively. In addition, a subsample, which corresponded to an early developmental stage, 38 

was analysed separately with PLS and SVM as for the whole dataset. Results showed that 39 

SVM was better than PLS for the estimation of all investigated variables. The high 40 

performance of SVM to estimate legume and grass mixture N uptake and dry matter yield 41 

could provide support for varying management decisions including fertilization and timing of 42 

harvest. 43 

Keywords: Dry matter yield; Forage crop; Grass; Hyperspectral reflectance; Nitrogen 44 

uptake; Nutritive value; Partial least squares; Red and white clover; Support vector machine.  45 



 46 

 47 

1. Introduction 48 

Estimation of forage biomass and quality in the field is important for livestock farmers to 49 

make decisions such as adjusting the stocking rate, fertilization rate and timing, and harvest 50 

time. Laboratory wet chemical analysis has been used as the conventional method to 51 

determine nutritive value. However, these methods are laborious and expensive, and lead to 52 

time delays for decision making. Alternatively, near-infrared reflectance spectroscopy 53 

(NIRS) has been applied as a faster method to estimate nutritive value (Norris et al., 1976), 54 

particularly fibre, crude protein (CP), and metabolisable energy (ME). However, laboratory-55 

based NIRS still involves laborious cutting and processing of plant samples. A fast and less 56 

laborious method is needed to estimate nutritive value, in order to provide rapid information 57 

for supporting decision making.  58 

The canopy spectral reflectance (CSR) method has been developed to estimate crop biomass 59 

and physiochemical properties (e.g. N concentration), based on the principle that CSR in 60 

visible and near-infrared (NIR) bands is primarily affected by physiochemical properties (e.g. 61 

chlorophyll concentration) and cell structure of the canopy (Campbell, 1996). Numerous 62 

studies have concluded that CSR in the red band correlates well with chlorophyll and N 63 

concentration (Heath, 1969; Hatfield et al., 2008), and that CSR in the NIR range correlates 64 

well with plant biomass and leaf area (Allen and Richardson 1968). 65 

Field spectroscopy has been successfully used to estimate nutritive value of forage crop 66 

(Starks et al., 2004; Biewer et al., 2009b; Pullanagari et al., 2012) and yield (Biewer et al., 67 

2009a). Currently, an already commercialized spectrometer named the Yara N-sensor (Yara 68 

International ASA, Oslo, Norway), has been widely applied in Northern Europe to estimate N 69 



status of winter wheat and assist N fertilization decisions. However, it has not been tested in 70 

forage crops, even though increasing interest has been raised in this area, and forages often 71 

dominate agricultural land use, such as in Sweden where the current study was undertaken.  72 

In addition to the potential practical application, from a scientific perspective, there has been 73 

little research conducted to estimate forage crop yield and quality using field spectroscopy. 74 

The advantage of a field spectroscopy method is that it measures CSR in a broad range of 75 

bands, providing an abundant supply of information. Chemometric methods, which are used 76 

for the analysis of spectral data, include principal component analysis (PCA), partial least 77 

squares regression (PLS), and machine learning methods such as support vector machine 78 

(SVM) (Mutanga et al., 2005; Zhao et al., 2007; Karimi et al., 2008; Wang et al., 2013). For 79 

estimation of crop agronomic variables using spectral reflectance data, PLS has typically 80 

been used, for example to estimate winter wheat N concentration (Li et al., 2014a), and 81 

winter wheat leaf area index (Li et al., 2014b). PLS has also been shown to work well to 82 

estimate yield and quality in forage crops (Mutanga et al., 2005; Zhao et al., 2007; Biewer et 83 

al., 2009). In contrast to PLS, which is a linear mathematical method, SVM is a non-linear 84 

method and based upon statistical learning theory. The principle of SVM and its solution is 85 

described in Cristianini and Shawe-Taylor (2000). Non-linear multivariate models of SVM 86 

have been used for many applications, e.g. rice root density (Xu et al., 2017), weed and maize 87 

classification (Zheng et al., 2017), wheat plant density estimation (Jin et al., 2017), leaf area 88 

estimation (Durbha et al., 2007; Yang et al., 2008), crop N concentration (Karimi et al., 2008; 89 

Wang et al., 2013; Zhai et al., 2013). We are unaware of any studies conducted to predict 90 

yield or quality parameters of forage crops in the field using SVM. Therefore, the objective 91 

of this study was to test the performance of spectral reflectance data analyzed using PLS and 92 

SVM, for estimating forage yield and quality parameters. 93 

2. Materials and Methods 94 



2.1. Site description and plant sampling 95 

Field experiments were carried out in 2015 and 2016 at two sites in Sweden: Röbäcksdalen 96 

(63o 48’ N, 20o 14’ E) and Rådde (57o 36’ N, 13o 15’ E). Each site included different 97 

mixtures of grass and legume species (Table 1-2). The soil at Röbäcksdalen is a silt loam (1% 98 

clay, 76% silt, 23% sand) with 4 % organic matter. The soil at Rådde is also a silt loam (1 % 99 

clay, 53 % silt 46 % sand) with 6 % organic matter. The plot size was 1.5×13.5 m at 100 

Röbäcksdalen and 2.1×12.5 m at Rådde. The harvested area was 20.3 m2 at Röbäcksdalen 101 

and 18.8 m2 (1.5 ×12.5 m) at Rådde, which was used for fresh yield determination. A 102 

representative sub-sample was selected from the harvested material for dry matter 103 

determination and chemical analysis. Sub-samples were oven-dried at 60oC for 48 hours until 104 

they reached a constant weight. Dried samples were ground to pass a 1-mm sieve. Nitrogen 105 

concentration of dry samples was determined using the Kjeldahl method. 106 

Crops at each site were harvested three times each year. The harvest dates at Rådde were 4 107 

June, 10 July and 24 August in 2015; and 27 May, 5 July and 22 August in 2016. The harvest 108 

dates at Röbäcksdalen in 2016 were 13 June, 18 July, and 2 September, however for the 1st 109 

harvest the YARA N-sensor data are not available due to equipment malfunction. In addition, 110 

in 2016 samples were also taken at an early developmental stage before the 1st harvest 111 

(corresponding to the time window of N fertilization), in order to investigate if crop N uptake 112 

can be estimated using field measured reflectance. The early cutting dates were 12 May and 3 113 

June at Rådde and Röbäcksdalen, respectively. 114 

Table 1 and 2 115 

2.2. Canopy spectral reflectance measurement 116 

On the same day as harvesting, canopy spectral reflectance was measured using a Yara N-117 

sensor (Yara International ASA, Oslo, Norway) spectrometer, which is a commercialized 118 



instrument used for site-specific fertilization in Sweden and other European countries. It 119 

measures CSR at wavelengths of 400 – 1000 nm with resolution of 10 nm, a 25o field of view 120 

and a zenith view angle of 45o (Fig.1). The solar radiation was measured simultaneously for 121 

calculation of CSR reflectance by dividing the radiant exitance by the solar irradiance (the 122 

reader is referred to (Schaepman-Strub et al., 2006) for definitions). The sensor was held at a 123 

constant height of 1.0 m above the canopy. Measurements were taken around noon when the 124 

sun was not obscured by clouds. To take into consideration the effect of solar direction on 125 

CSR, measurements were taken at opposite ends of each plot, corresponding to facing the sun 126 

and opposite to the sun direction. The mean value of measurements in each plot was used for 127 

data analysis. 128 

Fig. 1 129 

2.3. Data analysis 130 

Spectral reflectance data and laboratory measurements of the variables of interests were 131 

analysed with two mathematical methods, namely partial least squares (PLS) and support 132 

vector machine (SVM) to build regression models between CSR and variables of interest. 133 

Two datasets were used to build the models. The first one consisted of 377 samples that were 134 

randomly split into calibration (251 samples) and validation (126 samples) subsets. This 135 

dataset included all available data across sites, years, species, harvest dates and N fertilization 136 

rates. The aim was to test if a robust prediction model could be built for estimations of Nup 137 

(the nitrogen uptake, in kg/ha), DMY (the dry matter yield, in kg/ha) and CP (the crude 138 

protein concentration, in % of DM). In the second dataset, only the data acquired at an early 139 

developmental stage (i.e., sampled prior to the 1st harvest) were considered. This dataset 140 

consisted of 78 samples split into calibration (52 samples) and validation (26 samples) 141 

subsets. The aim of only using data from an early developmental stage was to test if the 142 



variables of interest (especially N uptake) can be well estimated, as accurate estimation of N 143 

uptake could provide information on soil N mineralization at a very early stage and guide 144 

decision support on N fertilization. 145 

2.3.1 Partial least squares 146 

PLS is a prominent method which can effectively deal with multicollinearity in data and 147 

eliminate the less important or redundant variables. It is especially useful when the number of 148 

predictor variables is greater than the number of observations (Wold et al., 2001). PLS is used 149 

to linearly relate predictor variables (CSR in this study) and response variables (Nup, DMY 150 

and CP) by decomposing data matrices (predictors and response variables) simultaneously 151 

using a set of orthogonal latent variables (PLS-components). The orientation of latent 152 

variables is selected to maximize covariance between the predictors and response values 153 

represented by the components. 154 

In this research we implemented PLS methods using the “mdatools” package in the R 155 

programming environment (R Core Team, 2016). Models were built using a calibration set 156 

and full cross-validation. The optimal number of components was identified by looking at the 157 

minimum root mean square error (RMSE) for the cross-validated predictions. External 158 

validation using an independent validation dataset was subsequently conducted to test the 159 

performance of the calibrated model. 160 

2.3.2. Support vector machine  161 

Support vector machine (SVM) is a supervised statistical learning algorithm developed by 162 

Vapnik (1982) that can be applied to both classification and regression tasks. It has gained 163 

increasing popularity for various purposes such as expression recognition (Lekdioui et al., 164 

2017), water resources management (Deo et al., 2017) and medicine (Zheng et al., 2014). The 165 

general idea behind SVM is to map the vectors of covariates into a higher dimensional 166 



feature space using a kernel trick where a linear regression can be performed. Details of the 167 

theory of SVM are described in Cristianini and Shawe-Taylor (2000). The linearity of the 168 

relationship between Nup, CP and DMY and the spectral reflectance remains uncertain. With 169 

this consideration, a SVM, capable of constructing both linear and nonlinear inversion, was 170 

employed in this study. We used the svm function from the “e1071” package of the R 171 

software (R Core Team, 2016) to estimate Nup, CP and DMY of the experimental plots based 172 

on their spectral reflectance. Based on a radial basis kernel, we performed a grid search to set 173 

the optimal values of the hyper-parameters ε, C and γ, as they influence the accuracy and 174 

generalisation capabilities of the SVM (Cherkassky and Ma, 2004; Wang et al., 2003). ε is 175 

the insensitive-loss function that penalizes the prediction errors that fall within the ±ε range. 176 

C is the cost parameter that defines the penalty weight of deviations higher than ±ε. Finally, γ 177 

is a radial basis kernel-specific parameter that controls the tradeoff between error due to bias 178 

and the variance in the adjusted model. 179 

In order to test the performance of different models, mean absolute error (MAE), root mean 180 

square error (RMSE) (Loague and Green, 1991), and R2 were compared for the calibration 181 

and validation subsets. 182 

𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ |𝑃𝑃𝑖𝑖−𝑂𝑂𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑛𝑛
     (1) 183 

𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 = �1
𝑛𝑛

× ∑ (𝑃𝑃𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1      (2) 184 

where Pi and Oi are predicted and observed values, respectively, and n is the number of 185 

samples. 186 

3. Results 187 

3.1. Statistics of nitrogen uptake, dry matter yield and crude protein concentration 188 



At Rådde, the average Nup, DMY and CP were 84 kg/ha, 3131 kg/ha, and 17 %, respectively, 189 

and at Röbäcksdalen, 30 kg/ha, 1785 kg/ha, and 12 %, respectively (Fig.2). There was large 190 

variation within all response variables at both sites, providing a wide range of data for the 191 

calibration of the models. 192 

Fig. 2 193 

3.2. Spectral measurements 194 

Examples of spectral reflectance signatures were plotted to show the typical effects of N rate 195 

and mixture type (Fig.3, Fig.4). In the visible range (400 – 700 nm), the reflectance was 196 

lower in the blue and red parts of the spectrum, and higher in the green part of the spectrum, 197 

due to the leaf-contained chlorophyll. The spectral signature showed a sharp increase 198 

between 680 and 740 nm (known as the red-edge domain) to reach a plateau in the measured 199 

near infrared (NIR) domain, from 740 to 1000 nm. A concave shape was systematically 200 

observed between 950 and 1000 nm, due to the leaf-contained water (Peñuelas et al., 1993). 201 

“Pure grass” showed a higher reflectance in the visible range compared to “grass and clover 202 

mixture”, whereas in the NIR the reflectance was higher for the “grass and clover mixture” 203 

(Fig. 3). The N rate also had an influence on the spectral signature, as treatments fertilized 204 

with high N levels (300 kg N/ha) showed higher reflectance in the NIR domain and lower 205 

reflectance in the visible domain, when compared to the zero N treatment (Fig. 4). All spectra 206 

showed an increase of reflectance during the season, which is particularly noticeable in the 207 

NIR domain. This increase is more pronounced for the “grass and clover mixture” than for 208 

the “pure grass” (Fig. 3). The dynamics are similar for the two contrasted nitrogen levels 209 

(Fig. 4). 210 

Fig. 3 211 

Fig. 4 212 



3.3. Calibration of PLS and SVM models 213 

R2 values obtained for PLS models were in the range of 0.65-0.77 for the whole dataset and 214 

0.79-0.88 for the early cutting dataset (Table 3). R2 values obtained for SVM were in the 215 

range of 0.90-0.96 for the whole dataset and 0.95-0.98 for the early cutting dataset. 216 

For the whole dataset, MAE for PLS were 15.4 kg/ha, 512 kg/ha and 2.4 %-units for N 217 

uptake, dry matter yield and crude protein concentration, respectively (Table 3). These MAEs 218 

were higher than the corresponding statistics for SVM. For the early cutting dataset, the 219 

MAEs were lower than for the whole dataset, and were again lower for SVM than for PLS. 220 

The RMSE results followed the same trend as MAE. 221 

Table 3 222 

3.4. Validation of PLS and SVM model  223 

Both PLS and SVM were validated using randomly selected sub-samples from either the 224 

whole dataset or early cutting dataset (Table 4). For the whole dataset, R2 values for PLS 225 

were 0.68 – 0.69 and for SVM 0.84 – 0.92. For the early cutting dataset, R2 values for PLS 226 

were 0.80 – 0.92 and for SVM 0.83 – 0.94. Typically, R2 values for validation were lower 227 

than those for calibration, with some exceptions. 228 

For the whole dataset, MAE of SVM were 9.2 kg/ha, 283 kg/ha and 1.8 %-units for N uptake, 229 

dry matter yield and crude protein concentration, respectively (Table 4). For the early cutting 230 

dataset, MAE of SVM were 7.5 kg/ha, 123 kg/ha and 2.0 %-units for N uptake, dry matter 231 

yield and crude protein concentration, respectively. Both MAE and RMSE of validation were 232 

smaller for SVM than for PLS, irrespective of the dataset or variables. 233 

The measured and predicted variables of the validation subsets were plotted using different 234 

crop species and experimental sites as markers (Fig. 5 and Fig. 6). Across the whole dataset 235 

and early cutting dataset they are distributed evenly around the 1:1 lines. No distinct groups 236 



of species or site factors were detected, implying that forage species, cultivars and sites did 237 

not impose substantial influence on the prediction using PLS and SVM models. A stronger 238 

relationship between measured and predicted values was found in the early cutting dataset 239 

than the whole dataset. 240 

Table 4 241 

Fig. 5 and Fig. 6 242 

4. Discussion 243 

4.1. Reflectance measurements 244 

The observed effects of N fertilization on reflectance are consistent with previous studies 245 

(e.g., Hinzman et al., 1986; McMurtrey et al., 1994; Yoder and Pettigrew-Crosby, 1995; 246 

Daughtry, 2000). These results are mainly related to (i) an increase in chlorophyll content that 247 

leads to a reduced reflectance in the visible range (especially in the green and red domains of 248 

the spectrum) and (ii) an increase of the leaf biomass that leads to an increased reflectance in 249 

the NIR range (Fig. 4). 250 

A similar pattern is observed when clover is added in the crop mixture (Fig. 3). Clover is a 251 

leguminous plant, and as such, it is less sensitive to low N fertilization, due to its ability to fix 252 

atmospheric N. This can explain the differences in reflectance measured for pure grass vs 253 

clover-grass mixtures, although the differences in leaf chemistry and architecture between 254 

species might also impose influence on their spectral reflectance signatures. 255 

An increase of the measured reflectance is observed for all samples (exemplified in Fig. 3 and 256 

Fig. 4). Such an increase can be explained by the concomitant increase of temperatures 257 

throughout the summer. The greater increase for the “grass and clover mixture” might 258 

suggest that there is either (i) a lower nitrogen limitation for the growth when compared to 259 



“pure grass” or (ii) that the canopy structure of the “grass and clover mixture” would induce a 260 

stronger light reflection when compared to “pure grass”. 261 

4.2. PLS and SVM 262 

The aim of this study was to predict Nup, DMY and CP using reflectance in the range of 400 – 263 

1000 nm measured using a commercialized tool. In this study, SVM performed better than 264 

PLS (in terms of MAE, RMSE and R2) for estimation of all response variables. Advantages 265 

of SVM lie in its robustness and insensitivity to the number of dimensions (Brown et al., 266 

2000; Wu et al., 2008; Yao et al., 2015). SVM is also better than other methods at coping 267 

with potential confounding factors for different varieties, sites and developmental stages (Yao 268 

et al., 2015). Our results indicate that a non-linear relationship might exist between leaf N and 269 

canopy spectral reflectance (which can be seen in the top-right sub-plot in Fig. 5). This can 270 

also be a reason that non-linear SVM was superior to linear PLS for estimating quality 271 

variables in this study. Our results corroborate those of Yao et al. (2015) and Du et al. (2016), 272 

who showed that SVM performed better than PLS to estimate wheat and rice N 273 

concentrations.  274 

4.3. Application of oblique optics sensors and its limitations 275 

Many studies using spectral reflectance for N estimation have been conducted with handheld 276 

sensors that measured CSR in the nadir direction. One novelty of this study is that the optical 277 

lens had an oblique view of 45 degrees (Fig. 1). The design of the instrument imitates the 278 

commercialised tractor-mounted version (Fig. 1), which is already widely used in northern 279 

Europe. Therefore, the results from this study are highly transferable to the tractor-mounted 280 

spectral sensor (e.g. by encoding SVM methodology to a portable and cheap computer that is 281 

connected to the spectral sensor). The advantage of the oblique sensor is that it can be more 282 

easily fitted to a tractor (Fig.1) than a nadir-directed sensor. However, oblique sensors can 283 



potentially cause the problem of measurement variation depending on tractor driving 284 

direction with respect to the sun position. For example, the spectral reflectance from the 285 

oblique sensor facing to the sun-lit side of the plant will be different from the one facing the 286 

shaded side of the plant. This problem was addressed in our study by measuring spectral 287 

reflectance from each end of the experimental plots. For the application of this method on the 288 

tractor-mounted sensor, the variation of reflectance caused by tractor driving direction and 289 

sun position can be addressed by configuring the device in a way that fibre optics are oriented 290 

in four directions (two fibre optics on each side of the tractor). Such a configuration can take 291 

measurement in four directions, encompassing both the sun-lit and shaded sides of the plant. 292 

As the interaction between canopy geometry, solar elevation angle, solar azimuth angle and 293 

viewing angle influence observed reflectance (Jackson et al., 1979; Ranson et al., 1985), 294 

further studies are needed to clarify the response of reflectance to different combinations of 295 

solar position and sensor viewing angle for legume and grass mixture fields. A field bi-296 

directional reflectance distribution function method could be used to build such a 297 

relationship. Despite the problems related to the oblique sensors mentioned above, it has been 298 

demonstrated that oblique sensors allow a more accurate estimation of field traits compared 299 

to nadir sensors. The potential of an oblique sensor for N status estimation has been 300 

investigated by Mistele et al. (2004) and Mistele and Schmidhalter (2008), who measured 301 

canopy reflectance from four oblique quadrilateral-views. This makes the measured 302 

reflectance almost independent of the solar zenith angle since both the sun-lit and shaded 303 

sides of plants can be captured by the sensor. Another disadvantage related to nadir 304 

measurement is that it only measures the reflectance of the plant upper layer. Oblique sensors 305 

can capture more information of plant structure by measuring reflectance deeper in the 306 

canopy, thus improving the estimation accuracy of plant characteristics (Diner et al., 1999). 307 

The advantages of oblique sensors are demonstrated in several studies. For example, Gianelle 308 



and Guastella (2007) showed that oblique measurement is more appropriate than nadir for 309 

determining grass dry matter yield. Aparicio et al. (2004) found that the wheat dry matter 310 

yield can be more precisely estimated by oblique measurement when LAI is high. Perbandt et 311 

al. (2011) demonstrated that oblique measurement is better than nadir for DMY and 312 

metabolisable energy of maize, while CP is better estimated by nadir measurement.  313 

The oblique sensor in this study showed good estimation of N uptake during the early 314 

developmental stage, which is the most important period for N application. Mounting oblique 315 

sensors on a tractor offers the possibility to scan the crop beside the tractor and apply N 316 

fertilizer accordingly. 317 

4.4. Generalization of the models 318 

Heterogeneous sward structures, varying number of species and varieties, different locations, 319 

and different atmospheric conditions may impose confounding effects on the relationship 320 

between spectral reflectance and nutritive value. For example, Biewer et al. (2009b) built 321 

separate prediction models for grass and legumes, resulting in enhanced prediction accuracy 322 

for CP. The intention of our study was to estimate forage yield and quality by spectral 323 

methods across sites, mixture types and developmental stages rather than have to develop 324 

specific models for different sites, developmental stage and species mixtures. Neither the 325 

performances of PLS or SVM models were strongly influenced by those factors (Fig. 5). 326 

Thus, the model developed from the whole dataset in this study might be more generally 327 

useful compared with those based on a given mixture type or developmental stage, with the 328 

caveat that with more data collection such models can be improved and refined.  One of the 329 

constraints of this study is that spectral method was only tested ton CP, while other forage 330 

nutrition variables were not measured, nonetheless, there is a high correlation in forage crops 331 

between CP, fibre content, ash, lignin, and metabolisable energy (Pullanagari et al., 2012), 332 



indicating potential for extending the method from this study for estimation of other nutrition 333 

variables. 334 

5. Conclusion 335 

The SVM method was better than PLS for forage yield and quality estimation. The 336 

performance of SVM models for estimating forage yield and quality was consistent among 337 

the calibration and validation datasets. These results imply that SVM is a promising tool to 338 

analyze on-field acquired spectral data for the estimation of forage crop quality and yield, 339 

especially when considering the tractor-mounted Yara-N sensor. Mounting oblique sensors in 340 

the very early crop developmental stage on a tractor offers the possibility to scan the crop and 341 

apply N fertilizer accordingly. The results presented in this study need to be confirmed with 342 

further measurements that would provide a more comprehensive database of sun and sensor 343 

interactions, including measurements during cloudy days, various row directions and solar 344 

positions. Nevertheless, as the models showed a good robustness and accuracy for various 345 

site and mixtures combinations, it is reasonable to assume that the models developed in this 346 

study could provide farmers with real time information on-the-go during the harvest period, 347 

informing the farmer about forage yield and quality. 348 
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Table 1 485 
Species, cultivars (cv), and seed rates used in the Röbäcksdalen field experiment. 486 

Mixture 
treatment 

Seed rate of different species and varieties (kg ha-1) 

Timothy 
cv. 
Grindstad 

Meadow 
fescue cv. 
Revansch 

Tall 
fescue cv. 
Swaj 

Festuloliu
m cv. 
Hykor 

Perennial 
ryegrass 
mixture of cvs. 

Red clover 
cv. Torun 

White 
clover cv. 
Undrom 

TiMF 12.0 10.0      

TiTall 12.0  10.0     

TiHyk 12.0   10.0    

TiPerHyk 10.4   9.1 2.5   

TiTall-clover 9.7   7.9     3.3 1.1 
 487 
Table 2 488 
Species, cultivars (cv), and seed rates used in the Rådde field experiment. 489 

Mixture 
treatment 

Seed rate of different species and varieties (kg ha-1) 

Timothy 
cv. 
Switch 

Perennial 
ryegrass cv. 
Foxtrot 

Perennial 
ryegrass cv. 
Kentaur 

Festu-
lolium 
cv. 
Hykor 

Red 
clover cv. 
Vicky 

White 
clover 
cv. 
Klondike 

Festu-
lolium 
cv. 
Felopa 

Meadow 
fescue 
cv. 
Minto 

TiPerHyk 10.4 1.25 1.25 9.1     
TiPerHyk-clover 8.4 1.0 1.0 7.3 3.3 1.1   
TiPerHyk-Fel 10.4 1.25 1.25 4.6   4.5  
TiMF 12.1             9.9 

 490 
 491 
Table 3 492 

Calibration statistics of the prediction of N uptake, crude protein concentration and dry matter yield by partial 493 
least squares regression (PLS) and support vector machine (SVM). 494 

Dataset Variables n Mean PLS model   SVM model 
MAE RMSE R2  MAE RMSE R2 

All 
harvests 

N uptake (kg/ha) 251 65 15.4 19 0.75   6.8 11 0.92 
Dry matter yield 
(kg/ha) 251 2696 512 667 0.77  200 284 0.96 
Crude protein (% of 
DM) 251 15 2.4 3.1 0.65   1.2 1.7 0.90 

           

Early 
cutting 

N uptake (kg/ha) 52 30 8.7 10 0.86  3.1 4 0.98 
Dry matter yield 
(kg/ha) 52 822 176 209 0.88  114 141 0.95 
Crude protein (% of 
DM) 52 19 2.1 2.8 0.79   1.2 1.3 0.95 

n indicates the number of measurements, Mean is the average of measurements. MAE is mean absolute error. 495 
RMSE is root mean square error. 496 

 497 

 498 

Table 4 499 



Validation statistics of the prediction of N uptake, crude protein concentration and dry matter yield by partial 500 
least squares regression (PLS) and support vector machine (SVM).  501 

Dataset Variables n Mean PLS model   SVM model 
MAE RMSE R2   MAE RMSE R2 

All 
harvests 

N uptake (kg/ha) 126 67 17 21 0.69  9.2 12.6 0.89 
Dry matter yield 
(kg/ha) 126 2660 587 732 0.68  283 374 0.92 

Crude protein (% of 
DM) 126 16 2.8 3.5 0.69  1.8 2.5 0.84 

                  

Early 
cutting 

N uptake (kg/ha) 26 39 7.9 9.7 0.90  7.5 9.9 0.89 
Dry matter yield 
(kg/ha) 26 972 153 182 0.92  123 156 0.94 

Crude protein (% of 
DM) 26 22 2.5 3.2 0.80   2.0 2.7 0.83 

n indicates the number of measurements, Mean is the average of measurements. MAE is mean absolute error. 502 
RMSE is root mean square error 503 

 504 

 505 
Fig. 1. The photo on the left shows the hand-held sensor used in this project. The photo on the right shows the 506 
tractor-mounted Yara-N sensor and is from the Yara company homepage. The white instrument on the roof of the 507 
tractor is the N sensor, which has an oblique view angle, enabling the estimation of N status on the crop on both 508 
sides of the tractor. The yellow triangle in both photos is a depiction of the field of view of the reflectance 509 
measurement. 510 
 511 

 512 

 513 

Fig. 2. Variation of agronomy variables of the whole dataset (377 samples) at two sites in 2015 and in 2016 for 514 
nitrogen uptake, dry matter yield and crude protein concentration. The horizontal lines indicate the minimum, 515 



first quartile, median, third quartile, and maximum of the dataset. Sample distribution is indicated by the width 516 
of the colored area. 517 
 518 

 519 

Fig. 3. Comparison of the spectral signatures of pure grass (TiTall) and grass and clover mixture (TiTall-clover) 520 
for three dates: a) 03/06/2016, b) 18/07/2016, c) 02/09/2016 at Röbäcksdalen. Only the zero N treatment was 521 
used for plotting the spectral signature. 522 

 523 

Fig. 4. Comparison of the spectral signatures of two contrasting nitrogen treatments for three dates: a) 524 
03/06/2016, b) 18/07/2016, c) 02/09/2016 at Röbäcksdalen. Only the pure grass (TiTall) treatment was used for 525 
plotting the spectral signature.  526 

 527 



528 

 529 

Fig. 5. Validation of partial least squares (upper graphs) and support vector machine (lower graphs) models for 530 
nitrogen uptake, dry matter yield and crude protein concentration using data from all harvests. Abbreviations for 531 
species mixtures are described in Tables 1 and 2.532 

 533 

 534 

Fig. 6. Validation of partial least squares (upper graphs) and support vector machine (lower graphs) models for 535 
nitrogen uptake, dry matter yield and crude protein concentration using data from the early cutting only. 536 
Abbreviations for species mixtures are described in Tables 1 and 2. 537 
 538 
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